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1 Introduction

The common factor model is found to be a useful and e�ective tool for statistical inference

with �nancial or economic high-dimensional data sets. Major applications are found in the

empirical asset pricing literature of the well-known Arbitrage Pricing Theory (Ross, 1976).

For classical examples, Lehmann and Modest (1988) and Connor and Korajczyk (1988)

apply a multifactor model to cross sections of stock returns. Recently, Ando and Bai (2014)

develop a multifactor model with group structure and apply it to Chinese stock returns. The

list of studies pertaining to �xed-income assets such as government and corporate bonds

includes Litterman and Scheinkman (1991), Elton et al. (1995), Ang and Piazzesi (2003),

and Ludvigson and Ng (2009). Lustig et al. (2011) provide an application to currency

returns. There is also a strand of research investigating macroeconomic time-series data

using dynamic factor models following, as far as the author knows, Geweke (1977), Sargent

and Sims (1977), and Stock and Watson (2002ab). This list is by no means comprehensive.

One remarkable features of such data sets is that they often exhibit infrequent but large

jumps. While the source and dates of these jumps are sometimes of interest by themselves,

we may simply consider the jumps nuisance outliers that are independent of the underlying

data-generating processes. In the latter case, it is well-recognized that such outliers can easily

contaminate inferences based on the underlying jump-free model. Therefore, a large amount

of research has gone into identifying and correcting such outlier e�ects. The most popular

issue was to detect outliers in the stationary autoregressive moving average (ARMA) models,

for which methods have been proposed by Fox (1972), Box and Tiao (1975), Tsay (1986),

and Chen and Liu (1993), among others. For examples of unit root and cointegration tests,

see Franses and Haldrup (1994), Vogelsang (1999), and Perron and Rodr��guez (2003) and

for examples of inference for conditionally heteroskedastic models with outliers, see Franses

and Ghijsels (1999) and Charles and Darn�e (2005).1

Following the aforementioned outlier detection/correction literature, we investigate the

e�ects of outliers on the recently developed asymptotic inference for large-dimensional com-

mon factor models using the principal component approach (e.g., Bai and Ng, 2002; Bai,

2003; Amengual and Watson, 2007; and Bates et al., 2012). To make this attempt feasible

and attractive, we extend the standard large-dimensional common factor model as follows.

1In this perspective, a strand of literature uses high-frequency data to asymptotically infer jump-free
processes or the jump itself. See Barndor�-Nielsen and Shephard (2007), A��t-Sahalia and Jacod (2014), and
the references therein. A��t-Sahalia and Xiu (2015) apply principal component analysis using high-frequency
�nancial data.
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First, we model the infrequent jumps of each response variable as increments of a mixture

of Poisson processes, with the intensity parameter p=T , where p is a small constant value

and T is the time dimension of data. This is a popular strategy to model infrequent events

in �nancial time series. The jumps are infrequent because the probability of a jump at a

given time goes to zero as T ! 1. Second, the magnitudes of jumps are modeled as a
function of data dimension. This device provides useful asymptotic approximations of the

e�ects of jumps on inferences. Third, we consider jumps that occur at dates speci�c to

one response variable (idiosyncratic jumps) and those that occur at the same date in other

response variables (common jumps). Finally, we consider the possibility of the underlying

factors exhibiting large jumps. This is in contrast to the case where jumps are independent

from the factors and thus they are regarded as outliers.

Under this setting, we �rst derive the upper bounds of jump magnitudes with which

the standard asymptotic inference goes through. Furthermore, we provide two useful ap-

plications of this result. The �rst application pertains to a method to correct the e�ects

of outliers on inferences. This is a simple application of a series-by-series outlier detection

algorithm without considering the factor structure in the data. This method enables us to

apply standard asymptotic normality of common factor models unless common jumps occur.

Even when they do, the consistency of factor estimates is obtained. The second application

pertains to the factor jump test|a test to investigate whether jumps at a common date are

independent outliers or are of factors. This test is important because outliers may spuriously

induce jumps in factor estimates even if the true factors have no jumps.

A Monte Carlo experiment con�rms the following results in �nite samples. First, indepen-

dent large outliers easily contaminate the standard asymptotic inference in large-dimensional

factor models. They signi�cantly deteriorate the coverage rates of asymptotic con�dence in-

tervals, reduce the correlation between the true and estimated factors, and induce over- and

under-estimation of a number of factors. However, the proposed jump-correction method

retrieves good �nite sample properties unless T is too small. Finally, the factor jump test

shows good size when the outliers are su�ciently large. The test also exhibits good power.

We then apply these methods to daily log-returns data of 25 currencies against the U.S. dollar

for the recent �nancial crisis period. We observe infrequent large jumps in many currencies

and identify a few common ones. From the common jumps on May 6{7 and September 30,

2008, a factor closely related to currencies such as the Hungarian forint, Norwegian krone,

and Polish zloty shows strong evidence of jumps. On the other hand, a factor related to

currencies such as the Swiss franc and Japanese yen exhibits no jump. This factor exhibits
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very weak evidence of jumps during that period. We also apply the method to Japanese

prefectural new car registration data for the period January 1985 to December 2014. Note

that there were two large earthquakes, in 1995 and 2011. We �nd that the jumps following

the 2011 earthquake represent a jump in a common factor, whereas the jumps following the

1995 earthquake do not represent a jump in factors.

The rest of this paper is structured as follows. Section 2 presents our model and assump-

tions. Section 3 provides the upper bounds with which the standard asymptotic inference

results go through. Section 4 discusses two useful applications: the jump-correction method

and the factor jump tests. Section 5 investigates their �nite sample properties via Monte

Carlo simulations. Section 6 serves as two small empirical applications, and section 7 con-

cludes the paper. We use the following notations throughout the paper. The Euclidean

norm of vector x is denoted by kxk. For matrices, we use the vector-induced norm. Symbols
O(�) and o(�) denote the standard asymptotic order of sequences; symbol p! represents the

convergence in probability under probability measure P , and symbol ) denotes the conver-

gence in distribution. Symbols Op(�) and op(�) are the orders of convergence in probability
under P . We let cNT = min

np
N;
p
T
o
.

2 Model and assumptions

2.1 Model

We consider the common factor model with cross-sectional dimension N and time-dimension

T where N and T are both large:

x�it = �
0
iFt + uit; for i = 1; :::; N and t = 1; :::; T; (1)

where x�it is the ith response variable at time t, Ft is an r � 1 vector of common factors,
�i is an r � 1 vector of factor loadings, and uit is an idiosyncratic error. Without loss of
generality, we use demeaned data so that intercepts are omitted from the model. In matrix

form, model (1) can be written as

X� = F� + u; (2)

where X� = [x�1; :::; x
�
N ] is a T � N matrix with x�i = [x

�
i1; :::; x

�
iT ]

0 being a T � 1 vector of
response variables, F = [F1; ::; FT ]

0 is a T � r matrix of common factors, � = [�1; :::; �N ]0 is
an N � r matrix of factor loadings, and u = [u1; :::; uN ] is a T � N matrix of idiosyncratic

errors with ui = [ui1; :::; uiT ]
0 being a T � 1 vector.
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In this study, we consider the model in which response variable x�it is not observed but

xit is, so that

xit = x
�
it + zit; (3)

where zit consists of infrequently occurring jumps. Speci�cally, we consider the following

increments of a mixture of Poisson processes:

zit = �
c
t�
c
it + �it�it: (4)

In the two terms on the right-hand side of (4), �ct and �it are i:i:d: Bernoulli random

variables with probabilities pc=T and p=T , respectively, where pc and p are (typically small)

positive constants. Furthermore, �cit and �it are random variables associated with jump

magnitudes. Note that if the �rst term shows a jump (�ct = 1), every response variable (xit

for every i) also jumps on the same date t. Therefore, we call them common jumps. On the

other hand, the second term consists of jumps occurring on idiosyncratic dates, and so we

call them idiosyncratic jumps. We make two observations with regard to this model. First,

jumps are infrequent in the sense that the probabilities of jumps pc=T and p=T diminish to

zero as T increases. This is a popular modeling of rare events such as jumps and level shifts

in �nancial returns and volatilities. Second, we assume that both common and idiosyncratic

jumps are independent of the underlying factors and so are regarded as nuisance outliers in

the factor model.

2.2 Assumptions

This section introduces our assumptions. Assumptions 1 to 5 apply to model (1), following

the standard literature of Bai (2003) and Bates et al. (2013).

Assumption 1. E kFtk4 < 1 and T�1
PT

t=1 FtF
0
t

p! �F , as T ! 1; for some positive
de�nite matrix �F .

Assumption 2. E k�ik � � < 1 and �0�=N
p! ��, as N ! 1; for some positive

de�nite matrix ��.

Assumption 3. The following conditions hold for all N and T , where M is a generic

constant.

(a) E(uit) = 0; Ejuitj8 �M:
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(b) 
N(s; t) = E(u
0
sut=N) for all (s; t),

j
N(s; t)j �M for all s;

and

T�1
PT

s=1

PT
t=1 j
N(s; t)j �M:

(c) �ij;ts = E(uitujs) for all (i; j; s; t). j�ij;ttj � j�ijj for some �ij and for all t, while

N�1PN
i=1

PN
j=1 j�ijj �M;

and

(NT )�1
PN

i=1

PN
j=1

PT
s=1

PT
t=1 j�ij;tsj �M:

(d) For every (s; t),

E
���N�1=2PN

i=1[uisuit � E(uisuit)]
���4 �M:

Assumption 4. For all (i; j; s; t), Ft; uis, and �j are mutually independent.

Assumption 5. The eigenvalues of �F�� are distinct.

Assumptions 6 and 7 specify the jump process (4) regarded as outliers.

Assumption 6. The followings hold for all (i; j; s; t)

(a) zit and x
�
js are mutually independent.

(b) �ct , �
c
it, �js, and �js are mutually independent.

(c) �cit and �js follow i:i:d:N(0; �
2
NT ).

Assumption 7. With kNT as an arbitrary function of N and T , the standard deviation

of jumps is �NT = kNT�, where 0 < � <1 is a �xed constant.

Assumption 6 (a) ensures that jumps are independent outliers in the factor model. Fur-

thermore, Assumption 6 (c) assumes that jump magnitudes follow a normal distribution with

zero mean. However, normality is not essential and solely for derivational simplicity. The

zero-mean assumption is not without loss of generality, however, since it solves an identi�ca-

tion problem and greatly simpli�es theoretical results, we keep this assumption within this
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paper.2 Assumption 7 assumes that the standard deviation of jumps is asymptotically large

and represented by scale factor kNT . As shown later, this enables us to obtain meaningful

asymptotic results pertaining to jump magnitudes.

Throughout the paper, factors are estimated using the principal component method, that

is,

(�̂; F̂ ) = argmin
�;F

PN
i=1

PT
t=1(xit � �

0
iFt)

2; (5)

imposing a normalization F̂ 0F̂ =T = Ir, where Ir is the r-dimensional identity matrix. This

yields F̂ , that is,
p
T times r eigenvectors of XX 0 corresponding to its r largest eigenvalues

and �̂ = X 0F̂ (F̂ 0F̂ )�1.

3 Asymptotic results

This section presents the asymptotic inference results for large-dimensional factor models

as established by the literature in the presence of jumps. Again, jumps in this section are

regarded as outliers independent of the underlying factor model. We examine the conditions

for the scale of jump magnitudes kNT under which standard results are una�ected. To this

end, we study the insight of Bates et al. (2013), who discuss the conditions for magnitudes

of factor loading instabilities with which standard asymptotic results go through.

