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Abstract

This paper proposes monitoring tests for parameter change in linear regression models
with endogenous regressors. We consider a CUSUM-type test based on the instrumen-
tal variable (IV) estimation, as the IV method is standard for models with endogenous
regressors. In addition, we propose a test based on the residuals from the least squares
(LS) estimation. We show that for a given boundary function, both tests have the same
limiting distribution under the null hypothesis, whereas their powers are different. In
particular, when a structural change occurs early in a monitoring period, the test based
on the LS method tends to detect it more rapidly than that based on the IV method.
We apply our methods to investigate the Japanese Phillips curve and show that the LS
based test performs well to detect a change in 2007, while neither test finds evidence of
a change after 2013.
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1. Introduction

This paper investigates monitoring tests for structural change in models with endogenous

regressors. Although tests for structural change have been an important issue in the time

series literature, with many tests for structural change proposed, there is interest in moni-

toring parameter stability every time we update data with the stable in-sample or training

period. For example, against the background of the Bank of Japan introducing its 2% in-

flation target in January 2013, we would like to check whether the inflation rate is really

starting to increase. In this case, as pointed out by Chu, Stinchcombe, and While (1996), it

is well known that the repeated use of in-sample structural change tests, which are sometimes

called retrospective tests, is invalid because the size of tests cannot be controlled.

In the econometric literature, Chu, Stinchcombe, and White (1996) considered monitoring

tests in linear regression models using the CUSUM and fluctuation tests, and Leisch, Hornik,

and Kuan (2000) further developed tests using recursive and moving estimates. In general,

the performance of these tests depends not only on the test statistics themselves but also on

the boundary functions, and several versions of the tests and boundary functions have been

investigated by Zeileis (2005) and Zeileis, Leisch, Kleiber, and Hornik (2005), among others.

Horváth, Hušková, Kokoszka, and Steinebach (2004, hereafter HHKS) considered CUSUM

monitoring tests with a boundary function depending on some parameter γ ∈ [0, 1/2). They

found by simulations that the test with smaller γ is suitable for the break that occurs relatively

long after the monitoring period, while the test with larger γ is good at detecting early

change. This property is confirmed theoretically by deriving the limiting distribution of the

stopping time in Aue and Horváth (2004) and Aue, Horváth, and Reimherr (2009). Tests with

γ = 1/2 were also considered by Horváth, Kokoszka, and Steinebach (2007), Aue, Horváth,

Kokoszka, and Steinebach (2008), and Aue and Kühn (2008). Monitoring tests have further

been developed for models other than linear regressions, such as the autoregressive models

of Carsoule and Franses (2003) and Lee, Lee, and Na (2009), GARCH models or GARCH

errors of Berkes, Gombay, Horváth, and Kokoszka (2004) and Aue, Horváth, Hušková, and

Kokoszka (2006), generalized linear models of Xia, Guo, and Zhao (2009), linear models with

endogenous regressors of Xia, Guo, and Zhao (2011), change in autocorrelation functions
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of Na, Lee, and Lee (2011), multivariate models of Groen, Kapetanios, and Price (2013),

dependent functional linear models of Aue, Hörmann, Horváth, and Hušková (2014), and

causal time series of Bardet and Kengne (2014).

All the research above, except for Xia, Guo, and Zhao (2011), is based on the assumption

that regressors are exogenous. However, econometric models include endogenous regressors

in many empirical analyses, and therefore we need to develop monitoring tests for such

models. Although Xia, Guo, and Zhao (2009) considered simultaneous equation models and

proposed the weighted CUSUM-type monitoring test based on the GMM estimation, it is

not necessarily easy to find the appropriate instrumental variables (IVs), which prevents the

monitoring scheme from working in practice.

In this paper, we consider linear regression models with endogenous regressors and in-

vestigate CUSUM-based monitoring tests. As a benchmark, we first consider the test with

the IV estimation. In addition, we propose a monitoring test with the least squares (LS)

method regardless of endogenous regressors, as considered by Perron and Yamamoto (2015).

The key feature of the LS estimation is that although the LS estimator of the coefficient is

biased, it consistently estimates some biased parameters; thus, the forecast errors using the

LS estimator behave like a zero-mean process before the break. In addition, because the level

of the forecast errors changes after the break, the structural break can be detected even using

the LS estimator. The advantage of using the LS method is that we do not have to find

appropriate IVs. Moreover, the estimation residuals based on the LS method have smaller

variance than those based on the IV method and thus we can expect the monitoring test

with the LS method to be more powerful and able to detect the break earlier. In fact, this

property is theoretically confirmed in Section 3. By using monitoring tests, we investigate

the Japanese Phillips curve and find that the CUSUM-based test with the LS method is

good at detecting a structural change. However, we find no evidence of a change after the

introduction of the 2% inflation target by the Bank of Japan.

The rest of the paper is organized as follows. The model and assumptions are introduced in

Section 2. The CUSUM-based monitoring tests with the IV and LS methods are investigated

in Section 3. We show that they have the same limiting distribution as derived in HHKS.
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In addition, we derive the limiting distributions of the stopping times and show that the

delay time based on the LS estimation is shorter than that based on the IV method. The

finite sample property is investigated via Monte Carlo simulations in Section 4. The tests

developed in this paper are implemented to the Japanese Phillips curve in Section 5. Section

6 provides concluding remarks.

2. Model and Assumptions

Let us consider the following linear model:

yt = x′tβt + ut for t = 1, 2, · · · ,m,m+ 1, · · · (1)

where yt and ut are scalar and xt := [x1t, x2t, · · · , xpt]′ is a p-dimensional regressor with

x1t = 1, meaning that the first element of the regressors is constant. We suppose that

the parameter βt := [β1t, β2t, · · · , βpt]′ is constant for t = 1, · · · ,m meaning that βt = β0 :=

[β10, β20, · · · , βp0]′ for t = 1, · · · ,m. We want to test for stability in βt for t = m+1,m+2, · · ·
every time we update data. Then, the testing problem is

H0 : βt = β0 ∀t ≥ m+ 1 vs. H1 :

{
βt = β0 : t = m+ 1, · · · ,m+ k∗ − 1
βt = β∗ : t = m+ k∗,m+ k∗ + 1, · · · (2)

for some k∗ ≥ 1, where β∗ �= β0. Note that the sample period for t = 1, · · · ,m is sometimes

called a training period or in-sample period.

Since xt is assumed to be stationary in the following assumption, model (1) can be ex-

pressed by using the demeaned regressor such that

yt = x̃′tβ̃t + ut, (3)

where x̃t := [1, x̃2t, · · · , x̃pt]′ with x̃jt := xjt − μxj and μxj := E[xjt] for j = 2, · · · , p and

β̃t := [β̃1t, β2t, · · · , βpt]′ with β̃1t := β1t + μx2β2t + · · ·+ μxpβpt. By using model (3), β̃t = β̃0

under the null hypothesis, whereas it changes to β̃∗ at some k∗ ≥ 1 under the alternative,

where β̃0 and β̃∗ are defined following the definition of β̃t with β̃10 := β10 + μx2β20 + · · · +
μxpβp0 and β̃1∗ := β1∗ + μx2β2∗ + · · · + μxpβp∗, respectively. In model (3), we can see that

β̃0− β̃∗ = [β̃10− β̃1∗, 0, · · · , 0]′ and as shown in a later section, the power of the test increases

as δβ := β̃10 − β̃1∗ rises in absolute values.

