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Abstract

Group formation is a fundamental activity in human society. Humans often
exclude others from a group and divide the group benefit in a fair way only among
group members. Such an allocation is called in-group fair. Does natural selection
favor an in-group fair allocation? We investigate the evolution of fairness and
group formation in a three-person Ultimatum Game (UG) in which the group
value depends on its size. In a stochastic model of the frequency-dependent Moran
process, natural selection favors the formation of a two-person subgroup in the
low mutation limit if its group value exceeds a high proportion (0.7) of that of the
largest group. Stochastic evolutionary game theory provides theoretical support to
explain the behavior of human subjects in economic experiments of a three-person
UG.
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1



1 Introduction

Group formation is a fundamental activity in all human societies. Humans formed various

groups to cooperate for their survival. They jointly hunted animals and shared foods in hunter-

gatherers societies. Cooperation and distributions were major activities in groups of hunters.

As the society has developed beyond the primitive stage, the roles of human groups have been

significantly expanded. In an agricultural society, people cooperated for growing crops, raising

live stocks and constructing irrigation systems. In modern societies, people, firms, and states

form a variety of social, economic, and political groups such as community, club, labor union,

political party, coalition, joint venture, cartel, alliance, international organizations, and so on.

Group formation greatly affects efficiency and fairness of resource allocation.

We consider the evolution of group formation, focusing on distributional efficiency and

fairness. When people form groups, there are two kinds of fairness in payoff allocations. One

may be termed as universal fairness, in which all people cooperate and distribute the largest

payoffs equally. The other may be termed as in-group fairness, in which a fair allocation is

realized only within a sub-group and non-members of the group are excluded from the payoff

allocation. The universal fairness implies that the largest group forms. In contrast, in-group

fairness implies that a smaller group forms and non-members are excluded. In-group fairness

leads to economic inefficiency and social exclusion.

The related concept of in-group favoritism has been studied in social psychology and

biology (1–5); researchers have been concerned as to whether and why humans behave

towards members of their own group in a favorable way, given that group members share

some attributes such as identity and tastes. For each group member, there is no economically

significant difference between members and non-members. A social group characterized by

non-economic conditions is exogenously given. Group-forming behavior is not within the

scope of the existing literature on in-group favoritism.

In contrast, we consider the evolution of strategically formed groups. Players can produce
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a positive value only when they cooperate with other group members. Players cannot receive

positive payoffs if they do not join any group. While players need to cooperate with group

members, they compete with each other in the process of group formation. There is a variety of

possible groups ranging from the largest to the smallest. The largest group may not be formed

due to a conflict of allocations, although it can produce the largest value. Using evolutionary

game theory (6–9), we consider the following questions: Which group is evolutionary stable,

and what kinds of allocations prevail within a group? Specifically, under what conditions does

natural selection favor in-group fairness?

A two-person Ultimatum Game (UG) has been employed by a great number of works that

investigate theoretically and experimentally how people allocate their resources in bilateral

contexts (10–15). While traditional game theory assuming selfish and rational players predicts

that proposers offer the smallest possible share and responders accept it, many experimental

studies observe that human subjects tend to offer fair allocations. Modal and median offers

are 40 to 50 percent, and offers below 20 percent are rejected by the majority of responders

(10, 12–14). Deterministic evolutionary game models agree with traditional game theory (7,

8). In the one-shot anonymous UG, natural selection favors low offers and low demands. To

explain fairness in an evolutionary context in the two-person UG, different approaches have

been introduced, including inequality aversion (16), reputation formation (17, 18), assortative

matching (19), asymmetric mutation (20), and stochastic reproduction (21).

2 The Model

While almost all literature on UG considers two player games, we study a multi-player UG to

investigate the problem of group formation. Consider the following three-person UG. Players,

indexed by 1, 2, and 3, are assumed to be symmetric.

If players cooperate, they can receive some joint payoff, depending on the number of

cooperators. The three-person group has the largest payoff value, normalized to be one. Every
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two-person group has a smaller value v (0 < v < 1). The situation describes a classic problem

in game theory, namely a three-person cooperative (symmetric) game.

The game proceeds as follows. One randomly chosen player, say 1, chooses one of three

groups including himself: {1, 2, 3}, {1, 2}, or {1, 3}. If a proposer chooses the three-person

group {1, 2, 3}, then he further proposes a payoff allocation of the group value, one. Thereafter,

two other members respond to the proposal sequentially according to a fixed order.1 If all

responders accept it, then the three players receive their own payoffs in the proposal. Otherwise,

the game stops, and no players receive positive payoffs. A similar rule is applied when the

proposer chooses a two-person group. If a proposer chooses a two-person group, e.g. {1, 2},

the proposer proposes a payoff allocation of v. A single group member responds to it. If

he accepts, then the proposal is agreed and the two players receive their own payoffs in the

proposal. A single player outside the group receives nothing. If the responder rejects, then the

three players receive nothing. Like the two-person UG, the traditional game theory assuming

selfish and rational players predicts that a proposer chooses the largest group {1, 2, 3} and

exploits almost all of the group value, one. Two responders receive the smallest possible

shares.

We examine whether either universal fairness or in-group fairness emerges in a three-person

UG in an evolutionary context. A strategy is defined by a triplet (m, p, q), where m = 2, 3

is the size of a group, p is a payoff offered to all other members in the group, and q is the

smallest payoff that a player accepts when acting as a responder, in other words, an acceptance

threshold. When m = 2, it is assumed that the proposer chooses each of the two other players

randomly as his group partner. In the formulation of a strategy, we assume that a proposer

treats two members (if any) of his group equally.2

Let S be a finite set of strategies (m, p, q), where m = 2, 3, 0 ≤ p ≤ 1 (when m = 3),

1 The order of responders does not affect the result in any critical manner.
2 This assumption is supported by experimental data from a three-person UG (22).
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0 ≤ p ≤ v (when m = 2), and 0 ≤ q ≤ 1.3 Special attention is paid to the following three

strategies: (i) Selfish strategy: (3, 0, 0); (ii) Universally Fair strategy: (3, 1/3, 1/3); and (iii)

In-Group Fair strategy: (2, v/2, v/2). In Selfish strategy, a proposer chooses the largest group

{1, 2, 3} and he exploits the total payoff, one. In Universally Fair strategy, a proposer chooses

the largest group {1, 2, 3} and splits the total payoff equally among all players. In In-Group

Fair strategy, a proposer chooses one of two other players randomly and splits the group value

v equally with his partner. Like the two-person UG, traditional game theory predicts that

rational and selfish players employ Selfish strategies.

When the strategy set S consists only of three strategies, s1 = Selfish, s2 = Universally Fair,

and s3 = In-Group Fair, the payoff matrices of a three-person UG with the three strategies are

given in Table 1, depending on whether the two-person group value v is larger than the thresh-

old 2/3 or not. The numbers in the payoff matrices represent payoffs of the row-player (who

selects a row). For example, suppose that all three players employ In-Group Fair strategies

s3. Then, every player joins a two-person group with probability 2/3, whereby he receives

payoff v/2. Thus, the expected payoff for each player is v/3. Suppose now that one player,

say 1, employs Universally Fair strategy s2. Then, player 1 offers payoff 1/3 to players 2

and 3 with probability 1/3, and he is offered payoff v/2 by them with probability 1/3. If

0 < v/2 < 1/3, i.e. 0 < v < 2/3, then player 1’s offer 1/3 is accepted, and he rejects the offer

v/2 from players 2 and 3. Thus, player 1 receives expected payoff 1/9. If 2/3 < v < 1, player

1’s offer 1/3 is rejected, and he accepts the offer v/2 from players 2 and 3. Thus, player 1

receives expected payoff v/6. In Table 1, Selfish and Universally Fair strategies are strict Nash

equilibria4, independent of the two-person group value v. In-Group Fair strategy is a strict

Nash equilibrium if v > 1/3.

3 In this strategy formulation, a responder’s acceptance threshold q is not conditioned by the group size m.
4A Nash equilibrium is called strict if every player has a unique best response.
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s1 s2 s3

s1 1/3 1/9 v/12
s2 1/9 2/9 1/9
s3 v/6 1

9 +
v

12 v/4

s1

s1 s2 s3

s1 1/3 1/9 v/12
s2 1/9 2/9 v/12
s3 v/6 v/6 v/4

s1

s1 s2 s3

s1 1/9 2/9 1
9 +

v
12

s2 2/9 1/3 2/9
s3

1
9 +

v
12 2/9 1

9 +
v
6

s2

s1 s2 s3

s1 1/9 2/9 v/12
s2 2/9 1/3 v/12
s3 v/6 v/6 v/4

s2

s1 s2 s3

s1 v/12 1
9 +

v
12 v/6

s2 1/9 2/9 1/9
s3 v/4 1

9 +
v
6 v/3

s3

s1 s2 s3

s1 v/12 v/12 v/6
s2 v/12 v/12 v/6
s3 v/4 v/4 v/3

s3

Table 1. Three left and right tables represent payoff matrices of the three-person UG when
strategies are restricted to Selfish s1, Universally Fair s2 and In-Group Fair s3 in the cases of
0 < v < 2/3 and 2/3 < v < 1, respectively.