We �rst consider the asymptotic normality originally obtained by Bai (2003) in the

following theorem.

Theorem 1 (Asymptotic normality of factors and factor loadings) Suppose Assumptions

1{7 hold and uit follows i.i.d. with mean zero and variance �
2
u. (i) If kNT <

p
T and �ct = 0,

then

N1=2(F̂t �H 0Ft)) N(0;
F̂ ); (6)

as N; T !1 under
p
N=T ! 0, where H = V �1NT (F̂

0F=T )(�0�=N) and 
F̂ = �
2
uV

�1Q��Q
0V �1

with Q = V 1=2�0�
�1=2
� . Matrices VNT and V are diagonal, the main diagonals being the r

largest eigenvalues of XX 0=(NT ) and �
1=2
� �F�

1=2
� , respectively, and � is the eigenvector

matrix corresponding to the latter.

2Suppose E(�it) = � <1. Then, under the following additional conditions on the original factor model,
a model with non zero mean jumps can be regarded as a model with zero mean jumps. When common jumps
occur (�ct = 1), the condition is E(�i) = � 6= 0 for all i. Then, the new factor at t is de�ned as Ft + �=� in
the case of r = 1 so that the new jumps have zero mean. When a idiosyncratic jump occurs (�it = 1), the
condition is E(Ft) = �F 6= 0 for all t. Then the new loading is de�ned as �i + �=�F to be compatible with
the model with zero mean jumps.
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(ii) If kNT � T=
p
N , then

T 1=2(�̂i �H�1�i)) N(0;
�̂); (7)

where 
�̂ = �
2
uQ

0�1�FQ
�1, as N; T !1 under

p
T=N ! 0.

This theorem implies that the upper bounds of jump magnitudes are given by
p
T for

factor estimates and T=
p
N for factor loading estimates to obtain standard asymptotic nor-

mality. We interpret these upper bounds as a larger T extending the bound so that it helps

obtain asymptotic inferences for both estimators in the presence of outliers. On the other

hand, a larger N lowers the bound for factor loadings and hence may harm the inference for

factor loadings. This is intuitive because jumps are infrequent and so the total number of

jumps in a data set does not increase as T increases, but increases as N does.

The theorem also implies that the asymptotic normality of F̂t is available only when

common jumps do not occur at t (�ct = 0). To deal with this problem, the following corollary

guarantees its consistency with the timing of common jumps.

Corollary 1 (Consistency of factors under common jumps) Suppose Assumptions 1{7 hold

and �ct = 1. If kNT <
p
N , then 


F̂t �H 0Ft




 = op(1). (8)

We next consider the upper bound of jump magnitudes with which the information

criteria of Bai and Ng (2002) give consistent estimates for the number of factors r. The

information criteria are de�ned as

r̂ = arg max
0�l�lmax

log V (l) + l � g(N; T ); (9)

where V (l) �
PN

i=1

PT
t=1(xit � �̂

l0
i F̂

l
t )
2 and F̂ lt is the principal component factor estimate,

assuming l factors and �̂
l

i = (
PT

t=1 F̂
l
t F̂

l0
t )
�1(
PT

t=1 F̂
l
txit). We obtain the following theorem

as a direct consequence of Amengual and Watson (2007).

Theorem 2 (Information criteria) Suppose Assumptions A1{A9 of Amengual and Watson

(2007) hold. If kNT � max
�
1; T 1=4N�1=4	, then r̂ p! r as N; T !1.

For this theorem, we need Amengual and Watson's (2007) set of assumptions for the

underlying jump-free factor model; however, they are very similar to our Assumptions 1 to

5.
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4 Two useful applications

4.1 Series-by-series jump-correction algorithm

This section discusses two useful applications of the results presented in the previous section.

The �rst pertains to the correction of jump e�ects. We consider the algorithms developed

for univariate time-series data. For this, we apply them series-by-series without considering

their common factor structure. The idea is that if jumps are outliers, removing their e�ects

will not change their factor structure. We then identify and estimate the common factors

with the set of individually jump-corrected response variables. Here, we consider an example

in which xit follows a stationary ARMA process �i(L)xit = vit, where �i(L) is a polynomial

of the standard lag operator L for every i and all jumps represent the so-called additive

outliers.34 Then, we have the following algorithm.

Algorithm: Implement the following steps for i = 1; :::; N .

Step 1. Compute � i(t) = v̂�it=�̂it, where v̂
�
it is the residual from maximum-likelihood

estimation, using xit without considering its common factor structure. Estimate the standard

error �̂it which is not a�ected by the jumps present in fxitgTt=1.5.

Step 2. If max1�t�T j� i(t)j � �, where � is a predetermined critical value,

T̂i = arg max
1�t�T

j� i(t)j

is considered a possible jump location. Now, go to Step 3. If max1�t�T j� i(t)j < �, the ith
series exhibits no (more) jumps. Assume that x̂�it = xit, and go back to Step 1 to proceed

with the (i+ 1)th series.

Step 3. Estimate the realized jump magnitude with least squares estimation of coe�cient

!i in the regression

v̂�it = !iwit + �it; for t = 1; :::; T;

3A su�cient condition for this to be directly applicable is that factors and idiosyncratic errors follow
stationary ARMA processes, because the sum of two ARMA processes is an ARMA process.

4For an extension to the autoregressive integrated moving average (ARIMA) model with additive and
innovational outliers, see Chen and Liu (1993). Franses and Ghijsels (1999) and Charles and Darn�e (2005)
provide methods using conditionally heteroskedastic models.

5For example, Chen and Liu (1993) propose the following three methods: (1) the median absolute devi-
ation method, (2) the �% trimmed method, and (3) the omit-one method.
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where wit = 0 for t < T̂i, wit = 1 for t = T̂i, and wit = ��il for t = T̂i + l. Compute

x̂�it = xit � !̂iwit. Go back to Step 1 and use x̂�it as a new xit.

We next provide an asymptotic justi�cation for this algorithm. To this end, we �rst

con�rm that statistic j� i(t)j is informative with respect to jump locations as long as it
explodes as N; T !1.

Proposition 1 If Assumptions 1{7 hold, p limN;T!1 �̂
2
it is a �nite constant and kNT <

N1=2T . Then, the jump component zit becomes the dominating term in j� i(t)j if kNT !1,
as N; T !1.

It may not be straightforward to require condition kNT < N
1=2T in Proposition 1, because

j� i(t)j could be considered informative for jumps larger than N1=2T . When the jumps are too

large, factor estimation errors may also explode as fast as the jumps in theory. However, this

is an extreme situation and may not materialize in practice. This is because the algorithm

is sequential and large jumps must be removed �rst and j� i(t)j functions better as large
jumps get removed. In contrast, and more importantly, the algorithm may fail to detect non-

explosive jumps in the data. For example, assume that the jump magnitude is kNT = T=
p
N

and asymptotic inference requires
p
T=N ! c < 1, as shown in Theorem 2. Then, these

jumps may remain in the data and a�ect the inference results. We address this concern with

the following theorem:

Theorem 3 Suppose that factors (F ) and factor loadings (�) are estimated by (5) and we

estimate the number of factors (r) by (9) using x̂�it. From Assumptions 1{7 and !̂i � !i =
Op(1), for every jump detected by the algorithm, the following conditions hold:

(i-a) If �ct = 0, then (6) holds under
p
N=T ! 0, as N; T !1.

(i-b) If �ct = 1, then (8) holds, as N; T !1.
(ii) (7) holds under

p
T=N ! 0 and

p
N=T ! c (0 � c <1), as N; T !1.

(iii) r̂
p! r, as N; T !1.

Several useful implications follow. Part (i-a) states that unless common jumps occur

at t, we can have standard asymptotic inferences for the factors in Bai (2003) without any

additional condition (we already have condition
p
N=T ! 0 in the standard result). In other

words, Theorem 1 states that if the jumps are not larger than
p
T , we obtain asymptotic

results, although they can be asymptotically identi�ed with the algorithm because they are
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explosive as long as T ! 1. Therefore, what we require is only the existing conditionp
N=T ! 0. Part (i-b) suggests that if we have common jumps at t, we cannot have

asymptotic normality for Ft, although the factor space can still be consistently estimated.

Part (ii) means that the inference for factor loading requires condition
p
N=T ! c (0 �

c < 1) in addition to the existing condition
p
T=N ! 0. If this is not satis�ed, jumps

smaller than or equal to T=
p
N may not be detected in theory because T=

p
N ! c�1 <1.

This means again that jumps remain in the data and may contaminate the inference results.

However, this condition is not more restrictive than that required in part (i-a). Finally, part

(iii) simply ensures that after correcting the jumps, Bai and Ng's (2002) information criteria

can consistently estimate the number of factors.

4.2 Factor jump tests

So far, jumps follow Assumption 6 and are independent of factor structure. Moreover, from

Assumption 1 (E kFtk <1), underlying factors should not show large jumps. However, if we
allow for the underlying factors to jump, the response variables also exhibit common jumps,

so that they must be identi�ed as factor jumps. From an empirical perspective, whether

factors show jumps or not is an important question but very often not a priori known to

researchers.

To illustrate this, we present two dissimilar models exhibiting common jumps at time t.

If the jumps are outliers independent of factors, the model is the same as (3) and (4),

xit = �
0
iFt + zit + uit: (10)

On the other hand, if the jumps are of factors, by denoting them by Jt, an r� 1 vector, the
model becomes

xit = �0i(Ft + Jt) + uit;

= �0iFt + �
0
iJt + uit: (11)

The two models have very di�erent implications, but the di�erence is not trivial by observing

xit. To this end, we propose a factor jump test for the null hypothesis of model (10) against

the alternative hypothesis (11) as follows.

Factor jump test

Step 1. Estimate the jump-free factors F̂t and factor loadings �̂i using the jump-

correction procedure proposed in the previous subsection.
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Step 2. Obtain residuals from cross-sectional regression: ûit = xit � �̂
0
iF̂t at t for

i = 1; :::; N .

Step 3. Let a factor jump be suspected at t = T c. Implement an F test for the null

hypothesis H0 : 
1 = 0r�1 against the alternative hypothesis H1 : 
1 6= 0r�1 in the following
cross-sectional regression:

ûiT c = 
0 + �̂
0
i
1 + "i, i = 1; :::; N; (12)

that is,

F J =
(SSRr � SSRu)=r
SSRu=(N � r)

;

where SSRr and SSRu are the restricted and unrestricted sums of squared regression resid-

uals (12).

If the test rejects the null hypothesis, we conclude that the common jumps at time T c

are of factors. If not, the jumps are outliers independent of factors. We formally present

this test property in the following theorem.

Theorem 4 Let Assumptions 1{7 hold. (i) Under model (10) of the null hypothesis that

jumps are independent of common factors, rF J ) �2r as N; T !1. (ii) Under model (11)
of the alternative hypothesis that jumps are part of common factors, F J !1 as N; T !1.

Remark 1 We can also consider a t test in regression (12) for individual factors to in-

vestigate whether an individual factor jumps or not. This version is especially useful if the

estimated individual factors can be identi�ed and interpreted.