For model (1) or (3), we make the following common assumption:
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Assumption CA (a) E[ut] = 0 and the following relations hold for some ν > 2:

sup
r≥1/m

1

(mr)1/ν

∣∣∣∣∣
m+mr∑
t=m+1

ut − σuW1,m(mr)

∣∣∣∣∣ = Op(1), (4)

m∑
t=1

ut − σuW2,m(m) = op(m
1/ν), (5)

where {W1,m(r)} and {W2,m(r)} are sequences of Brownian motions and are independent.

(b) x2t, · · · , xpt are stationary with Σxx := E[x̃tx̃
′
t] > 0, E[|x̃jt|μ] < ∞ for some μ > 2

(j = 2, · · · , p) and
∣∣ 1
m

∑m
t=1 x̃tx̃

′
t − Σxx

∣∣ = O(m−τ ) a.s.

(c) σxu := E[x̃tut] is not necessarily equal to zero.

The conditions in which (4) and (5) hold are discussed in Section 2 of Aue and Horváth

(2004). According to their examples, (4) and (5) hold for not only an i.i.d. sequence but

also a dependent sequence with some regularity conditions. Assumption CA(b) excludes

nonstationary regressors such as a linear trend and a unit root process. The condition on the

second moment is the same as supposed in HHKS. Assumption CA(c) implies that xt may

be endogenous, meaning that the LS estimator of β would be biased.

3. Monitoring Tests

3.1. CUSUM test with the IV method

We first consider a CUSUM-type test with residuals obtained by the IV estimation, because

the regressor xt may be correlated with the error term ut. Although Xia, Guo, and Zhao

(2011) proposed monitoring tests with endogenous regressors using the weighted CUSUM

from the GMM estimation with the monitoring period proportional to m, we focus on the

simple unweighted CUSUM from the IV estimation.

Let zt := [z1t, z2t, · · · , zqt]′ be a q-dimensional vector (q ≥ p) with z1t = 1. Similar to xt,

we also define the demeaned version of zt as z̃t := [1, z̃2t, · · · , z̃qt]′ with z̃jt := zjt − μzj and

μzj := E[zjt] for j = 2, · · · , q. The conditions that the IVs must satisfy are standard and

given in the following assumption:
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Assumption IV (a) z2t, · · · , zqt are stationary with Σzz := E[z̃tz̃
′
t] > 0, E[|z̃jt|μ] < ∞ for

some μ > 2 (j = 2, · · · , q) and 1√
m

∑m
t=1(z̃tz̃

′
t − Σzz) = Op(1).

(b) E[z̃tx̃
′
t]

p−→ Σzx with rank(Σzx) = p.

(c) 1√
m

∑m
t=1 z̃tut = Op(1).

Let β̂IV be the IV estimator in the training period defined by

β̂IV :=

⎡
⎣( m∑

t=1

xtz
′
t

)(
m∑
t=1

ztz
′
t

)−1( m∑
t=1

ztxt

)⎤⎦
−1(

m∑
t=1

xtz
′
t

)(
m∑
t=1

ztz
′
t

)−1( m∑
t=1

ztyt

)

and the detection statistic (detector) be defined by

ΓIV
m+k :=

∣∣∣∣∣ 1

σ̂IV

m+k∑
t=m+1

(
yt − x′tβ̂IV

)∣∣∣∣∣
for k = 1, 2, · · · , where σ̂2

IV is the consistent estimator of σ2
u based on the in-sample estimation

residuals. We reject the null hypothesis if ΓIV
m+k crosses a boundary function for some k ≥ 1;

otherwise, H0 is not rejected. Following HHKS, we consider the boundary function given by

g(m, k) := d
√
m

(
m+ k

m

)(
k

m+ k

)γ

, (6)

where 0 ≤ γ < min(τ, 1/2). The constant d is determined by the given significance level α

meaning that

lim
m→∞P

(
τ IV (m) < ∞) = α under H0,

where τ IV (m) is the stopping time defined by

τ IV (m) := inf
{
k ≥ 1 : ΓIV

m+k ≥ g(m, k)
}

and τ(m)IV := ∞ if ΓIV
m+k < g(m, k) for all k ≥ 1. As a result, we reject the hypothesis of

stability if ΓIV
m+k ≥ g(m, k) for some k ≥ 1.

The following theorem describes the asymptotic behavior of the IV-based detector.

Theorem 1 Suppose Assumptions CA and IV hold.

(a) Under H0,

lim
m→∞P

(
sup

1≤k<∞
ΓIV
m+k ≤ g(m, k)

)
= P

(
sup

0≤r≤1
|W (r)|/rγ ≤ d

)
,
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where {W (r)} is a Brownian motion.

(b) Under H1 with the first element of β̃0 − β̃∗ not equal to 0,

sup
1≤k<∞

ΓIV
m+k/g(m, k) → ∞.

The null limiting distribution is the same as that derived in HHKS and the values of d are

given by Table 1 in HHKS for the given values of α and γ. The condition for the consistency

of the test is also the same as the standard CUSUM-type test.

We next derive the limiting distribution of the stopping time. Typically, while we cannot

necessarily reject the null hypothesis as soon as a structural change occurs, we can detect it

with lags after the break date. Since it would be more desirable for this delay time to be

short, it is important to investigate the asymptotic property of the stopping time. As in the

existing literature, we focus on the case where a structural change occurs shortly after the

training period in order to derive the limiting distribution.

Assumption ST (a) The change point k∗ satisfies

k∗ = O(mθ) for some 0 ≤ θ ≤ 1− 2γ

4(1− γ)
.

(b) c1 ≤ |δβ| ≤ c2 for some 0 < c1 < c2 < ∞.

Assumption ST satisfies the conditions given by Aue, Horváth, and Reimherr (2009).

Assumption ST(a) implies that we need to focus on the early structural change to derive the

limiting distribution of the stopping time. Assumption ST(b) may be slightly relaxed such

that β0 − β∗ = O(log(m)). Under this assumption, we can obtain the same result as in the

case with exogenous regressors given in Aue, Horváth, and Reimherr (2009).

Theorem 2 Suppose that Assumptions CA, IV, and ST hold. If μ > 8(1−γ)/(1−2γ), then,

lim
m→∞P

(
τ IV (m) ≤ aIVm + bIVm z

)
= Φ(z)

for all real z, where Φ(·) is the cumulative distribution function of a standard normal distri-

bution and

aIVm =

(
cIVm − 1

cIVm |δβ|
m+cm∑
t=m+k∗

(xt − μx)
′(β∗ − β0)

)1/(1−γ)

,
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bIVm =

√
cIVm σu

(1− γ)|δβ | and cIVm =

(
σud m1/2−γ

|δβ|

)1/(1−γ)

.

As proven in Aue, Horváth, and Reimherr (2009), cIVm is a dominating term and thus

aIVm /cIVm
p−→ 1, which implies τ IV (m)/cIVm

p−→ 1. As a result, for a given value of γ, the

delay time would be shorter for a smaller variance of the error term, σ2
u, and/or a larger

magnitude of the break, |δβ|.

