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Abstract

This study addresses optimal information allocation in team pro-
duction. We present a unique implementation problem of desirable
effort levels and show that, under certain conditions, it is optimal to
asymmetrically inform the agents even if they are ex ante symmet-
ric. The main intuition is that the asymmetric information allocation
is effective in avoiding “bad” equilibria, that is, equilibria with co-
ordination failure. This analysis provides an explanation as to why
informing agents asymmetrically might be beneficial in improving the
agents’ coordination behaviors.
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1 Introduction

This paper examines an optimal information allocation among agents in an

organization. In many types of organizations (such as firms, universities,

and communities), agents are often asymmetrically informed. For example,

certain information is often retained within a subset of managers in a com-

pany even if the information is relevant to the entire company. Managers

of company-owned chain stores are typically exposed to more information

through periodic meetings compared to franchisees. Explaining such phe-

nomena requires an understanding of the key channels through which infor-

mation structure affects organizational performance.

If agents engage in different tasks or have different characteristics, triv-

ial situations would occur where an asymmetric information structure arises

naturally. However, this paper establishes a novel channel between infor-

mation allocation and implementation cost that implies that an asymmetric

information structure among the agents is optimal, even when the agents are

completely symmetric in terms of their characteristics and the tasks in which

they engage. We interpret this channel as a source of “intrinsic” motivation

for asymmetric information allocation in an organization.

Specifically, we consider the following team production model based on

Holmstrom (1982).1 Two agents engage in a single project, and each of

the agents chooses a binary effort (high/low or work/shirk). The principal, a

residual claimant, offers a bonus contract contingent on the binary outcome of

the project (success/failure). The success probability of the project depends

on the agents’ total efforts and the binary state of the world (good/bad). We

assume that the failure of the project is extremely hazardous (e.g., accidents

in a nuclear power plant or loss of a brand’s long-term reputation). In such a

situation, we believe it is reasonable to require that the optimal contract ad-

mits a unique (Bayesian) equilibrium such that every agent chooses a desired

1We make simple assumptions to highlight the key insights, but we believe that similar

results should hold in more general environments.
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level of effort in every state.2 As a direct predecessor, in the team produc-

tion context but without uncertain state variables, Winter (2004) studies

optimal bonus contracts that uniquely implement the desired effort choices

and shows the optimality of an asymmetric bonus contract even if the agents

are symmetric. This paper considers a similar model but with uncertain pa-

rameters in the production function. This introduces a novel dimension to

the principal’s design problem, namely, the allocation of information among

the agents.3

The key observation is that asymmetric information allocation can signifi-

cantly mitigate the agents’ coordination failure. To provide a rough intuition,

consider the following numerical example.

Example 1. Each agent earns, regardless of the state of the world, an ex-

pected payoff ”3” if both agents work, ”2” if a specific agent shirks but the

other works, and ”1” if he works but the other shirks. In the case where both

agents shirk, the agent’s expected payoff is ”0” if the state is good, and ”3”

if the state is bad (see Table 1 below).4

(“good”) work shirk

work (5, 5) (1, 2)

shirk (2, 1) (0, 0)

(“bad”) work shirk

work (5, 5) (1, 2)

shirk (2, 1) (3, 3)

Each state is equally likely and, hence, if no agent is informed about

the state, then “both work” and “both shirk” are equilibria, which is not

desirable for the principal.5 Informing both agents about the state is not

2It is a common practice in the literature to focus on the implementation of such a

“high-effort” equilibrium to simplify the analysis. We consider the unique implementation

of such a desired equilibrium given the concerns in the literature for multiple-equilibrium

problems (e.g., Mookherjee (1984)). We discuss this in more detail in Section 2.
3We discuss how the asymmetry of bonus contracts and the asymmetry of information

allocation interact in Section 5.1.
4One can interpret these numbers as the agents’ expected utilities given an arbitrary

bonus contract fixed.
5Of course, if the principal employs wishful thinking and believes that both will work,
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desirable either because “both shirk” is again an equilibrium in the bad

state.

Nevertheless, informing just one agent can eliminate this bad coordina-

tion. Specifically, suppose that only agent 2 is informed about the state,

whereas agent 1 is not (but agent 1 knows that agent 2 knows the state, and

so on). First, if the state is good, then it is dominant for agent 2 to work.

Given this, it is now (iteratively) dominant for agent 1 to work, as illustrated

in the following table:

work in both states work only in good state

work (5, 5) (3, 52) (= (5+1
2 , 5+2

2 ))

shirk (2, 1) (52 , 2) (= (2+3
2 , 1+3

2 ))

Finally, given that agent 1 works (in any state), it is (iteratively) dominant

for agent 2 to work even in the bad state. Therefore, the desired outcome

that “both work in every state” is the unique strategy profile that survives

iterative elimination of dominated strategies.

The conclusion in this example may seem somewhat ad hoc. For example,

a bonus contract that generates these numbers may not be the optimal con-

tract. Nevertheless, the example illustrates an important observation that

the bad coordination outcome (i.e., both shirking) becomes less sustaina-

bale in an equilibrium by asymmetrically informing the agents.6 The aim of

then the principal does not foresee a problem. However, in case project failure is hazardous,

the principal may adopts a more pessimistic view.
6The problem of information disclosure by the principal is also studied in mechanism

design, such as in Bergemann and Pesendorfer (2007) and Esó and Szentes (2007). Par-

ticularly, Bergemann and Pesendorfer (2007) show that asymmetrically informing bidders

(agents) in auction may be optimal for the revenue-maximizing seller (principal). In their

paper, more information implies that the auction outcome becomes more efficient, which

itself induces more revenue through bidders’ bidding behaviors, but it also implies that

the bidders enjoy more information rent. Our paper shows that providing information

asymmetrically can be useful in eliminating undesirable equilibria in a team production

setting, and in this sense, our paper features a different aspect of providing information

asymmetrically to the agents.
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this paper is to show that this novel intuition holds in more general team

production environments.

The paper is structured as follows. Section 2 introduces the model, and

Section 3 studies the optimal bonus contract and information structure in

a simple two-agent case with anonymous contracts. Sections 4 and 5 ex-

amine several extensions and generalizations of the base model in Section 3

with respect to the number of agents (Section 4.1), asymmetry in agents’ ef-

forts costs (Section 4.2), and elaborate contracts such as non-anonymous (or

individual-specific) bonus contracts (Section 5.1) and stochastic information

allocation (Section 5.2). Section 6 concludes the paper. Except for those in

Section 3, all proofs are shown in the Appendix.

2 Model

We consider a team production model with one manager (a principal) and

n workers (agents) who engage in a project. Each worker i ∈ {1, . . . , n}

simultaneously chooses an effort level ei ∈ {0, 1}, which costs cei for c > 0.

The profit of the project is y ∈ {S, F} (S > F ), and pθ(x) denotes the

probability of success (y = S), which depends on the agents’ total effort

x =
∑

i ei and task environment θ ∈ {H,L}. We assume that pθ(x) is

increasing in x for any θ. The probability that θ = H is f ∈ (0, 1), and the

probability that θ = L is 1 − f . Let pφ(x) = fpH(x) + (1 − f)pL(x) denote

the mean success probability given x.

The marginal productivity of effort, denoted by ∆pθ(x) ≡ pθ(x)− pθ(x−

1), satisfies (i)∆pH(x) > ∆pL(x) for all x and (ii)∆pθ(x) > ∆pθ(x−1) for all

x and θ. The first condition requires that the marginal productivity is always

higher in state H than in state L, and the second condition requires that the

agents’ efforts are complementary and, therefore, the agents’ collaboration is

important for success.7

7This convexity in the production function is essential for the multiple-equilibrium

problem, as observed by Winter (2004).
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Information structure The principal can organize the information struc-

ture of the team. Except for Section 5.2, this simply refers to how many

agents are informed of θ when they make effort choices.8 Specifically, we

compare the following three types of information structure.