5 Monte Carlo simulation

In this section, we study the �nite sample properties of asymptotic inference for common

factor models in the presence of jumps via Monte Carlo simulations. We examine how inde-

pendent jumps contaminate the standard inference and how the proposed jump-correction

method improves performance. We also investigate the �nite sample size and power of the

proposed test.

We generate the data by

x�it = �0ift + uit; (13)

xit = x�it + zit; (14)

zit = �ct�
c
it + �it�it; (15)
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where ft � i:i:d:N(0; Ir); �i � i:i:d:N(0; Ir); and uit � i:i:d:N(0; 1). Jump process zit has a
common component, where �ct � i:i:d:B(pc=T ) and �cit � i:i:d:N(0; �2), and an idiosyncratic
component, where �it � i:i:d:B(p=T ) and �it � i:i:d:N(0; �2). Importantly, jumps are inde-
pendent of factor structure in this model. Throughout this experiment, the jump-correction

method assumes a white noise for every series and we use the critical value � = 5 for j� itj. We
consider a case in which jumps are not corrected (denoted by \no correction" in the tables)

and one in which jumps are corrected using the proposed method (denoted by \correction"

in the tables). In total, we run 3,000 replications.

We �rst investigate the distributional properties of the factor and factor loading estimates.

For this, we set r = 1 and compute the coverage rate and average length of the con�dence

intervals of (rotation-adjusted) factor Hft, factor loading �iH
�1, and common component

�ift, where

H = v�1(T�1
PT

t=1 f̂tft)(N
�1PN

i=1 �
2
i );

and v is the largest eigenvalue of XX 0=(NT ).6 The asymptotic con�dence intervals are

constructed by Bai (2003) such that

[f̂t � z�=2
qdV ar(f̂t); f̂t + z�=2qdV ar(f̂t)];

[�̂i � z�=2
qdV ar(�̂i); �̂i + z�=2qdV ar(�̂i)];

[f̂t�̂i � z�=2
qdV ar(f̂t�̂i); f̂t�̂i + z�=2qdV ar(f̂t�̂i)];

where, respectively,

dV ar(f̂t) = (N�1PN
j=1 û

2
jt)(
PN

j=1 �̂
2

j)
�1;dV ar(�̂i) = (T�1

PT
s=1 û

2
is)(
PT

s=1 f̂
2
s )
�1;dV ar(f̂t�̂i) = [(N�1PN

j=1 û
2
jt)(N

�1PN
j=1 �̂

2

j)
�1�̂

2

i + (T
�1PT

s=1 û
2
is)(T

�1PT
s=1 f̂

2
s )
�1f̂ 2t ;

and z�=2 is the 100� (1� �=2)% quantile of the standard normal distribution. We consider

the set of parameter values associated with jump magnitudes � = [0; 5; 10; 50; 100], that are

in turn associated with jump frequencies (pc; p) = [(1; 0); (5; 0); (0; 1), (0; 5); (1; 1)]; and

the set of sample sizes (N; T ) = [(20; 500); (50; 200); (100; 100); (200; 50); (500; 20)]. We also

consider the 90% con�dence intervals for, without loss of generality, fT ; �1, and �1fT . Since

Theorem 1 requires no common jumps, we set �cT = 0. The results are reported in Tables

6Since we set r = 1 in this experiment, H is a scalar. Still, it is important to incorporate it because it is
not necessarily 1.
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1 to 3. Tables 1(a) and 1(b) give the coverage rate and average length of the con�dence

interval of HfT . They show that even when jumps are not corrected, the coverage rate goes

close to 0.9 except for the case of (N; T ) = (500; 20); however, the average length in
ates

as � increases. On the other hand, when jumps are corrected, the coverage rate is again

close to 0.9, except except for the case of (N; T ) = (500; 20); and the average length does

not in
ate. This shows that the proposed jump-correction method works well for factor

estimation as long as
p
N=T ! 0 is relevant, as discussed in Theorem 3 (i-a). We now

examine the results of factor loading in Tables 2(a) and 2(b). When jumps are not corrected,

the coverage rate signi�cantly deteriorates and the average length shortens as � increases.

On the other hand, when jumps are corrected, we observe signi�cant improvement except

for the case of (N; T ) = (500; 20), where
p
N=T ! c < 1 could be irrelevant, as Theorem

3(ii) predicts. We also observe that the coverage rate deteriorates when (N; T ) = (20; 500),

because condition
p
T=N ! 0 as required in Theorem 3(ii) may not be relevant; however,

the errors are minor in this case. Finally, Tables 3(a) and 3(b) show the con�dence interval

results for the common component. Again, the coverage rate moves away from the nominal

level 0.9 as � increases when jumps are not corrected; however, jump correction signi�cantly

improves performance except for the case of (N; T ) = (500; 20). We again observe some

errors in coverage rate for the case of (N; T ) = (20; 500), but they are minor.

The above results are direct consequences of Theorems 1 and 3. However, a good coverage

ratio of f̂T without jump correction may be questionable. We here show that the observed

coverage rate is pointwise and does not re
ect a good estimate for
n
f̂t

oT
t=1

as a series. To

this end, we compute the correlation coe�cient between the estimated factor
n
f̂t

oT
t=1

and

the (rotated) true factor fHftgTt=1. Table 4 gives the average correlation coe�cient over
simulation. When jumps are not corrected, it moves signi�cantly away from 1 as � becomes

larger. This is the case even if all the jumps are idiosyncratic (pc = 0). The average

correlation coe�cient moves very close to 1 when jumps are corrected in almost all cases.

Furthermore, Figure 1 gives a sample path of a true factor and factor estimates without

jump correction when the data show (a) common jumps at t = b0:5T c with � = 10 and (b)
an idiosyncratic jump in x1t at t = b0:5T c with � = 100. The factor estimate exhibits a

jump in response to these outliers at t = b0:5T c. Thus, we do not obtain a good estimate
for the series as a whole. More importantly, this occurs even if the outlier is idiosyncratic as

long as the magnitude is su�ciently large.

Table 5 investigates Theorems 2 and 3(iii) and reports the average estimated number
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of factors in Bai and Ng's (2002) information criteria. We here set the true number of

factors to r = 4 and consider the three suggested information criteria (ICp1, ICp2, and

ICp3). In every case of the sample size and jump frequency, the number without jump

correction moves away from 4 as � increases. One must be careful because our theory does

not determine the direction of either under- or over-estimation. For example, it tends to

over-estimate when common jumps occur; we also observe signi�cant over-estimation when

only one idiosyncratic jump occurs, that is, (pc; p) = (0; 1). However, we observe under-

estimation when idiosyncratic jumps are more frequent, (pc; p) = (0; 5). Again, after jumps

are corrected, it recovers the true number 4 in most cases as suggested by Theorem 3 (iii).

Finally, we investigate the size and power of the factor jump test. Figure 1 shows that

even if the true factor does not jump, independent outliers in the response variables (even if

it occurs in one response variable) could induce a spurious jump in factor estimates, showing

the importance of this test. We �rst examine the size of the test. The data in models (13)

and (14), that is, under the null hypothesis of no factor jumps, are generated with r = 2. We

also simplify the model by assuming that no idiosyncratic jumps occur. Thus, we generate

process (15) with

zit = I(t = b0:5T c)� �cit;

where �cit � i:i:d:N(0; �2). On the other hand, to investigate power of the test, we assume
that zit = 0 for all i and t, so that although no independent outliers are present, the factors

jump such that

ft = f
�
t + f

J
t ;

where f �t � i:i:d:N(0; Ir) represents jump-free factors and f
J
t = [I(t = b0:5T c) � �, 0]

with � � N(0; �2) corresponds to a jump of the �rst factor. Since the jump-free factor

estimates used in Steps 1 and 2 can a�ect the performance of the test, it is instructive to

compare the results for the following two cases. Case 1 considers an unfeasible test that

assumes the presence of true jump-free observations x�it. The test is constructed from the

factors and factor loading estimated using them. Case 2 pertains to a feasible test that uses

jump-corrected factor and factor loading estimates to construct the test.

Table 6 reports the size of the factor jump test at the nominal 5% level with the set

of jump magnitudes and sample sizes. Case 1 illustrates a very good size; however, the

feasible test in Case 2 su�ers some size distortions when � is small. This is consistent with

the theory, because, as elaborated in the proof of Theorem 4 in the appendix, the pseudo-

true coe�cients attached to factor loading estimates in the cross-section regression of Step

2 have random quantity in �nite samples. However, since they shrink to zero at the rate of
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op(k
�1
NTN

�1=2), the size improves remarkably as � becomes large. The size is also distorted

when T is small, because the jump-correction algorithm does not work well in such cases,

as shown in Tables 1 and 2. However, the size improves as T increases. Finally, Table 7

illustrates the power as a rejection frequency of the test at the nominal 5% level. It shows

that the test has good power against factor jumps.

6 Empirical examples

6.1 Daily currency returns against the U.S. dollar

Much attention has been paid to comovements of currency returns. Especially, recent empir-

ical evidence of deviation from the theory of uncovered interest parity has motivated many

authors and policy makers to identify the risk factors in currency markets besides interest

rate di�erentials. For example, Lustig et al. (2011) apply a common factor model to monthly

returns on 35 currencies against the U.S. dollar (minus the interest di�erential). Using the

estimates of principal component factors, they identify the global risk factor as the series

closely related to the world's stock market volatility and �nd it consists of an important

element of exchange rate dynamics. While they use monthly data, it is well-known that

large jumps are likely to occur if daily currency returns data are used.

We provide a small empirical example related to such data. To this end, we use the

daily log-returns on 25 major foreign currencies with relatively stable volatilities against the

U.S. dollar for the recent �nancial crisis period. The sample period is from August 1, 2007,

to September 30, 2008, totaling 305 business days. The currency returns are computed as

ri;t = log(ei;t=ei;t�1); where eit is the daily spot exchange rate of currency i against the U.S.

dollar at day t. Table 8 gives the list of currencies. The data, eit, are quoted at 15:00 EST

by Bankers Trust Co., and are downloaded from the Datastream database. Figure 2 plots

the 25 individual currency returns, clearly showing a few large jumps in some currencies.

We �rst identify the jump dates using the proposed method. For this, we �t a white

noise model to individual series and use the critical value of 5 for j� i(t)j. Table 8 gives the
number of jumps identi�ed using this method. Jumps are relatively scarce, but 13 out of 25

currencies exhibit them. Figure 3 provides information on how many series exhibit a jump

each day, with no jump or only a few jumps occurring on most days considered as individual

jumps. However, nine jumps are identi�ed on May 6 and 7 and four jumps on September

29, 2008.

Turning to factor estimation, Figures 4-1 and 4-2 present the �rst and second estimated
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factors, respectively. For each set of �gures, panel (a) shows the factor estimates with and

without jump correction and panel (b) gives their di�erence. A visual inspection shows that

the �rst factor estimate may include three jumps, on May 6 and 7 and September 29, 2008.

The second factor estimate may also exhibit jumps on these days. To examine whether these

jumps are due to the independent outliers or jumps in the factors, we present the results of

the test for factor jumps in Table 9: an F test for a jump of the two factors jointly and t tests

for a jump of each factor. The table shows that the null hypothesis of independent outliers

is rejected at the 5% level for the jumps on May 6, 2008, suggesting that they are of factors.