3.2. CUSUM test with the LS method

Although it is common practice to rely on the IV method for models with endogenous re-

gressors, Perron and Yamamoto (2015) investigated retrospective tests for structural change

and the break point estimator based on the LS method. They found that the LS method

leads to a more desirable result than the IV method except in special cases. Although the

LS estimator of the coefficient is biased, it consistently estimates some biased parameters,

which remain stable before the break, while it changes to another biased parameter after the

break, meaning that the retrospective tests based on the LS estimator still work well even

though the estimator is biased. In the case of the monitoring test, we estimate the coefficient

only once in the training period; however, as we see below, the forecast errors using the LS

estimator behave like a zero-mean process before the break, while the level of the forecast

errors changes after the break. As a result, the future structural break is detectable even

using the forecast errors based on the LS estimator.

Let us express demeaned model (3) as

yt = x̃′tβ̃t + ut

= x̃′tβ̃
+
t + u+t , (7)

where β̃+
t := β̃t+Σ−1

xxσxu and u+t := ut− x̃′tΣ−1
xxσxu. Note that the regressor x̃t is uncorrelated

with the error term u+t . For model (7), the coefficient before and after the break becomes

β̃+
0 = β̃0 +Σ−1

xxσxu and β̃+
∗ = β̃∗ +Σ−1

xxσxu. (8)
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Assumption LS (a) The following relations hold for some ν > 2:

sup
r≥1/m

1

(mr)1/ν

∣∣∣∣∣
m+mr∑
t=m+1

u+t − σ+
u W

+
1,m(mr)

∣∣∣∣∣ = Op(1),

m∑
t=1

u+t − σ+
u W

+
2,m(m) = op(m

1/ν),

where {W+
2,m(r)} are sequences of Brownian motions and they are independent and σ+2

u =

σ2
u − σ′

xuΣ
−1
xxσxu.

(b) 1√
m

∑m
t=1 x̃tu

+
t = Op(1).

Note that Assumptions LS(a) and (b) correspond to Assumptions CA(a) and IV(c).

Let β̂+
LS be the LS estimator in the training period and the CUSUM detection statistic

be defined by

ΓLS
m+k :=

∣∣∣∣∣ 1

σ̂LS

m+k∑
t=m+1

(
yt − x′tβ̂

+
LS

)∣∣∣∣∣
for k = 1, 2, · · · , where σ̂2

LS is the consistent estimator of σ+2
u in the training period. We

consider the same boundary function (6) again. In this case, the stopping time is defined by

τLS(m) := inf
{
k ≥ 1 : ΓLS

m+k ≥ g(m, k)
}

and τ(m)LS := ∞ if ΓLS
m+k < g(m, k) for all k ≥ 1 as in the IV case.

Theorem 3 Suppose Assumptions CA and LS hold. Then, we obtain the same result as

Theorem 1 with ΓIV
m+k replaced by ΓLS

m+K .

We cannot find any theoretical advantage of the LS detector over the IV detector from

Theorems 1 and 3. However, if we focus on the stopping time, we can find an important

difference.

Theorem 4 Suppose that Assumptions CA, LS, and ST hold. If μ > 8(1−γ)/(1−2γ), then,

lim
m→∞P

(
τLS(m) ≤ aLSm + bLSm z

)
= Φ(z)
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for all real z, where

aLSm =

(
cLSm − 1

cLSm |δβ|
m+cm∑
t=m+k∗

(xt − μx)
′(β̃+

∗ − β̃+
0 )

)1/(1−γ)

,

bLSm =

√
cIVm σ+

u

(1− γ)|δβ| and cLSm =

(
σ+
u d m1/2−γ

|δβ|

)1/(1−γ)

.

Note that there seems to be two differences between Theorems 2 and 4: the second terms

in aIVm and aLSm and variances σ2
u and σ2+

u . However, we can easily see from definition (8)

that β+∗ − β+
0 = β∗ − β0 and then the difference is only in the variances. Since σ2

u − σ+2
u =

σ′
xuΣ

−1
xxσxu ≥ 0, we can see that the delay time of the LS detector would be shorter than that

of the IV detector. We formally state this result in the following corollary:

Corollary 1 Suppose that Assumptions CA, IV, LS, and ST hold. If μ > 8(1− γ)/(1− 2γ),

then, (
τLS(m)

τ IV (m)

)2(1−γ)
p−→ σ+2

u

σ2
u

≤ 1.

Note that the equality holds only if σxu = 0, the case where xt is exogenous, because

Σxx is positive definite. Therefore, this corollary implies that the LS detector is always more

desirable irrespective of whether xt is endogenous or exogenous.

3.3. Change in the correlation

Although the monitoring test based on the LS method is asymptotically superior to the

test based on the IV method if only the coefficient β sustains structural change, another

issue is related to the LS estimation in models with endogenous regressors; the LS method

is affected by a change in the correlation between xt and ut. In fact, Perron and Yamamoto

(2015) showed that the distribution of the break point estimator is affected by this change. In

our case, the LS estimator β̂LS is obtained in the training period and we do not estimate β in

the out-of-sample period, meaning that the change in σxu does not affect the test through the

estimation of β. However, it does affect the test through the change in σ+2
u = σ2

u−σ′
xuΣ

−1
xxσxu.

Let us first consider the effect of the change in σxu on the LS monitoring test under the

null hypothesis. If σxu changes to σ∗
xu during the monitoring period, while β0 is still stable,
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then the appropriate scale parameter in ΓLS
m+k becomes σ∗2

u := σ2
u − σ∗′

xuΣ
−1
xxσ

∗
xu (see (7)),

and the LS detector must be divided by σ∗
u after the break in σxu. This implies that the

LS monitoring test would become more conservative if σ∗2
u /σ+2

u < 1, while it would be more

liberal for σ∗2
u /σ+2

u > 1. For the same reason, the power of the LS monitoring test decreases

if σ∗2
u /σ+2

u < 1 compared with the case of no change in σxu but increases in the case of

σ∗2
u /σ+2

u > 1.

We next consider the effect on the stopping time under the alternative. Suppose that β0

and σxu change such that

β0 → β∗ and σxu → σ∗
xu (9)

at k = k∗. In this case, the coefficient in transformed model (7) changes from β̃+
0 to β̃†

∗ :=

β̃+∗ +Σ−1
xxσ

∗
xu. Then, following Aue, Horváth, and Reimherr (2009), we have the same result

for the stopping time τ∗LS(m) as in Theorem 4 with aLSm , bLSm and cLSm replaced by

a∗LSm =

(
c∗LSm − 1

c∗LSm |δ∗β|
m+cm∑
t=m+k∗

(xt − μx)
′(β̃†

∗ − β̃+
0 )

)1/(1−γ)

,

b∗LSm =

√
c∗IVm σ∗

u

(1− γ)|δ∗β|
and c∗LSm =

(
σ+
u d m1/2−γ

|δ∗β |

)1/(1−γ)

.

