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Abstract

By using the empirical likelihood (EL), we consider the construction of pointwise confidence intervals

(CIs) for nonparametric nonlinear nonstationary regression models with nonlinear nonstationary heteroge-

neous errors. It is well known that the EL-based CI has attractive properties such as data dependency

and automatic studentization in cross-sectional and weak-dependence models. We extend EL theory to

the nonparametric nonlinear nonstationary regression model and show that the log-EL ratio converges to

a chi-squared random variable with one degree of freedom. This means that Wilks’ theorem holds even if

the covariate follows a nonstationary process. We also conduct empirical analysis of Japan’s inverse money

demand to demonstrate the data-dependency property of the EL-based CI.

1 Introduction

The aim of this paper is to use the empirical likelihood (EL) to construct pointwise confidence intervals

(CIs) of the unknown regression function for a nonparametric nonstationary regression model. The nonlinear

nonstationary regression model can be interpreted as an extension of the linear cointegrating model, which has

been exhaustively studied for the last three decades and applied in many empirical studies. However, linearity

of the cointegrating model has recently been considered restrictive in empirical studies such as discrete choice

models and—in macroeconomics—money demand functions. (See, for example, Park and Phillips (2000) and

∗E-mail address:k131014a@r.hit-u.ac.jp

2



Hu and Phillips (2004a) for discrete choice models and Hu and Phillips (2004b) and Bae and de Jong (2007)

for money demand functions.) To ease this linearity restriction, attention has turned to the (parametric and

nonparametric) nonlinear nonstationary regression model.

There are many studies of the parametric nonlinear nonstationary model. For example, Park and Phillips

(1999) and Park and Phillips (2001) provided a quite general asymptotic theory and proposed a nonlinear

least-squares estimation method. Parametric modeling is useful and works well given a priori information on

the functional form. However, empirical studies are hampered by the little information provided by economic

theory about functional form. To avoid misspecification, recent attention has turned to the nonstationary

nonparametric regression model, which requires no a priori information on functional form. Karlsen et al.

(2007) have studied the asymptotic properties of the local-constant estimator by using the recurrent Markov

chain and Wang and Phillips (2009a) have studied local-time asymptotic techniques. See Tjøstheim (2012)

and Park (2014) for a survey of recent studies of parametric and nonparametric nonlinear nonstationary

regression models.

Wang and Phillips (2009b) have also constructed pointwise CIs of the covariate function based on the

residual from a kernel regression for the structural nonlinear model. Because the CI based on the residual

is artificially symmetric around the estimate, the CI is inflexible and problematic. Owen (1988) points out

the well-known problem that the residual-based CI does not work well if the distribution of the error process

is asymmetric. Another problem is that any a priori information on the data, such they are positive or

bounded, may be meaningless. For example, although much macroeconomic data take nonnegative values,

the residual-based CI can include negative values if the dependent variable is close to zero, as is the case with

interest and inflation rates.

To overcome these symmetry problems, we propose the EL-based CI based on the EL ratio for the non-

parametric nonstationary regression model. Xu (2009) has adopted this approach for nonparametric diffusion

processes. The nonparametric regression model with independent and identically distributed regressors has

been studied by Chen and Qin (2000). Xu (2009) applied EL-based CI techniques to the nonparametric diffu-

sion model and showed that it works better than the residual-based CI. The EL-based CI has two attractive
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features. One is that the shape of the CI is data dependent, unlike the residual-based CI. We demonstrate

the data-dependency property of the EL-based CI by conducting an empirical study of Japan’s inverse money

demand function. The second one is the EL-based CI’s automatic studentization property. In cross-sectional

data, the log-EL ratio is asymptotically pivotal, which means that one need not estimate the variance of the

estimator. For time-series parametric models, Kitamura (1997) showed that the time direction correlation of

the asymptotic distribution of the log EL must be estimated. Therefore, the asymptotically pivotal property

of the EL is redundant in time-series parametric models. However, having recently considered pointwise CIs

for the kernel density of weakly dependent processes, citetXiong2012 have shown that the asymptotic distri-

bution of the log EL converges to the chi-squared distribution. This asymptotic result is known as Wilks’

theorem in the EL literature. In this paper, we show that the log EL of our model exhibits the asymptotically

pivotal property by proving that Wilks’ theorem holds.

We extend the literature by incorporating a nonlinear nonstationary heterogeneous (NNH) disturbance

term, as originally proposed by Park (2002). Such an error term is often used in nonparametric regression

and allows the volatility of the error to depend on nonstationary regressors. Wang and Wang (2013) have

proved uniform consistency of the local estimator with NNH errors. Park (2002) has pointed out that the

NNH error is a powerful alternative to the ARCH error. We show that the log-EL statistic is pivotal even

if the error follows an NNH process, which means that a pointwise CI of the regression function can be

constructed without estimating nuisance parameters. This property enables us to extend the nonparametric

nonstationary regression model considered by Wang and Phillips (2009a) to the NNH error model proposed

by Wang and Wang (2013) without making specific modifications.