We also �nd that the t test for the �rst factor is signi�cant at the 5 % level but insigni�cant

for the second factor. Finally, we try to interpret the factor estimates. The �rst factor is

related to some European currencies (the Hungarian forint, Norwegian krone, Polish zloty,

etc.), the Australian dollar, and the New Zealand dollar. In contrast, the second factor is

related to the Swiss franc and Japanese yen. Given that the latter two currencies exhibit

much more market liquidity, we may conclude that a factor jump is found in the common

risk factor related to currencies with less liquidity, that is, the �rst factor.

6.2 Japanese prefectural data following earthquake shocks

The second example involves the new car registrations data for 47 Japanese prefectures. The

data consist of monthly spans from January 1985 to December 2014 (seasonally adjusted) and

are taken from the Nikkei CIDIc database. We consider a monthly growth rate computed

by the �rst di�erence of its natural logarithms so that the time dimension of the data is

T = 12�30�1 = 359. Instead of presenting all 47 series, Figure 5 gives the individual series
of four selected prefectures illustrating the features of the data well. The top two panels

present Tokyo and Osaka, the two largest prefectures in Japan, while the two �gures at the

bottom two panels represent Hyogo and Miyagi prefectures. Hyogo prefecture clearly exhibits

a large jump in January 1995, because it was the epicenter of the Great Hanshin earthquake.

On the other hand, Miyagi prefecture also exhibits a large jump in 2011 following the Great

East Japan earthquake in March 2011. Tokyo and Osaka may only be indirectly a�ected

by these events. The question we examine is whether these large jumps a�ect our factor

estimation.

To this end, we �rst follow the series-by-series jump-correction procedure. We �t a white

noise model for individual series and set the critical value of j� i(t)j at 5. Table 10 shows that
only one prefecture exhibits a jump following the 1995 earthquake, whereas 23 prefectures

experienced a jump after the 2011 earthquake. From Bai and Ng's (2002) information criteria
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(ICp2), the number of factors estimated with the original data is four, but this becomes two

with jump-corrected data. Hence, the number may be contaminated by these jumps. Finally,

Figure 6 gives the �rst four non-corrected estimates (in the top four panels) and the two

jump-corrected factor estimates (in the bottom two panels). As expected, the non-corrected

estimates exhibit jumps. In particular, the second and third non-corrected estimates exhibit

jumps in March 2011. To examine whether these jumps are of factors, we implement factor

jump tests in Table 11. We observe strong evidence of factor jumps in March 2011, with p-

value 0:00 for the F -test. The t-tests indicate that the jump is associated with the �rst factor

with p-value 0:03, while the p-value for the second factor is 0:40. Finally, the fourth non-

corrected factor estimate shows a large jump in January 1995 following the Great Hanshin

earthquake, although only Hyogo prefecture exhibits a jump. Table 11 shows no evidence of

factor jumps in January 1995. Therefore, we conclude that the jump in factor estimate in

January 1995 was spuriously caused by an individual outlier in Hyogo prefecture and that

the factors did not jump.

7 Conclusion

Financial and economic time-series data often exhibit infrequent but large jumps. This paper

explored the problems pertaining to such jumps in recently developed large-dimensional

common factor models. To make this attempt feasible and attractive, we introduce the

following extensions of the standard model. First, jumps are modeled as increments of

a mixture of Poisson processes independent of the underlying factor structure. Second,

the jump magnitudes are modeled as a function of data dimension to derive meaningful

asymptotic results. Third, we consider idiosyncratic jumps and common jumps. Under this

setting, we primarily derive the upper bounds of jump magnitudes with which the standard

asymptotic inference goes. Furthermore, this result is followed by two useful applications: the

series-by-series jump-correction method and the factor jump test. A Monte Carlo experiment

con�rms that independent large outliers easily contaminate standard asymptotic inference.

However, the proposed jump-correction method retrieves good �nite sample properties unless

T is very small. The factor jump test shows good size when outliers are su�ciently large

and exhibit good power. The usefulness of the proposed method is highlighted in a small

empirical example using daily log-returns data of 25 currencies against the U.S. dollar as

well as Japanese prefectural new car registration data following the two large earthquakes.
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Appendix : Proof of Theorems

For notational simplicity, we assume that E kFtk2 = �2F for all t, E k�ik
2 = �2 for all i,

and E(u2it) = �
2
u in the following proofs. This simpli�cation does not qualitatively a�ect our

�nal results.

Lemma 1: Let bt =
PN

i=1

PN
j=1E(zitzjt) and dt =

PT
s=1

PN
i=1

PN
j=1E(ziszitzjszjt). From

Assumptions 6 and 7, we have

bt =

8<: O(k2NTN); if �ct = 1

O(k2NTNT
�1); if �ct = 0

;

and
�b = T�1

PT
t=1 bt = Op(k

2
NTNT

�1):

We also have

dt =

8<: O(k4NTN
2); if �ct = 1

O(k4NT max fNT�1; N2T�2g); if �ct = 0
;

and

�d = T�1
PT

t=1 dt =

8<: Op(k
4
NTN

2T�1); if pc = 0

Op(k
4
NT max fNT�1; N2T�2g); if pc 6= 0

:

.

Proof of Lemma 1: For all i and t, E(z2it) = k2NT�
2 if �ct = 1 and E(z2it) =

p
T
�2 if

�ct = 0. Because E(zitzjt) = 0 for i 6= j, by Assumption 6,

bt =
PN

i=1E(z
2
it) +

PN
i=1

PN
j=1

i6=j
E(zitzjt)

=
PN

i=1E(z
2
it) =

8<: k2NTN�
2 + k2NTN(p=T )�

2, if �ct = 1

k2NTN
p
T
�2; if �ct = 0

;

and the result for bt follows. For �b,

�b = T�1pck
2
NTN�

2 + T�1
PT

t=1 k
2
NTN(p=T )�

2;

= T�1pck
2
NTN�

2 + k2NTN(p=T )�
2;

= O(k2NTNT
�1);
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and the result follows.
We turn to the bound of dt. From Assumption 6(c), E(z4it) = k4NT3�

4 if �ct = 1 and
E(z4it) = (p=T )k

4
NT3�

4 if �ct = 0 for all i and t, and so

dt =
PT

s=1

PN
i=1

PN
j=1E(ziszitzjszjt);

=
PN

i=1E(z
4
it) +

PN
i=1

PN
j=1

i6=j
E(z2it)E(z

2
jt)

+
PT

s=1
s 6=t

PN
i=1E(z

2
is)E(z

2
it) +

PT
s=1
s 6=t

PN
i=1

PN
j=1

i6=j
E(ziszitzjszjt);

= I + II + III + IV:

If �ct = 1, then

I = Nk4NT3�
4 +N(p=T )k4NT3�

4;

II = (N2 �N)k4NT�4 + (N2 �N)(p=T )2k4NT�4;
III = N(T � 1)(p=T )k4NT�4 +N(T � 1)(p=T )2k4NT�4;

and IV = 0. Therefore, term II dominates and dt = O(k
4
NTN

2). If �ct = 0, then

I = N(p=T )k4NT3�
4;

II = (N2 �N)(p=T )2k4NT�4;
III = N(T � 1)(p=T )2k4NT�4;

and IV = 0. Therefore, dt = O(k
4
NT max fNT�1; N2T�2g). For �d,

�d = T�1pcNk
4
NT3�

4 +N(p=T )k4NT3�
4;

+T�1pc(N
2 �N)k4NT�4 + (N2 �N)(p=T )2k4NT�4;

+T�1pcN(T � 1)(p=T )k4NT�4 +N(T � 1)(p=T )2k4NT�4;
= I + II + III + IV + V + V I:

If pc 6= 0, then term III dominates and �d = O(k4NTN
2T�1). If pc = 0, then terms I; III;

and V are zero. Then, �d = O(k4NT max fNT�1; N2T�2g). �

Lemma 2: From Assumptions 1{7,

T�1
PT

t=1




F̂t �H 0Ft




2 = Op(JNT );
where

JNT =

8<: max fk4NTT�2; k2NTN�1T�1g if pc 6= 0

max
�
k4NT c

�2
NTT

�2; k2NTN
�1T�1

	
if pc = 0

;

as N; T !1.
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Proof of Lemma 2: Using steps very similar to those applied in the proof of Theorem
1 of Bates et al. (2013), we start with the results of the proof of Theorem 1 of Bai and Ng
(2002):

F̂t �H 0Ft = (NT )�1
n
F̂ 0F�0ut + F̂

0u�Ft + F̂
0uut + F̂

0F�0zt

+F̂ 0Z�Ft + F̂
0Zzt + F̂

0uzt + F̂
0Zut

o
�

P8
h=1 dht; (A.1)

where d1t = (NT )
�1F̂ 0F�0ut, etc. Since

T�1
PT

t=1




F̂t �H 0Ft




2 � 8P8
h=1

�
T�1

PT
t=1 kdhtk

2
�
:

and we know from Bai and Ng (2002) that the terms for d1t; d2t; and; d3t are Op(c
�2
NT ), we

consider the bounds for the remaining terms. For h = 4,

kd4tk2 � N�2(T�1
PT

s=1




F̂s


2)| {z }
=tr(Ir)=r

(T�1
PT

s=1 kFsk
2)| {z }

p!�2F

k�0ztk2 :

where

E k�0ztk2 =
PN

i=1

PN
j=1E(�

0
i�j)E(zitzjt);

� �2bt:

Therefore,
T�1

PT
t=1E kd4tk

2 � N�2r�2F�
2�b;

and so from the result of �b in Lemma 1, we obtain

T�1
PT

t=1 kd4tk
2 = Op(k

2
NTN

�1T�1):

For h = 5;

kd5tk2 � N�2T�1(T�1
PT

s=1




F̂s


2) kZ�Ftk2 ;
where

E kZ�Ftk2 =
PT

s=1

PN
i=1

PN
j=1 jE(ziszjs)jE



�0iFt�0jFt

 ;
� T�2�2F

�b:

Therefore,
E kd5tk2 � N�2r�2�2F

�b;

so that
T�1

PT
t=1 kd5tk

2 = Op(k
2
NTN

�1T�1):
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For h = 6,

kd6tk2 = N�2T�1(T�1
PT

s=1




F̂s


2) kZ 0ztk2 ;
where

E kZztk2 =
PT

s=1

PN
i=1

PN
j=1 jE(ziszitzjszjt)j = dt:

Therefore,
E kd6tk2 � N�2T�1rdt;

so that
T�1

PT
t=1E kd6tk

2 � N�2T�1r �d;

and

T�1
PT

t=1 kd6tk
2 =

8<: Op(k
4
NTT

�2); if pc 6= 0

Op(k
4
NT max fN�1T�2; T�3g); if pc = 0

;

or by using symbol cNT = min
np

N;
p
T
o
,

T�1
PT

t=1 kd6tk
2 =

8<: Op(k
4
NTT

�2); if pc 6= 0

Op(k
4
NT c

�2
NTT

�2); if pc = 0
:

For h = 7;

kd7tk2 = N�2T�1(T�1
PT

s=1




F̂s


2) kuztk2 ;
where

E kuztk2 =
PT

s=1

PN
i=1

PN
j=1E(uisuis)E(zitzjt);

� T�2ubt:

Therefore,
E kd7tk2 � N�2r�2ubt;

so that
T�1

PT
t=1E kd7tk

2 � N�2r�2u
�b;

and
T�1

PT
t=1 kd7tk

2 = Op(k
2
NTN

�1T�1):