3 Results

We first consider the deterministic replicator dynamics for the evolution of strategies in an

infinite population (6–8). The strategy set S consists of three strategies: Selfish, Universally

Fair, and In-Group Fair. Each player in the population may be matched randomly with two

other players, and they play a three-person UG. A player adopting strategy si receives payoff

(or fitness) A(si, s j, sk) when two other players adopt strategies s j and sk. Let x = (x j) j=1,2,3

be a strategy distribution in the population, where x j is the proportion of strategy s j. Each

strategy si receives the average payoff A(si, x) =
∑

j,k=1,2,3 A(si, s j, sk)x jxk. The average payoff

of the population is given by A(x) =
∑

i=1,2,3 xiA(si, x). The replicator dynamics is given by

ẋi = xi(A(si, x)− A(x)) for i = 1, 2, 3. The growth rate of each strategy si is equal to its average

payoff A(si, x) minus the average payoff A(x) of the population. The replicator dynamics

describes biological and cultural reproduction process where a more successful strategy than

the average payoff in the population reproduces more offspring.
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We present the dynamic flow of the replicator dynamics for a three-person UG where only

Selfish, Universally Fair and In-Group Fair exist in the population. Figure 1 illustrates the

evolution of the three strategies in two cases of v = 1/6, 5/6.5 Selfish and Universally Fair

strategies are asymptotically stable in both cases, but In-Group Fair is so only when v = 5/6.

It can be verified that Selfish and Universally Fair strategies are asymptotically stable for

every value of v(0 < v < 1), and that In-Group Fair strategy is so only when v > 1/3 (see

Appendix 1).

Selfish

In-group fairUniversally fair

Selfish

In-group fairUniversally fair

A B

Fig. 1. The phase diagram of the replicator dynamics for a three-person UG when the
two-person group value is v = 1/6 (A) and v = 5/6 (B). The value of the three-person group
is one. The population consists of three strategies, Selfish, Universally Fair, and In-group
Fair. A black circle • and a white circle ◦ represent the asymptotically stable rest state and
the asymptotically unstable rest state, respectively. In (A), Selfish and Universally Fair are
asymptotically stable and in (B), all three strategies are asymptotically stable.

We next examine the robustness of evolutionary stability in Figure 1 when the strategy

set S is expanded. A strategy (m, p, q) is called consistent if p = q. In words, a player

offers to group members the same amount of payoffs as he demands when he is a responder.

Selfish, Universally Fair, and In-Group Fair strategies are all consistent. When a strategy set S

composed of consistent strategies is expanded, the following results hold: (1) Selfish strategy

is asymptotically stable for every two-person group value v (0 < v < 1). (2) Universally Fair
5 Figure 1 is drawn by the software in (23).
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strategy is asymptotically stable if and only if 0 < v < 2/3. (3) In-Group Fair strategy is

asymptotically stable if and only if 2/3 < v < 1 (see Appendix 1). In the two-person UG, it is

well-known that the rational strategy with selfish motivations is asymptotically stable (7, 8, 17,

20). The first result extends this to a three-person case. The last two results are new findings

in the multi-person UG. They show that there exists a threshold value of a two-person group

that determines the evolutionary stability of Universally Fair and In-Group Fair strategies.

Universally Fair strategy is asymptotically stable if the two-person group value is less than the

threshold value, i.e. v < 2/3. Otherwise (v > 2/3), In-Group Fair strategy is asymptotically

stable (see Appendix 1).

When there exist only Selfish, Universally Fair, and In-Group Fair strategies in a population,

Universally Fair strategy is always asymptotically stable. It, however, is fragile against a

mutant when the group value v of two persons is high. The instability of Universally Fair

strategy for v > 2/3 can be explained as follows. Consider the fourth strategy s4 = (2, 1/3, 1/3),

called Strategic Fair, where a player chooses randomly one of two other players, offers 1/3

to his partner, and demands the same amount of payoffs as a responder. In Strategically Fair

strategy, a proposer exploits the residual payoff v − 1/3 by forming a two-person group. If

Strategic Fair strategy appears in the population of Universally Fair strategy, then it receives

an average payoff of 1/3(v − 1/3) + 2/3(1/3), which is strictly higher than the average payoff

1/3 of the population if v > 2/3. Thus, Strategically Fair strategy can invade the population.

As a result, Universally Fair strategy is not asymptotically stable when v > 2/3. On the other

hand, when v < 2/3, Universally Fair strategy is asymptotically stable by the following reason.

When a mutant s = (3, p, p) (p , 1/3) appears in the population of Universally Fair strategies,

the average payoff of the mutant is less than the average payoff 1/3 of the population. Thus,

the mutant does not survive. When a mutant t = (2, q, q) appears in the population, the average

payoff of the mutant is less than or equal to 1/3(v − 1/3) + 2/9 (the equality holds if q = 1/3),

which is less than the average payoff 1/3 of the population when v < 2/3. Thus, the mutant
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does not survive in this case, either.

When v > 2/3, In-Group Fair strategy is asymptotically stable. If a mutant s = (3, p, p)

appears in the population of In-Group Fair strategies, then the average payoff of the mutant is

v/6 for 0 < p < v/2, (2 − v)/6 for p = v/2, and 1/3(1 − 2p) for v/2 < p < 1/2, which is less

than the average payoff v/3 of the population for every p if v > 2/3. Thus, the mutant does not

survive. If another mutant t = (2, q, q) (q , v/2) appears in the population, then the average

payoff of the mutant is less than the average payoff v/3 in the population. Thus, In-Group Fair

strategy is asymptotically stable if v > 2/3 (for details, see Appendix 1).

So far, the analysis has been restricted to the evolutionary stability of three strategies,

Selfish, Universally Fair, and In-Group Fair in the population of consistent strategies. How is

the evolutionary stability of these strategies changed if the population includes inconsistent

strategies? It can be shown that none of Selfish, Universally Fair, or In-Group Fair is asymptot-

ically stable. For example, consider the population where all players employ Selfish strategies

s = (3, 0, 0). Suppose that a mutant t = (3, 0, 1) invades. Since this mutant rejects any offer, it

receives the same average fitness 1/3 as the rest of the population. Random drift determines

the evolution of the population, and the Selfish strategy is not asymptotically stable. Thus, the

deterministic replicator dynamics is not suitable to study the evolutionary stability of group

formation and fairness when the strategy set includes inconsistent strategies. By this reason,

we consider the Moran process (24, 25) as a stochastic evolutionary model.

Now, we consider a three-person UG with inconsistent strategies. We first characterize all

Nash equilibria when the strategy set S contains all consistent and inconsistent strategies.6 The

following results hold (see Appendix 1). Let 0 ≤ p ≤ 1
2 and 0 ≤ q ≤ v. (1) Every consistent

strategy (3, p, p) is a Nash equilibrium if and only if p ≤ 1 − v. (2) Every consistent strategy

(2, p, p) is a Nash equilibrium if and only if 1 − v ≤ p. (3) Inconsistent strategies (3, p, q) and

6The strategy set S is given by the union of two rectangles, {(3, p, q) | 0 ≤ p ≤ 1
2 and 0 ≤ q ≤ 1} and

{(2, p, q) | 0 ≤ p ≤ v and 0 ≤ q ≤ 1}.
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(2, 0, q) are Nash equilibria if q ≥ max{1/2, v}.7

An intuition of the result is as follows. Consider the population where all players employ

strategy s = (3, p, p). The average fitness of the population is (1 − 2p)/3 + 2p/3 = 1/3.

Assume that a mutant t = (2, p, p) appears in the population. The average fitness of mutant

t is (v − p)/3 + 2p/3 = (v + p)/3. In order for s to be a Nash equilibrium, it must hold that

1/3 ≥ (v + p)/3, i.e. p ≤ 1− v. By a similar reason, every consistent strategy (2, p, p) can be a

Nash equilibrium if and only if 1 − v ≤ p.

Figure 2 illustrates the range of Nash equilibria for each value v of a two-person group.

The set of Nash equilibria is a continuum one. When inconsistent strategies are feasible,

every Nash equilibrium is not strict since there exists alternative best reply to other players’

strategies. The deterministic model in the classical evolutionary game theory does not give us

a further insight to which strategy is observed more frequently.

q ≥ 1/2 

0 
Offer (p) 

with m = 3 
Offer (p) 

with m = 2 

D
em

an
d 

(q
) 

v 

1/2 

1 

0 

v 

1/2 

1 

1/2 v 

p = q 

p = 0 

v < 1/2

0 
Offer (p) 

with m = 3 
Offer (p) 

with m = 2 

D
em

an
d 

(q
) 

1 - v 

1/2 

1 

0 

1 - v 

1/2 

1 

1/2 v 

v v 

q ≥ v 

p = 0 

p = q 

p = q 

v ≥ 1/2

Fig. 2. The set of Nash equilibria of the three-person UG when all consistent and inconsistent
strategies are feasible. Two left and right rectangles represent the strategy set for v < 1/2 and
v ≥ 1/2, respectively. Each point on red lines and red rectangles represents a Nash equilibrium.