Note that not σ∗
u but σ+

u , the probability limit of σ̂+
u , appears in c∗LSm . In this case, we have

the following corollary:

Corollary 2 Suppose that Assumptions CA, LS, and ST hold. If both β0 and σxu sustain a

structural change given by (9), we have

τ∗LS(m)

τLS(m)

p−→ 1. (10)

This corollary implies that even if the correlation between the endogenous regressors and

errors changes, the stopping time is asymptotically equivalent to the case of the change only

in β0.

As a whole, the effect of the change in the correlation affects the size and power of the

LS detector only though the change in the variance of the (modified) error term. Although

this seems to be a disadvantage of the LS method, we should note that the IV detector is
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also affected if we allow for the change in σ2
u. If we allow for both changes in σ2

u and σxu,

the effect on the detectors depends on the directions of the changes in σ2
u and σ+2

u and we

cannot say that one of the detectors dominates the other.

The effect of the change in the correlation between xt and ut in finite samples is investi-

gated in the next section.

3.4. Monitoring tests with a bounded monitoring period

In practice, the monitoring period is often restricted as opposed to being unbounded. For

example, the Bank of Japan’s 2% inflation target of 2013 was expected to be achieved within

a few years. In this case, we would like to monitor the inflation rate; however, the monitoring

period would be at most three years. In such a case, the monitoring tests considered in

the previous section would be conservative under the null hypothesis, while they would lose

power under the alternative because the boundary function (the adjustment parameter d) is

chosen in the case of 1 ≤ k < ∞.

To control the empirical sizes of the tests, we suppose that the monitoring period is

restricted such that 1 ≤ k ≤ κm, where κ is a positive integer value. That is, the monitoring

period is restricted to be proportional to the training period. In this case, it is straightforward

to see that

lim
m→∞P

(
sup

1≤k<κm
ΓIV
m+k ≤ g(m, k)

)
= P

(
sup

0≤r≤κ/(1+κ)
|W (r)|/rγ ≤ d

)
= α

under the null hypothesis with the significance level α. Thus, the parameter d of the boundary

function should be determined depending on κ.

Table 1 presents the values of d corresponding to κ = 1, 2, · · · , 8, which are obtained

by simulations with 100,000 replications, in which a Brownian motion is approximated by

using 10,000 independent normal random variables. As expected, the value of d rises as the

monitoring period lengthens. We use these values in the next section.

4. Finite Sample Property

In this section, we investigate the finite sample property of the monitoring tests in the previous
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section. The data-generating process we consider is similar to that in HHKS and is given by

yt = β1t + β2txt + ut, xt = (1− φ) + φxt−1 + vt,

where β1t = 1 and β2t = 1 for t = 1, · · · ,m, and the IV variable zt is generated by

zt = 0.5(1− φ) + φzt−1 + wt,

where

⎡
⎣ ut

vt
wt

⎤
⎦ ∼ i.i.d.N

⎛
⎝0,

⎡
⎣ 1 σuv

√
1− φ2 0

σuv
√
1− φ2 1− φ2 σvw(1− φ2)
0 σvw(1− φ2) 1− φ2

⎤
⎦
⎞
⎠ ,

meaning that V ar(xt) = 1, V ar(zt) = 1, and σuv and σvw denote the correlation coefficients

between ut and vt and between vt and wt, respectively. We fix σuv = 0.4, while σvw is set to

0.2, 0.5, and 0.8. The initial values of xt and zt at t = 0 are set to 0. The serial correlations

in xt and zt are controlled by φ and we set φ = 0, 0.4, and 0.8. To investigate the finite

sample property of the tests, we need to stop the monitoring period at some point m + m̄

and we choose m̄ = κm with κ = 1, 4, and 8, while the training period m is 50, 100, and 250.

We use the critical values adjusted for the given monitoring periods. The parameter γ in

boundary function (6) is set to 0.25 and 0.45. Note that, as pointed out by HHKS and Aue

and Horváth (2004), the CUSUM detector with larger values of γ tends to detect an earlier

break than that with smaller values of γ. The significance level is set to 0.05, the number

of replications is 3,000, and all the computations are conducted by using the GAUSS matrix

language.

Table 2 reports the empirical sizes of the tests. We can see that when φ = 0, the empirical

sizes of both the IV and the LS detectors are close to the nominal size for all cases. However,

as the serial correlations in the regressor and IV strengthen, they tend to over-reject the null

hypothesis. In particular, when the correlation between the regressor and IV is not strong, the

IV detector suffers from severe size distortion. As a whole, the IV must be strongly correlated

with the regressor in order for the IV detector to perform as well as the LS detector under

the null hypothesis. By comparing the difference in γ, we see that the sizes of both tests with

γ = 0.45 are slightly closer to the nominal size than those with γ = 0.25.

To investigate the performance of the tests under the alternative, we set β1t = 1+ h/
√
m

and β2t = 1 + h/
√
m for h = 1 and 2. The empirical powers of the tests are summarized in
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Tables 3 and 4. Table 3 corresponds to the case where a structural change occurs just after

the training period (k∗ = 1). In general, both tests are more powerful for longer monitoring

periods. The LS detector is more powerful than the IV detector for φ = 0 and φ = 0.4, while

it is less powerful in some cases for φ = 0.8, but this is because the test with the IV method

suffers from severe size distortion for φ = 0.8. By comparing the difference in γ, we see that

both tests with γ = 0.25 seem slightly more powerful than those with γ = 0.45; however, this

may be because of the size distortions.

The empirical powers of the tests with k∗ = m/2 are reported in Table 4. The relative

performance in this case is preserved, although, as expected, both tests are less powerful than

in the case with k∗ = 1.

For the monitoring tests, not only the empirical power but also the delay time, the time

period required to actually detect the change after the true break point, is an important mea-

sure of the finite sample performance of the tests. We conducted simulations with a middle

to large magnitude of change (h = 2 and 4) to ensure a sufficient number of break detections

and summarized the distributional property, minimum value, quartiles, and maximum value.

Tables 5 and 6 report the cases where k∗ = 1, σvw = 0.5, and m̄ = 8m.2 Note that the delay

times are always nonnegative in Table 5 because the structural change occurs as soon as the

monitoring period starts (k∗ = 1), while the minimum values in Table 6 are negative because

both tests may detect the break before the true break point, which is related with the type I

error. As expected, both tests tend to detect the larger magnitude of the break earlier after

the break. When the serial correlation in the error term is not strong (φ = 0 and 0.4), the

CUSUM test based on the LS method is good at detecting the structural change as soon

as it occurs compared with that based on the IV method. In particular, when h = 4, the

maximum delay time by the IV detector is very large. On the contrary, when φ = 0.8 and

h = 2, the distribution of the break date detected by the IV detector is located to the left

compared with that by the LS detector; however, the maximum delay time is still very large

for h = 4. As pointed out in the literature such as HHKS, tests with γ = 0.45 can detect the

early break (k∗ = 1) compared with those with γ = 0.25 as in Table 5, whereas tests with

2We do not report the other cases to save space. Their relative performance was basically the same as in
Tables 5 and 6. Details are available upon request.
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γ = 0.25 perform slightly better for k∗ = [m/2].

