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Abstract

Financial and macroeconomic time-series data often exhibit infrequent but large
jumps. Such jumps may be considered as outliers that are independent of the underly-
ing data-generating processes and contaminate inferences on their model. In this study,
we investigate the effects of such jumps on asymptotic inference for large-dimensional
common factor models. We first derive the upper bound of jump magnitudes with which
the standard asymptotic inference goes through. Second, we propose a jump-correction
method based on a series-by-series outlier detection algorithm without accounting for
the factor structure. This method gains standard asymptotic normality for the factor
model unless outliers occur at common dates. Finally, we propose a test to investigate
whether the jumps at a common date are independent outliers or are of factors. A
Monte Carlo experiment confirms that the proposed jump-correction method retrieves
good finite sample properties. The proposed test shows good size and power. Two
small empirical applications illustrate usefulness of the proposed methods.
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1 Introduction

The common factor model is found to be a useful and effective tool for statistical inference
with financial or economic high-dimensional data sets. Major applications are found in the
empirical asset pricing literature of the well-known Arbitrage Pricing Theory (Ross, 1976).
For classical examples, Lehmann and Modest (1988) and Connor and Korajczyk (1988)
apply a multifactor model to cross sections of stock returns. Recently, Ando and Bai (2014)
develop a multifactor model with group structure and apply it to Chinese stock returns. The
list of studies pertaining to fixed-income assets such as government and corporate bonds
includes Litterman and Scheinkman (1991), Elton et al. (1995), Ang and Piazzesi (2003),
and Ludvigson and Ng (2009). Lustig et al. (2011) provide an application to currency
returns. There is also a strand of research investigating macroeconomic time-series data
using dynamic factor models following, as far as the author knows, Geweke (1977), Sargent
and Sims (1977), and Stock and Watson (2002ab). This list is by no means comprehensive.

One remarkable features of such data sets is that they often exhibit infrequent but large
jumps. While the source and dates of these jumps are sometimes of interest by themselves,
we may simply consider the jumps nuisance outliers that are independent of the underlying
data-generating processes. In the latter case, it is well-recognized that such outliers can easily
contaminate inferences based on the underlying jump-free model. Therefore, a large amount
of research has gone into identifying and correcting such outlier effects. The most popular
issue was to detect outliers in the stationary autoregressive moving average (ARMA) models,
for which methods have been proposed by Fox (1972), Box and Tiao (1975), Tsay (1986),
and Chen and Liu (1993), among others. For examples of unit root and cointegration tests,
see Franses and Haldrup (1994), Vogelsang (1999), and Perron and Rodriguez (2003) and
for examples of inference for conditionally heteroskedastic models with outliers, see Franses
and Ghijsels (1999) and Charles and Darné (2005).

Following the aforementioned outlier detection/correction literature, we investigate the
effects of outliers on the recently developed asymptotic inference for large-dimensional com-
mon factor models using the principal component approach (e.g., Bai and Ng, 2002; Bai,
2003; Amengual and Watson, 2007; and Bates et al., 2012). To make this attempt feasible

and attractive, we extend the standard large-dimensional common factor model as follows.

'In this perspective, a strand of literature uses high-frequency data to asymptotically infer jump-free
processes or the jump itself. See Barndorf{f-Nielsen and Shephard (2007), Ait-Sahalia and Jacod (2014), and
the references therein. Ait-Sahalia and Xiu (2015) apply principal component analysis using high-frequency
financial data.



First, we model the infrequent jumps of each response variable as increments of a mixture
of Poisson processes, with the intensity parameter p/T', where p is a small constant value
and T is the time dimension of data. This is a popular strategy to model infrequent events
in financial time series. The jumps are infrequent because the probability of a jump at a
given time goes to zero as T — o0o. Second, the magnitudes of jumps are modeled as a
function of data dimension. This device provides useful asymptotic approximations of the
effects of jumps on inferences. Third, we consider jumps that occur at dates specific to
one response variable (idiosyncratic jumps) and those that occur at the same date in other
response variables (common jumps). Finally, we consider the possibility of the underlying
factors exhibiting large jumps. This is in contrast to the case where jumps are independent
from the factors and thus they are regarded as outliers.

Under this setting, we first derive the upper bounds of jump magnitudes with which
the standard asymptotic inference goes through. Furthermore, we provide two useful ap-
plications of this result. The first application pertains to a method to correct the effects
of outliers on inferences. This is a simple application of a series-by-series outlier detection
algorithm without considering the factor structure in the data. This method enables us to
apply standard asymptotic normality of common factor models unless common jumps occur.
Even when they do, the consistency of factor estimates is obtained. The second application
pertains to the factor jump test—a test to investigate whether jumps at a common date are
independent outliers or are of factors. This test is important because outliers may spuriously
induce jumps in factor estimates even if the true factors have no jumps.

A Monte Carlo experiment confirms the following results in finite samples. First, indepen-
dent large outliers easily contaminate the standard asymptotic inference in large-dimensional
factor models. They significantly deteriorate the coverage rates of asymptotic confidence in-
tervals, reduce the correlation between the true and estimated factors, and induce over- and
under-estimation of a number of factors. However, the proposed jump-correction method
retrieves good finite sample properties unless 7" is too small. Finally, the factor jump test
shows good size when the outliers are sufficiently large. The test also exhibits good power.
We then apply these methods to daily log-returns data of 25 currencies against the U.S. dollar
for the recent financial crisis period. We observe infrequent large jumps in many currencies
and identify a few common ones. From the common jumps on May 6-7 and September 30,
2008, a factor closely related to currencies such as the Hungarian forint, Norwegian krone,
and Polish zloty shows strong evidence of jumps. On the other hand, a factor related to

currencies such as the Swiss franc and Japanese yen exhibits no jump. This factor exhibits



very weak evidence of jumps during that period. We also apply the method to Japanese
prefectural new car registration data for the period January 1985 to December 2014. Note
that there were two large earthquakes, in 1995 and 2011. We find that the jumps following
the 2011 earthquake represent a jump in a common factor, whereas the jumps following the
1995 earthquake do not represent a jump in factors.

The rest of this paper is structured as follows. Section 2 presents our model and assump-
tions. Section 3 provides the upper bounds with which the standard asymptotic inference
results go through. Section 4 discusses two useful applications: the jump-correction method
and the factor jump tests. Section 5 investigates their finite sample properties via Monte
Carlo simulations. Section 6 serves as two small empirical applications, and section 7 con-
cludes the paper. We use the following notations throughout the paper. The Euclidean
norm of vector x is denoted by ||z||. For matrices, we use the vector-induced norm. Symbols
O(-) and o(-) denote the standard asymptotic order of sequences; symbol 2> represents the
convergence in probability under probability measure P, and symbol =- denotes the conver-
gence in distribution. Symbols O,(-) and o,(-) are the orders of convergence in probability
under P. We let ¢y = min {\/N, \/T}

2 Model and assumptions

2.1 Model

We consider the common factor model with cross-sectional dimension N and time-dimension
T where N and T are both large:

v =MNFi+uy, fori=1. ,Nandt=1,..T, (1)

where 7, is the ith response variable at time ¢, F} is an r x 1 vector of common factors,
A; is an 7 x 1 vector of factor loadings, and wu; is an idiosyncratic error. Without loss of
generality, we use demeaned data so that intercepts are omitted from the model. In matrix
form, model (1) can be written as

X*=FA+u, (2)

where X* = [z7,...,2%] is a T x N matrix with z} = [z, ...,2};]" being a T' x 1 vector of
response variables, F' = [Fy,.., Fr]' is a T X r matrix of common factors, A = [Aq, ..., Ay]’ is
an N X r matrix of factor loadings, and u = [uyg,...,uy] is a T" x N matrix of idiosyncratic

errors with u; = [u;1, ..., u;p|" being a T x 1 vector.



In this study, we consider the model in which response variable x7, is not observed but
x; 18, so that

Tit = l’:t + Zity (3)

where z;; consists of infrequently occurring jumps. Specifically, we consider the following

increments of a mixture of Poisson processes:
c ScC
Zit = 105 + Nyylit- (4)

In the two terms on the right-hand side of (4), n{ and 7,, are i.i.d. Bernoulli random
variables with probabilities p°/T and p/T, respectively, where p® and p are (typically small)
positive constants. Furthermore, §;, and ¢; are random variables associated with jump
magnitudes. Note that if the first term shows a jump (n¢ = 1), every response variable (x;
for every i) also jumps on the same date t. Therefore, we call them common jumps. On the
other hand, the second term consists of jumps occurring on idiosyncratic dates, and so we
call them idiosyncratic jumps. We make two observations with regard to this model. First,
jumps are infrequent in the sense that the probabilities of jumps p°/T and p/T diminish to
zero as T increases. This is a popular modeling of rare events such as jumps and level shifts
in financial returns and volatilities. Second, we assume that both common and idiosyncratic
jumps are independent of the underlying factors and so are regarded as nuisance outliers in

the factor model.

2.2 Assumptions

This section introduces our assumptions. Assumptions 1 to 5 apply to model (1), following
the standard literature of Bai (2003) and Bates et al. (2013).

Assumption 1. E||F||* < co and 71 Zthl E,F! 2 ¥p, as T — oo, for some positive

definite matrix X p.

Assumption 2. F||\] < A < 0o and A'A/N & %, as N — oo, for some positive

definite matrix X,.

Assumption 3. The following conditions hold for all N and T, where M is a generic
constant.
(a) E(uy) =0, Eluyl® < M.



(b) vy (s,t) = E(u,u;/N) for all (s,t),
|7y (s, t)| < M for all s,

and
T3 Sl hin(s, )] < M.

(€) Kijrs = E(uirujs) for all (4, j, s,t). |kijue| < |ki;| for some k;; and for all ¢, while

1N «N
N7 Di1 Zj:l |Kij] < M,

and
(NT)™ ZZ\LI Zjvﬂ Zstl 23:1 |Kijas| < M.
(d) For every (s,t),

4

E|N7YV2N (ujeuy — Eluauy))| < M.

Assumption 4. For all (4, j, s, t), F}, u;s, and \; are mutually independent.

Assumption 5. The eigenvalues of XY, are distinct.

Assumptions 6 and 7 specify the jump process (4) regarded as outliers.

Assumption 6. The followings hold for all (1, j, s, t)
(a) zi and 7, are mutually independent.

(b) m§, 03, njs, and d;, are mutually independent.

(c) &5, and d, follow .i.d.N (0, 0%).

Assumption 7. With kyr as an arbitrary function of N and 7', the standard deviation

of jumps is oy = knyro, where 0 < 0 < oo is a fixed constant.