Following Chen et al. (2003), Wang and Wang (2013) have shown that, under exogeneity with stationary

regressors, Wilks’ theorem holds for the log EL at the true parameter values of the nonparametric regression

model. Combining this result with our main result reveals that the EL-based CI is a unified way of constructing

CIs between stationary and nonstationary regressors. That is, one can construct a pointwise CI for the

covariate function without testing whether the regressor is stationary or nonstationary.

The rest of this paper is organized as follows. In Section 2, we describe the model and its assumptions.
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In Section 3, we present our main result in the form of the asymptotic distribution of the EL and show that

Wilks’ theorem holds. In Section 4, we use simulation results to compare the performance of our proposed

EL-based CIs with that of residual-based CIs. In Section 5, we conduct an empirical study of Japan’s inverse

money demand function to demonstrate the flexibility of EL-based CIs. Section 6 concludes the paper.

2 Model and Assumptions

We consider the nonlinear nonstationary regression model with an NNH error defined as follows:

yt = f(xt) + σ(xt)ut, t = 1, . . . , n, (2.1)

where f(·) : R → R is an unknown function to be estimated, {xt} is a scalar nonstationary process and {ut}

is a weakly dependent process. σ(·) : R → R++ is the same NNH function used by Park (2002) and Wang and

Wang (2013). The heterogeneity generating function captures heterogeneity in the error, which is explained

by the nonstationary regressor. Rigorous definitions and assumptions are given below.

Assumption 1. xt = ρxt−1 + ηt, where x0 = 0, ρ = 1 − κ/n with κ being a positive constant, and ηt =∑∞
k=0 ϕkϵt−k with ϕ ≡

∑∞
k=0 ϕk ̸= 0 and

∑∞
k=0 |ϕ| < ∞. {ϵ} is a sequence of zero mean independent

and identically distributed random variables with ϵ21 = 1, and with a characteristic function ϕ(t) satisfying∫∞
−∞ |ϕ(t)| < ∞.

Assumption 2. The disturbance process ut = u(ϵt, ϵt−1, . . . , ϵt−m0+1, λt, λt−1, . . . , λt−m0+1) satisfies E[ut] =

0, E[u2t ] = 1 and E[u4t ] < ∞ for t ≥ m0, where u(x1, . . . , xm0 , y1, . . . , ym0) is a real measurable function on

R2m0. The initial values of {ut} also satisfy ut = 0 for 1 ≤ t ≤ m0 − 1.

Assumption 3. The NNH function σ(·) : R → R++ satisfies the condition that there is a constant C such

that

|σ(x)− σ(y)| < C|x− y|δ, for some 0 < δ ≤ 1.

Assumptions 1–3 apply to the data generating process given by equation (2.1). The first part of Assumption

1 ensures that the regressor process {xt} belongs to the local-to-unity class. The remainder of Assumption
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1 ensures that the normalized regressor {xt/dt} has a uniformly bounded density for t, where d2t = E[x2t ].

(For a detailed derivation, see Wang and Phillips (2009a)’s proof of Corollary 2.2.) To incorporate structural

economic models, Assumption 2 introduces endogeneity by allowing correlation between the regressor and

error processes. Standardization of the error variance in the last condition is used for identification. However,

because inference about the error process is beyond our scope, this restriction is not necessarily required.

Assumption 3 is the same one made to ensure smoothness of the NNH function by Park (2002) and Wang

and Wang (2013).

We consider two different ELs. One uses the first-order condition (FOC) of the local-constant estimator

as an estimating equation. The other is the EL based on the local linear estimating equation. These esti-

mating equations are based on the work of Hall and Owen (1993), Chen and Qin (2000) and Xiong and Lin

(2012).

Let a be a candidate for the covariate function (f(x)) at given x. The profile EL function Lc(a) based on

the local-constant estimating equation is defined as

Lc(a) =

{
max
pt

n∏
t=1

pt,

n∑
t=1

pt = 1,

n∑
t=1

ptgt,c(a) = 0

}
, (2.2)

where gt,c(a) = (yt − a)K[(xt − x)/h] is the FOC of the local-constant estimator. The local linear EL

Ll(a) is similarly defined by replacing gt,c in (2.2) with the concentrated FOC of the local linear estimator

gt,l(a) = (yt − a)[1 − sn,1/sn,2(xt − x)/h]K[(xt − x)/h], where sn,i =
∑n

t=1[(xt − x)/h]iK[(xt − x)/h] for

i = 1, 2.