• No information (NI): no agent observes θ,

• Asymmetric information (AI): agent i ∈ {1, . . . , m} does not observe

θ, but agent j ∈ {m+ 1, . . . , n} observes θ,

• Full information (FI): all agents observe θ.

Let si ∈ Si = {H,L,φ} represent agent i’s information about the state.

More specifically, (i) if he is informed, then si = θ for each θ, and (ii) if he

is uninformed, then si = φ for each θ. Hence, agent i’s strategy is to choose

ei(si) ∈ {0, 1} for each si.

Once the principal chooses an information structure, we assume that this

structure itself becomes common knowledge among the agents. We also as-

sume that the principal commits to the information structure of the team

without knowing the realization of θ.9

Contract Except for Section 5.1, we consider anonymous bonus contracts

where all the agents are paid symmetrically. Specifically, an anonymous

bonus contract is represented by b ≥ 0, where each agent is paid 0 if y = F ,

8An essentially equivalent formulation is that the principal controls the cost of acquiring

information on θ. Specifically, the cost is set as zero for an agent whom the principal wants

to inform, and it is set to infinity for an agent whom the principal does not want to inform.

This assumption contrasts with the literature on information acquisition in moral hazard

environments. For example, Andreoni (2006) and Kobayashi and Suehiro (2005) study

models of endogenous leadership or leadership battles, where each agent chooses whether

to acquire certain information on the environment to influence other agents as a leader.
9The results of the paper would not qualitatively change even if the bonus contract is

contingent on the realized θ (i.e., b becomes a function of θ rather than a scalar invariant

in θ), as long as the principal can commit to the information structure and the (possibly

contingent) bonus contract before observing θ.
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and each agent is paid a bonus b if y = S.10 In Section 5.1, we examine

how the results would change if the principal can offer different contracts to

different agents.

Given bonus b and the agents’ effort profile e = (e1, . . . , en) ∈ {0, 1}N ,

the principal’s payoff in state θ is pθ(
∑N

i=1 ei)(S − nb) + (1− pθ(
∑N

i=1 ei))F .

We assume that S is much larger than F so that the principal’s objective is

to implement the full effort strategy of the agents, that is, (ei(si))i,si such

that ei(si) = 1 for every i and si.

Given bonus b and the agents’ effort profile e = (e1, . . . , en) ∈ {0, 1}N ,

agent i’s payoff in state θ is ui(e, θ; b) = bpθ(
∑N

j=1 ej)− cei. Thus, given the

information structure, the agents’ strategy profile e = (ei(si))i,si is a (pure-

strategy Bayesian) equilibrium if (i) for each i who is informed: for each

θ ∈ {H,L} and e′i ∈ {0, 1},

ui(ei(θ), e−i(s−i), θ; b) ≥ ui(e
′
i, e−i(s−i), θ; b),

and (ii) for each i who is uninformed: for each e′i ∈ {0, 1},

E[ui(ei(φ), e−i(s−i), θ; b)] ≥ E[ui(e
′
i, e−i(s−i), θ; b)].

Benchmark: Full-effort strategy profile as one of the equilibria We

first derive the optimal contract that makes the full-effort strategy profile one

of the equilibria and observe that the no-information scenario is the optimal

information structure.

Under the no-information scenario, the full-effort strategy profile is an

equilibrium if bpφ(n)− c ≥ bpφ(n− 1) or, equivalently, b ≥ c
∆pφ(n)

. Thus, the

optimal contract is b = c
∆pφ(n)

. Under any other information structure, the

bonus must be sufficiently high so that an informed agent works in the low

10Alternatively, we define an anonymous bonus contract by a pair (b, w) where each

agent is paid w if y = F , and each agent is paid b + w if y = S. When the agents are

protected by limited liability so that a feasible contract must satisfy w ≥ 0 and b+w ≥ 0,

then, as in the standard argument, we focus on bonus contracts with w = 0 without loss

of generality to seek optimal contracts.
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state, that is, bpL(n) − c ≥ bpL(n − 1) or, equivalently, b ≥ c
∆pL(n)

. Thus,

the optimal contract is b = c
∆pL(n)

> 1
∆pφ(n)

. Therefore, the no-information

scenario dominates any other information structure. Intuitively, this is be-

cause we must incentivize the agents based on the average state under the

no-information structure, whereas under any other information structure we

must incentivize informed agents for every state.

Incentive-inducing contract The contract that implements the full-effort

strategy profile only as one of the equilibria implicitly assumes that the agents

would play the best equilibrium in view of the principal, even if there are

multiple equilibria given the contract. However, in case the failure of the

project is extremely hazardous (e.g., accidents in a nuclear power plant, or

loss of a brand’s long-term reputation), the principal may not want to follow

such a wishful thinking. Rather, it may be more reasonable to require that

the full-effort strategy profile is a unique equilibrium.

Potential multiple equilibria have been an important topic in the litera-

ture.11 According to Kreps (1990), the equilibrium played is determined by

the “corporate culture.”12 Unless the principal can fully control the culture

within an organization, undesirable equilibria may be selected. Given this

concern, we consider the problem of making the desired equilibria a unique

equilibrium, so that the desired outcome is “guaranteed”, independent of the

corporate culture.

There are several studies that derive the optimal mechanism that uniquely

implements the desired effort choice. Ma (1988) shows that a mechanism

with communication can eliminate undesirable equilibria without any ad-

ditional cost if the agents’ outputs are individually observed. However, in

11See, for example, Mookherjee (1984) for general moral hazard environments. See

also Baliga and Sjostrom (1998) for the study of collusive behaviors in moral hazard

environments.
12See Hermalin (2012) for a survey of the literature of corporate culture. In empirical

studies, Cronqvist, Low, and Nilsson (2007) argue that corporate culture may be a key

determinant of the long-term tendency of corporate policies and performance.
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team-production models as in Holmstrom (1982), the agents’ outputs are

not individually observed (instead, only the aggregate output is observed).

Therefore, we cannot directly apply the mechanism in Ma (1988).13 Win-

ter (2004) considers a team-production model without state uncertainty and

derives the optimal bonus contracts that uniquely implement the full-effort

strategy profile. In this sense, our approach is closest to that of Winter

(2004), although we allow for state uncertainty.

Following Winter (2004), we assume that b is an incentive-inducing con-

tract (for the full-effort strategy profile) if (i) the full-effort strategy profile

is an equilibrium given b, and (ii) any other strategy profile is not an equi-

librium. Our goal is to identify the minimum (or the infimum) bonus that

uniquely implements the full-effort strategy profile and to study how it varies

among different information structures.

Remark. In some applications, the entity that engages in information allo-

cation (principal) may have limited ability to design b. For example, consider

research collaboration between two junior researchers (agents) working on a

joint project, and a senior researcher (principal) engages in information al-

location. In such a case, the senior researcher may not fully control b, the

prizes for successful outcomes (such as publication or future promotion). As

another example, consider multiple investors (agents) and a startup com-

pany (principal), where the startup has information concerning its potential

for success. The startup may have limited ability to control b through the

design of financial contracts. In such cases, our results can be interpreted

as providing the region of b where unique implementation is possible (given

each information structure). Our comparison of various information struc-

tures is completely valid if we say that one information structure is better

than another if and only if the region of b, where unique implementation is

13Arya, Glover, and Hughes (1997) consider a variant of a team-production model where

each agent has an option to quit, and an agent’s output can be individually observed if

the other agent quits. In this case, the authors obtain a mechanism that can approximate

the second-best outcome.
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possible in the first information structure, is larger than the region of b in

the second structure.

3 Baseline case

We first study the case where there are only two agents. In Sections 3.1, 3.2,

and 3.3, we identify the cost of uniquely implementing the full-effort strategy

profile under each information structure. Then, in Section 3.4, we examine

the optimal information structure and perform comparative statics.