Assumption 6 (a) ensures that jumps are independent outliers in the factor model. Fur-
thermore, Assumption 6 (c) assumes that jump magnitudes follow a normal distribution with
zero mean. However, normality is not essential and solely for derivational simplicity. The
zero-mean assumption is not without loss of generality, however, since it solves an identifica-

tion problem and greatly simplifies theoretical results, we keep this assumption within this



paper.? Assumption 7 assumes that the standard deviation of jumps is asymptotically large
and represented by scale factor ky7. As shown later, this enables us to obtain meaningful
asymptotic results pertaining to jump magnitudes.

Throughout the paper, factors are estimated using the principal component method, that
is,

(A, F) = arg I/I\HFI} Zf\il Zthl(xit — /\;Ft)Q, (5)

imposing a normalization F'F /T = I, where I, is the r-dimensional identity matrix. This
yields F, that is, V/T times r eigenvectors of X X’ corresponding to its r largest eigenvalues
and A = X'F(F'F)~".

3 Asymptotic results

This section presents the asymptotic inference results for large-dimensional factor models
as established by the literature in the presence of jumps. Again, jumps in this section are
regarded as outliers independent of the underlying factor model. We examine the conditions
for the scale of jump magnitudes kyr under which standard results are unaffected. To this
end, we study the insight of Bates et al. (2013), who discuss the conditions for magnitudes
of factor loading instabilities with which standard asymptotic results go through.

We first consider the asymptotic normality originally obtained by Bai (2003) in the

following theorem.

Theorem 1 (Asymptotic normality of factors and factor loadings) Suppose Assumptions
1-7 hold and uy follows i.i.d. with mean zero and variance o2. (i) If kyy < VT and 15 = 0,
then

NY2(E, — H'F,) = N(0,9p), (6)
as N, T — oo under /N /T — 0, where H = Vg t(F'F/T)(NA/N) and Qp = 02V 1QE,\Q'V
with Q) = V1/2<I>'§]X1/2. Matrices Vyr and V' are diagonal, the main diagonals being the r
largest eigenvalues of XX'/(NT) and E}\/ZEFE}\/Q, respectively, and ® is the eigenvector

matriz corresponding to the latter.

2Suppose E(d;;) = § < co. Then, under the following additional conditions on the original factor model,
a model with non zero mean jumps can be regarded as a model with zero mean jumps. When common jumps
occur (n§ = 1), the condition is E(A;) = A # 0 for all ¢. Then, the new factor at t is defined as F} + p/\ in
the case of r = 1 so that the new jumps have zero mean. When a idiosyncratic jump occurs (n;, = 1), the
condition is E(F;) = up # 0 for all t. Then the new loading is defined as A\; + u/pp to be compatible with
the model with zero mean jumps.



(ii) If kyy < T/V'N, then
TYV2(\ — H7I\) = N(0,95), (7)
where Q; = 02Q"'SrQ7Y, as N, T — oo under VT /N — 0.

This theorem implies that the upper bounds of jump magnitudes are given by /T for
factor estimates and 7'/ VN for factor loading estimates to obtain standard asymptotic nor-
mality. We interpret these upper bounds as a larger T" extending the bound so that it helps
obtain asymptotic inferences for both estimators in the presence of outliers. On the other
hand, a larger N lowers the bound for factor loadings and hence may harm the inference for
factor loadings. This is intuitive because jumps are infrequent and so the total number of
jumps in a data set does not increase as 71" increases, but increases as N does.

The theorem also implies that the asymptotic normality of F} is available only when
common jumps do not occur at t (nf = 0). To deal with this problem, the following corollary

guarantees its consistency with the timing of common jumps.

Corollary 1 (Consistency of factors under common jumps) Suppose Assumptions 1-7 hold
and nf = 1. If kny < \/N, then

We next consider the upper bound of jump magnitudes with which the information

F,— H'F,

= 0,(1). (8)

criteria of Bai and Ng (2002) give consistent estimates for the number of factors . The
information criteria are defined as
P = logV(l)+1xg(N, T 9
7 =arg max logV(l)+1xg(N,T), )
NN ~
where V(1) = SN, SO0 (a4 — )\i/FtZ)2 and F! is the principal component factor estimate,
N A ~
assuming [ factors and \; = (31, F'EM) "Y1, Flx;). We obtain the following theorem

as a direct consequence of Amengual and Watson (2007).

Theorem 2 (Information criteria) Suppose Assumptions A1-A9 of Amengual and Watson
(2007) hold. If kyr < max {1, TYAN"Y4} then # 5 r as N,T — oo.

For this theorem, we need Amengual and Watson’s (2007) set of assumptions for the

underlying jump-free factor model; however, they are very similar to our Assumptions 1 to

d.



4 Two useful applications
4.1 Series-by-series jump-correction algorithm

This section discusses two useful applications of the results presented in the previous section.
The first pertains to the correction of jump effects. We consider the algorithms developed
for univariate time-series data. For this, we apply them series-by-series without considering
their common factor structure. The idea is that if jumps are outliers, removing their effects
will not change their factor structure. We then identify and estimate the common factors
with the set of individually jump-corrected response variables. Here, we consider an example
in which z; follows a stationary ARMA process 0;(L)x;; = vy, where 0;(L) is a polynomial
of the standard lag operator L for every i and all jumps represent the so-called additive

outliers.®* Then, we have the following algorithm.
Algorithm: Implement the following steps for ¢+ = 1,..., V.

Step 1. Compute 7;(t) = 0},/6:, where 0}, is the residual from maximum-likelihood
estimation, using x;; without considering its common factor structure. Estimate the standard

error ¢, which is not affected by the jumps present in {xit}thl.5 )

Step 2. If maxy<<r |7:(t)| > &, where £ is a predetermined critical value,

Ti = arg max |7:(¢)|

is considered a possible jump location. Now, go to Step 3. If maxj<;<r |7;(¢)| < &, the ith
series exhibits no (more) jumps. Assume that &, = z;;, and go back to Step 1 to proceed
with the (i 4+ 1)th series.

Step 3. Estimate the realized jump magnitude with least squares estimation of coefficient
w; in the regression

A%
Uy = wjwy + €, fort=1,..T,

3A sufficient condition for this to be directly applicable is that factors and idiosyncratic errors follow
stationary ARMA processes, because the sum of two ARMA processes is an ARMA process.

1For an extension to the autoregressive integrated moving average (ARIMA) model with additive and
innovational outliers, see Chen and Liu (1993). Franses and Ghijsels (1999) and Charles and Darné (2005)
provide methods using conditionally heteroskedastic models.

For example, Chen and Liu (1993) propose the following three methods: (1) the median absolute devi-
ation method, (2) the a% trimmed method, and (3) the omit-one method.



where w; = 0 for ¢t < Ti, wy = 1 for t = Ti, and w; = —0; for t = TZ + [. Compute

Th = xy — w;w;. Go back to Step 1 and use 27, as a new x;;.
We next provide an asymptotic justification for this algorithm. To this end, we first
confirm that statistic |7;(¢)| is informative with respect to jump locations as long as it

explodes as N, T — oo.

Proposition 1 If Assumptions 1-7 hold, plimyr_ &?t s a finite constant and kyr <
NY2T. Then, the jump component z; becomes the dominating term in |7;(t)| if kny — o0,

as N, T" — oo.

It may not be straightforward to require condition kyr < N'/2T in Proposition 1, because
|7:()| could be considered informative for jumps larger than N*/2T. When the jumps are too
large, factor estimation errors may also explode as fast as the jumps in theory. However, this
is an extreme situation and may not materialize in practice. This is because the algorithm
is sequential and large jumps must be removed first and |7;(¢)| functions better as large
jumps get removed. In contrast, and more importantly, the algorithm may fail to detect non-
explosive jumps in the data. For example, assume that the jump magnitude is kyr = 7'/ VN
and asymptotic inference requires v7' /N — ¢ < oo, as shown in Theorem 2. Then, these
jumps may remain in the data and affect the inference results. We address this concern with

the following theorem:

Theorem 3 Suppose that factors (F') and factor loadings (A) are estimated by (5) and we
estimate the number of factors (r) by (9) using T},. From Assumptions 1-7 and &; — w; =
0,(1), for every jump detected by the algorithm, the following conditions hold:

(i-a) If nt = 0, then (6) holds under VN/T — 0, as N,T — oc.

(i-b) If ni =1, then (8) holds, as N,T — .

(ii) (7) holds under VT /N — 0 and VN/T — ¢ (0 < ¢ < 00), as N,T — oo.

(iii) # 2 r, as N, T — oo.

Several useful implications follow. Part (i-a) states that unless common jumps occur
at ¢, we can have standard asymptotic inferences for the factors in Bai (2003) without any
additional condition (we already have condition v/N /T — 0 in the standard result). In other
words, Theorem 1 states that if the jumps are not larger than /T, we obtain asymptotic
results, although they can be asymptotically identified with the algorithm because they are



explosive as long as T' — oo. Therefore, what we require is only the existing condition
VN/T — 0. Part (i-b) suggests that if we have common jumps at ¢, we cannot have
asymptotic normality for Fj, although the factor space can still be consistently estimated.
Part (ii) means that the inference for factor loading requires condition vVN/T — ¢ (0 <
¢ < 00) in addition to the existing condition /T /N — 0. If this is not satisfied, jumps
smaller than or equal to 7'/ v/N may not be detected in theory because T / VN = ¢! < .
This means again that jumps remain in the data and may contaminate the inference results.
However, this condition is not more restrictive than that required in part (i-a). Finally, part
(iii) simply ensures that after correcting the jumps, Bai and Ng’s (2002) information criteria

can consistently estimate the number of factors.

4.2 Factor jump tests

So far, jumps follow Assumption 6 and are independent of factor structure. Moreover, from
Assumption 1 (E || F;|| < 00), underlying factors should not show large jumps. However, if we
allow for the underlying factors to jump, the response variables also exhibit common jumps,
so that they must be identified as factor jumps. From an empirical perspective, whether
factors show jumps or not is an important question but very often not a priori known to
researchers.

To illustrate this, we present two dissimilar models exhibiting common jumps at time ¢.

If the jumps are outliers independent of factors, the model is the same as (3) and (4),
Ty = N Fy + zip + g (10)

On the other hand, if the jumps are of factors, by denoting them by .J;, an r x 1 vector, the

model becomes
i = N+ Jp) + ui,
= NI+ ATy + . (11)
The two models have very different implications, but the difference is not trivial by observing

x;. To this end, we propose a factor jump test for the null hypothesis of model (10) against

the alternative hypothesis (11) as follows.