7In these strategies, all responders are greedy. They demand excessively, i.e. more than 1/2 in the three-person
group, and v in a two-person group. All offers are rejected, and thus all players receive zero payoffs. In these
Nash equilibria, the average fitness of the population is zero. Any mutant has the same average fitness if it
invades into the population. These Nash equilibria are not evolutionary stable. Their existence is caused by an
asymmetric property of a feasible strategy where an offer is subject to a group value, but a demand is not.
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Stochastic evolutionary game theory (26, 27) offers us an effective tool to study the

long-run frequency of strategies in finite populations in which randomness plays a key role in

the course of evolution. Human behavior is affected by randomness in many ways. Players

may make errors in social learning due to their bounded rationality. They may make incorrect

estimations about their own payoffs. Payoffs are subject to random fluctuations. We consider

the frequency-dependent Moran process (24, 28, 29) in a population of size N < ∞. Each

player i plays a three-person UG with each pair of two players from the other N − 1 players,

and receives an average payoff πi. Player i’s effective payoff is defined as exp wπi, where

w is called the intensity of selection. In the Moran process, one player of each generation

is randomly selected to change strategy (death and birth). Let u > 0 be the mutation rate.

With probability u, a mutation occurs and a random strategy is employed. With probability

1 − u, another strategy is selected proportional to the effective payoffs to be imitated. When

the selection intensity w goes to infinity, only the highest payoff strategy is imitated (strong

selection). When w goes to zero, a random strategy is imitated so that natural drift determines

the evolution (weak selection).

We report agent-based simulation results8 with parameters N = 50, w = 10−0.5, 102,

u = 10−3, and v = 1/6, 5/6 where N is the number of players, w the intensity of selection, u a

mutation rate, and v a two-person group value. Figure 3 shows the frequencies of strategies

averaged over 108 generations for different values of parameters v and w. The strategy set

is colored according to the frequency of each strategy. Red color indicates high frequency,

and yellow color does low frequency. The most abundant strategy is indicated with a black ×.

It is (3, 5/12, 1/3) for v = 1/6 and w = 10−0.5, (2, 1/4, 1/4) for v = 5/6 and w = 10−0.5, and

(3, 1/6, 1/6) for v = 1/6, 5/6 and w = 102. Strong selection (w = 102) drives the population

to a consistent strategy (3, 1/6, 1/6), close to the Selfish strategy. On the other hand, when

selection is weak (w = 10−0.5), the most abundant strategy is away from the Selfish strategy.

8Theoretical results on the most abundant strategy are given in Appendix 2.
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The outcome depends critically on the two-person group value. When the group value is low

(v = 1/6), the most abundant strategy chooses the three-person group and is closest to the

Universally Fair strategy; a proposer offers payoff 5/12 and responders accept offers of more

than 1/3. When the group value is high (v = 5/6), the most abundant strategy chooses a

two-person group; a proposer offers payoff 1/4 and receives 1/4 for himself.

We also analyze theoretically the most abundant strategy in the low mutation limit in

which u converges to 0 (Appendix 2). It can be proved that the most abundant strategy is

consistent (p = q). Figure 4 shows how it varies with changes in the two-person group value

v. For 0 < v ≤ 0.7, the most abundant strategy chooses the three-person group. The offer p

value is not monotone with respect to v, and it ranges approximately from 0.2 to 0.23. For

0.75 < v < 1, the most abundant strategy chooses a two-person group. The offer p value is

monotonically increasing in v, and it ranges approximately from 0.25 to 0.32.

From numerical simulations and theoretical investigations of the Moran process for the

three-person UG, we obtain the following observations: (i) Unlike the results of the determin-

istic replicator dynamics for the two-person UG (7, 8, 17, 20), the most abundant strategy

produces a fair allocation that gives a positive payoff to responders, and (ii) unlike the result

of the Moran process for the two-person UG (21), the most abundant strategy produces an

economically inefficient and in-group favorable allocation with the exclusion of non-members.

4 Discussion

We discuss whether the stochastic evolutionary model can explain experimental observations

of human behavior in a three-person UG (22).9 In the experiment, the value of the three-person

group is fixed to be 3000 points. The value of a two-person group varies over 2800, 2500, 2100,

9 The experiment was conducted at the CREED laboratory at the Faculty of Economics and Econometrics of
the University of Amsterdam in March 2003. Subjects played eight rounds of a three-person UG with random
matching in each round with a fixed parameter for the two-person group value.
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Fig. 3. Simulation results of the frequency-dependent Moran process where the number of
players is N = 50 and the mutation rate is u = 103. Parameters of the two-person group
value (v) and the selection intensity (w) are: (A) v = 1/6,w = 10−0.5; (B) v = 5/6,w = 10−0.5;
(C) v = 1/6,w = 102; and (D) v = 5/6,w = 102. The strategy parameters, p (offer) and
q (acceptance threshold), are discretized in increments of 1/12. The strategy set is colored
according to the average frequency of each strategy over 108 generations. The most abundant
strategy indicated with a black × is (3, 5/12, 1/3) in (A), (2, 1/4, 1/4) in (B), and (3, 1/6, 1/6)
in (C) and (D). In the case of weak selection (w = 10−0.5), the most abundant strategy chooses
a two-person group when the group value (v) is high. In the case of strong selection (w = 102),
the most abundant strategy is close to the Selfish strategy in choosing the three-person group.
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and 1200 points.10 Normalizing 3000 to be one, these parameters correspond to four cases

that a two-person group value v is 0.93, 0.83, 0.7 and 0.4, respectively. Human subjects played

eight rounds of a three-person UG with random matching in each round with a fixed parameter

for the two-person group value v.

Experimental observations are as follows:11 (1) When v = 0.93, 82.5 percent of proposers

choose two-person groups. In a two-person group, an average offer is 30.9, and any offer

above 37.5 percent is accepted for sure. (2) When v = 0.83, 90.0 percent of proposers

choose two-person groups. In a two-person group, an average offer is 32.7 percent, and any

offer above 38 percent is accepted for sure. (3) When v = 0.7, 67.5 percent of proposers

choose a three-person group. In the group, an average offer is 23.0 percent, and any offer

above 33.3 percent is accepted for almost surely. (4) When v = 0.4, almost all proposers

(97 percent) choose the three-person group. Proposers treat two group members equally. In

the three-person group, the average offer is 25.0 percent, and any offer above 33.3 percent is

accepted almost surely. (5) Like a large number of two-person UG experiments, the extreme

allocation implemented by the rational strategy with selfish motivations is not observed in the

three-person UG experiment.

The theoretical results of the stochastic evolutionary model in Figure 4 are surprisingly

consistent with the experimental observations. Regarding group size, the most abundant

strategy in the Moran process predicts the formation of a two-person group in the cases of

v = 0.93, 0.83. In the experiment, more than 80 percent of proposers choose a two-person

group. In the case of v = 0.7, which is the theoretical threshold for the group size, both the

three-person group and a two-person group are chosen by more than 30 percent of proposers

in the experiment. In the case of v = 0.4, the most abundant strategy predicts the formation

of the three-person group, which is consistent with experimental observations. Regarding

10The exchange rate from points to EURO was 250 points = 1 EURO. Subjects’ average earning was about 17
EURO (including a show-up fee of 5 EURO).

11 The frequencies of two-person groups except for v = 0.4 are the data in the first round. They do not decrease
over time.
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the offer, the most abundant strategy in the Moran process is close to the average offer in the

experiment: 0.303 (theory) vs. 0.309 (experiment) for v = 0.93; 0.282 vs. 0.327 for v = 0.83;

0.222 vs. 0.23 for v = 0.7; and 0.207 vs. 0.250 for v = 0.4.12

5 Conclusion

In this paper, we have investigated the evolution of group formation in the three-person

UG, focusing on distributional efficiency and fairness. Although the deterministic replicator

dynamics shows that the magnitude of a two-person group value is critical in the evolution of

group formation, its result is indeterminate in that the set of Nash equilibria is a continuum

one. The frequency-dependent Moran process as a stochastic evolutionary model shows that

natural selection favors a two-person group with an in-group fair allocation if its group value

is high. The formation of a subgroup leads to economic inefficiency and social exclusion. The

result of the stochastic evolutionary game theory fits with experimental evidences on group

formation in the three-person UG surprisingly well.

12 The offers by the most abundant strategy are calculated in Appendix 2. The observed offers are reported in
(22).
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Appendix

1 Replicator Dynamics

Consider an infinite population involving only three strategies, s1 = Selfish, s2 = Universally Fair,

and s3 = In-Group Fair. Let xi denote a proportion of players who adopt strategy si. A state

of the population is represented by x = (x1, x2, x3). A state where all players employ Selfish

strategies is represented by x = (1, 0, 0). For simplicity, we call the state x = (1, 0, 0) Selfish.

Similarly, we call the state x = (0, 1, 0) Universally Fair, and the state x = (0, 0, 1) In-Group

Fair.