We next investigate the effect of a change in σuv on the finite sample performance of the

LS detector. In Table 7, we report the empirical size of the LS monitoring test with σuv

changing at k∗ = 1. We set σuv = 0 or 0.4 before the break, while it changes to σuv±0.4 after

the break. In the table, the entries of the column of LS(+) are the rejection frequencies of

the test with the positive change in the correlation, while the column of LS(−) corresponds

to the negative change. For the purpose of the comparison, we also report the rejection

frequencies of the LS test with no change in the column of LS(0). As expected from the

theoretical investigation presented in the previous section, the rejection frequencies decline

for a positive change in the correlation, while a negative change results in higher rejection

frequencies. We note that the differences between rejection frequencies are relatively minor

when σuv before the break is 0, while the size of the test is affected when it is 0.4. As a whole,

the rejection frequencies are more affected by a change in the correlation when φ is closer to

1. A similar tendency is observed when k∗ = [m/2]; nevertheless, the differences are smaller

compared with the case of k∗ = 1.

We also conducted simulations under the alternative; both β0 and σuv sustain a structural

change. As a whole, the same tendency is observed for the power of the tests, while the

differences are relatively minor for all cases. On the contrary, we cannot find a significant

difference in the stopping time for positive and negative changes in σuv up to the third quartile.

However, the maximum delay time of the test with a positive change in σ2
uv (σ∗2

u /σ+2
u < 1)

tends to be slightly greater than that with a negative change (σ∗2
u /σ+2

u > 1) for m = 50 and

100 (although the reverse relation is observed for m = 250). Finally, we cannot find any

other systematic property of the delay time as far as our simulations are concerned (we omit

the details to save space).

5. Empirical Application

In this section, we implement the monitoring tests proposed in the previous section to the

Phillips curve by using Japanese monthly data and investigate a) how the two monitoring

tests perform in an empirical analysis and b) whether the policy change by the Bank of Japan

affected the Phillips curve. Following Gaĺı and Gertler (1999), the hybrid Phillips curve in
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its reduced form is given by

πt = β1 + β1πt−1 + β2Etπt+1 + β3xt + ut, (11)

where πt is the inflation rate, xt is an economic variable, and Et denotes the conditional

expectation using the information up to time t. We use the growth rate of the consumer

price index (all items, excluding fresh food) and the first difference in unemployment for πt

and xt, respectively, while Etpt+1 is replaced by pt+1 in view of rational expectations.3

We first test for structural changes in the sample period ranging from 1981.01 to 2012.12

because we need to choose the training period without a structural change. We implement

the UDmax and WDmax tests for the null hypothesis of no break against the alternative that

the number of breaks is at most five, which were proposed by Bai and Perron (1998), and we

observe possible evidence of multiple breaks at the 1% significance level in panel (a) of Table

5. We also test for the null of 
 against the alternative of 
+1 breaks for 
 = 1, 2, 3, and 4 by

the supF(
+ 1|
) test by Bai and Perron (1998). We can see that the SupF(2|1) test rejects
the null at the 1% significance level, whereas the other tests do not reject the null hypothesis.

Following the procedure proposed by Bai and Perron (2006), the number of breaks based on

these tests is estimated as two. We confirm this result by implementing the modified BIC

(MBIC1 and MBIC2) proposed by Kurozumi and Tuvaandorj (2011); the number of breaks

is estimated as two again, as in panel (b) of Table 2. In panel (c), we report the estimated

break dates and 95% confidence intervals (CIs). The first break is estimated at May 1994

and CI(BP), the CI by Bai and Perron (1998), is from November 1993 to November 1994,

while the second break is at September 2007 and the CI is from December 2006 to November

2008. However, it is known that the CI based on the limiting distribution of the break

point estimator tends to suffer from under-coverage for a small size of a break. Hence, we

also calculate the CIs by the method based on the sup-type test proposed by Kurozumi and

Yamamoto (2015), which are denoted CI(KY) in Table 8. We can see that the CIs based on

the two methods are relatively close for the first break, whereas CI(KY) covers earlier dates

3Gaĺı and Gertler (1999) proposed using the marginal cost as xt, while Yamamoto (2014) investigated the
Japanese New Keynesian Phillips curve. However, it is difficult to find a proxy variable of the marginal cost
for monthly data and thus we consider unemployment as an economic indicator, as used by Giacomini and
Rossi (2009) and Yamamoto (2014).
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than CI(BP). Overall, we find two structural changes and thus three regimes in this sample

period.

Considering the above results, the first training period we choose is from January 1995

to September 2004. For the CUSUM monitoring test based on the IV method, we estimate

model (11) using two sets of IVs: πt−1 to πt−4 and xt−1 to xt−4 (IV1) and πt−1 to πt−4 and

xt−1 to xt−3 (IV2). Figure 1(a) shows the behavior of the monitoring tests with the two

boundary functions with κ = 1 at the 95% significance level (γ = 0.25 and γ = 0.45). We can

see that the LS-based test rejects the null of stability in June 2008, four months earlier than

October 2008 at which IV1 rejects the null, while IV2 does not cross the boundary function

for the whole monitoring period. Since the difference between IV1 and IV2 is only whether

xt−4 is included or not, it seems that the result of the IV monitoring test is heavily affected

by the IVs chosen by the researcher.

The second training period we choose is from January 2009 to December 2012. Note

that since the Bank of Japan introduced its 2% inflation target in January 2013, we can

test whether the change in policy affected the Phillips curve. Figure 1(b) shows that none

of the tests crosses the boundary functions in the monitoring period. Thus, although the

monitoring tests entail the delay time to detect the change, it seems the Japanese Phillips

curve is relatively stable even after the introduction of the 2% inflation target.

6. Concluding Remarks

In this paper, we investigated monitoring tests in models with endogenous regressors. We

proposed constructing CUSUM-based monitoring statistics by using the IV and LS methods.

We showed theoretically that the monitoring test based on the LS method works better than

that based the IV method. We also confirmed by Monte Carlo simulations that this theoretical

result holds in finite samples. Although the monitoring test with the LS estimation may be

affected by a change in the correlation between the regressors and error term, this test is

useful in practice, particularly when it is difficult to find the appropriate IVs. Even if we can

find such IVs, the monitoring test based on the IV method may be heavily affected by the

choice of the IVs used for the estimation of the model, as observed in the empirical analysis

and thus the LS-based test complements the monitoring test based on the IV method.
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Appendix

Proof of Theorem 1: Since x̃jt for j = 2, · · · , p and z̃jt for j = 2, · · · , q are a stationary

process with mean zeros, we can see from Assumptions CA and IV that the first element of

βIV − β0 is (1/m)
∑m

t=1 ut(1 + op(1)), while the rest are Op(1/
√
m). Then, in exactly the

same manner as Lemma 5.3 in HHKS, we can see that

sup
1≤k<∞

∣∣∣∣∣
m+k∑

t=m+1

(yt − x′tβ̂IV )−
(

m+k∑
t=m+1

ut − k

m

m∑
t=1

ut

)∣∣∣∣∣ /g(m, k) = op(1)

for a given value of 0 < d < ∞. Then, following the proof of Theorems 2.1 and 2.2 of HHKS,

we obtain the result.�

Proof of Theorem 2: Let C denote a generic constant that may differ from place to place.