Factor jump test
Step 1. Estimate the jump-free factors F, and factor loadings i using the jump-

correction procedure proposed in the previous subsection.

10



Step 2. Obtain residuals from cross-sectional regression: u; = x; — 5\1}7} at ¢t for
i=1,..N.

Step 3. Let a factor jump be suspected at ¢t = T°. Implement an F test for the null
hypothesis Hy : 7; = 0,1 against the alternative hypothesis H; : 7; # 0,x; in the following

cross-sectional regression:
o
ﬁiTc :70+)\i’yl+€i7 1= ]-a"'aNa (12)

that is,
SSR, — SSR,)/r

SSR,/(N —r)
where SSR, and SSR, are the restricted and unrestricted sums of squared regression resid-
uals (12).

oo

If the test rejects the null hypothesis, we conclude that the common jumps at time 7°
are of factors. If not, the jumps are outliers independent of factors. We formally present

this test property in the following theorem.

Theorem 4 Let Assumptions 1-7 hold. (i) Under model (10) of the null hypothesis that
jumps are independent of common factors, rF? = x? as N,T — oo. (ii) Under model (11)

of the alternative hypothesis that jumps are part of common factors, F/ — oo as N,T — oo.

Remark 1 We can also consider a t test in regression (12) for individual factors to in-
vestigate whether an indwidual factor jumps or not. This version is especially useful if the

estimated individual factors can be identified and interpreted.

5 Monte Carlo simulation

In this section, we study the finite sample properties of asymptotic inference for common
factor models in the presence of jumps via Monte Carlo simulations. We examine how inde-
pendent jumps contaminate the standard inference and how the proposed jump-correction
method improves performance. We also investigate the finite sample size and power of the
proposed test.

We generate the data by

ry = Aifi+ i, (13)
Ty = xh + Zit, (14)
Zit = 775557& + 0i0it, (15)

11



where f; ~.i.d.N(0,1,), \; ~ 1.i.d.N(0, I,.), and wu; ~ 1.i.d.N(0,1). Jump process z; has a
common component, where n¢ ~ i.i.d.B(p./T) and 65, ~ i.i.d.N(0, c?), and an idiosyncratic
component, where n;, ~ i.i.d.B(p/T) and §; ~ i.i.d.N(0,c?). Importantly, jumps are inde-
pendent of factor structure in this model. Throughout this experiment, the jump-correction
method assumes a white noise for every series and we use the critical value £ = 5 for |7;|. We
consider a case in which jumps are not corrected (denoted by “no correction” in the tables)
and one in which jumps are corrected using the proposed method (denoted by “correction”
in the tables). In total, we run 3,000 replications.

We first investigate the distributional properties of the factor and factor loading estimates.
For this, we set » = 1 and compute the coverage rate and average length of the confidence
intervals of (rotation-adjusted) factor H f;, factor loading A\; H !, and common component

i ft, where
H=v TSl ff)(NTES0 0D,

and v is the largest eigenvalue of X X’/(NT).® The asymptotic confidence intervals are
constructed by Bai (2003) such that

[ft — Za/2 @(ft% ft + Za/2 @“(ft)L

N = 2o\ Var(A), As + zaj2\/ Var(h)),

[ftj\z — Za/2 @"(ftj\i), ftj\z + Za/2 @(ftj\z>]7

where, respectively,

Var(f) = (N'SX, a2)(SN, A)
Var (5‘) = (T Zs 1 U )(Zleff)‘l,
Var(fih) = (NS, a2) (VSN 307 + (7 ST, @)1 S, )7,

and 2,2 is the 100 x (1 — a/2)% quantile of the standard normal distribution. We consider
the set of parameter values associated with jump magnitudes o = [0, 5, 10, 50, 100], that are
in turn associated with jump frequencies (p.,p) = [(1,0), (5,0), (0,1), (0,5), (1,1)], and
the set of sample sizes (N,T") = [(20,500), (50, 200), (100, 100), (200, 50), (500, 20)]. We also
consider the 90% confidence intervals for, without loss of generality, fr, A1, and A1 fr. Since

Theorem 1 requires no common jumps, we set 175 = 0. The results are reported in Tables

6Since we set = 1 in this experiment, H is a scalar. Still, it is important to incorporate it because it is
not necessarily 1.

12



1 to 3. Tables 1(a) and 1(b) give the coverage rate and average length of the confidence
interval of H fr. They show that even when jumps are not corrected, the coverage rate goes
close to 0.9 except for the case of (N,T) = (500,20); however, the average length inflates
as o increases. On the other hand, when jumps are corrected, the coverage rate is again
close to 0.9, except except for the case of (IV,T) = (500,20), and the average length does
not inflate. This shows that the proposed jump-correction method works well for factor
estimation as long as v/N/T — 0 is relevant, as discussed in Theorem 3 (i-a). We now
examine the results of factor loading in Tables 2(a) and 2(b). When jumps are not corrected,
the coverage rate significantly deteriorates and the average length shortens as ¢ increases.
On the other hand, when jumps are corrected, we observe significant improvement except
for the case of (N, T) = (500, 20), where v/N/T — ¢ < oo could be irrelevant, as Theorem
3(ii) predicts. We also observe that the coverage rate deteriorates when (N,T") = (20, 500),
because condition v/7'/N — 0 as required in Theorem 3(ii) may not be relevant; however,
the errors are minor in this case. Finally, Tables 3(a) and 3(b) show the confidence interval
results for the common component. Again, the coverage rate moves away from the nominal
level 0.9 as ¢ increases when jumps are not corrected; however, jump correction significantly
improves performance except for the case of (NV,7) = (500,20). We again observe some
errors in coverage rate for the case of (IV,T") = (20,500), but they are minor.

The above results are direct consequences of Theorems 1 and 3. However, a good coverage

ratio of fy without jump correction may be questionable. We here show that the observed
T

coverage rate is pointwise and does not reflect a good estimate for { ft} as a series. To
t=1
T
this end, we compute the correlation coefficient between the estimated factor { ft} and
t=

the (rotated) true factor {H f;},_,. Table 4 gives the average correlation coefficient over
simulation. When jumps are not corrected, it moves significantly away from 1 as o becomes
larger. This is the case even if all the jumps are idiosyncratic (p. = 0). The average
correlation coefficient moves very close to 1 when jumps are corrected in almost all cases.
Furthermore, Figure 1 gives a sample path of a true factor and factor estimates without
jump correction when the data show (a) common jumps at t = [0.57'] with ¢ = 10 and (b)
an idiosyncratic jump in xy; at ¢ = [0.57"] with ¢ = 100. The factor estimate exhibits a
jump in response to these outliers at t = |0.57|. Thus, we do not obtain a good estimate
for the series as a whole. More importantly, this occurs even if the outlier is idiosyncratic as
long as the magnitude is sufficiently large.

Table 5 investigates Theorems 2 and 3(iii) and reports the average estimated number
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of factors in Bai and Ng’s (2002) information criteria. We here set the true number of
factors to » = 4 and consider the three suggested information criteria (/C,1, IC,2, and
IC,3). In every case of the sample size and jump frequency, the number without jump
correction moves away from 4 as ¢ increases. One must be careful because our theory does
not determine the direction of either under- or over-estimation. For example, it tends to
over-estimate when common jumps occur; we also observe significant over-estimation when
only one idiosyncratic jump occurs, that is, (p.,p) = (0,1). However, we observe under-
estimation when idiosyncratic jumps are more frequent, (p.,p) = (0,5). Again, after jumps
are corrected, it recovers the true number 4 in most cases as suggested by Theorem 3 (iii).

Finally, we investigate the size and power of the factor jump test. Figure 1 shows that
even if the true factor does not jump, independent outliers in the response variables (even if
it occurs in one response variable) could induce a spurious jump in factor estimates, showing
the importance of this test. We first examine the size of the test. The data in models (13)
and (14), that is, under the null hypothesis of no factor jumps, are generated with r = 2. We
also simplify the model by assuming that no idiosyncratic jumps occur. Thus, we generate
process (15) with

zip = I(t = [0.5T']) x 0,
where &5, ~ 1.i.d.N(0,0%). On the other hand, to investigate power of the test, we assume
that z;; = 0 for all 7 and ¢, so that although no independent outliers are present, the factors
jump such that
fo=f+f,

where f; ~ i.i.d.N(0,1I,) represents jump-free factors and f/ = [I(t = [0.5T]) x 4, 0]
with § ~ N(0,0?%) corresponds to a jump of the first factor. Since the jump-free factor
estimates used in Steps 1 and 2 can affect the performance of the test, it is instructive to
compare the results for the following two cases. Case 1 considers an unfeasible test that
assumes the presence of true jump-free observations z},. The test is constructed from the
factors and factor loading estimated using them. Case 2 pertains to a feasible test that uses
jump-corrected factor and factor loading estimates to construct the test.

Table 6 reports the size of the factor jump test at the nominal 5% level with the set
of jump magnitudes and sample sizes. Case 1 illustrates a very good size; however, the
feasible test in Case 2 suffers some size distortions when o is small. This is consistent with
the theory, because, as elaborated in the proof of Theorem 4 in the appendix, the pseudo-
true coefficients attached to factor loading estimates in the cross-section regression of Step

2 have random quantity in finite samples. However, since they shrink to zero at the rate of
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0, (ki N~Y/2), the size improves remarkably as o becomes large. The size is also distorted
when 7' is small, because the jump-correction algorithm does not work well in such cases,
as shown in Tables 1 and 2. However, the size improves as T' increases. Finally, Table 7
illustrates the power as a rejection frequency of the test at the nominal 5% level. It shows

that the test has good power against factor jumps.

6 Empirical examples
6.1 Daily currency returns against the U.S. dollar

Much attention has been paid to comovements of currency returns. Especially, recent empir-
ical evidence of deviation from the theory of uncovered interest parity has motivated many
authors and policy makers to identify the risk factors in currency markets besides interest
rate differentials. For example, Lustig et al. (2011) apply a common factor model to monthly
returns on 35 currencies against the U.S. dollar (minus the interest differential). Using the
estimates of principal component factors, they identify the global risk factor as the series
closely related to the world’s stock market volatility and find it consists of an important
element of exchange rate dynamics. While they use monthly data, it is well-known that
large jumps are likely to occur if daily currency returns data are used.