The replicator dynamics is given by

ẋi = xi(A(si, x) − A(x)), (1)

for i = 1, 2, 3, where A(si, x) =
∑

j,k=1,2,3 A(si, s j, sk)x jxk is the average fitness of strategy si,

and A(x) =
∑

i=1,2,3 xiA(si, x) is that of the population. From the payoff matrices, the functions

A(si, x) (i = 1, 2, 3) and A(x) are given as follows: For v ∈ (0, 2/3),

A(s1, x) =
1
3

x2
1 +

2
9

x2
2 +

v
6

x2
3 +

2
9

x1x2 +
v
6

x1x3 +

(
2
9
+

v
6

)
x2x3

A(s2, x) =
1
9

x2
1 +

1
3

x2
2 +

1
9

x2
3 +

4
9

x1x2 +
2
9

x1x3 +
4
9

x2x3

A(s3, x) =
v
6

x2
1 +

2
9

x2
2 +

v
3

x2
3 +

(
2
9
+

v
6

)
x1x2 +

v
2

x1x3 +

(
2
9
+

v
3

)
x2x3

A(x) =
1
3

x3
1 +

1
3

x3
2 +

v
3

x3
3 +

1
3

x2
1x2 +

v
3

x2
1x3 +

2
3

x1x2
2 +

2v
3

x1x2
3

+
2
3

x2
2x3 +

(
1
3
+

v
3

)
x2x2

3 +

(
2
3
+

v
3

)
x1x2x3,
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and for v ∈ (2/3, 1),

A(s1, x) =
1
3

x2
1 +

2
9

x2
2 +

v
6

x2
3 +

2
9

x1x2 +
v
6

x1x3 +
v
6

x2x3

A(s2, x) =
1
9

x2
1 +

1
3

x2
2 +

v
6

x2
3 +

4
9

x1x2 +
v
6

x1x3 +
v
6

x2x3

A(s3, x) =
v
6

x2
1 +

v
6

x2
2 +

v
3

x2
3 +

v
3

x1x2 +
v
2

x1x3 +
v
2

x2x3

A(x) =
1
3

x3
1 +

1
3

x3
2 +

v
3

x3
3 +

1
3

x2
1x2 +

v
3

x2
1x3 +

2
3

x1x2
2 +

2v
3

x1x2
3 +

v
3

x2
2x3 +

2v
3

x2x2
3 +

2v
3

x1x2x3.

The following notions are standard in the theory of dynamic systems.

Definition 1.1.

• A state x̄ is a rest point if it satisfies ẋi = 0 for every i.

• A state x∗ is a Nash equilibrium point if (i) A(si, x∗) = A(s j, x∗) for any pair i, j with

xi, x j > 0, and (ii) A(si, x∗) ≥ A(s j, x∗) for any pair i, j with xi > 0 and x j = 0. A state x∗

is a strict Nash equilibrium point if A(si, x∗) > A(s j, x∗) for any i with xi > 0 and any

j , i.

• A state x∗ is an asymptotically stable point if the following two conditions hold:

(i) (Liapunov stability) Given any neighborhood U1 of x∗, there exists some neighbor-

hood U2 of x∗ such that for any path x = x(t), x(0) ∈ U2 implies x(t) ∈ U1 for all

t > 0.

(ii) There exists some neighborhood V of x∗ such that for any path x = x(t), x(0) ∈ V

implies limt→∞ x(t) = x∗.

Table A1 summarizes all rest points of the replicator dynamics (1) with Selfish, Universally

Fair and In-Group Fair strategies. In Table A1, v̂ ∈ (1/3, 2/3) satisfies 1 − 1
3v −

3v+
√

9v2+96
48 = 0.

Table A2 summarizes all Nash equilibrium points.
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Rest points (x̄1, x̄2, x̄3)
v ∈ (0, 1/3) (1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 )

v ∈ [1/3, v̂)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 ),

(0, 1 − 1
3v ,

1
3v )

v ∈ [v̂, 2/3)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 ),

(0, 1 − 1
3v ,

1
3v ), (3v+

√
9v2+96

24 , 1 − 1
3v −

3v+
√

9v2+96
48 , 1

3v −
3v+
√

9v2+96
48 )

v ∈ (2/3, 1)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 ),

(0,
√ v

2 , 1 −
√ v

2 ), (
√

(9+2
√

3)v
46 ,

√
(12−5

√
3)v

23 , 1 −
√

(9+2
√

3)v
46 −

√
(12−5

√
3)v

23 )

Table. A1. The list of rest points in the replicator dynamics with Selfish, Universally Fair and
In-Group Fair strategies.

Nash equilibrium points (x∗1, x
∗
2, x
∗
3)

v ∈ (0, 1/3) (1, 0, 0), (0, 1, 0), ( 1
√

3
, 1 − 1

√
3
, 0)

v ∈ [1/3, v̂)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0),

(0, 1 − 1
3v ,

1
3v )

v ∈ [v̂, 2/3)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 ),

(0, 1 − 1
3v ,

1
3v ), (3v+

√
9v2+96

24 , 1 − 1
3v −

3v+
√

9v2+96
48 , 1

3v −
3v+
√

9v2+96
48 )

v ∈ (2/3, 1)
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

√
3
, 1 − 1

√
3
, 0), (

√ v
2 , 0, 1 −

√ v
2 ),

(0,
√ v

2 , 1 −
√ v

2 ), (
√

(9+2
√

3)v
46 ,

√
(12−5

√
3)v

23 , 1 −
√

(9+2
√

3)v
46 −

√
(12−5

√
3)v

23 )

Table. A2. The list of Nash equilibrium points in the replicator dynamics with Selfish,
Universally Fair, and In-Group Fair strategies.
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The following theorem characterizes asymptotically stable points, depending on the two-

person group value v.

Theorem 1.1. The replicator dynamics (1) has the following asymptotically stable points.

(1) When v ∈ (0, 1/3], Selfish and Universally Fair states are asymptotically stable.

(2) When v ∈ (1/3, 1) (except v = 2/3), Selfish, Universally Fair, and In-Group Fair states are

asymptotically stable.

Proof. The theorem can be proved from the well-known result that a strict Nash equilibrium

point is an asymptotically stable point, which is a Nash equilibrium point (7). If every

eigenvalue of the Jacobian matrix (∂g
∂x (x∗)i j)i, j=1,2,3 of functions gi(x) = xi(A(si, x) − A(x)) at a

rest point x∗ has a negative real-part, then x∗ is asymptotically stable (see e.g. (30)). Also, if

the Jacobian matrix at x∗ has at least one eigenvalue whose real-part is positive, then x∗ is not

stable, thus not asymptotically stable.

Case 1. v ∈ (0, 1/3]. It is easy to see form Table 1 that two states (1, 0, 0), (0, 1, 0) are strict

Nash equilibrium points. We examine asymptotic stability of other Nash equilibrium points.

Consider the Nash equilibrium point x = ( 1
√

3
, 1 − 1

√
3
, 0). The eigenvalues of the Jacobian

matrix of g at x are − 1
27 (9 − 2

√
3), − 1

18 (2 −
√

3v), and 2
27 (3 −

√
3). Since the Jacobian matrix

has a positive eigenvalue 2
27 (3 −

√
3), x is not asymptotically stable. Similarly, for every other

Nash equilibrium point x∗ and every v ∈ (0, 1/3], it can be shown that the Jacobian matrix of

x∗ has at least one positive eigenvalue. Thus, asymptotically stable points are only (1, 0, 0) and

(0, 1, 0) for v ∈ (0, 1/3].

Case 2. v ∈ (1/3, 2/3). Similarly to Case 1, two states (1, 0, 0), (0, 1, 0) are strict Nash

equilibrium points. Consider the Nash equilibrium state x = (0, 0, 1). When v ∈ (1/3, 2/3),

the eigenvalues of the Jacobian matrix of g at x are − v
3 , − v

6 , and − v
6 . Since all eigenvalues are

negative, x is asymptotically stable for v ∈ (1/3, 2/3).
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Next, consider the Nash equilibrium point y = ( 1
√

3
, 1− 1

√
3
, 0). For every v ∈ (1/3, 2/3), the

eigenvalues of the Jacobian matrix of g at y are − 1
27 (9 − 2

√
3), − 1

18 (2 −
√

3v), and 2
27 (3 −

√
3).

Since the Jacobian matrix has a positive eigenvalue 2
27 (3 −

√
3), y is not asymptotically stable

for v ∈ (1/3, 2/3). Similarly, it can be shown that every other Nash equilibrium point has

at least one positive eigenvalue for every v ∈ (1/3, 2/3). Hence, only three states (1, 0, 0),

(0, 1, 0), and (0, 0, 1) are asymptotically stable.

Case 3. v ∈ (2/3, 1). It can be seen from Table 1 that three states (1, 0, 0), (0, 1, 0), and

(0, 0, 1) are strict Nash equilibrium points, and thus asymptotically stable. Next, consider

the Nash equilibrium point y = ( 1
√

3
, 1 − 1

√
3
, 0). For every v ∈ (2/3, 1), the same calculation

as in Case 2 shows that the eigenvalues of the Jacobian matrix of g at y are − 1
27 (9 − 2

√
3),

− 1
54 (18 + 4

√
3 + 9v), and 2

27 (3 −
√

3). Since the Jacobian matrix has a positive eigenvalue

2
27 (3 −

√
3), y is not asymptotically stable. Similarly, it can be shown that every other Nash

equilibrium point has at least one positive eigenvalue for every v ∈ (2/3, 1). Hence, only three

states (1, 0, 0), (0, 1, 0), and (0, 0, 1) are asymptotically stable. □

In the following, we expand the strategy set S . We consider the case that the strategy set is

composed by any finite number of consistent strategies including Selfish, Universally Fair and

In-Group Fair strategies. We also assume that the strategy set contains consistent strategies

(2, 1
3 ,

1
3 ) and (3, v

2 ,
v
2 ).