According to the Rosenthal inequality, we can see that

E

[∣∣∣∣∣
k∑

t=1

x̃jt

∣∣∣∣∣
μ]

≤ C

⎡
⎢⎣ k∑

t=1

E [|x̃jt|μ] +
⎛
⎝ k∑

t=1

E

⎡
⎣
∣∣∣∣∣

k∑
t=1

x̃jt

∣∣∣∣∣
2
⎤
⎦
⎞
⎠

μ/2
⎤
⎥⎦

≤ C kμ/2 (12)

because μ > 2. Then, in exactly the same manner as the proof of Theorem 3.1 of Aue,

Horváth, and Reimherr (2009), we obtain the results.�

Proof of Theorems 3 and 4: Since (12) holds, all the assumptions made in HHKS and

Aue, Horváth, and Reimherr (2009) hold and then we obtain the results. From Theorem 1

in Aue, Horváth, and Reimherr (2009), aLSm is expressed as

aLSm =

(
cLSm − 1

cLSm |δβ |
m+cm∑
t=m+k∗

(x̃t − E[x̃t])
′(β̃+

∗ − β̃+
0 )

)1/(1−γ)

.

Since E[x̃t] = [1, 0, · · · , 0] and μx = [1, μx2, · · · , μxp]
′, we have x̃t − E[x̃t] = xt − μx.�

Proof of Corollary 2: We first note that β̃†
∗−β̃+

0 in the second term of a∗LSm no longer equals

β̃+∗ − β̃+
0 in aLSm . However, as shown by Aue, Horváth, and Reimherr (2009), these terms are

dominated by c∗LSm and cLSm , respectively. These authors showed that a∗LSm /c∗LSm
p−→ 1 and

aLSm /cLSm
p−→ 1. In fact, their result implies that

τ∗LS(m)

c∗LSm

p−→ 1 and
τLS(m)

cLSm

p−→ 1. (13)
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Therefore, the effect of the change in correlation through β̃†
∗ − β̃+

0 disappears asymptotically.

We next investigate the effect of a change in σxu through the value of δ∗β. However, since

the first element of x̃t is constant, while the others are mean-zero stationary variables, Σxx

must be a block-diagonal matrix such as

Σxx =

[
1 0
0 Σxx,2

]
and σxu =

[
0

σxu,2

]
, say.

Thus, although a change in σxu affects the second to the last elements of β̃+
t , we can see that

the first element of β̃+
t is free of the correlation change. Therefore, we have δβ = δ∗β , which

implies c∗LSm = cLSm . Then, by using (13), we conclude that

τ∗LS(m)

τLS(m)
=

τ∗LS(m)

c∗LSm

cLSm
τLS(m)

p−→ 1.�
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Table 1: Critical Values

γ α = 0.01 0.025 0.05 0.1 α = 0.01 0.025 0.05 0.1
κ = 1 κ = 5

0 1.9803 1.7577 1.5785 1.3833 2.5602 2.2763 2.0428 1.7842
0.15 2.2369 2.0019 1.8076 1.5951 2.6898 2.3974 2.1614 1.9039
0.25 2.4521 2.2036 1.9997 1.7716 2.7983 2.5042 2.2708 2.0142
0.35 2.7221 2.4675 2.2523 2.0192 2.9543 2.6640 2.4289 2.1824
0.45 3.1664 2.9094 2.6910 2.4541 3.2524 2.9897 2.7651 2.5199
0.49 3.5304 3.2736 3.0397 2.7906 3.5625 3.3052 3.0738 2.8268

κ = 2 κ = 6
0 2.2868 2.0335 1.8282 1.5933 2.6032 2.3055 2.0707 1.8110

0.15 2.4856 2.2143 1.9993 1.7598 2.7143 2.4242 2.1839 1.9231
0.25 2.6453 2.3671 2.1478 1.9047 2.8165 2.5223 2.2860 2.0285
0.35 2.8481 2.5776 2.3525 2.1094 2.9660 2.6750 2.4391 2.1917
0.45 3.2114 2.9517 2.7328 2.4919 3.2598 2.9952 2.7687 2.5241
0.49 3.5494 3.2892 3.0583 2.8115 3.5644 3.3076 3.0757 2.8282

κ = 3 κ = 7
0 2.4224 2.1553 1.9381 1.6907 2.6298 2.3305 2.0932 1.8295

0.15 2.5854 2.3078 2.0838 1.8340 2.7371 2.4417 2.2008 1.9376
0.25 2.7276 2.4374 2.2113 1.9633 2.8338 2.5362 2.2993 2.0397
0.35 2.9073 2.6231 2.3893 2.1456 2.9752 2.6850 2.4474 2.1986
0.45 3.2307 2.9715 2.7489 2.5067 3.2650 2.9976 2.7727 2.5269
0.49 3.5530 3.2973 3.0669 2.8199 3.5667 3.3084 3.0768 2.8300

κ = 4 κ = 8
0 2.5046 2.2264 1.9993 1.7472 2.6537 2.3510 2.1101 1.8441

0.15 2.6501 2.3629 2.1286 1.8762 2.7550 2.4563 2.2118 1.9485
0.25 2.7741 2.4748 2.2482 1.9931 2.8482 2.5466 2.3073 2.0494
0.35 2.9363 2.6474 2.4126 2.1667 2.9852 2.6904 2.4548 2.2036
0.45 3.2418 2.9840 2.7584 2.5149 3.2680 3.0012 2.7755 2.5291
0.49 3.5582 3.3025 3.0713 2.8244 3.5668 3.3099 3.0775 2.8312



Table 2: Size of the Tests

γ = 0.25 γ = 0.45
m̄ IV LS IV LS

σ2
vw σ2

vw

0.2 0.5 0.8 0.2 0.5 0.8
m = 50, φ = 0

1m 0.061 0.060 0.061 0.062 0.047 0.046 0.048 0.048
4m 0.065 0.063 0.060 0.067 0.056 0.054 0.056 0.054
8m 0.066 0.063 0.063 0.064 0.050 0.054 0.057 0.053

m = 50, φ = 0.4
1m 0.127 0.076 0.068 0.071 0.104 0.064 0.053 0.052
4m 0.139 0.084 0.073 0.072 0.128 0.072 0.062 0.062
8m 0.151 0.085 0.072 0.072 0.135 0.073 0.061 0.061

m = 50, φ = 0.8
1m 0.285 0.165 0.107 0.100 0.258 0.144 0.090 0.078
4m 0.350 0.215 0.129 0.119 0.323 0.197 0.112 0.106
8m 0.365 0.210 0.123 0.117 0.340 0.189 0.108 0.098

m = 100, φ = 0
1m 0.052 0.054 0.053 0.054 0.046 0.045 0.044 0.048
4m 0.052 0.049 0.052 0.057 0.049 0.046 0.049 0.048
8m 0.057 0.057 0.058 0.058 0.045 0.047 0.047 0.050

m = 100, φ = 0.4
1m 0.097 0.059 0.055 0.056 0.091 0.053 0.047 0.049
4m 0.106 0.062 0.056 0.061 0.096 0.056 0.050 0.053
8m 0.107 0.064 0.065 0.060 0.097 0.056 0.051 0.051