We provide a small empirical example related to such data. To this end, we use the
daily log-returns on 25 major foreign currencies with relatively stable volatilities against the
U.S. dollar for the recent financial crisis period. The sample period is from August 1, 2007,
to September 30, 2008, totaling 305 business days. The currency returns are computed as
ri+ = log(e;+/eit—1), where ey is the daily spot exchange rate of currency ¢ against the U.S.
dollar at day ¢. Table 8 gives the list of currencies. The data, e;;, are quoted at 15:00 EST
by Bankers Trust Co., and are downloaded from the Datastream database. Figure 2 plots
the 25 individual currency returns, clearly showing a few large jumps in some currencies.

We first identify the jump dates using the proposed method. For this, we fit a white
noise model to individual series and use the critical value of 5 for |7;(¢)|. Table 8 gives the
number of jumps identified using this method. Jumps are relatively scarce, but 13 out of 25
currencies exhibit them. Figure 3 provides information on how many series exhibit a jump
each day, with no jump or only a few jumps occurring on most days considered as individual
jumps. However, nine jumps are identified on May 6 and 7 and four jumps on September
29, 2008.

Turning to factor estimation, Figures 4-1 and 4-2 present the first and second estimated
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factors, respectively. For each set of figures, panel (a) shows the factor estimates with and
without jump correction and panel (b) gives their difference. A visual inspection shows that
the first factor estimate may include three jumps, on May 6 and 7 and September 29, 2008.
The second factor estimate may also exhibit jumps on these days. To examine whether these
jumps are due to the independent outliers or jumps in the factors, we present the results of
the test for factor jumps in Table 9: an F' test for a jump of the two factors jointly and ¢ tests
for a jump of each factor. The table shows that the null hypothesis of independent outliers
is rejected at the 5% level for the jumps on May 6, 2008, suggesting that they are of factors.
We also find that the ¢ test for the first factor is significant at the 5 % level but insignificant
for the second factor. Finally, we try to interpret the factor estimates. The first factor is
related to some European currencies (the Hungarian forint, Norwegian krone, Polish zloty,
etc.), the Australian dollar, and the New Zealand dollar. In contrast, the second factor is
related to the Swiss franc and Japanese yen. Given that the latter two currencies exhibit
much more market liquidity, we may conclude that a factor jump is found in the common

risk factor related to currencies with less liquidity, that is, the first factor.

6.2 Japanese prefectural data following earthquake shocks

The second example involves the new car registrations data for 47 Japanese prefectures. The
data consist of monthly spans from January 1985 to December 2014 (seasonally adjusted) and
are taken from the Nikkei CIDIc database. We consider a monthly growth rate computed
by the first difference of its natural logarithms so that the time dimension of the data is
T =12x30—1 = 359. Instead of presenting all 47 series, Figure 5 gives the individual series
of four selected prefectures illustrating the features of the data well. The top two panels
present Tokyo and Osaka, the two largest prefectures in Japan, while the two figures at the
bottom two panels represent Hyogo and Miyagi prefectures. Hyogo prefecture clearly exhibits
a large jump in January 1995, because it was the epicenter of the Great Hanshin earthquake.
On the other hand, Miyagi prefecture also exhibits a large jump in 2011 following the Great
East Japan earthquake in March 2011. Tokyo and Osaka may only be indirectly affected
by these events. The question we examine is whether these large jumps affect our factor
estimation.

To this end, we first follow the series-by-series jump-correction procedure. We fit a white
noise model for individual series and set the critical value of |7;(t)| at 5. Table 10 shows that
only one prefecture exhibits a jump following the 1995 earthquake, whereas 23 prefectures

experienced a jump after the 2011 earthquake. From Bai and Ng’s (2002) information criteria
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(1C,2), the number of factors estimated with the original data is four, but this becomes two
with jump-corrected data. Hence, the number may be contaminated by these jumps. Finally,
Figure 6 gives the first four non-corrected estimates (in the top four panels) and the two
jump-corrected factor estimates (in the bottom two panels). As expected, the non-corrected
estimates exhibit jumps. In particular, the second and third non-corrected estimates exhibit
jumps in March 2011. To examine whether these jumps are of factors, we implement factor
jump tests in Table 11. We observe strong evidence of factor jumps in March 2011, with p-
value 0.00 for the F-test. The t-tests indicate that the jump is associated with the first factor
with p-value 0.03, while the p-value for the second factor is 0.40. Finally, the fourth non-
corrected factor estimate shows a large jump in January 1995 following the Great Hanshin
earthquake, although only Hyogo prefecture exhibits a jump. Table 11 shows no evidence of
factor jumps in January 1995. Therefore, we conclude that the jump in factor estimate in
January 1995 was spuriously caused by an individual outlier in Hyogo prefecture and that

the factors did not jump.

7 Conclusion

Financial and economic time-series data often exhibit infrequent but large jumps. This paper
explored the problems pertaining to such jumps in recently developed large-dimensional
common factor models. To make this attempt feasible and attractive, we introduce the
following extensions of the standard model. First, jumps are modeled as increments of
a mixture of Poisson processes independent of the underlying factor structure. Second,
the jump magnitudes are modeled as a function of data dimension to derive meaningful
asymptotic results. Third, we consider idiosyncratic jumps and common jumps. Under this
setting, we primarily derive the upper bounds of jump magnitudes with which the standard
asymptotic inference goes. Furthermore, this result is followed by two useful applications: the
series-by-series jump-correction method and the factor jump test. A Monte Carlo experiment
confirms that independent large outliers easily contaminate standard asymptotic inference.
However, the proposed jump-correction method retrieves good finite sample properties unless
T is very small. The factor jump test shows good size when outliers are sufficiently large
and exhibit good power. The usefulness of the proposed method is highlighted in a small
empirical example using daily log-returns data of 25 currencies against the U.S. dollar as

well as Japanese prefectural new car registration data following the two large earthquakes.
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Appendix : Proof of Theorems

For notational simplicity, we assume that F ||F}||*> = 0% for all ¢, E ||\;||> = A\? for all 4,
and E(u?) = o2 in the following proofs. This simplification does not qualitatively affect our

it
final results.

Lemma 1: Let b, = sz\il Zjvzl E(zizjt) and dy = 23:1 Zfil Zﬁvzl E(ziszitzjs2jt). From
Assumptions 6 and 7, we have

and

We also have

and

d=T" Zle dy =

Proof of Lemma 1: For all i and ¢, F(22) = k0% if nf = 1 and E(z2) =

O(kJQVTN)7
O(kXrNT™Y), if n; =0

itny =1

Y

b= T 520, b= O, (K3 NT™),

O(k?VTNQ%

ifng =1

Y

O(k%pmax {NT1, N?T72}), ifn¢=0

Op(kl;lVTN2T71)v if p. =0
O, (kipmax {NT-1, N?T2}), ifp. £0

n; = 0. Because E(z;2j) = 0 for i # j, by Assumption 6,

by = sz\il E(z};) + sz\; Z;'VﬂE(Zitzjt)

N
= Zi:1

E(z) =

i#£]

and the result for b, follows. For b,

b

kirNo? + kX N(p/T)o?, if i =1

2 p 2
kNTNTO- )

iftnf=0

T pkrNo® + TS k2 -N(p/T)o?,
T~ pekipNo® + kiyrN(p/T)o?,

O<k?VTNT_1)7
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and the result follows.
We turn to the bound of d;. From Assumption 6(c), E(z}) = kxp30? if ¢ = 1 and
E(z4) = (p/T)kjp30* if n¢ = 0 for all i and ¢, and so
UEEED DD ARD DARY o CIRIENEINE
= YL E(z) + 20 L B E(2)

i#]
T N T N N
) ey 2oimy B E(2) + 2y >miny Zj=1E(2isZithstt)a
s#t s#t i#£j
= [I+I1I+1I1+1V.

If nf =1, then

I = Nkyp3c* + N(p/T)kyr30?,
IT = (N?= N)kygo' + (N* = N)(p/T)*kyro*,
I = N(T = 1)(p/T)kygo* + N(T = 1)(p/T)*kypo?,

and IV = 0. Therefore, term IT dominates and d; = O(k},N?). If n¢ = 0, then

I = N(p/T)k?VTSOA?
II = (N*~N)®/T)*kyro,
111 = N(T—1)(p/T)*kyro*,

and IV = 0. Therefore, d; = O(kx, max {NT~' N?T~%}). For d,

d = T 'p.Nkyp30* + N(p/T)k330%,
+T7 pe(N? = N)kyro® + (N? = N)(p/T)?kyro”,
+T 7 pN(T = 1)(p/T)kyro® + N(T = 1)(p/T)* ko’
= I+I1I+1IT+1V+V+VI

If p. # 0, then term 11 dominates and d = O(k%,N?T~1). If p. = 0, then terms I, I11,
and V are zero. Then, d = O(k%r max {NT~! N°T—2}). B

Lemma 2: From Assumptions 1-7,

N 2
TS B = HE| =0,(Jr),

where

; max {ky, T2, k3 N1T1} if p. #0
NT — )
max {kypcypT 2, k3 NI} ifp. =0

as N,T — oo.
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Proof of Lemma 2: Using steps very similar to those applied in the proof of Theorem
1 of Bates et al. (2013), we start with the results of the proof of Theorem 1 of Bai and Ng
(2002):

Ft—H/Ft = (NT)_l {F/FA/Ut+F/UAFt+F/UUt+F/FA/Zt
—|—FAVZAFt —+ F,Zzt -+ F’uzt + FIZUt}
= Yo du, (A1)

where d;; = (NT)_lﬁ”FA’ut, etc. Since
. 2
TS || - B R <8 Eh (TS )

and we know from Bai and Ng (2002) that the terms for dy;, dy;, and, ds; are O,(cy%), we
consider the bounds for the remaining terms. For h = 4,

A

Jdal? < N2 S| B D@ ST EIR) I
S — 23
where
EBINz|P = S, ijzlE(Ag)\j)E(zitht)a
< N,
Therefore,

TS B ldu|)* < N™2ra% A%,

and so from the result of b in Lemma 1, we obtain

TS dal? = Op (ke N7 T,

For h =5,
2 T = P 2
ldse||” < NTZT (T Xy || F5|| ) IZAR]T,
where
E|ZARI® = S S X Bz | E | NEXNF|,
< TNo%b.
Therefore, B
E||ds||” < N"2r\%0%b,
so that

T YL ldsl® = Op (ke NT'T7Y).