3.1 No information

In the no-information scenario where neither agent is informed, the optimal

bonus contract that implements e = (1, 1) as one of the equilibria is b =
c

∆pφ(2)
. However, under this contract, not only e = (1, 1), but also other

effort choices could be an equilibrium. In fact, if i chooses ei = 0, then it

is (strictly) optimal for j to choose ej = 0 and, thus, e = (0, 0) is another

equilibrium given this contract.14

Therefore, the optimal bonus level that uniquely implements e = (1, 1)

must be strictly greater than c
∆pφ(2)

. Specifically, for e = (0, 0) to not be an

equilibrium, we must have b > c
∆pφ(1)

(> c
∆pφ(2)

) so that an agent works even

if the other agent does not work.

Now, given b > c
∆pφ(1)

, a high effort is dominant for each agent and, hence,

e = (0, 0) and any other effort choice (except for e = (1, 1)) cannot be an

equilibrium. Therefore, the optimal bonus level that uniquely implements

e = (1, 1) is c
∆pφ(1)

.15 Thus, we obtain the following.

14Note that the convexity of the success probability function, p, plays a key role in this

argument.
15To be rigorous, for e = (0, 0) not to be an equilibrium, we must set b > c

∆pφ(1)
rather

than b = c
∆pφ(1)

. For this openness issue, we follow Winter (2004) by defining the optimal

bonus level as the infimum of those that uniquely implement the desired effort level.
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Proposition 1. Under the no-information scenario, the optimal bonus is

bNI =
c

∆pφ(1)
.

3.2 Asymmetric information

We now consider the asymmetric-information scenario where only one of the

agents (for example, agent 2) is informed and the other agent (agent 1) is

not. The optimal bonus level is given in the following proposition.

Proposition 2. Under the asymmetric-information scenario, the optimal

bonus is bAI = max
{

c
∆pH(1) ,

c
∆pL(2)

, c
f∆pH(2)+(1−f)∆pL(1)

}

.

Proof. We first show the following lemma.

Lemma 1. Let b be any bonus contract such that neither (0, (0, 0)), (0, (1, 0)),

nor (1, (1, 0)) are equilibria. Then, b > b̄ = max
{

c
∆pH (1) ,

c
∆pL(2)

, c
f∆pH(2)+(1−f)∆pL(1)

}

.

Proof. First, to prevent (0, (0, 0)) from being an equilibrium, we must have

either b > c
∆pφ(1)

, b > c
∆pH(1) , or b >

c
∆pL(1)

. Because c
∆pH(1) <

c
∆pφ(1)

, c
∆pL(1)

,

we obtain b > c
∆pH(1) as its necessary condition.

Given b > c
∆pH(1) , to prevent (0, (1, 0)) from being an equilibrium, we must

have either b > c
f∆pH(2)+(1−f)∆pL(1) or b >

c
∆pL(1)

. Because c
f∆pH(2)+(1−f)∆pL(1) <

c
∆pL(1)

, we obtain b > c
f∆pH(2)+(1−f)∆pL(1) as its necessary condition.

Given b > max{ c
∆pH(1) ,

c
f∆pH(2)+(1−f)∆pL(1)}, to prevent (1, (1, 0)) from

being an equilibrium, we must have b > c
∆pL(2)

.

Note that b > b̄ is a necessary condition for uniquely implementing

the full-effort profile (1, (1, 1)). Now we show that, conversely, (1, (1, 1))

is uniquely implemented by any b such that b > b̄. First, because b > c
∆pH(1) ,

it is strictly dominant for the informed agent to make a high effort in state H .

Given this, because b > c
f∆pH(2)+(1−f)∆pL(1) , it is (iteratively) strictly dom-

inant for the uninformed agent to make a high effort. Given this, because

b > c
∆pL(2)

, it is (iteratively) strictly dominant for the informed agent to make
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a high effort even in state L. Therefore, (1, (1, 1)) is the unique strategy pro-

file that survives iterative elimination of strictly dominated strategies and,

hence, it is a unique equilibrium.

3.3 Full information

Finally, we consider the case where both of the agents are informed. In this

case, it is necessary to incentivize an agent to make a high effort in any state,

even if the other agent does not work. Therefore, the bonus must be at least
c

∆pL(1)
. Given such a bonus level, it is dominant for each agent to choose a

high effort in any state. Hence, the full-effort strategy profile becomes the

unique equilibrium. Thus, we obtain the following.

Proposition 3. Under the full-information scenario, the optimal bonus is

bFI =
c

∆pL(1)
.

3.4 Optimal information structure

In this subsection, we compare the three information structures discussed

above. Recall that bNI =
c

∆pφ(1)
is the bonus level that incentivizes an agent

to work in the average state even if the other agent does not work, whereas

bFI =
c

∆pL(1)
is the bonus level that incentivizes an agent to work in any state

even if the other agent does not work. We have bNI < bFI and, hence, the

no-information scenario is optimal compared to the full-information scenario.

Whether the no-information scenario is better than the asymmetric-information

scenario, or vice versa, depends on the parameter values .

Theorem 1. The no-information scenario is always better than the full-

information scenario. The asymmetric-information scenario is better than

the no-information scenario if and only if

∆pL(2)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

12



Proof. We only prove the second statement. If bAI = c
f∆pH(2)+(1−f)∆pL(1) ,

then the no-information scenario is never optimal because

f∆pH(2) + (1− f)∆pL(1)−∆pφ(1) = f [∆pH(2)−∆pH(1)] ≥ 0.

Similarly, if bAI =
c

∆pH(1) , then the no-information scenario is never opti-

mal because

∆pH(1)−∆pφ(1) = (1− f)[∆pH(1)−∆pL(1)] ≥ 0.

If bAI =
c

∆pL(2)
, we have bNI ≥ bAI if and only if

∆pL(2)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

The proposition shows that, first, allocating information asymmetrically

can be better than no information (and than full information). It also shows

that no information can be better than asymmetric information only if bAI =
c

∆pL(2)
. If bAI ̸= c

∆pL(2)
, bAI is the greater of c

∆pH(1) and c
f∆pH(2)+(1−f)∆pL(1) ,

but both are smaller than bNI =
c

∆pφ(1)
.

In case bAI =
c

∆pL(2)
, bAI becomes higher than bNI (i.e., the no-information

scenario becomes better) as (i) the “effort effect” on the production function

measured by ∆pL(2) − ∆pL(1) becomes smaller, and (ii) the “state effect”

measured by ∆pH(1)−∆pL(1) becomes larger (see Figure 1). This is because

(i) if the effort effect is smaller, which means that the complementarity of the

agents’ efforts in success probability is smaller, then the concern of poten-

tial coordination failure is smaller, and therefore, the benefit of asymmetric

information allocation is smaller. On the other hand, (ii) if the state effect

is larger, then it is costly to incentivize an informed agent in the low state,

and therefore, informing no agent is likely to be better.
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Figure 1: Optimal Information Structure

(pθ(x) = βex/2+θ)

4 Extensions

The basic model examined in the previous section is extended in two direc-

tions. In Section 4.1, we assume there are n agents. The main conclusion

remains similar, but we argue that with more agents, asymmetric informa-

tion tends to be better than no information, in a certain sense. The main

questions are: How many agents should be informed, and how does this opti-

mal number of informed agents vary with the parameters? In Section 4.2, we

consider a case where the agents have different effort costs. The analysis pro-

vides some insights for which agents should be informed under asymmetric

information allocation. The analysis also shows how the optimal information

structure varies with the cost difference across agents.

14



4.1 n-agent case

This subsection considers the model where a team consists of n agents. Let

bm denote the optimal bonus when m(≤ n) agents are uninformed and m−n

agents are informed.

First, we observe that under the no-information and full-information sce-

narios, the optimal bonus has a similar property as in Section 3 in that the

optimal bonus level is at exactly the level above which an agent is incen-

tivized to work even if no agent works (in the average state and in every

state, respectively).

Proposition 4. Under the no-information scenario, the optimal bonus is

bn = c
∆pφ(1)

.

Similarly, under the full-information scenario, the optimal bonus is b0 =
c

∆pL(1)
.

Next, we provide the optimal bonus under the asymmetric-information

scenario, i.e., with 1 ≤ m ≤ n− 1.