m = 100, φ = 0.8
1m 0.260 0.119 0.068 0.073 0.241 0.104 0.063 0.062
4m 0.307 0.135 0.083 0.084 0.296 0.122 0.070 0.075
8m 0.309 0.137 0.089 0.074 0.303 0.126 0.078 0.064

m = 250, φ = 0
1m 0.048 0.042 0.044 0.048 0.042 0.044 0.044 0.045
4m 0.048 0.049 0.052 0.046 0.043 0.045 0.046 0.041
8m 0.053 0.051 0.053 0.053 0.049 0.049 0.050 0.047

m = 250, φ = 0.4
1m 0.066 0.046 0.044 0.050 0.065 0.046 0.043 0.043
4m 0.069 0.051 0.050 0.048 0.072 0.048 0.047 0.036
8m 0.079 0.054 0.054 0.058 0.075 0.053 0.050 0.044

m = 250, φ = 0.8
1m 0.206 0.076 0.053 0.062 0.204 0.071 0.049 0.050
4m 0.222 0.080 0.058 0.057 0.221 0.081 0.060 0.048
8m 0.238 0.089 0.067 0.063 0.235 0.080 0.061 0.053



Table 3: Power of the Tests (k∗ = 1)

γ = 0.25 γ = 0.45
h m̄ IV LS IV LS

σ2
vw σ2

vw

0.2 0.5 0.8 0.2 0.5 0.8
m = 50, φ = 0

1m 0.225 0.287 0.298 0.320 0.163 0.215 0.220 0.233
1 4m 0.332 0.410 0.420 0.472 0.268 0.329 0.342 0.370

8m 0.364 0.444 0.460 0.511 0.271 0.348 0.363 0.411
1m 0.599 0.729 0.747 0.821 0.514 0.642 0.666 0.727

2 4m 0.757 0.900 0.915 0.955 0.696 0.847 0.876 0.922
8m 0.777 0.929 0.947 0.976 0.719 0.890 0.908 0.950

m = 50, φ = 0.4
1m 0.287 0.297 0.304 0.299 0.223 0.234 0.237 0.217

1 4m 0.392 0.430 0.440 0.447 0.333 0.347 0.353 0.349
8m 0.425 0.457 0.471 0.487 0.350 0.375 0.380 0.382
1m 0.638 0.736 0.752 0.802 0.563 0.650 0.671 0.706

2 4m 0.788 0.897 0.915 0.949 0.746 0.853 0.874 0.914
8m 0.809 0.928 0.945 0.970 0.765 0.889 0.913 0.936

m = 50, φ = 0.8
1m 0.422 0.358 0.332 0.263 0.370 0.308 0.270 0.195

1 4m 0.532 0.492 0.469 0.392 0.475 0.429 0.398 0.309
8m 0.569 0.528 0.506 0.430 0.518 0.460 0.426 0.338
1m 0.692 0.728 0.742 0.730 0.631 0.655 0.670 0.638

2 4m 0.862 0.895 0.913 0.905 0.821 0.858 0.875 0.847
8m 0.872 0.916 0.943 0.934 0.835 0.884 0.913 0.885

m = 100, φ = 0
1m 0.235 0.260 0.261 0.299 0.167 0.184 0.191 0.216

1 4m 0.351 0.398 0.407 0.450 0.262 0.307 0.311 0.344
8m 0.390 0.445 0.443 0.498 0.296 0.340 0.347 0.385
1m 0.657 0.746 0.755 0.822 0.563 0.646 0.657 0.718

2 4m 0.820 0.915 0.921 0.963 0.754 0.862 0.868 0.924
8m 0.846 0.939 0.948 0.975 0.795 0.897 0.904 0.948

m = 100, φ = 0.4
1m 0.274 0.274 0.274 0.279 0.211 0.200 0.197 0.203

1 4m 0.386 0.407 0.413 0.421 0.313 0.321 0.320 0.317
8m 0.430 0.451 0.457 0.471 0.342 0.355 0.358 0.359
1m 0.673 0.748 0.755 0.804 0.592 0.659 0.664 0.700

2 4m 0.824 0.914 0.920 0.952 0.775 0.865 0.873 0.901
8m 0.857 0.942 0.951 0.968 0.815 0.900 0.910 0.939

m = 100, φ = 0.8
1m 0.405 0.330 0.302 0.242 0.350 0.261 0.233 0.177

1 4m 0.521 0.446 0.428 0.378 0.465 0.371 0.350 0.280
8m 0.565 0.492 0.479 0.410 0.503 0.406 0.384 0.316
1m 0.726 0.754 0.756 0.748 0.665 0.680 0.675 0.641

2 4m 0.860 0.903 0.920 0.911 0.823 0.858 0.873 0.847
8m 0.899 0.937 0.948 0.943 0.870 0.900 0.912 0.894



Table 3: (continued)

γ = 0.25 γ = 0.45
h m̄ IV LS IV LS

σ2
vw σ2

vw

0.2 0.5 0.8 0.2 0.5 0.8
m = 250, φ = 0

1m 0.260 0.271 0.272 0.304 0.193 0.203 0.202 0.224
1 4m 0.368 0.386 0.392 0.439 0.280 0.293 0.293 0.328

8m 0.398 0.421 0.425 0.479 0.306 0.325 0.327 0.373
1m 0.724 0.767 0.769 0.831 0.622 0.670 0.676 0.741

2 4m 0.888 0.921 0.923 0.965 0.826 0.867 0.868 0.923
8m 0.902 0.942 0.946 0.975 0.842 0.894 0.898 0.943

m = 250, φ = 0.4
1m 0.277 0.276 0.276 0.287 0.220 0.211 0.210 0.208

1 4m 0.391 0.388 0.390 0.419 0.303 0.300 0.302 0.310
8m 0.414 0.425 0.427 0.451 0.341 0.336 0.334 0.356
1m 0.723 0.771 0.768 0.811 0.641 0.678 0.679 0.715

2 4m 0.888 0.922 0.927 0.956 0.837 0.870 0.871 0.913
8m 0.903 0.944 0.947 0.971 0.855 0.893 0.902 0.931

m = 250, φ = 0.8
1m 0.382 0.297 0.287 0.250 0.345 0.247 0.231 0.179

1 4m 0.477 0.412 0.403 0.372 0.423 0.327 0.317 0.279
8m 0.512 0.444 0.436 0.415 0.456 0.359 0.348 0.309
1m 0.757 0.769 0.767 0.764 0.697 0.689 0.686 0.663

2 4m 0.891 0.922 0.927 0.932 0.850 0.872 0.873 0.866
8m 0.906 0.940 0.947 0.951 0.874 0.897 0.904 0.900



Table 4: Power of the Tests (k∗ = [m/2])

γ = 0.25 γ = 0.45
h m̄ IV LS IV LS

σ2
vw σ2

vw

0.2 0.5 0.8 0.2 0.5 0.8
m = 50, φ = 0

1m 0.089 0.105 0.107 0.116 0.059 0.064 0.068 0.074
1 4m 0.250 0.297 0.308 0.342 0.176 0.213 0.218 0.242