For h = 8;

kd8tk2 = N�2T�1(T�1
PT

s=1




F̂s


2) kZutk2 ;
where

E kZutk2 =
PT

s=1

PN
i=1

PN
j=1E(uituit)E(ziszjs);

� T�2u
�b:
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Therefore,
E kd8tk2 � N�2r�2u

�b;

so that
T�1

PT
t=1 kd8tk

2 = Op(k
2
NTN

�1T�1):

Therefore, the bounds of the �ve terms are Op(k
2
NTN

�1T�1); Op(k
2
NTN

�1T�1); Op(k
4
NTT

�2);
Op(k

2
NTN

�1T�1), and Op(k
2
NTN

�1T�1) if pc 6= 0. The third term becomes Op(k
4
NT c

�2
NTT

�2)
if pc = 0. The result follows.�

Lemma 3: From Assumptions 1{7, the following hold:

(a)



T�1PT

t=1(F̂t �H 0Ft)F
0
t




 = Op(c
�2
NT ) +Op(kNTN

�1=2T�1) +Op(k
2
NTN

�1=2T�2);

(b)



T�1PT

t=1(F̂t �H 0Ft)F̂
0
t




 = Op(c
�2
NT ) +Op(kNTN

�1=2T�1) +Op(k
2
NTN

�1=2T�2);

(c)



T�1PT

t=1(F̂t �H 0Ft)uit




 = Op(c
�2
NT ) +Op(kNTN

�1=2T�1) +Op(k
2
NTN

�1=2T�2);

(d)



T�1PT

t=1(F̂t �H 0Ft)et




 = Op(c
�2
NT ) +Op(kNTN

�1=2T�1) +Op(k
2
NTN

�1=2T�2):

Proof of Lemma 3: (a) We start with Bai and Ng's (2002) expression:

T�1
PT

t=1(F̂t �H 0Ft)F
0
t = N�1T�2(F̂ 0F�u0F + F̂ 0u�F 0F + F̂ 0uu0F + F̂ 0F�0Z 0F

+F̂ 0Z�F 0F + F̂ 0ZZ 0F + F̂ 0uZ 0F + F̂ 0Zu0F );

=
P8

h=1Dh:

Terms D1 +D2 +D3 do not involve jumps and their sum is Op(c
�2
NT ). In the following, we

compute the stochastic bounds for terms D4 to D8.
For D4,

N�1T�2



F̂ 0F�0Z 0F


 � N�1T�1




T�1=2F̂




T�1=2F

 k�0Z 0Fk ;
� N�1T�1




T�1=2F̂




T�1=2F

qPT
t=1

PN
i=1 k�ik

2 z2it kFtk
2;

although from independent assumptions (Assumptions 4 and 6(a)), we obtain

E(k�ik2 z2it kFtk
2) = E k�ik2E(z2it)E kFtk

2 ;

=

8<: k2NT�
2�2�2F + k

2
NT (p=T )�

2�2�2F , if �ct = 1

k2NT (p=T )�
2�2�2F , if �ct = 0

:

Therefore,
E
PT

t=1

PN
i=1 k�ik

2 z2it kFtk
2 = Nk2NT (pc + p)�

2�2�2F ;
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so that
k�0Z 0Fk = Op(kNTN1=2):

This results in
D4 = Op(kNTN

�1=2T�1):

For D5,

N�1T�2



F̂ 0Z�F 0F


 � N�1T�1




F̂ 0Z�




T�1=2F



T�1=2F

 ;
where 


F̂ 0Z�


 �rPT

t=1

PN
i=1




F̂t


2 z2it k�ik2:
However,

E



F̂t


2 z2it k�ik2 =

8<: k2NT�
2�2r + (p=T )k2NT�

2�2r, if �ct = 1

(p=T )k2NT�
2�2r, if �ct = 0

E
PT

t=1

PN
i=1 k�ik

2 z2it




F̂t


2 = Nk2NT (pc + p)�2�2r;
so that




F̂ 0Z�


 = Op(k2NTN1=2) and D5 = Op(kNTN
�1=2T�1).

For D6,

N�1T�2



F̂ 0ZZ 0F


 � N�1T�2

rPN
i=1

PT
t=1

PT
s=1




F̂tzitzisF 0s


2:
However,

E



F̂tzitzisF 0s


2 = E




F̂t


2E(z2it)E(z2is)E kFsk2
=

8<: k2NT�
2E(z2it)�

2
F r + (p=T )k

2
NT�

2E(z2it)�
2
F r, if �cs = 1

(p=T )k2NT�
2E(z2it)�

2
F r, if �cs = 0

;

so thatPT
s=1E




F̂tzitzisF 0s


2 � k2NT�
2(pc + p)E(z

2
it)�

2
F r;

=

8<: [k2NT�
2(pc + p)�

2
F r]k

2
NT (1 + p=T )�

2, if �ct = 1

[k2NT�
2(pc + p)�

2
F r]k

2
NT (p=T )�

2, if �ct = 0
;

so that PT
t=1

PT
s=1E




F̂tzitzisF 0s


2 � [k2NT�2(pc + p)]2�2F r;
and PN

i=1

PT
t=1

PT
s=1E




F̂tzitzisF 0s


2 � N [k2NT�2(pc + p)]2�2F r:
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Therefore, D6 = Op(k
2
NTN

�1=2T�2).
For D7,

N�1T�2



F̂ 0uZ 0F


 � N�1T�2

rPN
i=1

PT
t=1

PT
s=1




F̂tuitzisF 0s


2:
However,

E



F̂tuitzisF 0s


2 = E




F̂t


2E(u2it)E(z2is)E kFsk2 ;
=

8<: k2NT�
2�2ur�

2
F + (p=T )k

2
NT�

2�2ur�
2
F , if �cs = 1

(p=T )k2NT�
2�2ur�

2
F , if �cs = 0

so that PT
s=1E




F̂tuitzisF 0s


2 = k2NT (pc + p)�2�2ur�2F ;
and PN

i=1

PT
t=1

PT
s=1E




F̂tuitzisF 0s


2 = NTk2NT (pc + p)�2�2ur�2F :
Therefore, D7 = Op(kNTN

�1=2T�3=2). For D8, we use a similar computation as D7 to obtain
D8 = Op(kNTN

�1=2T�3=2). Therefore, terms D4 and D5 consist of the second component
and terms D7 and D8 correspond to the third component of the �nal result. Term D6 is
dominated by terms D4 and D5, and we obtain the �nal result.
(b) We essentially follow the same computation as (a).
(c) We start with

T�1
PT

t=1(F̂t �H 0Ft)uit = N�1T�2(F̂ 0F�u0ui + F̂
0u�F 0ui + F̂

0uu0ui + F̂
0F�0Z 0ui

+F̂ 0Z�F 0ui + F̂
0ZZ 0ui + F̂

0uZ 0ui + F̂
0Zu0ui);

=
P8

h=1Dh:

Terms D1 +D2 +D3 do not involve jumps and their sum is Op(c
�2
NT ). In the following, we

compute the stochastic bounds for D4 to D8. For D4,

N�1T�2



F̂ 0F�0Z 0ui


 � N�1T�1




T�1=2F̂




T�1=2F

 k�0Z 0uik ;
� N�1T�1




T�1=2F̂




T�1=2F

qPT
t=1

PN
j=1 k�jk

2 z2jtu
2
it;

and

E(k�jk2 z2jtu2it) = E k�jk2E(zjt)2E(u2it);

=

8<: k2NT�
2�2�2u + k

2
NT (p=T )�

2�2�2u, if �ct = 1

k2NT (p=T )�
2�2�2u, if �ct = 0

;
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so that
D4 = Op(kNTN

�1=2T�1):

For D5,

N�1T�2



F̂ 0Z�F 0ui


 � N�1=2T�3=2




N�1=2F̂Z�



| {z }

=Op(kNT ) by D5 in (a)



T�1=2Fui

 ;
= Op(kNTN

�1=2T�3=2):

For D6,

N�1T�2



F̂ 0ZZ 0ui


 � N�1T�2

rPN
j=1

PT
t=1

PT
s=1




F̂tzjtzjsuis


2:
However,

E



F̂tzjtzjsuis


2 = E




F̂t


2E(z2jt)E(z2js)E(u2is);
=

8<: k2NT�
2E(z2jt)�

2
ur + (p=T )k

2
NT�

2E(z2jt)�
2
ur, if �cs = 1

(p=T )k2NT�
2E(z2jt)�

2
ur, if �cs = 0

;

so thatPT
s=1E




F̂tzjtzjsuis


2 � pck
2
NT�

2E(z2jt)�
2
ur + pk

2
NT�

2E(z2jt)�
2
ur;

=

8<: [k2NT�
2(pc + p)�

2
ur]k

2
NT (1 + p=T )�

2, if �ct = 1

[k2NT�
2(pc + p)�

2
ur]k

2
NT (p=T )�

2, if �ct = 0
;

so that PT
t=1

PT
s=1E




F̂tzitzisuis


2 � [k2NT�2(pc + p)�2u]2r;
and PN

i=1

PT
t=1

PT
s=1E




F̂tzitzisuis


2 � N [k2NT�2(pc + p)�2u]2r:
Therefore,

D6 = Op(k
2
NTN

�1=2T�2):

For D7,

N�1T�2



F̂ 0uZ 0ui


 � N�1T�2

rPN
i=1

PT
t=1

PT
s=1




F̂tuitzisuis


2:
However,

E



F̂tuitzisuis


2 = E




F̂t


2E(u2it)E(z2is)E(u2is);
=

8<: k2NT�
2�4ur + (p=T )k

2
NT�

2�4ur, if �cs = 1

(p=T )k2NT�
2�4ur, if �cs = 0
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so that PT
s=1E




F̂tuitzisuis


2 = k2NT (pc + p)�2�4ur;
and PN

i=1

PT
t=1

PT
s=1E




F̂tuitzisuis


2 = NTk2NT (pc + p)�2�4ur:
Therefore, D7 = Op(kNTN

�1=2T�3=2).
For D8,

N�1T�2



F̂ 0Zu0ui


 � N�1T�2

rPN
j=1

PT
s=1

PT
t=1




F̂tzjtujsuis


2:
However,

E



F̂tzjtujsuis


2 = E




F̂t


2E(z2jt)E(u2js)E(u2is);
=

8<: k2NT�
2�4ur + (p=T )k

2
NT�

2�4ur, if �ct = 1

(p=T )k2NT�
2�4ur, if �ct = 0

so that PT
s=1E




F̂tzjtujsuis


2 = k2NT (pc + p)�2�4ur;
and PN

i=1

PT
s=1

PT
t=1E




F̂tzjtujsuis


2 = NTk2NT (pc + p)�2�4ur;
so that D8 = Op(kNTN

�1=2T�3=2). Therefore, term D4 corresponds to the second component
and terms D7 and D8 consist of the third component of the �nal result. Terms D5 and D6

are dominated by term D4. We obtain the �nal result.
(d) We essentially follow the same computation as (c).�

Proof of Theorem 1: Part (i): We start (A.1). Terms d1t to d3t have nothing to do
with jumps, and we know that from Theorem 1 of Bai (2003), if there is no jump,

p
N(F̂t �H 0Ft) = V

�1(F 0F=T )N�1=2PN
i=1 �iuit +Op(N

1=2T�1=2c�1NT ) +Op(c
�1
NT ):