20



For h =6,

2 I | T
[dee||” = N7ZT7 (T >0y || Fs|] ) 12727,
where ) . N N
EZz|" =30 2o Zj:l |E(2iszit2js25t)| = db.
Therefore,
E ||de:||> < N72T7rd,,

so that -

TS E|de® < N72T71rd,
and

Op<kjl\7TT_2)> if DPe 7é 0

TSl = O T
O, (kxpmax {N"'T2 T73}), if p.=0

or by using symbol ¢y = min {\/N, \/T},

Op(knrT™2), if pe # 0
Tl el = .
Op(kxrenTT™2), if po=0
For h =17,
2 o1 -1 =T || & || 2
[dael|” = N7ZT (T 32y || Fs|| ) lluze]”,
where
Elluzl® = 3o i Yim Bluistss) B(ziz),
S TO'ibt.
Therefore,
E||dz||* < N~2ro2b,,
so that . ) ~
T Yo Ellda|” < N727"‘7121b7
and . )
T3 ldull” = Ok NTITTY.
For h =8,
2 91 1 =T 5 12 2
[dsel|” = NT"T7 (T ooy || Fs|| ) [ Zwl]™
where
EZul* = i ity Y Eluirui) B(ziszs6),
< TO'iB.
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Therefore, -
E |\ds||* < N~%ro2b,

so that I ) L

! > ldse|l” = OP(kZQVTN T 1)-
Therefore, the bounds of the five terms are O, (k3N 'T71), O, (k¥ ,N*T71), O (k‘j‘VTT*Q),
O, (K3 N7T7Y), and O, (k3 N~1T71) if p. # 0. The third term becomes O, (kxrcyrT2)
if p. = 0. The result follows.H

Lemma 3: From Assumptions 1-7, the following hold:

(a) HT S (B = HE)F/|| = Oy(cyy) + Oplbne NPT + Op (k3 N~2T72),
b) |7 SB = HR)E| = 0y(ci3) + OplbwrN72TY) + Oy (K e NV2T72),
(© |7 S (B = B'R)ual| = Oplexd) + Oplbwr N V2T + Oy (e NV2T2),

@ [T B = HR)e| = Oy(ed) + Oplhwe N V2T 1) 4 O (k3 N /2T

Proof of Lemma 3: (a) We start with Bai and Ng’s (2002) expression:
TS (F,— HFE)F = N'T(FFAF + FulAF'F + F'uu'F + F'FNZ'F
+F'ZAF'F + F'ZZ'F + F'uZ'F + F' ZU'F),
= 22:1 Dp.

Terms Dy + Dy + D3 do not involve jumps and their sum is O (cNT) In the following, we
compute the stochastic bounds for terms Dy to Dsg.

For Dy,
N2 V2R INZ'F,

2p| SE SN AP 22 R

AFA’Z’FH < N7

Nt

IN

although from independent assumptions (Assumptions 4 and 6(a)), we obtain
E(INIPZ BN = EINIPEGHEIRI?,

Fero® Mok + kXp(p/T)o*Nog, ifnf =1

Ror(p/T)o*N20%, ifng=0

Therefore,

EXL SN NP 22 BN = NEp(pe + p)o* Mo,
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so that
|INZ'F| = Op(knr NY?).

This results in
Dy = O,(knyN~V2T71).

For Ds,
NI < N[ Eza|| TR e
where
~ ~ 112
A T
However,
112 k202N + (p/ k302N, if 6 =1
E‘ Ft ZZZtH)\lHQ _ NT (p/ ) NT T]t
(p/T)k?VTU2/\2Ta ifn;=0
EZZ—‘Zl Zz 1 H)\ || Zzt (pC +p)0—2)\2’rv
so that HFZAH — 0,(k2,pNY/?) and Ds = O, (kyrN~2T1).
For Dy,
N2 F ZZ’FH < N1T2\/ SN ST ST N BrzyziF
However,
~ ~ 112
E‘ FrownsF!| = E ‘ Bl EG)EC)E|F)
Ko E(2})ohr + (p/T)kpo B(2])o%r, ifnt =1
(p/ Tk} E(25) 0%, if n; =0
so that

) 2
Fizizs sl < kNTU (pe +p)E( zt)O-FT

YL B

[kJQVTUQ(pc +p)‘7%7’]k12VT(1 +P/T)027 ifpy =1

Y

[kJ?VT02<pc + p)a%r]k?VT(p/T)ﬁ, ifni=0
so that
S S BR[| < Bero (e + )0
and

thitzis ! < N k370 (pe + p)|*o%r.

Zi]\il Zle Zzzl FE ’
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Therefore, Dg = O, (k%N ~Y2T~2).

For Dy,
~ . 2
N ”FIUZ,FH < N_lT_Q\/Zz‘]\il Zthl 25:1 ‘ Fruirzis F
However,
” /|7 I 2 2 2
B bzl = B|E] BB BRI,
B k3roloirot + (p/T)kiroloiros, ifnt=1
(p/T)kRpo?orrot, if n; =0
so that )
2321 E ‘ Ftuitzistl = k?VT(Pc +p)0203ra%,
and

, 2
FuqyzisFy|| = NTk3p(pe + p)otoiroy.

Zij\il Zz:l Zz:l E

Therefore, D7 = O,(knyrN ~1/27-3/2) For Dg, we use a similar computation as D; to obtain
Dg = Op(kntN —1/2p=3/ ). Therefore, terms D, and Dj consist of the second component
and terms D; and Dg correspond to the third component of the final result. Term Dg is
dominated by terms D4 and Djs, and we obtain the final result.

(b) We essentially follow the same computation as (a).

(c) We start with

71 ZtT:l(Ft — H'F)uy = NﬁlT*Q(F’FAu'ui + F'ulFlu; + Flud'u; + F'EAN 7 u;
+F' ZAF u; + F' 27 u; + F'uZ'u; + F’Zu'ui),
= Zi:l Dy

Terms Dy + Dy + D3 do not involve jumps and their sum is O,(cy%). In the following, we
compute the stochastic bounds for D, to Dg. For Dy,

NTT2F'FNZ'w| < N7TH|T2FR| || T2 ([N 2w,

(7727 (| /S S NP 222,

< N7 HT‘1/2F

and

E(INI° i) = BN E(z0)?Buh,),

J

kr0° N0, + ki (p/T)o* o7,

ifnf=1

kor(p/T)o*Noa?, if 75 =0
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so that

Dy = Oy(kyp N~V2T71),

For Ds,
NIT2 | FZAFw|| < NPT NS RZA|| [T
—_———
=0p(knT) by D5 in (a)
= Oy(kypN7V2T73/2).
For DG;
A2 || fr o 2 N T T |¢ 2
However,
N 2 ~ 112
E||Fzjzjsuis|| = E||F; E(z?t)E(z?S)E(ufs),
kxpo?E(23)our + (p/T)kXpo? E(25,)onr, ifnS=1
(p/T)k370*E(22)2r, itge=0
so that

YL B

so that

and

Therefore,

For D7,

However,

thjtzjsuis

2

ST E|

S YL YL B

N2
E || Fyuizisuis

F'uZ'u;

)027"

u'

< pck?vTUQE(Z?t)UiT + pk?VTUQE(ZJQ't

(kXp0?(pe + p)oir|kxp(L+p/T)o?  ifnf=1

Y

(kX0 (pe + p)oar|kRr(p/T)o?, if =0
“ 2
thitzisuis S []{]2\[T0'2 (pc + p)O’iFT’,

2
< N[kX70*(pe + p)oi)?r.

Fizipzisis

Dg = O, (k% N~V2T72).

. 2
Fiugzisugs

< NT e T

2 2

= B|&| Bed)BCR) B,

Firo*our + (p/T)kipotoyr, ifng =1

(p/T)kiro?oyr, if ng =0
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so that

R 2
2 2 4
Ftuitzisuis = kNT(pC + p)O' .7,

>l E|

and

. 2
Fouyziswis| = NTkXr(pe + p)oair.

ST E|
Therefore, D; = Op(kNTN_1/2T_3/2).

For Dsg,
=2l —1p—2 N T T ; ?
N—T HF Zuug| S NI D050 D 1 Do ’ Frzjiujsuis
However,
N 2 . ||12
E EthUjsuis = F ’ Ft E(Z?t>E(u§s>E(ul28)7
kXrolour + (p/T)kro?oyr, if i =1
(p/T)kxpo*oyr, if 75 =0
so that
ZS 1 E ‘ Ezjtujsuls - kNT(pc +p)0- 0 T
and

2
Zz 125 IZt B = NTk{p(pe + p)o’o,r,
so that Dg = O,(knyr N ~1/27=3/2) " Therefore, term Dy corresponds to the second component
and terms D7 and Dy consist of the third component of the final result. Terms D5 and Dg
are dominated by term D,. We obtain the final result.

(d) We essentially follow the same computation as (c).H

thjtujsuzs

Proof of Theorem 1: Part (i): We start (A.1). Terms dy; to ds; have nothing to do
with jumps, and we know that from Theorem 1 of Bai (2003), if there is no jump,

VN(F, — H'F) = VY F'F/T)N Y28 Ny + Op(NY2T12605) 4+ 0, (cxy).

Therefore, the stochastic bound of terms dy; to ds; (multiplied by VN ) is given as above. In
the rest of this proof, we compute the stochastic bound for terms dy to dg; (multiplied by

V'N).
For d4t,

N2\ EN 2,

— N2 F’F/TH 1Azl
NV EEYT| S P,
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where

k202N + (p/T)k3 022, ifns =1

(p/T)k370* N, if i =0
so that

O,(k3+N) ifnf=1

N NT ) t
>y [dizall® = ’ N :

Op(kyeNT ™), if nf =0

Therefore,
N71/2T71 ﬁ/FA/Zt — Op(kNT)a if 77? =1 .
Op(knrT~12), ifnf =0
For d5t,
NV HF’ZAFt < T‘1HN‘1/2F’ZAH IF
—_——
=0p(knT)

- Op(k?NTT_l).