Proposition 5. Under the asymmetric-information scenario where m agents

are uninformed and n − m agents are informed, the optimal bonus is bm =

max{ c
∆pL(m+1) ,

c
f∆pH(n−m+1)+(1−f)∆pL(1) ,

c
∆pH(1)}.

Now, we consider how many agents should be informed or uninformed

among n agents. Let m∗ ∈ {0, . . . , n} denote the optimal number of unin-

formed agents (i.e., bm∗ ≤ bm for any m ̸= m∗). We provide some general

properties concerning m∗.

Theorem 2. (i) m∗ ̸= 0. (ii) bm is quasi-convex in m for m = 1, . . . , n. (iii)

The no-information scenario is optimal if and only if

∆pL(n)−∆pL(1)

∆pH(1)−∆pL(1)
≤ f.

The first statement shows that full information is never optimal. The sec-

ond statement implies that the minimizer of bm, m∗, smoothly varies with the
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parameter values. The second statement also implies that the no-information

scenario (i.e., m = 0) is optimal if and only if bm is (globally) decreasing in

m. Therefore, as a corollary of the second statement, we obtain the third

statement, which is analogous to the condition in Theorem 1 in the base

model. As the effort effect ∆pL(n) − ∆pL(1) increases relative to the state

effect ∆pH(1) − ∆pL(1), asymmetric information becomes more advanta-

geous. Notice that the effort-effect term ∆pL(n) − ∆pL(1) is increasing in

n, while the state-effect term ∆pH(1) − ∆pL(1) is not. Therefore, adding

more agents in the team (without changing the success probability function)

makes asymmetric information more likely be optimal.

4.2 Asymmetric effort cost

In this subsection, we allow the agents to have different effort costs. The

main objective of the analysis is to study which agent should be informed if

the agents have different characteristics.

We consider the same model as that of the base model in Section 2, ex-

cept that each agent i incurs cost ci for ei = 1. Assume c1 < c2, whereby

agent 1 is more “productive” than agent 2. Because of this change, under

the asymmetric-information scenario, we consider two cases separately: one

where the productive agent 1 is informed, and the other where the unpro-

ductive agent 2 is informed.

We first consider the no-information scenario.

Proposition 6. Under the no-information scenario, the optimal bonus is

bNI = max{
c1

∆pφ(1)
,

c2
∆pφ(2)

}.

As long as c1 and c2 are close to each other, we have bNI = c1
∆pφ(1)

, that

is, the condition of avoiding the low effort equilibrium binds. However, when

the cost difference becomes sufficiently large, the incentive condition for the

non-productive agent starts to bind.
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We omit the full-information case because the intuition is similar to the

no-information case.

Next, we consider the asymmetric-information scenario. An interesting

question is which agent (productive or unproductive) should be informed.

The answer depends on the parameter values. Intuitively, it is better to

inform the productive agent if the optimal bonus is determined by the in-

formed agent’s incentive conditions, and vice versa. Specifically, first assume

that c1 and c2 are close to each other. Recall that, in the base model (with

c1 = c2 = c), the optimal bonus under the asymmetric-information scenario

bAI is the greatest of c
∆pH(1) ,

c
∆pL(2)

, and c
f∆pH(2)+(1−f)∆pL(1) .

If bAI =
c

∆pH(1) or
c

∆pL(2)
, this implies that the optimal bonus is determined

by one of the incentive conditions of the informed agent. Therefore, if c1 is

(slightly) smaller than c2, it is optimal to inform the productive agent, agent

1.

If bAI =
c

f∆pH(2)+(1−f)∆pL(1) , this implies that the optimal bonus is deter-

mined by the incentive condition of the uninformed agent. Therefore, if c1
is (slightly) smaller than c2, it is optimal to inform the unproductive agent,

agent 2.

Therefore, we obtain the following result.

Proposition 7. Assume that the cost difference is sufficiently small so that
c1
c2

≥ γ∗, where γ∗ is the smaller of ∆pφ(1)
f∆pH(2)+(1−f)∆pL(1) and ∆pφ(1)

min{∆pH (1),∆pL(2)}
.

Then, under the asymmetric-information scenario, bAI is the smaller of

b1AI = max{
c1

∆pH(1)
,

c1
∆pL(2)

,
c2

f∆pH(2) + (1− f)∆pL(1)
},

where the productive agent 1 is informed, and

b2AI = max{
c2

∆pH(1)
,

c2
∆pL(2)

,
c1

f∆pH(2) + (1− f)∆pL(1)
},

where the unproductive agent 2 is informed.

When the cost difference is sufficiently large to satisfy c1
c2

< γ∗, the no-

information scenario outperforms the asymmetric-information scenario (re-

gardless of who is informed). Therefore, we do not derive the optimal bonus
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contract under asymmetric information in such a case.16 The following result

characterizes the optimal information structure.

Theorem 3. When c1
c2

< γ∗, the no-information scenario is better than the

asymmetric-information scenario.

When c1
c2

≥ γ∗,17 the no-information scenario is better than the asymmetric-

information scenario if and only if

c1
∆pφ(1)

≥ min{b1AI , b
2
AI}.

Again, when the cost difference is small, then the result is qualitatively

similar to the base case (although the expressions are more complicated),

whereas when the cost difference is large, then the potential advantage of

asymmetric information is lost and, hence, a symmetric information structure

is better.

5 Elaborate contracts

The previous sections only consider symmetric bonus contracts and deter-

ministic information allocation. Although we believe that both features are

reasonable restrictions in practice, it is theoretically interesting to investigate

whether the main results under those restrictions still hold even if they are

relaxed. The full characterization of the optimal contract and information

allocation without any restriction is beyond the scope of the paper, and we

leave this to future research.
16The intuition is roughly as follows. When the cost difference is large, the optimal bonus

becomes one whereby (regardless of who is informed) the productive agent is incentivized

to work in any state even if the unproductive agent does not work. In such a case,

however, the no-information scenario becomes better than the asymmetric-information

scenario (regardless of who is informed).
17Note that this implies c1

∆pφ(1)
≥ c2

∆pφ(2)
and, hence, the optimal bonus under the

no-information scenario is bNI = c1
∆pφ(1)

.
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5.1 Individual Bonus

In this subsection, we allow for the contracts that are not necessarily anony-

mous (which we refer to as individual bonus contracts). The main qualitative

result stays the same: informing the agents asymmetrically can be optimal in

minimizing the agency cost. However, the interaction of individual bonuses

and information allocation adds a new dimension for the analysis. For ex-

ample, we observe that asymmetric information allocation and asymmetric

bonus schemes are “(imperfect) substitutes” for the principal in the sense

that the set of parameters under which asymmetric information allocation is

optimal becomes smaller under individual bonus contracts than under sym-

metric bonus contracts. The main objective of this subsection is to provide

the intuition for this substitution effect.

An individual bonus contract is represented by a pair (b1, b2) ∈ R2
+ such

that each agent i is paid zero if y = F , and each agent is paid bi if y = S. We

aim to characterize the optimal incentive-inducing contract by minimizing

b1 + b2 among all contracts that uniquely implement the full-effort strategy

profile.

If we allow for individual-specific bonus contracts, the optimal contract

is typically asymmetric, as found by Winter (2004) in the context of team

production without the state uncertainty. In the no-information scenario and

full-information scenario in our model, the result directly applies as follows.

Proposition 8. Under the no-information scenario, the optimal bonus con-

tract is

bNI = (
c

∆pφ(2)
,

c

∆pφ(1)
) or (

c

∆pφ(1)
,

c

∆pφ(2)
).

Similarly, under the full-information scenario, the optimal bonus contract

is

bFI = (
c

∆pL(2)
,

c

∆pL(1)
) or (

c

∆pL(1)
,

c

∆pL(2)
).