Therefore, the stochastic bound of terms d1t to d3t (multiplied by
p
N) is given as above. In

the rest of this proof, we compute the stochastic bound for terms d4t to d8t (multiplied byp
N).
For d4t,

N�1=2T�1



F̂ 0F�0zt


 = N�1=2




F̂ 0F=T


 k�0ztk ;
= N�1=2




F̂ 0F=T


qPN
i=1 k�izitk

2;
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where

E k�izitk2 = E k�ik2E(z2it) =

8<: k2NT�
2�2 + (p=T )k2NT�

2�2, if �ct = 1

(p=T )k2NT�
2�2, if �ct = 0

;

so that PN
i=1 k�izitk

2 =

8<: Op(k
2
NTN); if �ct = 1

Op(k
2
NTNT

�1); if �ct = 0
:

Therefore,

N�1=2T�1



F̂ 0F�0zt


 =

8<: Op(kNT ), if �ct = 1

Op(kNTT
�1=2), if �ct = 0

:

For d5t,

N�1=2T�1



F̂ 0Z�Ft


 � T�1




N�1=2F̂ 0Z�



| {z }

=Op(kNT )

kFtk ;

= Op(kNTT
�1):

For d6t,

N�1=2T�1



F̂ 0Zzt


 � N�1=2T�1

rPN
i=1

PT
s=1




F̂sziszit


2;
where

E



F̂sziszit


2 = E




F̂s


2E(z2is)E(z2it)
=

8<: k2NT�
2E(z2it)r + (p=T )k

2
NT�

2E(z2it)r, if �
c
t = 1

(p=T )k2NT�
2E(z2it)r, if �ct = 0

;

so that PT
s=1E




F̂sziszit


2 = k2NT (pc + p)�
2E(z2it)r;

=

8<: [k2NT�
2(pc + p)r]k

2
NT (1 + p=T )�

2, if �ct = 1

[k2NT�
2(pc + p)r]k

2
NT (p=T )�

2, if �ct = 0
;

and

N�1=2T�1



F̂ 0Zzt


 =

8<: Op(k
2
NTN

�1=2T�1), if �ct = 1

Op(k
2
NTN

�1=2T�3=2), if �ct = 0
:
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For d7t,

N�1=2T�1



F̂ 0uzt


 � N�1=2T�1

rPN
i=1

PT
s=1




F̂suiszit


2;
where

E



F̂suiszit


2 = E




F̂s


2E(u2is)E(z2it);
=

8<: k2NT�
2�2ur + k

2
NT (p=T )�

2�2ur, if �
c
t = 1

k2NT (p=T )�
2�2ur, if �ct = 0

;

so that

PN
i=1

PT
s=1E




F̂suiszit


2 =
8<: NTk2NT�

2�2ur +Nk
2
NTp�

2�2ur, if �
c
t = 1

Nk2NTp�
2�2ur, if �ct = 0

:

Hence,

N�1=2T�1



F̂ 0uzt


 =

8<: Op(kNTT
�1=2), if �ct = 1

Op(kNTT
�1), if �ct = 0

:

For d8t,

N�1=2T�1



F̂ 0Zut


 � N�1=2T�1

rPN
i=1

PT
s=1




F̂szisuit


2;
where

E



F̂szisuit


2 = E




F̂s


2E(z2is)E(u2it);
=

8<: k2NT�
2�2ur + k

2
NT�

2(p=T )�2ur, if �
c
s = 1

k2NT�
2(p=T )�2ur, if �cs = 0

;

so that PT
s=1E




F̂szisuit


2 = k2NT�2(pc + p)�2ur;
and PN

i=1

PT
s=1E




F̂suiszit


2 = Nk2NT�2(pc + p)�2ur:
Therefore,

N�1=2T�1



F̂ 0Zut


 = Op(kNTT�1).

This computation gives

p
N(d4t + d5t + d6t + d7t + d8t) =

8<: Op(kNT ), if �ct = 1

Op(kNTT
�1=2), if �ct = 0

;

28



to complete the proof.

Part (ii): We extend the factor loading estimate:

�̂i = (F̂ 0F̂ )�1F̂ 0Xi;

= (F̂ 0F̂ )�1F̂ 0F�i + (F̂
0F̂ )�1F̂ 0ui;

= (F̂ 0F̂ )�1F̂ 0F̂H�1�i � (F̂ 0F̂ )�1F̂ 0(F̂ � FH)H�1�i

+(F̂ 0F̂ )�1H 0F 0ui + (F̂
0F̂ )�1(F̂ � FH)0ui;

so that

T 1=2(�̂i �H�1�i) = T�1=2H 0F 0ui + T
�1=2(F̂ � FH)0ui � T�1=2F̂ 0(F̂ � FH)H�1�i;

= Op(1) +Op(T
1=2c�2NT ) +Op(kNTN

�1=2T�1=2) +Op(k
2
NTN

�1=2T�3=2);

= I + II + III + IV;

from Lemma 3 (b) and 3 (c). The condition for term II to diminish is

T 1=2c�2NT = max

�
T 1=2

N
;
T 1=2

T

�
! 0;

or
p
T=N ! 0. Further, the condition for term III to diminish is

kNTN
�1=2T�1=2 = kNT (

p
T=N)(

p
N=T )! 0;

which is implied when kNT (
p
N=T ) is bounded or

kNT � T=
p
N:

The condition for term IV to diminish is

k2NTN
�1=2T�3=2 � kNT (

p
T=N)(

p
N=T 2);

or
kNT � T 2=

p
N;

which is satis�ed when kNT � T=
p
N . Hence, the additional condition is kNT � T=

p
N .�

Proof of Corollary 1: This immediately holds because from Theorem 1 (a), if �ct = 1;
then 


F̂t �H 0Ft




 =
P3

h=1 dht +
P8

h=4 dht;

= op(1) +Op(kNTN
�1=2):
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Therefore, we have op(1) if kNT < N
�1=2.�

Proof of Theorem 2: We use Observation 1 of Bates et al. (2013) and require

k2NT
PN

i=1

PT
t=1E kzitFtk

2 = O(max fN; Tg);

or
k2NT�

2
F

PN
i=1

PT
t=1E(z

2
it) = O(max fN; Tg); (A.2)

under our simpli�cation assumptions. However,PT
t=1E(z

2
it) = (pc + p)k

2
NT�

2;

and PN
i=1

PT
t=1E(z

2
it) = N(pc + p)k

2
NT�

2:

Hence, (A.2) becomes

k2NT�
2
FN(pc + p)k

2
NT�

2 = O(max fN; Tg);

or
k4NT = O(max f1; T=Ng);

or
kNT � max

�
1; T 1=4N�1=4	 .

This completes the proof.�

Proof of Proposition 1: We consider the numerator only. Because

v̂�it = zit + uit + �
0
iFt � �̂

0
iF̂t;

= zit + uit + �
0
iH

0�1(H 0Ft � F̂t)� (�̂
0
i � �0iH 0�1)H 0Ft � (�̂

0
i � �0iH 0�1)(H 0Ft � F̂t);

= zit + uit + I + II + III:

and E juitj is bounded, we consider only terms I; II; and III. Theorem 1 implies that

I = Op(kNTN
�1=2);

II = Op(kNTN
�1=2T�1) +Op(k

2
NTN

�1=2T�2);

III = Op(k
2
NTN

�1T�1) +Op(k
3
NTN

�1T�2):

For all the terms in I, II, and III to be smaller than jzitj = Op(kNT ), we require that
kNT < N

1=2T .�

Proof of Theorem 3: Part (i-a) holds because the jumps satisfying kNT >
p
T are

always corrected by Proposition 1.
Part (i-b) holds because the jumps satisfying kNT >

p
N are always corrected by Propo-

sition 1.
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Part (ii) is a straightforward consequence of Theorem 1 (ii).
Part (iii) holds because the jumps satisfying kNT > max

�
1; T 1=4N�1=4	 are always cor-

rected by Proposition 1.�

Proof of Theorem 4: We consider the cross-sectional regression

ûit = 
0 + �̂
0
i
1 + "i; for i = 1; :::; N; (A.3)

where "i is the error term. We know that the residuals ûit become

ûit = uit + zit + (�
0
iFt � �̂

0
iF̂t); (A.4)

under H0 and

ûit = uit + �
0
iJt + (�

0
iFt � �̂

0
iF̂t); (A.5)

under H1, where �̂i and F̂t are jump-corrected estimates. We show that the regression model
(A.3) induced by true process (A.4) has a pseudo-true coe�cient 
1 = 0 and the model (A.3)
induced by true process (A.5) has a pseudo-true coe�cient 
1 6= 0 with error term "i showing
a �nite variance. First, note that under H0, (A.4) becomes

ûit = �̂
0
i(HFt � F̂t) + (�iH�1 � �̂i)0HFt + uit + zit;

so that


0 = 0;


1 = p lim
N;T!1

(HFt � F̂t| {z }
=Op(N�1=2)

) = 0;

"i = (�iH
�1 � �̂i| {z }

=Op(T�1=2)

)0HFt + uit + zit + op(1);

= I + II + III + op(1);

from Theorem 3 (i-b) and 3 (ii). Therefore, error "i consists of three terms, I; II; and III.
Term I has a variance shrinking to zero, term II a �nite variance �2u, and term III variance
k2NT�

2. Since the F test is invariant to model scaling, it is the same as that applied to
regression model (A.3) with


0 = 0;


1 = p lim
N;T!1

k�1NT (HFt � F̂t) = 0;

"i = k�1NT zit + op(1).

Under this model, error "i has a �nite variance �
2 and pseudo-true coe�cients 
1 are zero at

rate op(N
�1=2) so that the F test multiplied by the numerator's degree of freedom has the

standard Chi square limit distribution. Under H1, (A.5) becomes

ûit = �̂
0
iHJt + (�̂i � �iH�1)0HJt + �̂

0
i(HFt � F̂t)� (�iH�1 � �̂i)0HFt + uit; (A.6)
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so that we obtain the regression model (A.3) with


0 = 0;


1 = p lim
N;T!1

HJt 6= 0;

"i = (�̂i � �iH�1| {z }
=Op(T�1=2)

)0HJt + �̂
0
i(HFt � F̂t| {z }
=Op(N�1=2)

)� (�iH�1 � �̂i| {z }
=Op(T�1=2)

)0HFt + uit + op(1);

= I + II + III + uit + op(1):

Terms II and III diminish as N; T !1 regardless of kNT . Hence, we separately consider
the cases where I diminishes and does not diminish. We �rst suppose that kNT < T 1=2.
Then, terms I; II;and III show a variance that shrinks to zero and uit has a �nite variance
�2u. We next suppose that kNT � T 1=2. Now, scaling by k�1NTT 1=2 makes the regression model
(A.3) have


0 = 0;


1 = p lim
N;T!1

T 1=2k�1NTHJt 6= 0;

"i =
p
T (�̂i � �iH�1)0| {z }
)N(0;
�̂;i)

k�1NTHJt| {z }
�N(0;�2)

+ op(1);

so that the error term "i has a zero mean and �nite variance. The �nal result follows.�
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Table 1(a). Coverage ratio of the con�dence interval for the factor