For dﬁt,
. . 2
N2 E Z2| < N‘1/2T‘1\/ S ST N Faziezi|
where
P 2 ~ 12 2 2
E || Fsziszit = E|F|| E(z,)E (%)
_ k?\/T‘ﬂE(Zg&)T + (p/T>k]2VTO-2E(zi2t)T7 ifpy =1
(p/T)kFro? E(23)r, if nf =0
so that
. 2
YL E ||| = Koo+ p)tBE

(kXp0?(pe + p)r)kRp (14 p/T)o?, if nf =1

[kXr0? (pe + p)TkZr(p/T)0?,
and

NV 7| -
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O, (k2 p N=V2T1), if s = 1
O, (k2 p N=V2T=3/2) if e =0
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For d7t,

. R 2
N2t F’uth < Nl/le\/Zfil Zzzl Fauiszi|
where
) 2 2
E ‘ Fsuiszit = E FS E(“?S)E(Z’?t)?

k2020 r + k2 (p/T)o%cr, if nf =1

Rar(p/ )00, if g =0
so that

. 2 NTk30%02r + Nk poiair, if n¢ =1
Zi\il ZST:1 E ‘ Fouiszit|| = A A "
Nk ppoia’r, ifné=0
Hence,
-1/2 iE G —
N2l F'uZtH _ ) OplbwrT05), i =1
OplknrT™1), i g =0
For dgt,
. . 2
N2 HF’ZUtH < N—1/2T—1\/ SN ST ) Flzisug|
where
R 2 2
E ‘ Fszisuit = K FS E(ZES>E(u12t)?

k% ,0%cir + k0% (p/T)o’r, if nS =1

Kero?(p/T)or, ifn;=0
so that )

Zle E ‘ Fszisuit = kJQVTO—Z(pc + p)Ui’f’,
and
N T X 2 2 2 2
Zi:l 25:1 E ’ Fsuisz’it = NkNTO— (pc +p)0uT
Therefore,
N7YV2TUNE Zuy|| = O, (knoT™Y).

This computation gives

O l{,‘ , lf c—=1
VN (day + dsy + dey + dy + dgy) = p(knr) ne |
Op(kneT712),if g =0
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to complete the proof.

Part (ii): We extend the factor loading estimate:

"EYTUE'X;,

VLR F N 4 (F'F) 'y,
VU FHTIN — (F'E)YF(F — FHYH ')\,
+(F'F)*H'F'u; + (F'F)™Y(F — FH)'u;,

A =

A

(F'F
(F'F
(P
so that

Tl/?(j\i . H_l)\i) — T_1/2H,F,Ui + T_1/2<F . FH)/UZ . T_1/2F,<F . FH)H_I)\Z',
= 0p(1) + Op(T"2c57) + Op(kne N7VPT72) 4 O (k3 N7V2T2),
= T+ IT+III+1V,

from Lemma 3 (b) and 3 (c). The condition for term I/ to diminish is

1/2 —2 _
T cyr = max{

T1/2 T1/2
N T} =0

or VT/N — 0. Further, the condition for term I77 to diminish is
knrN~Y2T7Y2 = kny (VT /N)(VN/T) — 0,
which is implied when k:NT(\/N /T) is bounded or
knt <T/VN.
The condition for term [V to diminish is
kK NTPT732 < kyp(VT/N) (VN T?),

or

kny < T%/VN,
which is satisfied when kyr < T'/ V/N. Hence, the additional condition is kyp < T/ vN.1

Proof of Corollary 1: This immediately holds because from Theorem 1 (a), if n§ = 1,
then

Ft - H,Ft = Zi:l dht + 2224 dhm

= 0,(1) + O, (knrN~?),
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Therefore, we have 0,(1) if kyr < N~V/2.1

Proof of Theorem 2: We use Observation 1 of Bates et al. (2013) and require
Kyvr S Yo Bzl = O(max {N,T}),

or
kro® Yiis 2oy E(25) = O(max {N, T}), (A.2)

under our simplification assumptions. However,

ST E(22) = (pe + p)kro?,

and
Zij\i1 ZtT:1 E(23) = N(pe + p)kxro.
Hence, (A.2) becomes

k370N (pe + p)karo® = O(max {N, T}),

or

kny = O(max {1, T/N}),

or
knt < max {1,T1/4N_1/4} )

This completes the proof.ll

Proof of Proposition 1: We consider the numerator only. Because

U =zt up+ NF — S\Zﬁ’t,
2+ g + NHYH'E, — B) — (N, = NH"YH'F, — (\, - N\HV)(H'F, — E,),

and F |uy| is bounded, we consider only terms I, I1, and I71. Theorem 1 implies that

I = O,(knpN~Y?),
IT = O,(knrNY2T7Y) + O, (K3 N~ V2T7?),
IIT = Oy(k3p N T + O, (k3 N~1T72).

For all the terms in I, I1, and I/] to be smaller than |z;| = O,(knr), We require that
kny < NY2T.H

Proof of Theorem 3: Part (i-a) holds because the jumps satisfying kyr > VT are
always corrected by Proposition 1.

Part (i-b) holds because the jumps satisfying kyr > v/ N are always corrected by Propo-
sition 1.

30



Part (ii) is a straightforward consequence of Theorem 1 (ii).

Part (iii) holds because the jumps satisfying kyr > max {1, TYAN-Y 4} are always cor-
rected by Proposition 1.1

Proof of Theorem 4: We consider the cross-sectional regression

ﬁit:”yo—{—;\gfyl—l—ei, fori=1,...,N, (A.3)

where ¢; is the error term. We know that the residuals 4, become

Ui = Wit + Zit + ()\;Ft - j\lpt)» (A.4)
under Hy and
Al A
G = i + N, + (N F, — N\ Fy), (A.5)

under Hy, where \; and Ft are jump-corrected estimates. We show that the regression model
(A.3) induced by true process (A.4) has a pseudo-true coefficient 7, = 0 and the model (A.3)
induced by true process (A.5) has a pseudo-true coefficient vy, # 0 with error term ¢; showing
a finite variance. First, note that under Hy, (A.4) becomes

~t

Gy = N(HF, — F)) + (\MH ™ = X)) HF, + ugy + 2,

so that
’YO - 07
Y= pN,ITi’IEoo(HFt - Ft) =0,
:OP(N71/2)
g = H ' = NV HE +ui + 2t + 0,(1),
\ﬁ,_/
=0,(T~1/2)
= I+II+III+0P(1),

from Theorem 3 (i-b) and 3 (ii). Therefore, error ¢; consists of three terms, I, /1, and I11.
Term I has a variance shrinking to zero, term I a finite variance o2, and term [11 variance
k%02 Since the F test is invariant to model scaling, it is the same as that applied to
regression model (A.3) with

Y% = 0,

= p lim kyh(HF, —F)=0

o= plim kyrp(HE - F) =0,

g = k&%zzt + Op(l).
Under this model, error ¢; has a finite variance o and pseudo-true coefficients v, are zero at

rate 0,(N~1/2) so that the F' test multiplied by the numerator’s degree of freedom has the
standard Chi square limit distribution. Under H;, (A.5) becomes

i = NH T+ (N — NH Y HI, + M(HF, — E)) — (\H ™ = X\) HF, + uar, (A.6)

31



so that we obtain the regression model (A.3) with

Yo = 07
no= p lim HJ#0,
g = (5\Z — /\iH_l),HJt + S‘Z(HFt _ Ft) . ()\Z'H_l . j\z),HE T ouy o+ OP(]_),
— N— —_———
=0,(T~1/2) =0,(N—1/2) —0,(T-1/2)

= [+ 11+ 11T+ uy+op(1).

Terms I and 1] diminish as N,T — oo regardless of kyr. Hence, we separately consider
the cases where I diminishes and does not diminish. We first suppose that ky; < TV/2.
Then, terms I, I1,and I1] show a variance that shrinks to zero and u;; has a finite variance
0. We next suppose that kyr > T'/2. Now, scaling by k5 T%/? makes the regression model
(A.3) have

70 = 07
o= p lim TYVkypHJ, #0,

e = VT = NH )kypHI +0,(1),

SN(0.2; ) ~N(0,02)

so that the error term ¢; has a zero mean and finite variance. The final result follows.l
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Table 1(a). Coverage ratio of the confidence interval for the factor

at the 90% nominal level

N=20,=500 |N=50,1=200 |N=100,=100 [N=200,=50 [N=500,T=20
no ) no ) no ) no ) no )
o correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.85 0.80 0.75
10 0.85 0.85 0.87 0.88 0.88 0.88 0.88 0.86 0.82 0.75
50 0.88 0.86 0.88 0.87 0.89 0.88 0.89 0.84 0.82 0.73
100 | 0.85 0.86 0.87 0.88 0.89 0.88 0.88 0.85 0.82 0.74
pc=5,[p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.87 0.88 0.87 0.88 0.84 0.85 0.85 0.67
10 0.83 0.85 0.83 0.87 0.85 0.88 0.88 0.85 0.90 0.63
50 0.87 0.85 0.89 0.87 0.90 0.88 0.90 0.83 0.91 0.67
100 || 0.87 0.86 0.89 0.88 0.89 0.88 0.89 0.84 0.90 0.71
pc=0,[p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.86 0.73 0.80
10 0.85 0.86 0.87 0.87 0.87 0.87 0.84 0.86 0.77 0.80
50 0.82 0.85 0.82 0.88 0.85 0.89 0.87 0.87 0.89 0.76
100 | 0.86 0.86 0.87 0.87 0.90 0.89 0.89 0.87 0.90 0.78
pc=0,[p=5
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.84 0.85 0.87 0.88 0.87 0.88 0.85 0.87 0.79 0.72
10 0.84 0.86 0.84 0.88 0.82 0.88 0.80 0.81 0.84 0.35
50 0.80 0.86 0.84 0.87 0.87 0.87 0.89 0.78 0.90 0.40
100 | 0.86 0.86 0.89 0.89 0.89 0.87 0.89 0.89 0.90 0.80
pc=1,[p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.84 0.85 0.81 0.77
10 0.85 0.86 0.87 0.88 0.88 0.87 0.88 0.87 0.85 0.76
50 0.86 0.86 0.87 0.88 0.88 0.89 0.89 0.86 0.90 0.72
100 | 0.84 0.86 0.88 0.88 0.89 0.89 0.90 0.87 0.89 0.73
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Table 1(b). Average length of the confidence interval for the factor