To provide some intuition for the optimal bonus contract under the no-

information scenario (and a similar intuition applies to the full-information
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case), consider a bonus contract that uniquely implements e = (1, 1). To

prevent e = (0, 0) from being an equilibrium, such a contract must give
c

∆pφ(1)
to one of the agents, for example, agent 1, so that agent 1 would work

even if agent 2 does not work. As opposed to anonymous contracts, we do

not need to give c
∆pφ(1)

to both of the agents. In fact, for agent 2, we only

need to give c
∆pφ(2)

so that he would work if agent 1 works. Therefore, the

optimal contract is as given in the proposition.

In the asymmetric-information scenario, the optimal individual-bonus

contract is given as follows.

Proposition 9. Under the asymmetric-information scenario, the optimal

bonus contract bAI is the one that minimizes the total bonus payment among

(
c

∆pφ(1)
,

c

∆pL(2)
),

(
c

f∆pH(2) + (1− f)∆pL(1)
,max{

c

∆pH(1)
,

c

∆pL(2)
}), and

(
c

∆pφ(2)
,

c

∆pL(1)
).

Consider a bonus contract that uniquely implements e = (1, (1, 1)). To

prevent e = (0, (0, 0)) from being an equilibrium, such a contract must give

either (i) c
∆pφ(1)

to the uninformed agent or (ii) c
∆pH(1) to the informed agent.

In Case (i), working becomes dominant for the uninformed agent and,

hence, we must give c
∆pL(2)

to uniquely implement e = (1, (1, 1)) because,

then, the informed agent has an incentive to work in any state given that

the uninformed agent works. The total bonus in such a contract is thus
c

∆pφ(1)
+ c

∆pL(2)
.

In Case (ii), working becomes dominant for the informed agent in state

H . To prevent (0, (1, 0)) from being an equilibrium, we must give either (ii-

a) c
∆pL(1)

to the informed agent so that working becomes dominant for the

informed agent in any state, or (ii-b) c
f∆pH(2)+(1−f)∆pL(1) to the uninformed

agent so that he has an incentive to work given that the informed agent works

in state H .
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In Case (ii-a), we must give c
∆pφ(2)

to uniquely implement e = (1, (1, 1))

because, then, the uninformed agent has an incentive to work given that the

informed agent works in any state. The total bonus in such a contract is,

thus, c
∆pφ(2)

+ c
∆pL(1)

.

In Case (ii-b), we must give c
∆pL(2)

to the informed agent so that the

agent works in state L. Thus, in Case (ii-b), the bonus to the informed agent

is max{ c
∆pH(1) ,

c
∆pL(2)

} and, therefore, the total bonus in such a contract is
c

f∆pH(2)+(1−f)∆pL(1) +max{ c
∆pH(1) ,

c
∆pL(2)

}.

Now, we compare the three information structures.

Theorem 4. The no-information scenario is better than the full-information

scenario. The asymmetric-information scenario is better than the no-information

scenario if and only if

1

∆pφ(2)
+

1

∆pφ(1)
≥

1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
.

As in the anonymous-contract case, the no-information scenario is better

than the asymmetric-information scenario when (i) the effort effect, measured

by ∆pθ(2) −∆pθ(1), θ = H,L, is sufficiently small (so that the concern for

potential coordination failure is small) and (ii) the state effect, measured by

∆pH(x) − ∆pL(x), x = 1, 2, is sufficiently large (so that the incentive cost

for an informed agent is large).

However, with individual contracts, the no-information scenario is bet-

ter in the opposite case as well, that is, when (i) the effort effect is suffi-

ciently large and (ii) the state effect is sufficiently small (see Figure 2). The

main reason for this difference is that, with individual contracts, we can save

the implementation cost by making the bonus payment asymmetric. When

the effort effect is large and the state effect is small, the amount of this

cost saving is more significant under the no-information scenario than under

the asymmetric-information scenario, which makes the total bonus payment

smaller under the no-information scenario.

To see this more formally, recall that, with anonymous contracts, the op-

timal bonus level under the no-information scenario is c
∆pφ(1)

, whereas under
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Figure 2: Optimal Information Structure

(pθ(x) = βex/2+θ)

the asymmetric-information scenario, the optimal bonus level is max{ c
f∆pH(2)+(1−f)∆pL(1) ,

c
∆pH(1) ,

c
∆pL(2)

Thus, the difference of the two terms converges to zero as the state effect goes

to zero, that is, as ∆pH(x)−∆pL(x) goes to zero for each x = 1, 2. Now, if

individual contracts are allowed, then, under the no-information scenario, we

can save the total bonus payment compared to the anonymous-bonus case

by

2
c

∆pφ(1)
− (

c

∆pφ(1)
+

c

∆pφ(2)
) =

c

∆pφ(1)
−

c

∆pφ(2)
> 0,

which does not vanish even if the state effect goes to zero (and it is larger

when the effort effect is larger). On the other hand, under the asymmetric-

information scenario, we can save the total bonus payment compared to the

anonymous-bonus case by

2max{
c

f∆pH(2) + (1− f)∆pL(1)
,

c

∆pH(1)
,

c

∆pL(2)
}

−
c

f∆pH(2) + (1− f)∆pL(1)
−max{

c

∆pH(1)
,

c

∆pL(2)
},
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which converges to zero as the state effect goes to zero. Therefore, when the

state effect is sufficiently small and the effort effect is sufficiently large, the

no-information scenario becomes better.

5.2 Stochastic information allocation

In the previous sections, only “deterministic” information allocation is con-

sidered, that is, each agent is either perfectly informed of θ or not informed at

all. However, at least theoretically, we can consider more general “stochastic”

information allocations.

The complete characterization of the optimal stochastic information al-

location is beyond the scope of this paper.18 Instead, this subsection shows

two partial characterization results. First, as soon as stochastic informa-

tion allocation is allowed, the no-information scenario (in fact, any (possibly

stochastic) “symmetric” information allocation) becomes suboptimal for any

parameter values. Therefore, the optimal information allocation is neces-

sarily asymmetric. Second, under certain parameter values, deterministic

asymmetric information allocation (as in Section 3) is optimal, even if arbi-

trary stochastic information allocation is allowed.

In the two-agent setting considered in Section 3, a stochastic informa-

tion allocation is denoted by (S1, S2, µ) where Si is an arbitrary finite set for

i = 1, 2 and denotes the set of the signals agent i receives (before choosing

his effort level), and µ : Θ → ∆(S1 × S2) is such that, for each θ ∈ Θ and

(s1, s2) ∈ S1 × S2, µ(s1, s2|θ) represents the probability that each agent i

receives signal si when the state is θ. and µ is a joint probability distribu-

tion over Θ× S1 × S2. In the most general setting, the principal can choose

18A potential challenge for the complete characterization is that the standard technique

in the Bayesian persuasion literature (e.g., Kamenica and Gentzkow (2011)) is not directly

applicable. Some results in Bayesian persuasion crucially depend on the assumption that

receivers (agents) play the best equilibrium with respect to the sender (principal) if there

are multiple equilibria, whereas in our paper the key driving force for optimal information

allocation is the concern that the agents may play a “bad” equilibrium if there are multiple

equilibria.
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an arbitrary Si for each i and arbitrary µ under the feasibility constraint

that the marginal of µ over Θ coincides with the common prior. As spe-

cial cases, the deterministic allocations considered in the previous sections

are in this class. For example, the no-information scheme is identified by

a singleton Si = {∅} for every i, and µ coincides with the common prior.

(Deterministic) asymmetric information is identified by S1 = {∅}, S2 = Θ,

µ(∅, H|H) = µ(∅, L|L) = 1. However, in general, more complicated informa-

tion allocations are allowed here.

Agent i’s strategy is given by ei : Si → {0, 1}, and the full-effort strategy

profile is e = (e1, e2) such that ei(si) = 1 for all i, si.

Given a (symmetric) bonus contract b ∈ R+, a strategy profile e is a

(pure-strategy Bayesian) equilibrium if, for each i, si ∈ Si and ei ∈ {0, 1},

E[ui(ei(si), e−i(s−i), θ; b)|si] ≥ E[ui(ei, e−i(s−i), θ; b)|si],

where E[·|si] represents the conditional (on si) expected-value operator with

respect to s−i and θ induced by µ. We say that b uniquely implements

the full-effort strategy profile if the full-effort strategy profile is the unique

equilibrium given b.