Theorem 1.2. When all strategies are consistent, the following hold:

(1) Selfish state is asymptotically stable for any v ∈ (0, 1).

(2) Universally Fair state is asymptotically stable if and only if v ∈ (0, 2/3).

(3) In-Group Fair state is asymptotically stable if and only if v ∈ (2/3, 1).

Proof. (1): Consider Selfish state x. The average fitness of the population at x is given by

A(x) = 1
3 × 1 + 2

3 × 0 = 1
3 . Suppose that a mutant s = (3, p, p) with p > 0 invades into the
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population. The average fitness of s at x is A(s, x) = 1
3 × (1 − 2p) + 2

3 × 0, which is lower than

A(x) since p > 0. Thus, mutant s cannot survive at x. Next, consider a mutant s = (2, p, p).

The average fitness of s at x is A(s, x) = 1
3 × (v − p) + 2

3 × 0, which is lower than A(x) since

v < 1. Again, mutant s cannot survive at x. By these arguments, Selfish state x is a strict Nash

equilibrium point.

(2): Consider Universally Fair state y. The average fitness of the population at y is given

by A(y) = 1
3 ×

1
3 +

2
3 ×

1
3 =

1
3 . Assume that v < 2

3 . Suppose that a mutant s = (3, p, p) with

p , 1/3 invades into the population. The average fitness A(s, y) of s at y is lower than A(y)

by p , 1/3. Thus, mutant s cannot survive at y. Next, consider a mutant s = (2, p, p). The

average fitness A(s, y) of s at y is lower than or equal to 1
3 × (v − 1

3 ) + 2
3 ×

1
3 . Since v < 2

3 ,

it holds that A(s, y) < 1
3 = A(y). Again, mutant s cannot survive at y. By these arguments,

Universally Fair state y is a strict Nash equilibrium point if v < 2
3 .

Assume that v > 2
3 . Suppose that a mutant s = (2, 1

3 ,
1
3 ) invades into the population at

y. The average fitness A(s, y) of s at y is equal to 1
3 × (v − 1

3 ) + 2
3 ×

1
3 , which is higher than

A(y) = 1
3 since v > 2

3 . Thus, mutant s can invade at y. In other words, Universally Fair state y

is not a Nash equilibrium point, and thus not asymptotically stable, if v > 2
3 .

Assume that v = 2
3 . For any sufficiently small ϵ > 0, take a state yϵ where the proportion of

Universally Fair strategy s2 is 1 − ϵ and that of strategy s = (2, 1
3 ,

1
3 ) is ϵ. The average fitness

of s2 at yϵ is equal to 1
3 (1 − ϵ)2 + 5

18 × 2(1 − ϵ)ϵ + 2
9ϵ

2 = 1
3 −

1
9ϵ. Similarly, it can be shown

that the average fitness of s at yϵ is the same as that of s2. Since for any ϵ > 0, the trajectory

starting from yϵ does not converge to state s2, y is not asymptotically stable.

(3): Consider In-Group Fair state z. The average fitness of the population at z is given

by A(z) = 1
3 ×

v
2 +

1
3 ×

v
2 =

v
3 . Assume that v > 2

3 . Suppose that a mutant s = (3, p, p)

invades into the population. The average fitness A(s, z) of s at z is lower than or equal to

1
3 × (1 − v) + 1

3 ×
v
2 , which is lower than A(z) = v

3 by v > 2
3 . Thus, mutant s cannot survive at

z. Next, consider a mutant s = (2, p, p) with p , v/2. The average fitness A(s, z) of s at z is
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lower than 1
3 ×

v
2 +

1
3 ×

v
2 =

v
3 since a proposer employing s receives either payoff v − p < v

2 or

zero. Again, mutant s cannot survive at z. By these arguments, In-Group Fair state z is a strict

Nash equilibrium point if v > 2
3 .

Assume that v < 2
3 . Suppose that a mutant s = (3, v

2 ,
v
2 ) invades into the population at z.

The average fitness A(s, z) of s at z is equal to 1
3 × (1− v)+ 1

3 ×
v
2 , which is higher than A(z) = v

3

since v < 2
3 . Thus, mutant s can invade at z. In other words, In-Group Fair state z is not a Nash

equilibrium point, and thus not asymptotically stable, if v < 2
3 .

Assume that v = 2
3 . For any sufficiently small ϵ > 0, take a state zϵ where the proportion of

In-Group Fair strategy s3 is 1 − ϵ and that of strategy s = (3, v
2 ,

v
2 ) is ϵ. The average fitness

of s3 at zϵ is equal to v
3 (1 − ϵ)2 + 5v

12 × 2(1 − ϵ)ϵ + v
2ϵ

2 = 2
9 +

1
9ϵ. Similarly, it can be shown

that the average fitness of s at zϵ is the same as that of s3. Since for any ϵ > 0, the trajectory

starting from zϵ does not converge to state s3, z is not asymptotically stable. □

Finally, we consider a general case that the strategy set S includes inconsistent strategies.

In this case, Theorem 1.2 does not hold. None of Selfish, Universally Fair, or In-Group Fair is

asymptotically stable due to random drift.

Theorem 1.3. When the strategy set S contains all consistent and all inconsistent strategies,

a three-person UG has the following Nash equilibrium points:

(1) A consistent strategy (3, p, p) with 0 ≤ p ≤ 1
2 is a Nash equilibrium if and only if p ≤ 1− v.

(2) A consistent strategy (2, p, p) with 0 ≤ p ≤ v is a Nash equilibrium if and only if 1− v ≤ p.

(3) An inconsistent strategy (3, p, q) is a Nash equilibrium if and only if q ≥ max{1/2, v}.

(4) An inconsistent strategy (2, p, q) is a Nash equilibrium if and only if p = 0 and q ≥

max{1/2, v}.

Proof. (1): Let s = (3, p, p) with 0 ≤ p ≤ 1
2 . Suppose that all players in the population employ

s. The average fitness of the population s is (1 − 2p)/3 + 2p/3 = 1/3. Note that any mutant
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proposing the three-person group cannot obtain a higher average fitness than s in the population.

When p > v, the same thing holds for a mutant proposing a two-person group since a proposal

is rejected. Thus, assume that p ≤ v without any loss of generality. Among all mutants

proposing two-person groups, a mutant t = (2, p, p) can obtain the highest average fitness in

the population s = (3, p, p). The average fitness of t = (2, p, p) is (v− p)/3+2p/3 = (v+ p)/3.

Thus, state s is a Nash equilibrium point if and only if (v + p)/3 ≤ 1/3, i.e. p ≤ 1 − v.

(2): Let s = (2, p, p) with 0 ≤ p ≤ v. The average fitness of the population s is

(v − p)/3 + p/3 = v/3. Parallel to (1), notice that any mutant proposing a two-person group

cannot obtain a higher average fitness than strategy s in the population. When p > 1/2, the

same thing holds for a mutant proposing the three-person group since a proposal is rejected.

Thus, assume that p ≤ 1/2, without any loss of generality. Among all mutants proposing the

three-person group, mutant t = (3, p, p) can obtain the highest average fitness in the population

s = (2, p, p). The average fitness of t in population s is (1 − 2p)/3 + p/3 = (1 − p)/3. Thus,

state s is a Nash equilibrium point if and only if (1 − p)/3 ≤ v/3, i.e. 1 − p ≤ v.

(3): Let s = (3, p, q) with p , q and q ≥ max{1/2, v}. Since p ≤ 1/2, it holds that p < q.

The average fitness of population s is 0. Since q ≥ max{1/2, v} and the strategy s with p < q

proposes the three-person group, any mutant has the average fitness 0. Hence, s is a Nash

equilibrium point.

We will show that any other inconsistent strategy s = (3, p, q) with p , q is not a Nash

equilibrium point if q < max{1/2, v}. Assume first that p < q. The average fitness of

population s is 0. If q < 1/2, then the average fitness of mutant t = (3, q, q) in population s

is (1 − 2q)/3 > 0. If q < v, then the average fitness of mutant t = (2, q, q) in population s

is (v − q)/3 > 0. In both cases, population s is invaded by some mutant, and thus it is not a

Nash equilibrium point. Assume next that p > q. The average fitness of population s is 1/3.

Consider a mutant t = (3, q, q). The average fitness of t in population s is (1 − 2q)/3 + 2p/3,

which is higher than 1/3. Mutant t invades into population s, and thus s is not a Nash
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equilibrium point.

(4): Let s = (2, 0, q) with q ≥ max{1/2, v}. The average fitness of population s is 0. Since

q ≥ max{1/2, v}, any mutant has the average fitness 0. Trivially, s is a Nash equilibrium point.