Solving the Lagrangian maximization problem defined in (2.2) yields the local-constant log EL defined

as

lc(a) = 2

n∑
t=1

log(1 + λgt,c(a)), (2.3)

where the Lagrangian multiplier λc(a) is the solution of the following equation:

n∑
t=1

gt,c(a)

1 + λc(a)gt,c(a)
= 0. (2.4)
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The local linear log EL (ll(a)) can also be defined by replacing gt,c(a) in (2.3) with gt,l(a).

The next set of assumptions concerns the kernel and covariate functions for the local-constant EL and the

linear EL.

Assumption 4. The compactly supported kernel function K(·) satisfies

∫ ∞

−∞
K(s)dy = 1 and

∫ ∞

−∞
K2(y)dy < ∞.

Assumption 5. The covariate function f(·) satisfies the condition that there is a function f1(x, y) such that

for given x, sufficiently small h and for some 0 < γ < 1,

|f(x+ hy)− f(x)| < hγf1(x, y) for all y ∈ R and

∫ ∞

−∞
f1(x, y)dy < ∞.

Assumption 6. The kernel function K(·) with compact support satisfies

∫ ∞

−∞
K(y)dy = 1,

∫ ∞

−∞
yK(y)dy = 0, and

∫ ∞

−∞
y2K(y)dy ̸= 0.

Assumption 7. For given x, the covariate function f(·) is continuously twice differentiable in a neighborhood

of x.

Assumptions 4 and 5 for the local-constant EL (Lc(a)) are the same as those used by Wang and Phillips

(2009a) and Wang and Phillips (2009b). Assumptions 6 and 7 for the local linear EL (LL(a)) are slightly

weaker than those used by Wang and Phillips (2011). The contrast with Wang and Phillips (2011) is that we

use a second-order kernel in Assumption 6 and assume a twice differentiable covariate function in Assumption

7; to analyze higher-order asymptotic properties, Wang and Phillips (2011) assumes a higher-order kernel and

higher-order differentiability of the covariate function. Because such higher-order analysis for bias correction

is beyond our scope, we make weaker assumptions.
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3 Results

In this section, we derive the asymptotic distribution of the log-EL ratios for the true value of the covariate

function at a given x to construct the EL-based CIs. If there is no endogeneity, under certain regularity con-

ditions, combining the results of Chen et al. (2003) with routine calculation shows that Wilks’ theorem holds

for an α-mixing process. Therefore, showing that Wilks’ theorem holds in the nonstationary nonparametric

regression model means that, for the time-series nonparametric regression model, EL-based construction of

the CI represents a unified approach.

Theorem 1. Under Assumptions 1–5, for any h → 0, nh2 → ∞ and nh2+4γ → 0, at given x, the asymp-

totic distributions of the Lagrange multiplier λ(f(x)) and the local-constant log EL for a = f(x) are given,

respectively, by

(nh2)1/4λc(f(x)) ⇒ NL−1/2(1, 0)

(∫ ∞

−∞
K2(s)ds

)−1/2(E[u2m0
]

|ϕ|

)−1/2

, (3.1)

lc(f(x)) ⇒ χ2
1, (3.2)

where N is a standard normal random variable, L(1, 0) is a local time function and χ2
1 is a chi-squared random

variable with one degree of freedom.

Theorem 1 shows that the asymptotic log EL is a chi-squared random variable with one degree of freedom.

This means that Wilks’ theorem holds even if the regressor is a nonstationary process. By using Theorem 1,

we can construct the pointwise 100(1−α)% level EL-based CI (Ic) of the covariate function at a given x such

that

Ic =
{
a|lc(a) ≤ χ2

1,1−α

}
, (3.3)

where χ2
1,1−α is a 100(1− α)% quantile of a chi-squared random variable with one degree of freedom.

As noted above, Wilks’ theorem also holds for an α-mixing process under certain regularity conditions;

see Chen et al. (2003) for details of the assumptions required. However, each bandwidth convergence order

is different. For an α-mixing process, the bandwidth must satisfy h = O(n−1/3) under the assumptions of
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Theorem 1 and those of Chen et al. (2003). Using h = c/n1/3 for any positive constant as the bandwidth

satisfies the conditions for both weak and strong data dependence. This confirms that the local-constant

EL-based CI is unified.

Theorem 2. Under Assumptions 1–3, 6 and 7, for any h → 0, nh2 → ∞ and nh10 → 0, at given x, the

asymptotic distributions of the Lagrange multiplier λ(f(x)) and the local-linear log EL, ll(f(x)), are the same

as those given in Theorem 1.