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.85 0.80 0.75
10 0.85 0.85 0.87 0.88 0.88 0.88 0.88 0.86 0.82 0.75
50 0.88 0.86 0.88 0.87 0.89 0.88 0.89 0.84 0.82 0.73
100 0.85 0.86 0.87 0.88 0.89 0.88 0.88 0.85 0.82 0.74

pc=5, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.87 0.88 0.87 0.88 0.84 0.85 0.85 0.67
10 0.83 0.85 0.83 0.87 0.85 0.88 0.88 0.85 0.90 0.63
50 0.87 0.85 0.89 0.87 0.90 0.88 0.90 0.83 0.91 0.67
100 0.87 0.86 0.89 0.88 0.89 0.88 0.89 0.84 0.90 0.71

pc=0, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.86 0.73 0.80
10 0.85 0.86 0.87 0.87 0.87 0.87 0.84 0.86 0.77 0.80
50 0.82 0.85 0.82 0.88 0.85 0.89 0.87 0.87 0.89 0.76
100 0.86 0.86 0.87 0.87 0.90 0.89 0.89 0.87 0.90 0.78

pc=0, p=5
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.84 0.85 0.87 0.88 0.87 0.88 0.85 0.87 0.79 0.72
10 0.84 0.86 0.84 0.88 0.82 0.88 0.80 0.81 0.84 0.35
50 0.80 0.86 0.84 0.87 0.87 0.87 0.89 0.78 0.90 0.40
100 0.86 0.86 0.89 0.89 0.89 0.87 0.89 0.89 0.90 0.80

pc=1, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.84 0.85 0.81 0.77
10 0.85 0.86 0.87 0.88 0.88 0.87 0.88 0.87 0.85 0.76
50 0.86 0.86 0.87 0.88 0.88 0.89 0.89 0.86 0.90 0.72
100 0.84 0.86 0.88 0.88 0.89 0.89 0.90 0.87 0.89 0.73
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Table 1(b). Average length of the con�dence interval for the factor

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.34 0.33 0.26 0.23 0.86 0.15
10 0.80 0.78 0.52 0.48 2.37 0.33 7.71 0.23 5.12 0.14
50 87.24 0.78 213.93 0.48 82.57 0.33 51.74 0.23 47.66 0.14
100 438.52 0.78 335.73 0.48 168.89 0.33 143.65 0.23 89.02 0.14

pc=5, p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.79 0.49 0.48 0.35 0.33 0.29 0.23 0.74 0.16
10 0.88 0.79 1.32 0.48 3.21 0.33 33.82 0.23 12.95 0.22
50 191.32 0.78 472.57 0.48 134.00 0.33 93.95 16.67 75.27 1.07
100 666.97 0.78 440.37 0.48 370.32 0.34 197.63 5.20 229.42 1.99

pc=0, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.33 0.33 0.24 0.23 0.16 0.14
10 0.79 0.78 0.48 0.47 0.34 0.33 0.25 0.23 0.19 0.14
50 13.83 0.78 26.70 0.47 15.84 0.33 16.58 0.23 16.17 0.14
100 243.78 0.78 134.88 0.47 86.35 0.33 80.17 0.23 37.30 0.14

pc=0, p=5
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.25 0.23 0.19 0.15
10 0.83 0.78 0.51 0.47 0.37 0.32 0.30 0.22 0.43 0.14
50 108.84 0.78 87.48 0.47 2634.54 0.32 47.27 0.38 54.86 0.93
100 421.01 0.78 233.91 0.47 184.07 0.36 480.69 13.42 79.54 7.05

pc=1, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.31 0.23 1.42 0.15
10 0.81 0.78 0.55 0.48 3.82 0.33 7.64 0.23 6.25 0.14
50 168.26 0.78 118.59 0.47 100.12 0.33 109.33 0.23 70.39 0.14
100 402.83 0.78 279.14 0.47 222.35 0.33 193.49 0.24 87.11 0.16
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Table 2(a). Coverage ratio of the con�dence interval for the factor loading

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.84 0.87 0.84 0.89 0.79 0.89 0.45 0.85
10 0.57 0.66 0.66 0.86 0.43 0.89 0.35 0.89 0.34 0.86
50 0.23 0.67 0.32 0.85 0.33 0.89 0.34 0.89 0.33 0.85
100 0.26 0.68 0.31 0.86 0.34 0.88 0.34 0.88 0.33 0.83

pc=5, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.60 0.65 0.79 0.87 0.77 0.89 0.64 0.89 0.33 0.73
10 0.40 0.64 0.35 0.87 0.13 0.89 0.06 0.91 0.06 0.78
50 0.01 0.66 0.01 0.85 0.01 0.89 0.01 0.77 0.01 0.67
100 0.01 0.68 0.00 0.85 0.01 0.88 0.01 0.69 0.01 0.65

pc=0, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.86 0.86 0.87 0.88 0.87 0.88 0.83 0.84
10 0.61 0.67 0.82 0.87 0.86 0.88 0.84 0.88 0.70 0.85
50 0.09 0.68 0.06 0.86 0.06 0.88 0.05 0.89 0.05 0.83
100 0.01 0.69 0.01 0.86 0.01 0.88 0.02 0.87 0.02 0.83

pc=0, p=5
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.63 0.66 0.84 0.86 0.86 0.87 0.85 0.87 0.75 0.79
10 0.54 0.66 0.74 0.87 0.78 0.88 0.74 0.86 0.52 0.79
50 0.02 0.70 0.02 0.86 0.03 0.87 0.03 0.79 0.03 0.50
100 0.00 0.71 0.00 0.88 0.01 0.86 0.01 0.12 0.01 0.06

pc=1, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.65 0.67 0.83 0.86 0.84 0.88 0.78 0.88 0.44 0.82
10 0.53 0.66 0.65 0.87 0.45 0.88 0.35 0.88 0.28 0.84
50 0.03 0.68 0.02 0.86 0.02 0.88 0.02 0.89 0.02 0.82
100 0.00 0.68 0.00 0.86 0.00 0.88 0.01 0.88 0.01 0.80
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Table 2(b). Average length of the con�dence interval for the factor loading at

the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.13 0.13 0.23 0.23 0.35 0.33 0.51 0.49 0.51 0.81
10 0.14 0.13 0.25 0.23 0.27 0.33 0.22 0.48 0.30 0.80
50 0.05 0.13 0.08 0.22 0.12 0.32 0.18 0.46 0.27 0.73
100 0.05 0.13 0.08 0.22 0.12 0.32 0.17 0.45 0.27 0.73

pc=5, p=0
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.14 0.27 0.24 0.44 0.38 0.68 0.62 0.67 1.12
10 0.16 0.14 0.31 0.24 0.25 0.37 0.14 0.60 0.15 1.12
50 0.01 0.13 0.01 0.23 0.01 0.33 0.01 0.46 0.02 0.72
100 0.00 0.13 0.00 0.22 0.01 0.33 0.01 0.38 0.01 0.67

pc=0, p=1
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.13 0.13 0.23 0.23 0.35 0.33 0.53 0.49 0.91 0.81
10 0.14 0.13 0.26 0.23 0.42 0.33 0.67 0.49 1.06 0.83
50 0.10 0.13 0.12 0.22 0.13 0.33 0.14 0.48 0.12 0.78
100 0.01 0.13 0.02 0.22 0.02 0.33 0.04 0.47 0.04 0.79

pc=0, p=5
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.14 0.27 0.25 0.45 0.39 0.77 0.63 1.30 1.21
10 0.17 0.14 0.37 0.25 0.66 0.39 1.08 0.66 1.18 1.36
50 0.05 0.13 0.05 0.24 0.07 0.36 0.07 0.66 0.07 0.90
100 0.01 0.13 0.01 0.23 0.02 0.36 0.03 0.23 0.03 0.18

pc=1, p=1
0 0.13 0.13 0.22 0.22 0.32 0.32 0.45 0.45 0.69 0.70
5 0.14 0.13 0.24 0.23 0.37 0.35 0.58 0.52 0.63 0.91
10 0.15 0.13 0.28 0.23 0.33 0.34 0.32 0.52 0.45 0.93
50 0.04 0.13 0.05 0.23 0.05 0.33 0.06 0.49 0.05 0.82
100 0.01 0.13 0.01 0.22 0.01 0.33 0.02 0.48 0.02 0.80
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Table 3(a). Coverage ratio of the con�dence interval for the common

component

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.90 0.88 0.89 0.83 0.90 0.51 0.86
10 0.84 0.87 0.80 0.89 0.58 0.89 0.48 0.90 0.42 0.86
50 0.58 0.88 0.54 0.88 0.50 0.90 0.47 0.90 0.42 0.86
100 0.58 0.88 0.52 0.89 0.50 0.90 0.45 0.89 0.43 0.85

pc=5, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.87 0.86
5 0.86 0.87 0.87 0.90 0.83 0.89 0.71 0.89 0.42 0.73
10 0.78 0.87 0.62 0.89 0.35 0.90 0.25 0.91 0.20 0.76
50 0.40 0.88 0.33 0.89 0.28 0.90 0.22 0.81 0.16 0.70
100 0.43 0.88 0.31 0.88 0.28 0.89 0.21 0.72 0.18 0.69

pc=0, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.90 0.90 0.89 0.89 0.89 0.88 0.87 0.85
10 0.87 0.87 0.87 0.88 0.89 0.89 0.87 0.88 0.76 0.85
50 0.40 0.87 0.23 0.89 0.18 0.90 0.16 0.89 0.14 0.84
100 0.15 0.88 0.11 0.88 0.11 0.89 0.11 0.88 0.11 0.85

pc=0, p=5
0 0.88 0.88 0.89 0.90 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.88 0.89 0.89 0.87 0.88 0.79 0.78
10 0.87 0.87 0.88 0.89 0.87 0.88 0.81 0.87 0.58 0.76
50 0.25 0.88 0.22 0.88 0.23 0.88 0.22 0.79 0.17 0.43
100 0.18 0.87 0.17 0.89 0.20 0.89 0.22 0.19 0.18 0.11

pc=1, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.86 0.87 0.89 0.89 0.88 0.89 0.83 0.89 0.52 0.83
10 0.84 0.87 0.79 0.89 0.59 0.89 0.48 0.89 0.39 0.85
50 0.41 0.88 0.29 0.89 0.23 0.89 0.19 0.89 0.14 0.83
100 0.31 0.88 0.25 0.88 0.19 0.89 0.17 0.88 0.13 0.83
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Table 3(b). Average length of the con�dence interval for the common

component at the 90% nominal level

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.60 0.60 0.45 0.45 0.43 0.41 0.50 0.47 0.47 0.66
10 0.60 0.60 0.47 0.45 0.43 0.42 0.34 0.45 0.34 0.67
50 0.72 0.60 0.48 0.44 0.38 0.41 0.33 0.46 0.34 0.62
100 0.71 0.60 0.48 0.45 0.38 0.41 0.32 0.45 0.33 0.60

pc=5, p=0
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.48 0.46 0.50 0.44 0.65 0.57 0.62 0.85
10 0.62 0.60 0.53 0.45 0.47 0.44 0.33 0.54 0.25 0.85
50 0.78 0.61 0.50 0.44 0.37 0.42 0.27 0.46 0.19 0.61
100 0.77 0.60 0.51 0.45 0.36 0.42 0.27 0.40 0.18 0.54

pc=0, p=1
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.45 0.45 0.43 0.42 0.51 0.47 0.77 0.66
10 0.60 0.59 0.46 0.44 0.46 0.40 0.61 0.47 0.91 0.67
50 0.54 0.61 0.33 0.45 0.29 0.42 0.24 0.46 0.19 0.64
100 0.36 0.60 0.18 0.45 0.16 0.41 0.16 0.45 0.13 0.62

pc=0, p=5
0 0.60 0.60 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.61 0.60 0.48 0.45 0.51 0.45 0.70 0.56 1.11 0.91
10 0.61 0.60 0.55 0.46 0.65 0.43 0.94 0.55 1.05 0.93
50 0.48 0.61 0.35 0.44 0.34 0.43 0.29 0.57 0.22 0.62
100 0.36 0.60 0.29 0.45 0.28 0.42 0.27 0.25 0.20 0.16

pc=1, p=1
0 0.61 0.61 0.44 0.44 0.41 0.41 0.44 0.44 0.59 0.59
5 0.60 0.60 0.46 0.45 0.45 0.43 0.55 0.50 0.57 0.72
10 0.61 0.60 0.49 0.45 0.45 0.41 0.42 0.48 0.47 0.74
50 0.68 0.60 0.42 0.44 0.34 0.42 0.25 0.46 0.18 0.65
100 0.62 0.61 0.41 0.45 0.28 0.41 0.22 0.46 0.15 0.62