We will show that any other inconsistent strategy s = (2, p, q) with p , q is not a Nash

equilibrium point if either p > 0 or q < max{1/2, v} holds. Assume first that p < q. The

average fitness of population s is 0. If p > 0, then the average fitness of mutant t = (3, p, p)

in population s is 1
3 × 0 + 2

3 ×
1
2 p = p/3 > 0. If q < 1/2, then the average fitness of mutant

t = (3, q, q) in population s is (1 − 2q)/3 > 0. If q < v, then the average fitness of mutant

t = (2, q, q) in population s is (v − q)/3 > 0. In all cases, population s is invaded by some

mutant, and thus it is not a Nash equilibrium point. Assume next that p > q. The average

fitness of population s is v/3. The average fitness t = (2, q, q) in population s is (v−q)/3+ p/3,

which is higher than v/3. Mutant t invades into population s, and thus s is not a Nash

equilibrium point. □

2 Moran Process

We analyze the Moran process in the main text (see [13, 17, 19] for technical details). Let

us consider a population of N players. Let S = {s1, ..., sn} be the set of n strategies in

a three-person UG. A state of the population is described by x = (x1, ..., xn) = X/N =

(X1, ..., Xn)/N, where Xi is the number of players using strategy i. The effective payoff of a

player using strategy i is given by exp[wA(si, x)], which is approximately equal to 1+wA(si, x)

for w close to zero. Here, w is the intensity of selection. We assume weak selection so that

wN ≪ 1.

In state x, the average number of offspring of an l-player due to selection is ωl = 1− 1/N +

[1 + wA(sl, x)]/N[1 + wA(x)]. For w→ 0, the number can be written as

ωl = 1 + wN−1[A(sl, x) − A(x)] + O(w2).
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Due to selection, the frequency change of l-players on average is given by

∆xsel
l = xlωl − xl = w∆x(1)

l [1 + O(w)], (2)

where the first derivative with respect to w is

∆x(1)
l = N−1xl[A(sl, x) − A(x)]. (3)

In the stationary state of the Moran process, the system is in state X with probability Pw(X).

The stationary probabilities are continuous at w = 0, and we can approximate them as

Pw(X) = Pw=0(X)[1 + O(w)] for any state X near w = 0.

Hence by averaging ∆xsel
l in (2) in the stationary state, we obtain

⟨∆xsel
l ⟩w ≡

∑
X

∆xsel
l Pw(X) = w

∑
X

∆x(1)
l Pw=0(X) × [1 + O(w)].

Define ai jk = A(si, s j, sk) for each i, j, k. Using expression (3) for ∆x(1)
l , we can write the

average change due to selection in the first order in w as

⟨∆xsel
l ⟩w = wN−1⟨xl[A(sl, x) − A(x)]⟩

= wN−1

∑
j,k

al jk⟨xlx jxk⟩ −
∑
i, j,k

ai jk⟨xlxix jxk⟩

 , (4)

where ⟨·⟩ denotes the average in the neutral stationary state (w = 0).

By taking into account mutation as well as selection, the expected total change of frequency

in state X can be written as

∆xtot
l = ∆xsel

l (1 − u) +
u
N

(
1
n
− xl

)
, (5)
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where u is the mutation rate. In the stationary state the average total change of frequency

is zero, ⟨∆xtot
l ⟩w = 0. Hence by averaging ∆xtot

l in (5), we obtain the abundance (average

frequency) in the stationary state expressed by the average change due to selection as

⟨xl⟩w =
1
n
+ N

1 − u
u
⟨∆xsel

l ⟩w. (6)

It follows from (6) that the condition ⟨xl⟩w >
1
n is equivalent to

⟨∆xsel
l ⟩w > 0.

In what follows, we will evaluate ⟨∆xsel
l ⟩w in (4). To do so, we need to calculate averages

of the form ⟨xlx jxk⟩ and ⟨xlxix jxk⟩. We remark that exchanging indexes does not affect

the averages since all players are symmetric in the neutral stationary state. For example,

⟨x1x1x1⟩ = ⟨x3x3x3⟩ and ⟨x1x2x2x2⟩ = ⟨x1x3x3x3⟩. By taking into account these symmetries,

only eight different averages appear in (4):

⟨x1x1x1⟩ = ⟨xixixi⟩,

⟨x1x2x2⟩ = ⟨xix jx j⟩,

⟨x1x2x3⟩ = ⟨xix jxk⟩,

⟨x1x1x1x1⟩ = ⟨xixixixi⟩,

⟨x1x1x2x2⟩ = ⟨xixix jx j⟩,

⟨x1x2x2x2⟩ = ⟨xix jx jx j⟩,

⟨x1x1x2x3⟩ = ⟨xixix jxk⟩,

⟨x1x2x3x4⟩ = ⟨xlxix jxk⟩
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for all i, j, k, l which are different each other. Then, assuming n ≥ 4, we can from (4) that

Nw−1⟨∆xsel
l ⟩w = ⟨x1x1x1⟩alll + ⟨x1x2x2⟩

∑
i,l

(alii + alli + alil) + ⟨x1x2x3⟩
∑
i, j:

l,i, j,l

ali j

− ⟨x1x1x1x1⟩alll − ⟨x1x2x2x2⟩
∑
i,l

(alli + alil + aill + aiii)

− ⟨x1x1x2x2⟩
∑
i,l

(alii + aili + aiil)

− ⟨x1x1x2x3⟩
∑
i, j:

l,i, j,l

(ali j + ail j + ai jl + aii j + ai ji + a jii)

− ⟨x1x2x3x4⟩
∑
i, j,k:

different each other,
i,l, j,l,k,l

ai jk. (7)

We can rearrange (7) as

Nw−1⟨∆xsel
l ⟩w = alll(⟨x1x1x1⟩ − 3⟨x1x2x2⟩ + 2⟨x1x2x3⟩ − ⟨x1x1x1x1⟩

+ 4⟨x1x2x2x2⟩ + 3⟨x1x1x2x2⟩ − 12⟨x1x1x2x3⟩ + 6⟨x1x2x3x4⟩)

+
∑

i

alii(⟨x1x2x2⟩ − ⟨x1x2x3⟩ − ⟨x1x1x2x2⟩ + 2⟨x1x1x2x3⟩ − ⟨x1x2x3x4⟩)

+
∑

i

(alli + alil)(⟨x1x2x2⟩ − ⟨x1x2x3⟩ − ⟨x1x2x2x2⟩ + 3⟨x1x1x2x3⟩ − 2⟨x1x2x3x4⟩)

+
∑

i

(aill + aiii)(−⟨x1x2x2x2⟩ + 3⟨x1x1x2x3⟩ − 2⟨x1x2x3x4⟩)

+
∑

i

(aili + aiil)(−⟨x1x1x2x2⟩ + 2⟨x1x1x2x3⟩ − ⟨x1x2x3x4⟩)

+
∑

i, j

ali j(⟨x1x2x3⟩ − ⟨x1x1x2x3⟩ + ⟨x1x2x3x4⟩)

+
∑

i, j

(ail j + ai jl + aii j + ai ji + a jii)(−⟨x1x1x2x3⟩ + ⟨x1x2x3x4⟩)

+
∑
i, j,k

ai jk(−⟨x1x2x3x4⟩). (8)
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As is known from the literature on population genetics (25), when N is large, the frequencies

x = (x1, ..., xn) in the stationary state follow a Dirichlet distribution with a probability density

function

f (x1, ..., xn−1;α1, ..., αn) =
Γ(

∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

xαi−1
i ,

where Γ is the gamma function. It is well known (31) that moments of Dirichlet-distributed

random variables can be expressed as

E

 n∏
i=1

xγi
i

 = Γ(
∑n

i=1 αi)
Γ(

∑n
i=1(αi + γi))

×

n∏
i=1

Γ(αi + γi)
Γ(αi)

.

A simple computation also shows that α1 = · · · = αn ≡ α = µ/n, where µ = Nu is the rescaled

mutation rate. These facts imply that the eight averages are given by

⟨x1x1x1⟩ =
Γ(nα)
Γ(nα + 3)

Γ(α + 3)
Γ(α)

=
(n + µ)(2n + µ)
n3(1 + µ)(2 + µ)

= (3 + µ)(n + µ)(2n + µ)nC,

⟨x1x2x2⟩ =
Γ(nα)
Γ(nα + 3)

Γ(α + 1)
Γ(α)

Γ(α + 2)
Γ(α)

=
µ(n + µ)

n3(1 + µ)(2 + µ)
= µ(3 + µ)(n + µ)nC,

⟨x1x2x3⟩ =
Γ(nα)
Γ(nα + 3)

{
Γ(α + 1)
Γ(α)

}3

=
µ2

n3(1 + µ)(2 + µ)
= µ2(3 + µ)nC,

⟨x1x1x1x1⟩ =
Γ(nα)
Γ(nα + 4)

Γ(α + 4)
Γ(α)

=
(n + µ)(2n + µ)(3n + µ)
n4(1 + µ)(2 + µ)(3 + µ)

= (n + µ)(2n + µ)(3n + µ)C,

⟨x1x1x2x2⟩ =
Γ(nα)
Γ(nα + 4)

{
Γ(α + 2)
Γ(α)

}2

=
µ(n + µ)2

n4(1 + µ)(2 + µ)(3 + µ)
= µ(n + µ)2C,

⟨x1x2x2x2⟩ =
Γ(nα)
Γ(nα + 4)

Γ(α + 1)
Γ(α)

Γ(α + 3)
Γ(α)