The Lagrange multipliers and log ELs of the local-constant estimator and the linear estimator have the

same asymptotic distributions. This parallels the equivalence of the asymptotic distributions of the local-

constant and linear kernel regression estimators considered by Wang and Phillips (2009a) and Wang and

Phillips (2011), respectively.

Based on the local linear log EL, we can use (3.3) to construct the CI (Il). Because, as noted above,

Wilks’ theorem holds for a weak-dependence process, the EL-based CIs are valid for weak-dependence and

nonstationary processes. However, EL-based CIs for weak and nonstationary processes have bandwidths of

different orders. The bandwidth for a weak-dependence process must satisfy O(n−1/5) under the assumptions

of Theorem 2 and those made by Chen et al. (2003). Therefore, we can construct a unified local-constant

EL-based CI for stationary and nonstationary time-series models by using h = c/n1/5 for any positive constant

c.

In this section, we have shown that the log ELs of the local-constant and linear estimators satisfy Wilks’

theorem and represent unified approaches for stationary and nonstationary regressors. Therefore, one can

draw inferences without testing whether the regressors are stationary or nonstationary.
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4 Simulation

We conduct a simulation analysis to compare the proposed El-based method to the residual-based one proposed

by Wang and Phillips (2009b). The simulation design is as follows:

yt = 0.3xt + 0.5x2t sin(xt) + 0.5(1 + xt)ut, (4.1)

where

xt = xt−1 + ϵt and ut =
vt + 2ϵt√
1 + 22σ2

ϵ

, (4.2)

{vt} and {ϵt} are sequences of independent normal random variables with variances of 1 and σ2
ϵ (specified

later), respectively. The number of replications is 10,000 with sample sizes of n = 500 and 1, 000. The

bandwidths of the local-constant and linear-based CIs are set to h = 1/n1/3 and 1/n1/5, respectively. The

disturbance term {ut} in equation (4.2) captures endogeneity and has the same structure as that used by

Wang and Phillips (2009b). We calculate the empirical coverage probabilities of the two-sided 95%-level

residual-based and EL-based CIs by using the local-constant estimator and the linear estimator and their

corresponding moment conditions, at x = 0, 0.01, . . . , 1. When the number of local observations is less than

two, we suppose that the CI in the experiment does not include the true value. This is because, in such an

experiment, the CI cannot be constructed.

We consider two cases for the variance of the regression error in equation (4.2): σ2
ϵ = 0.01 and 0.1.

Because the regressor is nonstationary, there are much fewer observations included in the support of the

kernel function than in the stationary case. For details of how nonstationary regressors affect nonparametric

estimation problems, see the simulation study of Honda (2013).

Figures 1 and 2 show the empirical coverage probabilities for the variance cases σ2
ϵ = 0.01 and 0.1, respec-

tively. In both cases, all CIs overreject the true value of f(x), particularly when x is large. This is because of

the small number observations at each x caused by the nonstationarity of the regressor. In all cases, the local

linear EL-based CI (LLEL) is the closest to the 95% nominal level. The local-constant residual-based (LC)

and EL-based CIs (LCEL) are too strict because of their small number of observations. The bandwidth of
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the local linear CIs is wider than that of the local-constant CIs, because of the larger number of observations

for the former. Although the LLEL only seems to perform better because of its larger bandwidth, the result

for the local linear residual-based CI (LL) in figure 1 shows that the result for the LLEL is attributable not

only to the large bandwidth, but also to the properties of the EL.

From our simulation results, we can conclude that the LLEL is the best in terms of coverage probability.

However, because it is so strict, this CI’s finite-sample performance must be improved by, for example, cor-

recting the higher-order bias. For details of Bartlett correction of the EL in the cross-sectional nonparametric

model, see DiCiccio et al. (1991) and Chen and Qin (2000).

5 Empirical Study

In this section, we conduct an empirical study of the inverse money demand function to illustration our

procedure. The money demand function is a typical empirical application of the nonlinear nonstationary

regression model. It describes the relationship between the interest rate and money demand, and provides

useful insights for monetary policy analysis. Empirical studies using the nonlinear nonstationary model

include those of Choi and Saikkonen (2010), who applied their proposed specification test to the money

demand function and Bae et al. (2006) and Bae and de Jong (2007), who estimated money demand by using

the parametric nonlinear model. Rather than study the money demand function itself, we study its inverse.

This is for two reasons. One is to illustrate the flexibility of the EL-based CI when the data range of the

dependent variable is restricted, which allows us to demonstrate the data-dependence property of the EL-

based CI. In this case, the interest rate takes nonnegative values by definition. If the interest rate is close

to zero, the residual-based CI can contain negative values because of the symmetry of the conventional CI.

However, because the EL-based CI is data dependent, it is not expected to contain negative values.