First, as soon as stochastic information allocation is allowed, any sym-

metric information allocation (including no information as a special case)

becomes suboptimal for any parameter values. We say that (S1, S2, µ) is sym-

metric if (i) S1 = S2 and (ii) s1 ̸= s2 implies µ(s1, s2|H) = µ(s1, s2|L) = 0.

That is, the agents do not have asymmetric information in such an informa-

tion allocation rule. The following result implies that the optimal information

structure is necessarily asymmetric among the class of stochastic information

allocation.

Theorem 5. There exist sn (asymmetric) stochastic information allocation

that is strictly better than any symmetric information allocation.

Next, under certain parameter values, deterministic asymmetric infor-

mation allocation (as in Section 3) is optimal, even if arbitrary stochastic

information allocation is allowed.
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Theorem 6. If ∆pH(1) < ∆pL(2) and ∆pH(1) < f∆pH(2) + (1 − f)pL(1),

then (deterministic) asymmetric information allocation is optimal.

Note that under the conditions in the statement, bAI =
c

∆pH(1) . The con-

ditions are satisfied if the effort effect is sufficiently large, that is, when the

concern for potential coordination failure is large. In this case, we have shown

in Section 3 that asymmetric information is better than no information (and

full information). The result is strengthened because asymmetric informa-

tion is proven to be better than any other, possibly stochastic, information

allocation.

To provide some intuition, suppose, contrarily, that there exists a stochas-

tic information allocation (S1, S2, µ) with a strictly smaller bonus b < bAI

that uniquely implements the full-effort profile. As a necessary condition for

this unique implementation, there must exist some agent i and some signal

si ∈ Si such that, even if the other agent works with probability zero, an

agent still prefers to work. Therefore,

b(qpH(1) + (1− q)pL(1))− c ≥ b(qpL(0) + (1− q)pL(0)),

where q is the conditional probability that the state is H given i observes si.

Or equivalently,

b ≥
c

q∆pH(1) + (1− q)∆pL(1)
.

Note that the right-hand side is decreasing in q and coincides with bAI

when q = 1. This contradicts b < bAI . Therefore, we conclude that there is no

stochastic information allocation that is strictly better than the deterministic

asymmetric information allocation.

6 Conclusion

This paper considers a team-production model with state uncertainty. When

the principal’s goal is to uniquely implement desired effort choices, we show
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that, under certain conditions, asymmetrically informing the agents is the

optimal information allocation. The main intuition is that by allocating

information asymmetrically, it becomes less costly to avoid badly coordinated

equilibria. As the degree of effort complementarity (called the effort effect in

this paper) increases, asymmetric information allocation tends to improve.

On the other hand, informing an agent is always costly in the sense that

this agent must be incentivized even in a low state. As the state effect on

the success probability function increases, asymmetric information allocation

tends to worsen. Therefore, the optimal information allocation is determined

by the relative magnitude of the two effects.

While we show the robustness of this main intuition in a number of exten-

sions and generalizations, further research is necessary for a more compre-

hensive understanding of desirable information allocation in organizations.

We believe that the analysis in this paper can serve as a useful benchmark

for future research.

A Proof of Proposition 4

Let b represent any bonus contract such that (0, . . . , 0) is not an equilibrium.

Then, we have b > c
∆pφ(1)

. Note that this is a necessary condition for uniquely

implementing the full-effort profile (1, . . . , 1).

Conversely, given any b such that b > c
∆pφ(1)

, it is strictly dominant for

each agent to make a high effort. Therefore, the full-effort profile is the

unique equilibrium.

B Proof of Proposition 5

Let (eU , (eIH, eIL)) represent a strategy profile such that all the uninformed

agents play eU , and all the informed agents play eIH in state H and play eIL

in state L. We first show the following lemma.
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Lemma 2. Let b be any bonus contract such that neither (0, (0, 0)), (0, (1, 0)),

nor (1, (1, 0)) are equilibria. Then, b > b̂ = max{ c
∆pL(m+1) ,

c
f∆pH(n−m+1)+(1−f)∆pL(1) ,

c
∆pH(1)}.

Proof. First, to prevent (0, (0, 0)) from being an equilibrium, we must have

either b > c
∆pφ(1)

, b > c
∆pH(1) , or b >

c
∆pL(1)

. Because c
∆pH(1) <

c
∆pφ(1)

, c
∆pL(1)

,

we obtain b > c
∆pH(1) as its necessary condition.

Given b > c
∆pH(1) , to prevent (0, (1, 0)) from being an equilibrium, we must

have either b > c
f∆pH(n−m+1)+(1−f)∆pL(1) or b >

c
∆pL(1)

. Because c
f∆pH(n−m+1)+(1−f)∆pL(1) <

c
∆pL(1)

, we obtain b > c
f∆pH(n−m+1)+(1−f)∆pL(1) as its necessary condition.

Given b > max{ c
∆pH(1) ,

c
f∆pH(n−m+1)+(1−f)∆pL(1)}, to prevent (1, (1, 0))

from being an equilibrium, we must have b > c
∆pL(m+1) .

Note that b > b̄ is a necessary condition for uniquely implementing

the full-effort profile (1, (1, 1)). Now, we show that, conversely, (1, (1, 1))

is uniquely implemented by any b such that b > b̄. First, because b > c
∆pH(1) ,

it is strictly dominant for each informed agent to make a high effort in state

H . Given this, because b > c
f∆pH(n−m+1)+(1−f)∆pL(1) , it is (iteratively) strictly

dominant for each uninformed agent to make a high effort. Given this, be-

cause b > c
∆pL(m+1) , it is (iteratively) strictly dominant for each informed

agent to make a high effort even in state L. Therefore, (1, (1, 1)) is the

unique strategy profile that survives iterative elimination of strictly domi-

nated strategies and, hence, it is a unique equilibrium.

C Proof of Theorem 2

The statement (i) is trivial. For the statement (ii), recall first that, for

m = 1, . . . , n−1, bm = max{ c
∆pL(m+1) ,

c
f∆pH(n−m+1)+(1−f)∆pL(1) ,

c
∆pH(1)}. Asm

increases, c
∆pL(m+1) decreases, c

f∆pH(n−m+1)+(1−f)∆pL(1) increases, and c
∆pH (1)

stays constant. Therefore, bm is quasi-convex in m for m = 1, . . . , n− 1.

For the statement (iii), observe first that, for any m = 1, . . . , n − 1, we

have bn > c
∆pH(1) and bn > c

f∆pH(n−m+1)+(1−f)∆pL(1) . Therefore, we have

bn < bm if and only if bn < c
∆pL(m+1) . Because c

∆pL(m+1) is decreasing in m,
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we have bn < bm for all m > 1 if and only if bn < bn−1, or equivalently,

c

∆pφ(1)
<

c

∆pL(n)
,

and hence we obtain the inequality as in the statement.

D Proof of Proposition 6

First, for e = (0, 0) not to be an equilibrium, we must have b > ci
∆pφ(1)

at

least for some i so that the agent will make a high effort even if the other

agent does not. Given c1 < c2, we obtain b > c1
∆pφ(1)

.

Also, for e = (1, 1) to be an equilibrium, we must have b ≥ maxi
ci

∆pφ(2)
.

Given c1 < c2, we obtain b ≥ c2
∆pφ(2)

. Therefore, we obtain b > bNI as a

necessary condition for uniquely implementing e = (1, 1).

Conversely, b > bNI is also sufficient for unique implementation. First,

e1 = 1 is strictly dominant for agent 1 because b > c1
∆pφ(1)

. Given this, e2 = 1

is (iteratively) strictly dominant for agent 2 because b > c2
∆pφ(2)

.

E Proof of Proposition 7

We only consider the case with 1
f∆pH(2)+(1−f)∆pL(1) ≥ max{ 1

∆pH(1) ,
1

∆pL(2)
}.