=
µ(n + µ)(2n + µ)

n4(1 + µ)(2 + µ)(3 + µ)
= µ(n + µ)(2n + µ)C,

⟨x1x1x2x3⟩ =
Γ(nα)
Γ(nα + 4)

{
Γ(α + 1)
Γ(α)

}2
Γ(α + 2)
Γ(α)

=
µ2(n + µ)

n4(1 + µ)(2 + µ)(3 + µ)
= µ2(n + µ)C,

⟨x1x2x3x4⟩ =
Γ(nα)
Γ(nα + 4)

{
Γ(α + 1)
Γ(α)

}4

=
µ3

n4(1 + µ)(2 + µ)(3 + µ)
= µ3C,
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where C = [n4(1 + µ)(2 + µ)(3 + µ)]−1. With these correlations, Eq. (8) takes the form

Nw−1⟨∆xsel
l ⟩w

C
= µn2

∑
i

(2alll + 2alii + alli + alil − 2aill − 2aiii − aili − aiil)

+ µ2n
∑

i, j

(
alii + alli + alil + 2ali j − ail j − ai jl − aii j − ai ji − a jii

)
+ µ3

∑
i, j,k

(
ali j − ai jk

)
. (9)

By defining

Ll =
1
n

∑
i

[2(alll − aill) + 2(alii − aiii) + (alli − aili) + (alil − aiil)] , (10)

Ml =
1
n2

∑
i, j

[
(ali j − aii j) + (ali j − a ji j) + (alii − a jii) + (alli − a jli) + (alil − a jil)

]
,

Hl =
1
n3

∑
i, j,k

(
ali j − aki j

)
,

we finally arrive at the formula

⟨∆xsel
l ⟩w =

wµ(Ll + µMl + µ
2Hl)

nN(1 + µ)(2 + µ)(3 + µ)
.

Strategy sl is more abundant than the average if it satisfies ⟨∆xsel
l ⟩w > 0. In the case of the

low mutation rate, µ ≪ 1, the condition for abundance is given by Ll > 0. In what follows, we

will characterize the most abundant strategy that maximizes Ll in (10).

In a three-person UG, a strategy is represented by three parameters as si = (mi, pi, qi)

where mi = 2, 3 is a group size, pi is an offer and qi is a minimum acceptance payoff. For

three strategies si, s j, sk, payoff ai jk = A(si, s j, sk) for strategy si is determined. To compute

ai jk, we introduce the 0-1 function I(E) for a condition E such that I(E) = 1 if E is true, and

otherwise, I(E) = 0. In particular, we define Ii j = I(pi ≥ q j) for any i, j. Similar notations are

used under the same convention. Then, payoff ai jk is given as follows (ignoring a 1/3 factor,
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the probability with which each player has the role of a proposer)

ai jk =



Ii jIik(1 − 2pi) + I jiI jk p j + IkiIk j pk if mi = m j = mk = 3

Ii jIik(1 − 2pi) + I jiI jk p j +
1
2 Iki pk if mi = m j = 3 and mk = 2

Ii jIik(1 − 2pi) + 1
2 I ji p j +

1
2 Iki pk if mi = 3 and m j = mk = 2

1
2 (Ii j + Iik)(v − pi) + 1

2 I ji p j +
1
2 Iki pk if mi = m j = mk = 2

1
2 (Ii j + Iik)(v − pi) + 1

2 I ji p j + IkiIk j pk if mi = m j = 2 and mk = 3

1
2 (Ii j + Iik)(v − pi) + I jiI jk p j + IkiIk j pk if mi = 2 and m j = mk = 3.

(11)

Noting that alli = alil and aili = aiil, we can divide the summation of Eq. (10) into two parts

as

Ll =
2
n

 ∑
i:mi=3

+
∑

i:mi=2

 [(alll − aill) + (alii − aiii) + (alli − aili)
]

In the game, the strategy si for each player takes finitely many values in the strategy space

{(pi, qi) | 0 ≤ pi ≤ 1/2, 0 ≤ qi ≤ 1} if mi = 3, and does so in the strategy space {(pi, qi) | 0 ≤

pi ≤ v, 0 ≤ qi ≤ 1} if mi = 2. As the total number n of strategies grows infinitely large, it

converges to the integrals

L(ml, pl, ql) =
2

1/2 + v

(∫ 1/2

0

∫ 1

0
+

∫ v

0

∫ 1

0

)
[(alll − aill) + (alii − aiii) + (alli − aili)] dqidpi. (12)

Notice that the sum of the areas of the two strategy spaces for mi = 3 and mi = 2 is 1/2 + v.

To compute the most abundant strategy sl = (ml, pl, ql) that maximizes L(ml, pl, ql) in (12),

we first show the explicit formula of the objective function L.
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Case 1. ml = 3. Let sl = (3, p, q). Using (11), we obtain the following equations:

∫ 1
2

0

∫ 1

0
allldqidpi +

∫ v

0

∫ 1

0
allldqidpi =

∫ 1
2

0

∫ 1

0
Illdqidpi +

∫ v

0

∫ 1

0
Illdqidpi = I(p ≥ q)

(
1
2
+ v

)
.

∫ 1
2

0

∫ 1

0
ailldqidpi +

∫ v

0

∫ 1

0
ailldqidpi

=

∫ 1
2

0

∫ 1

0

[
Iil(1 − 2pi) + 2IliIll p

]
dqidpi +

∫ v

0

∫ 1

0

[
Iil(v − pi) + 2IliIll p

]
dqidpi

= I(q ≤ 1/2)
∫ 1

2

q
(1 − 2pi)dpi +

∫ p

0
pIlldqi + I(q ≤ v)

∫ v

q
(v − pi)dpi +

∫ p

0
2vpIlldqi

= I(p ≥ q)2p2
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1
4
− q + q2

)
+ I(q ≤ v)

(
v2

2
− vq +

q2

2

)

∫ 1
2

0

∫ 1

0
aliidqidpi +

∫ v

0

∫ 1

0
aliidqidpi

=

∫ 1
2

0

∫ 1

0

[
Ili(1 − 2p) + 2IilIii pi

]
dqidpi +

∫ v

0

∫ 1

0

[
Ili(1 − 2p) + Iil pi

]
dqidpi

=

∫ p

0

1
2

(1 − 2p)dqi + I(q ≤ 1/2)
∫ 1

2

q

(
2p2

i

)
dpi +

∫ p

0
v(1 − 2p)dqi + I(q ≤ v)

∫ v

q
pidpi

= (p − 2p2)
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1

12
−

2
3

q3
)
+ I(q ≤ v)

(
v2

2
−

q2

2

)

∫ 1
2

0

∫ 1

0
aiiidqidpi +

∫ v

0

∫ 1

0
aiiidqidpi

=

∫ 1
2

0

∫ 1

0

[
Iii(1 − 2pi) + 2Iii pi

]
dqidpi +

∫ v

0

∫ 1

0

[
Iii(v − pi) + Iii pi

]
dqidpi

=

∫ 1
2

0
pi(1 − 2pi)dpi +

∫ 1
2

0

(
2p2

i

)
dpi +

∫ v

0
pi(v − pi)dpi +

∫ v

0
p2

i dpi

=
1
8
+

v3

2

∫ 1
2

0

∫ 1

0
allidqidpi +

∫ v

0

∫ 1

0
allidqidpi

32



=

∫ 1
2

0

∫ 1

0

[
IllIli(1 − 2p) + IllIli p + Iil pi

]
dqidpi +

∫ v

0

∫ 1

0

[
IllIli(1 − 2p) + IllIli p +

Iil

2
pi

]
dqidpi

= I(p ≥ q)p(1 − p)
(
1
2
+ v

)
+ I(q ≤ 1/2)

∫ 1
2

q
pidpi + I(q ≤ v)

∫ v

q

pi

2
dpi

= I(p ≥ q)(p − p2)
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1
8
−

q2

2

)
+ I(q ≤ v)

(
v2

4
−

q2

4

)

∫ 1
2

0

∫ 1

0
ailidqidpi +

∫ v

0

∫ 1

0
ailidqidpi

=

∫ 1
2

0

∫ 1

0

[
IiiIil(1 − 2pi) + IiiIil pi + Ili p

]
dqidpi +

∫ v

0

∫ 1

0

[
(Iii + Iil)

2
(v − pi) +

Iii

2
pi + Ili p

]
dqidpi

= I(q ≤ 1/2)
∫ 1

2

q
pi(1 − pi)dpi + p2

(
1
2
+ v

)
+

∫ v

0

vpi

2
dpi + I(q ≤ v)

∫ v

q

v − pi

2
dpi

= p2
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1

12
−

q2

2
+

q3

3

)
+ I(q ≤ v)

(
v2

4
−

vq
2
+

q2

4

)
+

v3

4

Substituting these equations into (12) yields

L(3, p, q) = I(p ≥ q)
(
−3p2 + p + 1

) (1
2
+ v

)
+

(
−3p2 + p

) (1
2
+ v

)
−

3
4

v3 −
1
8

+ I(q ≤ 1/2)
(
−q3 − q2 + q −

1
8

)
+ I(q ≤ v)

(
−

3
2

q2 +
3
2

vq
)

(13)

(ignoring the factor 2
1/2+v ). The function L(3, ·, ·) is continuous in (p, q) on each region of

{(p, q) | 0 ≤ p ≤ 1/2, 0 ≤ q ≤ p} and {(p, q) | 0 ≤ p ≤ 1/2, p < q ≤ 1}, and has downward

jumps in q on the line p = q.