The other reason is that the interest rate—the regressor of the money demand function—does not seem

to have a unit root. Interest rate series are often modeled using an ARMA(1,1) model with a large negative

root close to −1 in the MA(1) term. The asymptotic properties of this process are quite different to those

of typical unit-root processes. For details, see, for example, Pantula (1991) and Nabeya and Perron (1994).
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Ng and Perron (2001) has proposed a unit-root test for this process. Because the interest rate cannot be

considered to satisfy Assumption 1, we analyze the inverse money demand function, which uses real money

demand as the regressor.

Following Bae and de Jong (2007), we analyze the inverse money demand function given by

it = f(mt) + ut, (5.1)

where mt = Mt/(PtYt), Mt is the money supply, Pt is the gross domestic product (GDP) deflator and Yt is

GDP, which are all in natural logarithms and it is the call rate.

We use 91 quarterly observations from 1985Q3 to 2008Q1. The data on it are quarterly averages of monthly

averaged uncollateralized overnight call rates taken from the Bank of Japan’s website (data section). Mt is M1,

generated by taking quarterly averages of the seasonally adjusted monthly averaged M1. Seasonally adjusted

monthly averaged data on M1, the GDP deflator and real GDP are from the Nikkei database. Bandwidths of

h = 1/(3.5n1/3) ≒ 0.074 and 1/(4n1/6) ≒ 0.116 are chosen for the local-constant CI and the local linear CI,

respectively.

The results are shown in Figures 3, 4, 5 and 6. According to Figures 3 and 5, the EL-based CIs (LCEL and

LLEL) are narrower than the corresponding residual-based CIs (LC and LL). The residual-based CI from the

local-constant estimator in Figure 3 seems too wide because almost all observations are included.

Figures 4 and 6 illustrate the CIs based on interest rates close to zero. The residual-based CIs include

negative values because of their symmetry, whereas the EL-based CIs do not. Moreover, LC in Figure 4

ranges from −3.0 to −2.65 for similar values of the dependent variable. By contrast, the LCEL is narrow

in this region. Figure 6 reveals a similar phenomenon for LL and LLEL in the range from −2.85 to −2.7.

Because the dependent-variable values in this range are similar and close to zero, the variance based on the

local estimators is large. This overestimated variance seems to widen the CIs. Hence, the EL-based CIs

succeed in reducing the spread of the CIs.
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6 Concluding Remarks

In this paper, we derived EL-based pointwise CIs for the nonstationary nonparametric regression model. Sim-

ulation results showed that the empirical coverage probabilities of the local-constant EL-based CI outperform

the residual-based ones. Our empirical study of Japan’s inverse money demand function shows that the EL-

based CI works well and exhibits the data-dependency property. Because our results show that the EL-based

CIs do not include negative values of the interest rate, the EL-based CI approach contributes to the problems

associated with working with dependent-variable data that are restricted.
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Lemma 1. Under Assumptions 1–5, for any h → 0, nh2 → ∞ and nh2+4γ → 0, the following asymptotic

results (a), (b) and (c) hold.

(a)

1

(
√
nh2)1/2

n∑
t=1

gt(a0) ⇒ σ(x)

(
E[u2m0

]

|ϕ|

)1/2

NL1/2
κ (1, 0)

(∫
K2(x)dx

)1/2

.

(b)

1√
nh2

n∑
t=1

g2t (a0) ⇒ σ2(x)
E[u2m0

]

|ϕ|

∫
K2(x)dxLκ(1, 0).

(c)

max |gt(a0)| = op((
√
nh2)1/4).

Proof of (a)

Split gt(a0) into the two terms

n∑
t=1

gt(a) =

n∑
t=1

(f(xt)− f(x))K[(xt − x)/h] +

n∑
t=1

(σ(xt)− σ(x))utK[(xt − x)/h] + σ(x)

n∑
t=1

utK[(xt − x)/h]

:= Θ1 +Θ2 +Θ3.

Equation (3.6) of Wang and Phillips (2009b) implies that Θ1 = Op((nh
2+2γ)1/2) = op((nh

2)1/4), with the first

term being asymptotically negligible. If we show that Θ2 = op((nh
2)1/4), applying (3.8) of Wang and Phillips

(2009b) to Θ3 yields the required result. Therefore, it is sufficient to show that E[Θ2
2] = op((nh

2)1/2).

We split Θ2
2 and xt into

Θ2
2 =

n∑
t=1

(σ(xt)− σ(x))2u2tK
2[(xt − x)/h] + 2

∑
1≤s<t≤n

(σ(xs)− σ(x))(σ(xt)− σ(x))usutK[(xs − x)/h]K[(xt − x)/h]

:= Θ4 + 2Θ5,
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and xt := x∗s,t + x′s,t, where

x∗s,t = ρt−sxs +

t∑
j=s+1

ρt−j
s∑

i=−∞
ϵiϕj−i and x′s,t =

t∑
i=s+1

ϵi

t−i∑
j=0

ρt−j−iϕj .