at the 90% nominal level

N=20,M=500 |N=50,1=200 [N=100,=100 [N=200,=50 |N=500,T=20
no ) no ) no ) no ) no )
o correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.34 0.33 0.26 0.23 0.86 0.15
10 0.80 0.78 0.52 0.48 2.37 0.33 7.71 0.23 5.12 0.14
50 | 87.24 0.78 (21393 048 | 8257 033 | 51.74 023 | 4766 0.14
100 [[438.52 0.78 |335.73 048 [168.89 033 [143.65 023 | 89.02 0.14
pc=5,[pF0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.79 0.49 0.48 0.35 0.33 0.29 0.23 0.74 0.16
10 0.88 0.79 1.32 0.48 3.21 033 | 3382 023 | 1295 0.22
50 (191.32 0.78 |[47257 048 |13400 033 | 9395 16.67 | 7527 1.07
100 666.97 0.78 |440.37 048 |370.32 0.34 [197.63 520 |22942 1.99
pc=0,[p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.33 0.33 0.24 0.23 0.16 0.14
10 0.79 0.78 0.48 0.47 0.34 0.33 0.25 0.23 0.19 0.14
50 1383 078 | 26.70 047 | 1584 033 | 16.58 0.23 | 16.17 0.14
100 |[[243.78 0.78 |13488 047 | 8635 033 |8017 023 | 3730 0.14
pc=0,[p=5
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.25 0.23 0.19 0.15
10 0.83 0.78 0.51 0.47 0.37 0.32 0.30 0.22 0.43 0.14
50 |[108.84 0.78 | 87.48 047 (263454 032 | 4727 038 | 5486 0.93
100 (421.01 0.78 |233.91 047 |184.07 036 |480.69 1342 | 7954 7.05
pc=1,[p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.31 0.23 1.42 0.15
10 0.81 0.78 0.55 0.48 3.82 0.33 7.64 0.23 6.25 0.14
50 [168.26 0.78 |[118.59 047 |100.12 0.33 (10933 023 | 70.39 0.14
100 |[402.83 0.78 |279.14 047 |22235 033 [19349 024 | 8711 0.16
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Table 2(a). Coverage ratio of the confidence interval for the factor loading

at the 90% nominal level

N=20,=500 |N=50,1=200 |N=100,1=100 [N=200,=50 [N=500,T=20
no no no no no
o correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.84 0.87 0.84 0.89 0.79 0.89 0.45 0.85
10 0.57 0.66 0.66 0.86 0.43 0.89 0.35 0.89 0.34 0.86
50 0.23 0.67 0.32 0.85 0.33 0.89 0.34 0.89 0.33 0.85
100 | 0.26 0.68 0.31 0.86 0.34 0.88 0.34 0.88 0.33 0.83
pc=5,[pF0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.60 0.65 0.79 0.87 0.77 0.89 0.64 0.89 0.33 0.73
10 0.40 0.64 0.35 0.87 0.13 0.89 0.06 0.91 0.06 0.78
50 0.01 0.66 0.01 0.85 0.01 0.89 0.01 0.77 0.01 0.67
100 || 0.01 0.68 0.00 0.85 0.01 0.88 0.01 0.69 0.01 0.65
pc=0,[p=E1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.86 0.86 0.87 0.88 0.87 0.88 0.83 0.84
10 0.61 0.67 0.82 0.87 0.86 0.88 0.84 0.88 0.70 0.85
50 0.09 0.68 0.06 0.86 0.06 0.88 0.05 0.89 0.05 0.83
100 [ 0.01 0.69 0.01 0.86 0.01 0.88 0.02 0.87 0.02 0.83
pc=0,[p=5
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.63 0.66 0.84 0.86 0.86 0.87 0.85 0.87 0.75 0.79
10 0.54 0.66 0.74 0.87 0.78 0.88 0.74 0.86 0.52 0.79
50 0.02 0.70 0.02 0.86 0.03 0.87 0.03 0.79 0.03 0.50
100 | 0.00 0.71 0.00 0.88 0.01 0.86 0.01 0.12 0.01 0.06
pc=1,[p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.65 0.67 0.83 0.86 0.84 0.88 0.78 0.88 0.44 0.82
10 0.53 0.66 0.65 0.87 0.45 0.88 0.35 0.88 0.28 0.84
50 0.03 0.68 0.02 0.86 0.02 0.88 0.02 0.89 0.02 0.82
100 | 0.00 0.68 0.00 0.86 0.00 0.88 0.01 0.88 0.01 0.80
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Table 2(b). Average length of the confidence interval for the factor loading at
the 90% nominal level

N=20,=500 |N=50,1=200 |N=100,1=100 [N=200,=50 [N=500,T=20
no ) no . no ) no . no .
o correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.13 0.13 0.23 0.23 0.35 0.33 0.51 0.49 0.51 0.81
10 0.14 0.13 0.25 0.23 0.27 0.33 0.22 0.48 0.30 0.80
50 0.05 0.13 0.08 0.22 0.12 0.32 0.18 0.46 0.27 0.73
100 | 0.05 0.13 0.08 0.22 0.12 0.32 0.17 0.45 0.27 0.73
pc=5,[pF0
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.14 0.27 0.24 0.44 0.38 0.68 0.62 0.67 1.12
10 0.16 0.14 0.31 0.24 0.25 0.37 0.14 0.60 0.15 1.12
50 0.01 0.13 0.01 0.23 0.01 0.33 0.01 0.46 0.02 0.72
100 || 0.00 0.13 0.00 0.22 0.01 0.33 0.01 0.38 0.01 0.67
pc=0,[p=E1
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.13 0.13 0.23 0.23 0.35 0.33 0.53 0.49 0.91 0.81
10 0.14 0.13 0.26 0.23 042 0.33 0.67 0.49 1.06 0.83
50 0.10 0.13 0.12 0.22 0.13 0.33 0.14 0.48 0.12 0.78
100 [ 0.01 0.13 0.02 0.22 0.02 0.33 0.04 0.47 0.04 0.79
pc=0,[p=5
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.14 0.27 0.25 0.45 0.39 0.77 0.63 1.30 1.21
10 0.17 0.14 0.37 0.25 0.66 0.39 1.08 0.66 1.18 1.36
50 0.05 0.13 0.05 0.24 0.07 0.36 0.07 0.66 0.07 0.90
100 | 0.01 0.13 0.01 0.23 0.02 0.36 0.03 0.23 0.03 0.18
pc=1,[p=1
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.13 0.24 0.23 0.37 0.35 0.58 0.52 0.63 0.91
10 0.15 0.13 0.28 0.23 0.33 0.34 0.32 0.52 0.45 0.93
50 0.04 0.13 0.05 0.23 0.05 0.33 0.06 0.49 0.05 0.82
100 | 0.01 0.13 0.01 0.22 0.01 0.33 0.02 0.48 0.02 0.80
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Table 3(a). Coverage ratio of the confidence interval for the common

component
at the 90% nominal level
N=20,T=500 [N=50,1=200 [N=100,1=100 [N=200,0=50 [N=500,[0=20
no no no no no
g correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.90 0.88 0.89 0.83 0.90 0.51 0.86
10 0.84 0.87 0.80 0.89 0.58 0.89 0.48 0.90 0.42 0.86
50 0.58 0.88 0.54 0.88 0.50 0.90 0.47 0.90 042 0.86
100 || 0.58 0.88 0.52 0.89 0.50 0.90 0.45 0.89 0.43 0.85
pc=5,[p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.87 0.86
5 0.86 0.87 0.87 0.90 0.83 0.89 0.71 0.89 0.42 0.73
10 0.78 0.87 0.62 0.89 0.35 0.90 0.25 0.91 0.20 0.76
50 0.40 0.88 0.33 0.89 0.28 0.90 0.22 0.81 0.16 0.70
100 | 0.43 0.88 0.31 0.88 0.28 0.89 0.21 0.72 0.18 0.69
pc=0,[pF1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.90 0.90 0.89 0.89 0.89 0.88 0.87 0.85
10 0.87 0.87 0.87 0.88 0.89 0.89 0.87 0.88 0.76 0.85
50 0.40 0.87 0.23 0.89 0.18 0.90 0.16 0.89 0.14 0.84
100 || 0.15 0.88 0.11 0.88 0.11 0.89 0.11 0.88 0.11 0.85
pc=0,[pE5
0 0.88 0.88 0.89 0.90 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.88 0.89 0.89 0.87 0.88 0.79 0.78
10 0.87 0.87 0.88 0.89 0.87 0.88 0.81 0.87 0.58 0.76
50 0.25 0.88 0.22 0.88 0.23 0.88 0.22 0.79 0.17 0.43
100 | 0.18 0.87 0.17 0.89 0.20 0.89 0.22 0.19 0.18 0.11
pc=1,[p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.86 0.87 0.89 0.89 0.88 0.89 0.83 0.89 0.52 0.83
10 0.84 0.87 0.79 0.89 0.59 0.89 0.48 0.89 0.39 0.85
50 0.41 0.88 0.29 0.89 0.23 0.89 0.19 0.89 0.14 0.83
100 | 0.31 0.88 0.25 0.88 0.19 0.89 0.17 0.88 0.13 0.83
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Table 3(b). Average length of the confidence interval for the common

component at the 90% nominal level

N=20,[T=500 |N=50,1=200 |[N=100,1=100 [N=200,T=50 [N=500,T=20
no ) no . no ) no . no )
o correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.60 0.60 0.45 0.45 0.43 0.41 0.50 0.47 0.47 0.66
10 0.60 0.60 0.47 0.45 0.43 0.42 0.34 0.45 0.34 0.67
50 0.72 0.60 0.48 0.44 0.38 0.41 0.33 0.46 0.34 0.62
100 | 0.71 0.60 0.48 0.45 0.38 0.41 0.32 0.45 0.33 0.60
pc=5,[p=0
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.48 0.46 0.50 0.44 0.65 0.57 0.62 0.85
10 0.62 0.60 0.53 0.45 0.47 0.44 0.33 0.54 0.25 0.85
50 0.78 0.61 0.50 0.44 0.37 0.42 0.27 0.46 0.19 0.61
100 | 0.77 0.60 0.51 0.45 0.36 0.42 0.27 0.40 0.18 0.54
pc=0,[p=1
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.45 0.45 0.43 0.42 0.51 0.47 0.77 0.66
10 0.60 0.59 0.46 0.44 0.46 0.40 0.61 0.47 0.91 0.67
50 0.54 0.61 0.33 0.45 0.29 0.42 0.24 0.46 0.19 0.64
100 | 0.36 0.60 0.18 0.45 0.16 0.41 0.16 0.45 0.13 0.62
pc=0,[p=5
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.48 0.45 0.51 0.45 0.70 0.56 1.11 0.91
10 0.61 0.60 0.55 0.46 0.65 0.43 0.94 0.55 1.05 0.93
50 0.48 0.61 0.35 0.44 0.34 0.43 0.29 0.57 0.22 0.62
100 | 0.36 0.60 0.29 0.45 0.28 0.42 0.27 0.25 0.20 0.16
pc=1,[p=1
0 0.61 0.61 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.60 0.60 0.46 0.45 0.45 0.43 0.55 0.50 0.57 0.72
10 0.61 0.60 0.49 0.45 0.45 0.41 0.42 0.48 0.47 0.74
50 0.68 0.60 042 0.44 0.34 042 0.25 0.46 0.18 0.65
100 | 0.62 0.61 0.41 0.45 0.28 0.41 0.22 0.46 0.15 0.62
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Table 4. Average correlation coefficient between the estimated and true factors
N=20,M=500 N=50,=200 N=100,[T=100 |N=200,d=50 N=500,T=20
no no no no no
g correction correction correction correction correction correction correction correction correction correction
pc=1,[p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 1.00 0.71 0.98
10 0.96 0.97 0.96 0.98 0.75 0.99 0.52 0.99 0.51 0.97
50 0.43 0.97 0.37 0.98 0.43 0.99 0.45 0.99 0.48 0.96
100 0.41 0.97 0.37 0.98 0.42 0.99 0.45 0.99 0.47 0.96
pc=5,p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.97 0.98 0.99 0.95 0.99 0.69 0.94
10 0.93 0.97 0.86 0.97 0.49 0.97 0.27 0.96 0.30 0.87
50 0.09 0.97 0.06 0.97 0.09 0.97 0.12 0.85 0.19 0.73
100 0.06 0.97 0.06 0.97 0.09 0.97 0.12 0.78 0.18 0.72
pc=0,[p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
10 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00 0.99 0.99
50 0.51 0.97 0.37 0.98 0.26 0.99 0.23 1.00 0.25 0.99
100 0.13 0.97 0.10 0.98 0.1 0.99 0.13 1.00 0.20 0.99
pc=0,[p=5
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
10 0.95 0.97 0.96 0.98 0.97 0.99 0.96 0.99 0.89 0.99
50 0.23 0.97 0.15 0.98 0.13 0.99 0.15 0.93 0.20 0.62
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.36 0.19 0.24
pc=1,[pF1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.72 0.98
10 0.96 0.97 0.95 0.98 0.74 0.99 0.52 0.99 0.50 0.97
50 0.26 0.97 0.17 0.98 0.15 0.99 0.16 0.99 0.20 0.96
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.98 0.19 0.95
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Table 5. Estimated number of factors by Bai and Ng’s (2002) information