Case 2. ml = 2. Let sl = (2, p, q). Using (11), we obtain the following equations:

∫ 1
2

0

∫ 1

0
allldqidpi +

∫ v

0

∫ 1

0
allldqidpi =

∫ 1
2

0

∫ 1

0
Illvdqidpi +

∫ v

0

∫ 1

0
Illvdqidpi = I(p ≥ q)v

(
1
2
+ v

)
.

∫ 1
2

0

∫ 1

0
ailldqidpi +

∫ v

0

∫ 1

0
ailldqidpi

33



=

∫ 1
2

0

∫ 1

0

[
Iil(1 − 2pi) + Ili p

]
dqidpi +

∫ v

0

∫ 1

0

[
Iil(v − pi) + Ili p

]
dqidpi

= I(q ≤ 1/2)
∫ 1

2

q
(1 − 2pi)dpi +

∫ p

0

p
2

dqi + I(q ≤ v)
∫ v

q
(v − pi)dpi +

∫ p

0
vpdqi

= p2
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1
4
− q + q2

)
+ I(q ≤ v)

(
v2

2
− vq +

q2

2

)

∫ 1
2

0

∫ 1

0
aliidqidpi +

∫ v

0

∫ 1

0
aliidqidpi

=

∫ 1
2

0

∫ 1

0

[
Ili(v − p) + 2IilIii pi

]
dqidpi +

∫ v

0

∫ 1

0

[
Ili(v − p) + Iil pi

]
dqidpi

=

∫ p

0

1
2

(v − p)dqi + I(q ≤ 1/2)
∫ 1

2

q

(
2p2

i

)
dpi +

∫ p

0
v(v − p)dqi + I(q ≤ v)

∫ v

q
pidpi

= (vp − p2)
(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1
12
−

2
3

q3
)
+ I(q ≤ v)

(
v2

2
−

q2

2

)

∫ 1
2

0

∫ 1

0
aiiidqidpi +

∫ v

0

∫ 1

0
aiiidqidpi =

1
8
+

v3

2

∫ 1
2

0

∫ 1

0
allidqidpi +

∫ v

0

∫ 1

0
allidqidpi

=

∫ 1
2

0

∫ 1

0

[ Ill + Ili

2
(v − p) +

Ill

2
p + Iil pi

]
dqidpi +

∫ v

0

∫ 1

0

[ Ill + Ili

2
(v − p) +

Ill

2
p +

Iil

2
pi

]
dqidpi

= I(p ≥ q)
v
2

(
1
2
+ v

)
+

p
2

(v − p)
(
1
2
+ v

)
+ I(q ≤ 1/2)

∫ 1
2

q
pidpi + I(q ≤ v)

∫ v

q

pi

2
dpi

= I(p ≥ q)
v
2

(
1
2
+ v

)
+

(
vp
2
−

p2

2

) (
1
2
+ v

)
+ I(q ≤ 1/2)

(
1
8
−

q2

2

)
+ I(q ≤ v)

(
v2

4
−

q2

4

)

∫ 1
2

0

∫ 1

0
ailidqidpi +

∫ v

0

∫ 1

0
ailidqidpi

=

∫ 1
2

0

∫ 1

0

[
IiiIil(1 − 2pi) + IiiIil pi +

Ili

2
p
]

dqidpi +

∫ v

0

∫ 1

0

[
(Iii + Iil)

2
(v − pi) +

Iii

2
pi +

Ili

2
p
]

dqidpi
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= I(q ≤ 1/2)
∫ 1

2

q
pi(1 − pi)dpi +

p2

2

(
1
2
+ v

)
+

∫ v

0

vpi

2
dpi + I(q ≤ v)

∫ v

q

v − pi

2
dpi

=
p2

2

(
1
2
+ v

)
+ I(q ≤ 1/2)

(
1

12
−

q2

2
+

q3

3

)
+ I(q ≤ v)

(
v2

4
−

vq
2
+

q2

4

)
+

v3

4

Substituting these equations into (12) yields

L(2, p, q) = I(p ≥ q)
(
3
4

v +
3
2

v2
)
−

3
4

v3 −
1
8
+

(
−3p2 +

3
2

vp
) (

1
2
+ v

)
+ I(q ≤ 1/2)

(
−q3 − q2 + q −

1
8

)
+ I(q ≤ v)

(
−

3
2

q2 +
3
2

vq
)

(14)

(ignoring the factor 2
1/2+v ). The function L(2, ·, ·) is continuous in (p, q) on each region of

{(p, q) | 0 ≤ p ≤ v, 0 ≤ q ≤ p} and {(p, q) | 0 ≤ p ≤ v, p < q ≤ 1}, and has downward jumps in

q on the line p = q.

The most abundant strategy in the population is a solution (m∗, p∗, q∗) to the following

maximization problem:

max
m∈{2,3},p,q

L(m, p, q),

where the objective functions L(3, p, q) and L(2, p, q) are given by (13) and (14), respectively.

By tedious calculations, the optimal solution is characterized as follows:

(m∗, p∗, q∗) =



(3, p1(v), p1(v)) if 0 < v ≤ v1,

(3, p2(v), p2(v)) if v1 < v ≤ v2,

(2, p3(v), p3(v)) if v2 < v < 1,

where

p1(v) =
1
3

(−4 − 6v +
√

22 + 54v + 36v2)
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p2(v) =
1
6

(−11 − 12v +
√

145 + 306v + 144v2)

p3(v) =
1
6

(−8 − 6v +
√

76 + 123v + 54v2)

and v1 and v2 satisfy L(3, p1(v1), p1(v1)) = L(3, p2(v1), p2(v1)) and L(3, p2(v2), p2(v2)) =

L(2, p3(v2), p3(v2)) respectively. Table A4 gives numerically the optimal solution (m∗, p∗, q∗)

for every value of v ∈ [0, 1] in increments of 0.05.

v m∗ p∗(= q∗)
0 3 0.230
0.05 3 0.226
0.1 3 0.223
0.15 3 0.220
0.2 3 0.217
0.25 3 0.197
0.3 3 0.201

v m∗ p∗(= q∗)
0.35 3 0.204
0.4 3 0.207
0.45 3 0.210
0.5 3 0.213
0.55 3 0.215
0.6 3 0.217
0.65 3 0.220

v m∗ p∗(= q∗)
0.7 3 0.222
0.75 2 0.266
0.8 2 0.276
0.85 2 0.286
0.9 2 0.297
0.95 2 0.307
1 2 0.318

Table A4. The most abundant strategy (m∗, p∗, q∗) for every value of v ∈ [0, 1] in increments
of 0.05.

3 Simulation Results

We present simulation results of the Moran process with parameters N = 50, w = 10−0.5,

u = 10−2.5, 10−3.5 and v = 1/6, 5/6. Figure A1 illustrates the frequencies of strategies averaged

over 108 generations in the case of weak selection (w = 10−0.5). Regarding the group size

choice, the most abundant strategy is not affected when the mutation rate u changes from

u = 10−3 to u = 10−2.5, 10−3.5. The values of p and q are mildly changed except the p-value

when v = 1/6: p takes values 1/4, 5/12 and 1/3 for u = 10−2.5, 10−3, 10−3.5, respectively.

Figure A2 shows the mean frequencies of two-person groups over 108 generations for

different values of u and w in the simulations when the group value v = 5/6. For comparison,

the mean frequency of two-person groups in the experiments (22) is also given. In the
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experiment, subjects played eight rounds of a three-person UG with random matching in each

round. The data show the mean frequency of two-person groups chosen by proposers in the

first round. The mean frequency was stable over rounds.

In the simulations, the mean frequencies of two-person groups are stable for a change of

the mutation rate u in the case of weak selection (w = 10−0.5). When the intensity of selection

increases from w = 10−0.5 to w = 102, the mean frequency of two-person groups drops from

63.8% to 43.2% when u = 10−3. The mean frequency of two-person groups in the experiment

is higher than those of simulations in Figure A2.
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Fig. A1. Simulation results of the frequency-dependent Moran process where the number
of players is N = 50 and the selection intensity is w = 10−0.5. Parameters of the two-person
group value (v) and the mutation rate (u) are: (A) v = 1/6, u = 10−2.5; (B) v = 5/6, u = 10−2.5;
(C) v = 1/6, u = 10−3.5; and (D) v = 5/6, u = 10−3.5. The strategy parameters, p (offer) and
q (acceptance threshold), are discretized in increments of 1/12. The strategy set is colored
according to the average frequency of each strategy over 108 generations. The most abundant
strategy indicated with a black × is (3, 1/4, 1/4) in (A), (2, 1/3, 1/4) in (B) and (D), and
(3, 1/3, 1/3) in (C).
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Fig. A2. Mean frequencies of two-person groups when v = 5/6. Red bar shows the mean
frequency of two-person groups chosen in the first round of the experiment (22). Blue bars
show the mean frequencies of two-person groups over 108 generations for different values of u
and w in the simulations.
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