This representation of xt is derived in (6.10) of Wang and Phillips (2009b). Note that x∗s,t depends only on

(ϵs, ϵs−1, . . . ). By Assumption 3 and given the compactness domain of the kernel function in Assumption 4,

there is a positive constant C such that

Θ4 < h2γ
n∑

t=1

|(xt − x)/h|2γu2tK2[(xt − x)/h] < Ch2γ
n∑

t=1

u2tK
2[(xt − x)/h].

Equation (7.6) of Wang and Phillips (2009b) implies that the right-hand side isOp(h
2γ
√
nh2) = op((nh

2)1/2).

Because x∗0,t depends only on (ϵ0, ϵ−1, . . . ), we have almost surely

E[Θ5|ϵ0, ϵ−1, . . . ] <
∑

1≤s<t≤n

sup
y,z

E[(σ(y + x′0,s)− σ(x))(σ(z + x′0,t)− σ(x))usutK[(y + x′0,s − x)/h]K[(z + x′0,t − x)/h]]

=
∑

1≤s<t≤n

sup
y,z

h2γE[r(x′0,s/h)r1(x0,t/h)g(us)g1(ut)],

where

r(t) =
(σ(x+ h(y/h+ t))− σ(x))

hγ
K[y/h+t], r1(t) =

(σ(x+ h(z/h+ t))− σ(x))

hγ
K[z/h+t] and g(t) = g1(t) = t.

Because |r(t)| < C|y/h+t|K[y/h+t]γ , we can apply Lemma 7.2 of Wang and Phillips (2009b) to the right-hand

side. This reveals that |EΘ5| is bounded above for any ϵ > 0 by

Ch2γ
∑

1≤s<t≤n

[ϵ(t− s)−2 + h(t− s)−1][(t− s)−2 + h/
√
t− s] < Ch2γ(ϵ

n∑
t=1

t−2 + h

n∑
t=1

t−1)

n∑
t=1

(t−2 + h/
√
t)

< Ch2γ(ϵ+ h log n)(C + hn1/2)

= O(n1/2h2(1+γ) log n) = o((nh2)1/2).
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Proof of (b)

1√
nh2

n∑
t=1

g2t (a) =
1√
nh2

n∑
t=1

(f(xt)− f(x))2K2[(xt − x)/h] + 2
1√
nh2

n∑
t=1

σ(xt)ut(f(xt)− f(x))K2[(xt − x)/h]

+
1√
nh2

n∑
t=1

σ2(xt)u
2
tK

2[(xt − x)/h] := Θ6 + 2Θ7 +Θ8.

First, we show that Θ6 = op(1). Note that xt,n = xt
/
dt has a uniformly bounded density (say, gt(xt,n)).

E[Θ6] =
1√
nh2

n∑
t=1

E[(f(dtxt,n)− f(x))2K2[(dtxt,n − x)/h]]

=
1√
nh2

n∑
t=1

∫
h

dt
(f(x+ hy)− f(x))2K2(y)gt

(
x+ hy

xt

)
dy

< C

n∑
t=1

h2γ

n

∫
f2
1 (y, x)K

2(y)dy

< Ch2γ
(∫

f1(y, x)K(y)dy

)2

= O
(
h2γ
)
= o(1).

Because Θ6 = op(1), it is sufficient to show that Θ8 = Op(1).

Second, we deal with Θ7.

|Θ7| ≤
1√
nh2

n∑
t=1

σ(xt)|ut||f(xt)− f(x)|K2[(xt − x)/h]

≤

(
1√
nh2

n∑
t=1

σ2(xt)u
2
tK

2[(xt − x)/h]

)1/2(
1√
nh2

n∑
t=1

(f(xt)− f(x))2K2[(xt − x)/h]

)1/2

by Holder inequality

= Θ
1/2
8 Θ

1/2
6 .

Because Θ6 = op(1), it is sufficient to show that Θ8 = Op(1).
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From Proposition 7.2 of Wang and Phillips (2009b),

σ2(x)√
nh2

n∑
t=1

u2tK
2[(xt − x)/h] ⇒ σ2(x)|ϕ|−1E[u2m0

]

∫ ∞

−∞
K2(s)dsL(1, 0).

To complete the proof, we must show that

1√
nh2

n∑
t=1

|σ2(xt)− σ2(x)|u2tK2[(xt − x)/h] = op(1).