criteria
N=50,@=200 N=100,T=100 N=200,@=50
nolcbrrection correction nolcbrrection correction nolcbrrection correction
o ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3
pc=1,[p=0
0 400 400 4.00 | 400 4.00 400 | 400 4.00 4.00 400 400 534|400 400 400 | 405 4.03 4.18
5 5,02 501 504|400 400 407|502 502 502|472 430 639 | 506 506 506|510 508 522
10 500 5.00 500 (400 400 4.04 | 498 498 499|437 411 641|501 501 501|501 495 519
50 499 499 499 | 400 4.00 4.00 | 497 497 497 [ 401 400 546 || 501 501 501 | 4.04 4.02 417
100 501 5.01 501|400 400 4.00 | 501 501 502|400 400 543|498 498 498 | 404 4.02 417
pc=5,[p=0
0 400 400 4.00 | 400 4.00 400 | 400 4.00 4.00 401 400 534|400 400 400 | 405 4.03 4.18
5 876 856 898 (404 401 444|905 905 915 | 6.83 480 1092 9.06 9.06 9.06 | 9.11 9.08 9.26
10 897 897 897|402 401 425|898 898 907|522 431 10.88| 9.02 9.02 9.02 | 858 8.19 9.20
50 9.02 9.02 9.02 [ 400 4.00 4.00 )| 9.01 901 908 | 400 400 6.10 | 897 897 897 | 403 401 4.21
100 9.02 9.02 9.02 (400 400 4.00 | 901 901 911|400 400 6.08 | 899 899 899 | 405 4.03 427
pc=0,[p=1
0 400 400 4.00 | 400 4.00 4.00 | 400 4.00 4.00 401 400 533|400 400 400 | 405 4.03 4.18
5 400 400 400 | 400 4.00 400 | 400 400 483400 400 525|400 4.00 400 | 4.02 4.01 4.09
10 421 414 464 | 400 4.00 4.00 | 425 4.07 1925|400 400 551 | 405 402 428 | 402 401 411
50 19.93 19.68 20.00( 400 4.00 4.00 |12.82 356 20.00| 4.00 4.00 548 | 111 1.04 459 | 403 4.01 4.14
100 || 19.95 19.88 20.00| 4.00 4.00 4.00 |1429 521 20.00( 400 400 548 | 125 1.09 520 | 403 4.02 4.14
pc=0,[p=5
0 400 400 4.00 | 400 4.00 400 | 400 4.00 4.00 401 400 533|400 400 400 | 405 4.03 4.18
5 400 400 400|400 4.00 400 ]| 400 400 530|400 400 527 || 400 400 400 | 400 4.00 4.00
10 403 401 418 | 400 4.00 400 | 400 399 1524 400 400 6.64 | 299 257 376 | 400 4.00 4.02
50 1.03 1.01 166 | 400 4.00 4.00 | 1.00 1.00 16.96( 400 400 6.29 | 1.00 1.00 1.00 | 400 4.00 4.07
100 1.06 1.02 213 | 400 4.00 4.00 | 1.00 1.00 16.76| 400 4.00 6.22 | 1.00 1.00 1.00 | 400 4.00 4.07
pc=1,[p=1
0 400 4.00 4.00 | 400 4.00 400 | 400 4.00 4.00 401 400 533|400 400 400 | 405 4.03 4.18
5 498 496 502|400 4.00 405|500 500 6.00 (458 417 633|506 506 506|507 505 514
10 523 515 573 | 400 4.00 4.04 | 525 505 1950| 427 406 6.57 | 507 504 534|490 478 510
50 19.93 19.75 20.00( 400 4.00 4.00 |13.51 457 20.00| 400 400 559 | 1.72 156 6.18 | 402 401 414
100 || 19.95 19.89 20.00| 4.00 4.00 4.00 [14.80 6.14 20.00 400 400 560 | 193 162 6.59 | 402 4.01 4.15
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Figure 1. Sample path of factor and factor estimate in the presence of outlier
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Table 6. Size of factor jump test

N=20 N=50 N=100 N=200 N=500
g T=500 T=200 T=100 T=50 T=20
Case[lt[X*[id[available
5 0.05 0.06 0.05 0.04 0.04
10 0.05 0.07 0.06 0.05 0.05
50 0.05 0.07 0.06 0.06 0.04
100 0.05 0.07 0.07 0.06 0.05
Case[2[X*[iS[estimated
5 0.07 0.01 0.03 0.03 0.65
10 0.06 0.08 0.12 0.20 0.56
50 0.05 0.07 0.07 0.07 0.08
100 0.05 0.07 0.07 0.06 0.06
Table 7. Power of factor jump test
N=20 N=50 N=100 N=200 N=500
o T=500 T=200 T=100 T=50 T=20
Case[lt X*[§[@vailable
5 0.90 0.94 0.96 0.97 0.98
10 0.95 0.97 0.98 0.99 0.99
50 0.99 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00
Case[2t [X*[[§[estimated
5 0.58 0.34 0.35 0.39 0.56
10 0.76 0.62 0.65 0.65 0.76
50 0.95 0.92 0.93 0.92 0.95
100 0.98 0.96 0.96 0.96 0.98
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Figure 2. Log-returns on currencies against the U.S. dollar
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Figure 2. Log-returns on currencies against the U.S. dollar (continued)
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Table 8. List of currencies, number of jumps, and common jumps

#[of[umps common[umpldates
06May O07May 29[8ep

1 AustralianDollar AUSTR 1 X
2 CanadianDollar CDNDL 0

3 CzechRepublic[Koruna CZECK 0

4 DanishKrone DANKR 0

5 HongKongDollar HKDOL 7 X X X
6 HungrianEorint HUNGF 1 X

7 Indian[Rupee INDNR 4 X X

8 Indonesian[Rupiah INDON 11 X X

9 JapaneseMen JAPYN 0

10 KuwaitiDinar KUWTD 6 X X

11 Mexican[Beso MEXPF 3 X X X
12 New[ZealandDollar NEWZD 0

13 NorwegianKrone NORGK 0

14 PhilippinesBeso PHILP 3 X X

15 PolishZloty POLZL 0

16 SingaporeanDollar SINGD 1

17 South[Korean[Won SKORW 21 X X
18 SwedishKrona SWEDK

19 Swiss[Hranc SWISF 0
20 UK[Bound BRITP 11
21 MalaysianRinggit MALAY 0
22 TaiwanDollar TAIWD 2 X X
23 South[AfricanRand SARCM 0
24 Thai[Baht THAIB 20 X X
25 Euro EURO 0

Notes . [# Qffum ps"dicatesBow [mhany fim ps(are detected by fhe [proposed M ethod Between [Aug 2008
[MIMITMIMTENd (30 Sep.2008.

([T, [The [Ebm mon [um ps(dates@re fhose [ah Which mhore fhan Blclrrencies Rave @fump.[Thesecurrencies
(I ve @l ark X"

Figure 3. Number of jumps in a day
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Figure 4. Factor estimates with and without jump correction
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Table 9. Test for jump of factors:
Currency return data

F pQidalue t[@stlactor) phdalue t[@ndactor)  pQdalue
2008/5/6 3.58**  ([004) 2.65** (@o1) .73 (@47)
2008/5/7 3.09* (@o6) 2.48** (o2) 0.47 (64)
2008/9/29 2.90* ([@07) 1.45 (@1e) .71 (@10)

Note:F}[@nd Flindicate [Slgnificance @tfhe B% [@nd [0 % [@vels, késpectively.
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Figure 5. Monthly growth rates of new car registrations

in selected Japanese prefectures
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Table 10. Prefectures showing a jump in earthquake periods
#[cF[pref. Prefectures thathave @{ump

Jan[1895 1 Hyogo
Hokkaido,[Bomori,[Wate, Miyagi,[Bkita, Mamagata
Fukushima,Baragi, Mochigi,[Gunma, Saitama

May 2011 23 Chiba, [Tokyo, Kanagawa,Mamanashi,Gifu,
Nagano,[Shizuoka, [Bichi,[Shimane,[Okayama,
Hiroshima,[Eukuoka
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Figure 6. Japanese prefectural new car registration factor estimates
non-corrected
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Table 11: Tests for factor jump:
Japanese prefectural new car registration data

F piMalue  t[(dstlfactor) pialue  ¢[(2ndfactor) pialue

Jan[o95 004 (0L96) 006  (M95) 017  (m8Y)
MarZD11  6.61*** ([L00) 221 ([03) 084  (M40)

Note:[Fl@nd Flindicate[significance @tfhe 8% @nd [0 % [eévels,téspectively.
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