41



Table 4. Average correlation coe�cient between the estimated and true factors

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

σ
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 1.00 0.71 0.98
10 0.96 0.97 0.96 0.98 0.75 0.99 0.52 0.99 0.51 0.97
50 0.43 0.97 0.37 0.98 0.43 0.99 0.45 0.99 0.48 0.96
100 0.41 0.97 0.37 0.98 0.42 0.99 0.45 0.99 0.47 0.96

pc=5, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.97 0.98 0.99 0.95 0.99 0.69 0.94
10 0.93 0.97 0.86 0.97 0.49 0.97 0.27 0.96 0.30 0.87
50 0.09 0.97 0.06 0.97 0.09 0.97 0.12 0.85 0.19 0.73
100 0.06 0.97 0.06 0.97 0.09 0.97 0.12 0.78 0.18 0.72

pc=0, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
10 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00 0.99 0.99
50 0.51 0.97 0.37 0.98 0.26 0.99 0.23 1.00 0.25 0.99
100 0.13 0.97 0.10 0.98 0.11 0.99 0.13 1.00 0.20 0.99

pc=0, p=5
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
10 0.95 0.97 0.96 0.98 0.97 0.99 0.96 0.99 0.89 0.99
50 0.23 0.97 0.15 0.98 0.13 0.99 0.15 0.93 0.20 0.62
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.36 0.19 0.24

pc=1, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.72 0.98
10 0.96 0.97 0.95 0.98 0.74 0.99 0.52 0.99 0.50 0.97
50 0.26 0.97 0.17 0.98 0.15 0.99 0.16 0.99 0.20 0.96
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.98 0.19 0.95
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Table 5. Estimated number of factors by Bai and Ng's (2002) information

criteria
N=50, T=200 N=100, T=100 N=200, T=50
no correction correction no correction correction no correction correction

σ ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3
pc=1, p=0

0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 5.34 4.00 4.00 4.00 4.05 4.03 4.18
5 5.02 5.01 5.04 4.00 4.00 4.07 5.02 5.02 5.02 4.72 4.30 6.39 5.06 5.06 5.06 5.10 5.08 5.22
10 5.00 5.00 5.00 4.00 4.00 4.04 4.98 4.98 4.99 4.37 4.11 6.41 5.01 5.01 5.01 5.01 4.95 5.19
50 4.99 4.99 4.99 4.00 4.00 4.00 4.97 4.97 4.97 4.01 4.00 5.46 5.01 5.01 5.01 4.04 4.02 4.17
100 5.01 5.01 5.01 4.00 4.00 4.00 5.01 5.01 5.02 4.00 4.00 5.43 4.98 4.98 4.98 4.04 4.02 4.17

pc=5, p=0
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.34 4.00 4.00 4.00 4.05 4.03 4.18
5 8.76 8.56 8.98 4.04 4.01 4.44 9.05 9.05 9.15 6.83 4.80 10.92 9.06 9.06 9.06 9.11 9.08 9.26
10 8.97 8.97 8.97 4.02 4.01 4.25 8.98 8.98 9.07 5.22 4.31 10.88 9.02 9.02 9.02 8.58 8.19 9.20
50 9.02 9.02 9.02 4.00 4.00 4.00 9.01 9.01 9.08 4.00 4.00 6.10 8.97 8.97 8.97 4.03 4.01 4.21
100 9.02 9.02 9.02 4.00 4.00 4.00 9.01 9.01 9.11 4.00 4.00 6.08 8.99 8.99 8.99 4.05 4.03 4.27

pc=0, p=1
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.83 4.00 4.00 5.25 4.00 4.00 4.00 4.02 4.01 4.09
10 4.21 4.14 4.64 4.00 4.00 4.00 4.25 4.07 19.25 4.00 4.00 5.51 4.05 4.02 4.28 4.02 4.01 4.11
50 19.93 19.68 20.00 4.00 4.00 4.00 12.82 3.56 20.00 4.00 4.00 5.48 1.11 1.04 4.59 4.03 4.01 4.14
100 19.95 19.88 20.00 4.00 4.00 4.00 14.29 5.21 20.00 4.00 4.00 5.48 1.25 1.09 5.20 4.03 4.02 4.14

pc=0, p=5
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 5.30 4.00 4.00 5.27 4.00 4.00 4.00 4.00 4.00 4.00
10 4.03 4.01 4.18 4.00 4.00 4.00 4.00 3.99 15.24 4.00 4.00 6.64 2.99 2.57 3.76 4.00 4.00 4.02
50 1.03 1.01 1.66 4.00 4.00 4.00 1.00 1.00 16.96 4.00 4.00 6.29 1.00 1.00 1.00 4.00 4.00 4.07
100 1.06 1.02 2.13 4.00 4.00 4.00 1.00 1.00 16.76 4.00 4.00 6.22 1.00 1.00 1.00 4.00 4.00 4.07

pc=1, p=1
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.98 4.96 5.02 4.00 4.00 4.05 5.00 5.00 6.00 4.58 4.17 6.33 5.06 5.06 5.06 5.07 5.05 5.14
10 5.23 5.15 5.73 4.00 4.00 4.04 5.25 5.05 19.50 4.27 4.06 6.57 5.07 5.04 5.34 4.90 4.78 5.10
50 19.93 19.75 20.00 4.00 4.00 4.00 13.51 4.57 20.00 4.00 4.00 5.59 1.72 1.56 6.18 4.02 4.01 4.14
100 19.95 19.89 20.00 4.00 4.00 4.00 14.80 6.14 20.00 4.00 4.00 5.60 1.93 1.62 6.59 4.02 4.01 4.15
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Figure 1. Sample path of factor and factor estimate in the presence of outlier
one common jump one idiosyncratic jump
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Table 6. Size of factor jump test
N=20 N=50 N=100 N=200 N=500

σ T=500 T=200 T=100 T=50 T=20
Case 1: X* is available

5 0.05 0.06 0.05 0.04 0.04
10 0.05 0.07 0.06 0.05 0.05
50 0.05 0.07 0.06 0.06 0.04
100 0.05 0.07 0.07 0.06 0.05

Case 2: X* is estimated
5 0.07 0.01 0.03 0.03 0.65
10 0.06 0.08 0.12 0.20 0.56
50 0.05 0.07 0.07 0.07 0.08
100 0.05 0.07 0.07 0.06 0.06

Table 7. Power of factor jump test
N=20 N=50 N=100 N=200 N=500

σ T=500 T=200 T=100 T=50 T=20
Case 1: X* is available

5 0.90 0.94 0.96 0.97 0.98
10 0.95 0.97 0.98 0.99 0.99
50 0.99 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00

Case 2: X* is estimated
5 0.58 0.34 0.35 0.39 0.56
10 0.76 0.62 0.65 0.65 0.76
50 0.95 0.92 0.93 0.92 0.95
100 0.98 0.96 0.96 0.96 0.98
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Figure 2. Log-returns on currencies against the U.S. dollar
1. AUSTR 2. CDNDL 3. CZECK

4. DANKR 5. HKDOL 6. HUNGF

7. INDNR 8. INDON 9. JAPY
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Figure 2. Log-returns on currencies against the U.S. dollar (continued)
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Table 8. List of currencies, number of jumps, and common jumps
# of jumps common jump dates

06 May 07 May 29 Sep
1 Australian Dollar AUSTR 1 X
2 Canadian Dollar CDNDL 0
3 Czech Republic Koruna CZECK 0
4 Danish Krone DANKR 0
5 Hong Kong Dollar HKDOL 7 X X X
6 Hungrian Forint HUNGF 1 X
7 Indian Rupee INDNR 4 X X
8 Indonesian Rupiah INDON 11 X X
9 Japanese Yen JAPYN 0
10 Kuwaiti Dinar KUWTD 6 X X
11 Mexican Peso MEXPF 3 X X X
12 New Zealand Dollar NEWZD 0
13 Norwegian Krone NORGK 0
14 Philippines Peso PHILP 3 X X
15 Polish Zloty POLZL 0
16 Singaporean Dollar SINGD 1
17 South Korean Won SKORW 21 X X
18 Swedish Krona SWEDK 0
19 Swiss Franc SWISF 0
20 UK Pound BRITP 11
21 Malaysian Ringgit MALAY 0
22 Taiwan Dollar TAIWD 2 X X
23 South African Rand SARCM 0
24 Thai Baht THAIB 20 X X
25 Euro EURO 0

Notes : 1. "# of jumps" indicates how many jumps are detected by the proposed method between 1 Aug 2008
                 and 30 Sep. 2008.
             2. The common jumps dates are those on which more than 3 currencies have a jump. These currencies
                 have a mark "X".

Figure 3. Number of jumps in a day
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Figure 4. Factor estimates with and without jump correction

1) First factor

a) Factor estimates b) Difference of factor estimates
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2) Second factor

a) Factor estimates b) Difference of factor estimates
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Table 9. Test for jump of factors:

Currency return data
F p­value t  (1st factor) p­value t  (2nd factor) p­value

2008/5/6 3.58** ( 0.04) ­2.65** ( 0.01) ­0.73 ( 0.47)
2008/5/7 3.09* ( 0.06) 2.48** ( 0.02) 0.47 ( 0.64)
2008/9/29 2.90* ( 0.07) 1.45 ( 0.16) ­1.71 ( 0.10)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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Figure 5. Monthly growth rates of new car registrations

in selected Japanese prefectures
Tokyo Osaka

Hyogo Miyagi
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Table 10. Prefectures showing a jump in earthquake periods
# of pref. Prefectures that have a jump

Jan 1995 1 Hyogo
Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata
Fukushima, Ibaragi, Tochigi, Gunma, Saitama

May 2011 23 Chiba, Tokyo, Kanagawa, Yamanashi, Gifu,
Nagano, Shizuoka, Aichi, Shimane, Okayama,
Hiroshima, Fukuoka
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Figure 6. Japanese prefectural new car registration factor estimates

non-corrected
first factor second factor

third factor fourth factor
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Table 11: Tests for factor jump:

Japanese prefectural new car registration data

F p­value t  (1st factor) p­value t  (2nd factor) p­value
Jan 1995 0.04 ( 0.96) 0.06 ( 0.95) 0.17 ( 0.87)
Mar 2011 6.61*** ( 0.00) 2.21** ( 0.03) 0.84 ( 0.40)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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