From Assumption 3, |σ2(xt)− σ2(x)| ≤ |xt − x|2δ + op(|xt − x|2δ). From the argument in the proof of (a),

we obtain

h2δ√
nh2

n∑
t=1

u2t |(xt − x)/h|2δK2[(xt − x)/h] ≤ C
h2δ√
nh2

n∑
t=1

u2tK
2[(xt − x)/h] = O(h2δ) = o(1).□

Proof of (c)

max
t

|gt(a0)| ≤ max
t

|f(xt)− f(x)|K[(xt − x)/h] + max
t

|σ(xt)utK[(xt − x)/h]|

max
t

|f(xt)− f(x)|K[(xt − x)/h] = max
t

|f(x+ h[(xt − x)/h])− f(x)|K[(xt − x)/h]

≤ max
t

hγf1((xt − x)/h, x)K[(xt − x)/h]

≤ hγ
∫ ∞

−∞
f1(y, x)K(y) < ∞.

Equation (7.26) of Wang and Phillips (2009b) shows that

max
t

|utK[(xt − x)/h]| = op[(nh
2)1/4].
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Therefore,

max
t

|σ(xt)utK[(xt − x)/h]| ≤ max
t

|(σ(xt)− σ(x))utK[(xt − x)/h]|+max
t

|σ(x)utK[(xt − x)/h]

< max
t

hδ|(xt − x)/h|δ|ut|K[(xt − x)/h] + op[(nh
2)1/4]

≤ Chδ max
t

|utK[(xt − x)/h]|+ op((nh
2)1/4) = op((nh

2)1/4).□

Lemma 2. Under Assumptions 1–5, for any h → 0, nh2 → ∞ and nh2+4γ → 0, the following asymptotic

results (a), (b) and (c) hold. (a)

1

(nh2)1/4
sn,1 =

1

(nh2)1/4

n∑
t=1

[(xt − x)/h]K[(xt − x)/h] ⇒ |ϕ|−1/2NL1/2(1, 0)

(∫
s2K2(s)ds)

)1/2

. (6.1)

(b)

1

(nh2)1/2
sn,2 =

1

(nh2)1/2

n∑
t=1

[(xt − x)/h]2K[(xt − x)/h] ⇒ |ϕ|−1L(1, 0)|
∫ ∞

−∞
s2K(s)ds. (6.2)

For any h → 0, nh2 → ∞ and nh10 → 0, the following asymptotic results hold.

(c)

1

(nh2)1/4

n∑
t=1

gt,L(a0) ⇒
(
E[u2m0

]

|ϕ|

)1/2

NL1/2(1, 0)

(∫ ∞

−∞
K2(x)dx

)1/2

. (6.3)

(d)

1

(nh2)1/2

n∑
t=1

g2t,L(a0) ⇒
E[u2m0

]

|ϕ|
L(1, 0)

∫ ∞

−∞
K2(x)dx. (6.4)

(e)

max
t

|gt,L(a0)| = op[(nh
2)1/4]. (6.5)

Proof of Lemma Results (a) and (b) are implied by Theorem 2.1 of Wang and Phillips (2011) and

Corollary 2.2 of Wang and Phillips (2009a), respectively.

(c)
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Given that

1

(nh2)1/4

n∑
t=1

(gt(a0)− gt,L(a0)) = − 1

(nh2)1/4
sn,1
sn,2

n∑
t=1

(yt − a)[(xt − x)/h]K[(xt − x)/h],

we must show that the right-hand side is op(1).

By (a) and (b) of Lemma 2, sn,1/sn,2 = Op((nh
2)−1/4). Therefore, it is sufficient to show that

1√
nh2

n∑
t=1

(f(xt)−f(x))[(xt−x)/h]K[(xt−x)/h]+
1√
nh2

n∑
t=1

σ(xt)ut[(xt−x)/h]K[(xt−x)/h] := Θ8+Θ9 = op(1).

By the argument used in the proof of Theorem 2.2 of Wang and Phillips (2011), we can split Θ8 into two

terms as follows:

Θ8 =
h√
nh2

f ′(x)
n∑

t=1

[(xt−x)/h]2K[(xt−x)/h]+
1√
nh2

n∑
t=1

[f(xt)−f(x)−f ′(x)(xt−x)][(xt−x)/h]K[(xt−x)/h].

(6.6)

The order of the first term is Op(h) = op(1). Given Assumptions 6 and 7, a Taylor-series expansion shows

that there is a positive constant C such as

sup
y∈Ω

|f(yh+ x)− f(x)− f ′(x)yh| ≤ C|xt − x|2,

where Ω is the domain of the kernel function. The second term in equation (6.6) is bounded from above

by

h2√
nh2

n∑
t=1

|(xt − x)/h|3K[(xt − x)/h] = Op(h
2) = op(1).

We have shown that Θ8 is asymptotically negligible. The proof of Theorem 2.3. of Wang and Phillips (2011)

shows that
∑n

t=1(yt − a)[(xt − x)/h]K[(xt − x)/h] = op((nh
2)1/2).