The other case with 1
f∆pH(2)+(1−f)∆pL(1) < max{ 1

∆pH(1) ,
1

∆pL(2)
} is similar and,

hence, the proof is omitted.

We have

b1AI =
c2

f∆pH(2) + (1− f)∆pL(1)
≥ b2AI .

As in the base case in Section 3, if b > b2AI , then the full-effort strategy

profile is the unique equilibrium when agent 2 is informed: first, it is strictly

dominant for (informed) agent 2 to make a high effort in the high state,

even if agent 1 does not work; given this, a high effort is (iteratively) strictly

dominant for (uninformed) agent 1; given this, a high effort in any state is

(iteratively) strictly dominant for agent 2.
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Conversely, b > b2AI is also necessary to uniquely implement the full-effort

strategy profile when agent 2 is informed. First, to prevent e = (0, (0, 0))

from being an equilibrium, the least costly way is to incentivize (informed)

agent 2 in the high state as long as c1
∆pφ(1)

≥ c2
∆pH(1) . This last inequality is

satisfied because c1
c2

≥ γ∗ = max{ ∆pφ(1)
∆pH(1) ,

∆pφ(1)
∆pL(2)

}. Therefore, we must have

b > c2
∆pH(1) .

Second, to prevent e = (0, (1, 0)) from being an equilibrium, the least

costly way is to incentivize (uninformed) agent 1. Therefore, we must have

b > c1
f∆pH (2)+(1−f)∆pL(1) .

Finally, to prevent e = (1, (1, 0)) from being an equilibrium, agent 2

must be incentivized in the low state. Therefore, b > c2
∆pL(2)

. These three

inequalities amount to b > b2AI .

F Proof of Theorem 3

The case with c1
c2

≥ γ∗ is straightforward and, hence, we omit the proof.

Therefore, in the following, we assume c1
c2

< γ∗.

Moreover, we only consider the case with 1
f∆pH(2)+(1−f)∆pL(1) ≥ max{ 1

∆pH(1) ,
1

∆pL(2)
},

which implies c1
c2

< γ∗ = max{ ∆pφ(1)
∆pH(1) ,

∆pφ(1)
∆pL(2)

}. The other case is similar and,

hence, the proof for that case is omitted.

Lemma 3. Whenever agent 1 is informed, any bonus contract b that uniquely

implements the full-effort strategy profile e = ((1, 1), 1) must satisfy b >

bNI = max{ c1
∆pφ(1)

, c2
∆pφ(2)

}, and, therefore, the no-information scenario is

better than informing agent 1.

Proof. (of the lemma) First, we consider the case with c1
∆pL(1)

≥ c2
f∆pH(2)+(1−f)∆pL(1) .

In this case, to prevent e = ((1, 0), 0) from being an equilibrium, the

least costly way is to incentivize agent 2 by setting b > c2
f∆pH(2)+(1−f)∆pL(1) .

As in the base case, to prevent e = ((0, 0), 0) and e = ((1, 0), 1) from

being equilibria, the least costly way is to incentivize agent 1 by setting
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b > max{ c1
∆pH(1) ,

c1
∆pL(2)

}. These inequalities imply

b > b1AI

=
c2

f∆pH(2) + (1− f)∆pL(1)

> max{
c2

∆pH(1)
,

c2
∆pL(2)

},

where the equality and the last inequality is because of our current assump-

tion that 1
f∆pH(2)+(1−f)∆pL(1) ≥ max{ 1

∆pH(1) ,
1

∆pL(2)
}. This immediately im-

plies b > c2
∆pφ(2)

and, moreover, together with c1
c2

< γ∗, implies b > c1
∆pφ(1)

.

Therefore, we have b > max{ c2
∆pφ(2)

, c1
∆pφ(1)

} = bNI .

Next, we consider the opposite case with c1
∆pL(1)

< c2
f∆pH(2)+(1−f)∆pL(1) .

In this case, to prevent e = ((1, 0), 0) from being an equilibrium, the least

costly way is to incentivize agent 1 in the low state by setting b > c1
∆pL(1)

. To

prevent e = ((1, 1), 0) from being an equilibrium, we must have b > c2
∆pφ(2)

.

These two inequalities imply b > max{ c2
∆pφ(2)

, c1
∆pφ(1)

} = bNI .

Lemma 4. Whenever agent 2 is informed, any bonus contract b that uniquely

implements the full-effort strategy profile e = (1, (1, 1)) must satisfy b >

bNI = max{ c1
∆pφ(1)

, c2
∆pφ(2)

}, and, therefore, the no-information scenario is

better than informing agent 2.

Proof. (of the lemma)

To prevent e = (1, (1, 0)) from being an equilibrium, we must have b >
c2

∆pL(2)
.

First, we consider the case with 1
∆pH(1) <

1
∆pL(2)

(hence, γ∗ = ∆pφ(1)
∆pL(2)

). In

this case, c1
c2

< γ∗ implies c2
∆pL(2)

> c1
∆pφ(1)

. Therefore, b > c2
∆pL(2)

directly

implies b > max{ c1
∆pφ(1)

, c2
∆pφ(2)

} = bNI .

Second, we consider the case with 1
∆pH(1) ≥

1
∆pL(2)

(hence, γ∗ = ∆pφ(1)
∆pH(1) ).

Because b > c2
∆pL(2)

implies b > c2
∆pφ(2)

, it suffices to show b > c1
∆pφ(1)

. To

show this, note that c1
c2

< γ∗ implies c1
∆pφ(1)

< c2
∆pH(1) . Therefore, to prevent

e = (0, (0, 0)) from being an equilibrium, the least costly way is to incentivize

agent 1 by setting b > c1
∆pφ(1)

, which is our desired inequality.
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G Proof of Proposition 8

We first show the following lemma.

Lemma 5. Let b be any bonus contract such that neither (0, 0), (1, 0), nor

(0, 1) are equilibria. Then, either (i) b1 > c
∆pφ(1)

and b2 > c
∆pφ(2)

, or (ii)

b1 >
c

∆pφ(2)
and b2 >

c
∆pφ(1)

.

Proof. Let b be any bonus contract such that (0, 0) are not equilibria. Then,

we must have bi >
c

∆pφ(1)
for some agent i. Given any b = (bi, bj) such that

bi >
c

∆pφ(1)
, to prevent e = (ei, ej) = (1, 0) from being an equilibrium, we

must have bi >
c

∆pφ(1)
for j ̸= i.

Note that this is a necessary condition for uniquely implementing the

full-effort profile (1, 1). Conversely, consider any b such that b1 >
c

∆pφ(1)
and

b2 > c
∆pφ(2)

. First, it is strictly dominant for agent 1 to make a high effort.

Then, given this, it is (iteratively) strictly dominant for agent 2 to make a

high effort. Therefore, the full-effort profile is the unique equilibrium. The

case where b satisfies b1 > c
∆pφ(2)

and b2 > c
∆pφ(1)

is analogous, and so we

omit this case.

H Proof of Proposition 9

We first show the following lemma.

Lemma 6. Let b be any bonus contract such that neither (0, (0, 0)), (0, (1, 0)),

(1, (1, 0)), nor (0, (1, 1)) are equilibria. Then, either (I) b1 > c
∆pφ(1)

and

b2 > c
∆pL(2)

, (II) b1 > c
f∆pH(2)+(1−f)∆pL(1) and b2 > max{ c

∆pH(1) ,
c

∆pL(2)
}, or

(III) b1 >
c

∆pφ(2)
and b2 >

c
∆pL(1)

.

Proof. For any b such that (0, (0, 0)) is not an equilibrium, we must have

either (i) b1 >
c

∆pφ(1)
, or (ii) b2 >

c
∆pH(1) .

First, consider any b such that b1 > c
∆pφ(1)

. To prevent (1, (1, 0)) from

being an equilibrium, we must have b2 >
c

∆pL(2)
. Hence, we obtain Case (I).
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Second, consider any b such that b2 >
c

∆pH(1) . To prevent (0, (1, 0)) from

being an equilibrium, we must have either (ii-a) b1 > c
f∆pH (2)+(1−f)∆pL(1) or

(ii-b) b2 >
c

∆pL(1)
.

Consider any b such that b2 > c
∆pH(1) and b1 > c

f∆pH(2)+(1−f)∆pL(1) . To

prevent (1, (1, 0)) from being an equilibrium, we must have b2 > c
∆pL(2)

.

Hence, we obtain Case (II).

Finally, consider any b such that (b2 >
c

∆pH(1) and) b2 >
c

∆pL(1)
. To prevent

(0, (1, 1)) from being an equilibrium, we must have b1 > c
∆pφ(2)

. Hence, we

obtain Case (III).

Note that this is a necessary condition for uniquely implementing the

full-effort profile (1, 1).

We now show that the converse is true. First, consider any b such that

b1 >
c

∆pφ(1)
and b2 >

c
∆pL(2)

. It is strictly dominant for the uninformed agent

to make a high effort. Given this, it is (iteratively) strictly dominant for the

informed agent to make a high effort for any state. Therefore, (1, (1, 1)) is a

unique equilibrium.

Second, consider any b such that b1 > c
f∆pH(2)+(1−f)∆pL(1) and b2 >

max{ c
∆pH(1) ,

c
∆pL(2)

}. Because b2 > c
∆pH(1) , it is strictly dominant for the

informed agent to make a high effort in state H . Given this, it is (iter-

atively) strictly dominant for the uninformed agent to make a high effort.

Given this, because b2 > c
∆pL(2)

, it is (iteratively) strictly dominant for the

informed agent to make a high effort in state L. Therefore, (1, (1, 1)) is a

unique equilibrium.

Third, consider any b such that b1 >
c

∆pφ(2)
and b2 >

c
∆pL(1)

. It is strictly

dominant for the informed agent to make a high effort in any state. Given

this, it is (iteratively) strictly dominant for the uninformed agent to make a

high effort. Therefore, (1, (1, 1)) is a unique equilibrium.
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I Proof of Theorem 4

The first statement is trivial, hence, we omit its proof. To prove the second

statement, first, assume

1

∆pφ(2)
+

1

∆pφ(1)
≥

1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
.

Then,

b1,AI + b2,AI ≤
c

f∆pH(2) + (1− f)∆pL(1)
+

c

min{∆pL(2),∆pH(1)}

≤
c

∆pφ(2)
+

c

∆pφ(1)
= b1,NI + b2,NI .

Conversely, assume

1

∆pφ(2)
+

1

∆pφ(1)
<

1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
.

If bAI = ( c
f∆pH(2)+(1−f)∆pL(1) ,max{ c

∆pH(1) ,
c

∆pL(2)
}), then the no-information

scenario is better.

If bAI = ( c
∆pφ(1)

, c
∆pL(2)

), then the no-information scenario is better be-

cause

(b1,AI + b2,AI − (b1,NI + b1,NI) =
f(∆pH(2)−∆pL(2))

∆pφ(2)∆pL(2)
≥ 0.

Finally, if bAI = ( c
∆pφ(2)

, c
∆pL(1)

), then the no-information scenario is better

because

(b1,AI + b2,AI)− (b1,NI + b2,NI) =
f(∆pH(1)−∆pL(1))

∆pφ(1)∆pL(1)
≥ 0.

J Proof of Theorem 5

The proof is composed of two steps. First, we show that the no-information

scenario is better than any (possibly stochastic) symmetric information al-

location. Next, we show that there is a stochastic (asymmetric) information

allocation that is strictly better than the no-information scenario.
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Lemma 7. Let b < bNI =
c

∆pφ(1)
. Given the bonus contract b and any sym-

metric information allocation (S, S, µ), there exists a Bayesian equilibrium

e = ((e1(s1))s1∈S, (e2(s2))s2∈S), s ∈ S and θ such that (i) e1(s) = e2(s) = 0

and (ii) µ(s, s, θ) > 0 (i.e., unique implementation is not achieved).

Proof. Suppose not. Without loss of generality, we assume that for each s,

there is some θ such that µ(s, s, θ) > 0. Then, for any s ∈ S, we have

b
fµ(s, s|H)pH(1) + (1− f)µ(s, s|L)pL(1)

fµ(s, s|H) + (1− f)µ(s, s|L)
− c ≥ b

fµ(s, s|H)pH(0) + (1− f)µ(s, s|L)pL(0)

fµ(s, s|H) + (1− f)µ(s, s|L)
,

or equivalently,

b(fµ(s, s|H)∆pH(1) + (1− f)µ(s, s|L)∆pL(1)) > c(fµ(s, s|H) + (1− f)µ(s, s|L)).

Summing up each side across all s, because
∑

s µ(s, s|H) =
∑

s µ(s, s|L) =

1, we have

b(f∆pH(1) + (1− f)∆pL(1)) > c,

or equivalently, b > c
∆pH(1) = bNI , which contradicts b < bNI .

Lemma 8. There exists a stochastic information allocation (S1, S2, µ) that

is strictly better than the no-information scenario.

Proof. Recall that under the no-information scenario, the optimal bonus

is bNI = c
∆pφ(1)

. We now construct a stochastic information allocation

(S1, S2, µ) that achieves a strictly lower bonus level.

Let ε ∈ (0, 1). Define S1 = {∅}, S2 = {Leak,Not}, µ(∅, Leak|H) = ε,

µ(∅, Not|H) = f(1 − ε), and µ(∅, Not|L) = 1 − f . The idea is that agent 2

would be informed (“leaked”) with some probability ε if the state is H .

Let b∗ denote the optimal bonus under this (S1, S2, µ). First, to prevent

e = (0, (0, 0)) from being an equilibrium, b∗ must be at least as high as

c

∆pH(1)
(< bNI),
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so that agent 2, given the leak, has an incentive to work even if agent 1 does

not work. Next, to prevent e = (0, (1, 0)) from being an equilibrium, b∗ must

be at least as high as

c

fε∆pH(2) + f(1− ε)∆pH(1) + (1− f)∆pL(2)
(< bNI),

so that agent 1 has an incentive to work if agent 2 works at least when the

leak occurs. Finally, to prevent e = (1, (1, 0)) from being an equilibrium, b∗

must be at least as high as

c
f(1−ε)
1−fε ∆pH(2)−

1−f
1−fε∆pL(2)

,

so that agent 2 without the leak has an incentive to work if agent 1 definitely

works. Observe that when ε = 0, this reduces to c
∆pφ(2)

(< bNI). Therefore,

by continuity, there exists some ε∗ > 0 such that, for any ε ∈ (0, ε∗),

c
f(1−ε)
1−fε ∆pH(2)−

1−f
1−fε∆pL(2)

< bNI .

We fix one such ε in the following.

Conversely, as in the deterministic asymmetric information allocation, as

long as b∗ is higher than any of these three terms, the full-effort strategy

profile is the only equilibrium outcome (obtained by iterative elimination of

dominated strategies). Therefore, we conclude b∗ < bNI .

K Proof of Theorem 6

Suppose that under information allocation (S1, S2, µ), bonus b uniquely im-

plements the full-effort strategy profile. Then, because the “no effort” strat-

egy profile e0 = (e01, e
0
2) (i.e., e0i (si) = 0 for all i, si) is not an equilibrium,

there exists some i and si such that agent i has an incentive to work even if

the other agent works with probability zero. Hence,

b(hpH(2) + (1− h)pL(2))− c ≥ b(hpH(1) + (1− h)pL(1)),
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where h is agent i’s conditional belief on θ = H given the signal si. Because

h ≤ 1, this implies that b ≥ c
∆pH(1) .

Recall that under the deterministic asymmetric-information allocation,

the optimal bonus level that uniquely implements the full-effort strategy pro-

file is bAI = max{ c
∆pH(1) ,

c
∆pL(2)

, c
f∆pH (2)+(1−f)pL(1)}, which reduces to bAI =

c
∆pH(1) by the assumption in the statement. This implies that the deter-

ministic asymmetric-information allocation is optimal among all stochastic

information allocations.
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