(d)
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n∑
t=1

g2t,L(a0) =
n∑

t=1

g2t (a0)− 2
sn,1
sn,2

n∑
t=1

gt(a0)(yt − a)H1[(xt − x)/h] +
s2n,1
s2n,2

n∑
t=1

(yt − a)2H1[(xt − x)/h].

Because K(·) has a compact support,

∣∣∣∣ n∑
t=1

gt(a0)(yt − a)H1[(xt − x)/h]

∣∣∣∣ = n∑
t=1

(yt − a)2|(xt − x)/h|K2[(xt − x)/h]

< C

n∑
t=1

(yt − a)2K2[(xt − x)/h] = C

n∑
t=1

g2t (a0) = Op((nh
2)1/2).

∣∣∣∣ n∑
t=1

(yt − a)2H1[(xt − x)/h]

∣∣∣∣< C

n∑
t=1

(yt − a)2K2[(xt − x)/h] = Op[(nh
2)1/2].

(e) Lemma 1 (c) implies that

max |gt,L(a0)| < max
t

|gt(a0)|+ C

∣∣∣∣sn,1sn,2

∣∣∣∣max
t

|gt(a0)| = op[(nh
2)1/4].

□.

Proof of Theorem 1 From equation (2.4), routine calculation yields the inequality

|λ|
1 + |λ|maxt |gt(a0)|

≤
|
∑n

t=1 gt(a0)|∑n
t=1 g

2
t (a0)

.

By virtue of (a) and (b ) of Lemma 1, the order of the right-hand side is Op((nh
2)−1/4). Therefore, (c) of

Lemma 1 implies that

|λ| = Op((nh
2)−1/4), (6.7)
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and

|λ|max
t

|gt(a0)| = op(1). (6.8)

Result (b) of Lemma 1 and equations (6.7) and (6.8) reveal that

0 =

n∑
t=1

gt(a0)− λ

n∑
t=1

g2t (a0) + λ2
n∑

t=1

g3t (a0)

1 + λgt(a0)

=

n∑
t=1

gt(a0)− λ

n∑
t=1

g2t (a0) +Op(|λ|2max |gt(a0)|
n∑

t=1

g2t (a0))

=

n∑
t=1

gt(a0)− λ

n∑
t=1

g2t (a0) + op((nh
2)1/4).

Therefore, the asymptotic distribution of λ is

(nh2)1/4λ =

∑n
t=1 gt(a0)

/
(nh2)1/4∑n

t=1 g
2
t (a0)

/
(nh2)1/2

+ op(1) ⇒ NL−1/2(1, 0)

(∫
K2(s)ds

)−1/2(E[u2m0
]

|ϕ|

)−1/2

.

Expansion of the log-likelihood function in equation (2.3) yields the required result that

2
n∑

t=1

log(1 + λgt(a0)) = 2λ
n∑

t=1

gt(a0)− λ2
n∑

t=1

g2t (a0) +Op(|λ|3
n∑

t=1

g3t (a0))

= λ

n∑
t=1

gt(a0) + op(1)

=
(
∑n

t=1 gt(a0))
2∑n

t=1 g
2
t (a0)

+ op(1) ⇒ χ2
1.□

Proof of Theorem 2

From (c) and (d) of Lemma 2, in the same way as in the proof of Theorem 1, we obtain

|λ| = Op((nh
2)−1/4),
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and

|λ|max
t

|gc,t(a0)| = op(1).

The rest of the proof is omitted because it is so similar to that of Therorem1. □
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Figure 1: The empirical converge probabilities are shown for the local-constant and linear residual-based CIs
(LC (point dashed line) and LL (dotted line)), and the local and linear EL-based CIs (LCEL (real line) and
LLEL (dashed line)) for the case of σ2

ϵ = 0.01.
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Figure 2: Empirical coverage probabilities for the case of σ2
ϵ = 0.1.
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Figure 3: The local-constant-based 95% CIs for the inverse money demand function and the estimate from the
local linear estimator. The EL-based CI (LCEL) is represented by the long dashed line. The residual-based
CI (LC) is represented by the dashed line. The real line illustrates the local-constant estimator for the inverse
money demand function.
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Figure 4: Figure 3 for when mt changes from −3.6 to −2.55.
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Figure 5: The local linear-based 95% CIs for the inverse money demand function and the estimate from the
local linear estimator. The EL-based CI (LLEL) is represented by the long dashed line. The residual-based CI
(LL) is represented by the dashed line. The real line illustrates the estimate from the local-constant estimator
of the inverse money demand function.
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Figure 6: Figure 5 for when mt changes from −3.6 to −2.55.
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