8m 0.297 0.366 0.379 0.430 0.202 0.259 0.268 0.314
1m 0.207 0.261 0.270 0.286 0.122 0.163 0.167 0.188

2 4m 0.657 0.794 0.821 0.885 0.556 0.691 0.711 0.792
8m 0.726 0.886 0.908 0.949 0.646 0.801 0.831 0.902

m = 50, φ = 0.4
1m 0.164 0.124 0.116 0.116 0.121 0.084 0.073 0.074

1 4m 0.313 0.320 0.318 0.330 0.251 0.234 0.230 0.237
8m 0.366 0.373 0.393 0.403 0.282 0.280 0.280 0.296
1m 0.271 0.275 0.280 0.277 0.192 0.184 0.182 0.181

2 4m 0.697 0.802 0.823 0.868 0.614 0.700 0.722 0.768
8m 0.759 0.885 0.907 0.936 0.688 0.806 0.830 0.881

m = 50, φ = 0.8
1m 0.311 0.214 0.165 0.129 0.273 0.171 0.120 0.093

1 4m 0.476 0.409 0.372 0.308 0.429 0.331 0.285 0.219
8m 0.536 0.453 0.426 0.368 0.471 0.368 0.330 0.270
1m 0.414 0.348 0.308 0.261 0.342 0.270 0.231 0.181

2 4m 0.785 0.803 0.827 0.798 0.713 0.711 0.729 0.690
8m 0.848 0.879 0.902 0.891 0.795 0.816 0.832 0.813

m = 100, φ = 0
1m 0.087 0.090 0.088 0.093 0.059 0.060 0.060 0.066

1 4m 0.245 0.287 0.287 0.322 0.158 0.186 0.196 0.210
8m 0.316 0.362 0.365 0.406 0.216 0.251 0.252 0.283
1m 0.200 0.221 0.226 0.259 0.125 0.135 0.136 0.165

2 4m 0.715 0.816 0.821 0.880 0.600 0.699 0.709 0.786
8m 0.795 0.890 0.903 0.946 0.708 0.809 0.825 0.896

m = 100, φ = 0.4
1m 0.128 0.096 0.090 0.093 0.103 0.069 0.065 0.065

1 4m 0.293 0.293 0.292 0.307 0.215 0.202 0.201 0.196
8m 0.361 0.366 0.372 0.387 0.272 0.257 0.257 0.268
1m 0.244 0.234 0.235 0.249 0.169 0.146 0.143 0.157

2 4m 0.724 0.811 0.820 0.865 0.628 0.699 0.709 0.762
8m 0.800 0.894 0.904 0.939 0.728 0.810 0.829 0.876

m = 100, φ = 0.8
1m 0.289 0.158 0.115 0.098 0.258 0.130 0.088 0.076

1 4m 0.456 0.335 0.315 0.268 0.395 0.266 0.227 0.184
8m 0.505 0.418 0.394 0.344 0.433 0.316 0.289 0.234
1m 0.392 0.297 0.258 0.227 0.322 0.216 0.181 0.149

2 4m 0.792 0.803 0.816 0.804 0.716 0.713 0.713 0.692
8m 0.862 0.895 0.907 0.897 0.810 0.825 0.835 0.821



Table 4: (continued)

γ = 0.25 γ = 0.45
d m̄ IV LS IV LS

σ2
vw σ2

vw

0.2 0.5 0.8 0.2 0.5 0.8
m = 250, φ = 0

1m 0.087 0.093 0.089 0.095 0.055 0.058 0.059 0.062
1 4m 0.251 0.264 0.266 0.310 0.165 0.174 0.176 0.204

8m 0.314 0.334 0.335 0.393 0.219 0.229 0.230 0.270
1m 0.209 0.219 0.220 0.251 0.133 0.142 0.143 0.165

2 4m 0.775 0.815 0.815 0.885 0.659 0.694 0.697 0.776
8m 0.844 0.890 0.894 0.943 0.752 0.803 0.809 0.879

m = 250, φ = 0.4
1m 0.107 0.091 0.090 0.086 0.080 0.062 0.058 0.063

1 4m 0.275 0.271 0.267 0.297 0.193 0.179 0.180 0.188
8m 0.338 0.339 0.339 0.374 0.244 0.237 0.233 0.256
1m 0.229 0.226 0.224 0.238 0.159 0.152 0.148 0.153

2 4m 0.776 0.819 0.818 0.868 0.678 0.697 0.702 0.754
8m 0.844 0.891 0.892 0.933 0.763 0.804 0.808 0.867

m = 250, φ = 0.8
1m 0.248 0.118 0.102 0.084 0.226 0.090 0.069 0.065

1 4m 0.394 0.298 0.290 0.266 0.336 0.217 0.190 0.177
8m 0.447 0.356 0.345 0.333 0.384 0.256 0.244 0.228
1m 0.348 0.247 0.238 0.211 0.296 0.178 0.157 0.139

2 4m 0.799 0.818 0.818 0.817 0.715 0.711 0.710 0.694
8m 0.857 0.885 0.890 0.901 0.802 0.812 0.818 0.817



Table 5: Delay Time (k∗ = 1, σvw = 0.5, m̄ = 8m)

γ = 0.25 γ = 0.45
h min 1Q 2Q 3Q max min 1Q 2Q 3Q max

m = 50, φ = 0
2 IV 2 18 33 65 395 0 11 26 62 396

LS 2 17 28 51 396 0 11 23 49 399
4 IV 0 6 10 16 230 0 3 6 12 256

LS 1 6 9 13 62 0 3 5 9 86
m = 50, φ = 0.4

2 IV 1 18 32 64 396 0 10 25 58 393
LS 2 18 30 54 393 0 11 24 52 399

4 IV 0 6 10 17 254 0 3 6 12 234
LS 1 6 9 13 84 0 3 6 10 87

m = 50, φ = 0.8
2 IV 2 16 31 63 392 0 9 23 57 399

LS 2 19 33 64 397 0 12 27 63 394
4 IV 0 6 11 19 398 0 3 7 15 321

LS 1 6 10 16 312 0 3 6 12 167
m = 100, φ = 0

2 IV 4 40 69 126 790 0 25 55 122 789
LS 4 36 60 105 788 0 24 51 105 798

4 IV 2 14 21 32 188 0 6 13 24 394
LS 3 13 19 26 99 0 6 12 19 106

m = 100, φ = 0.4
2 IV 4 38 67 126 796 0 23 54 121 780

LS 4 38 63 110 799 0 25 53 111 795
4 IV 2 14 21 32 772 0 6 13 25 663

LS 3 13 19 27 132 0 7 12 20 119
m = 100, φ = 0.8

2 IV 3 35 63 125 781 0 19 48 117 786
LS 4 41 70 129 790 0 27 58 127 799

4 IV 2 13 21 35 780 0 6 13 26 697
LS 3 14 20 31 187 0 7 13 24 371

m = 250, φ = 0
2 IV 13 102 178 327 1994 0 64 141 311 1996

LS 15 94 155 263 1995 0 62 129 257 1965
4 IV 6 37 54 77 440 0 18 33 58 474

LS 9 34 48 65 395 0 17 29 46 421
m = 250, φ = 0.4

2 IV 13 99 173 322 1971 0 60 135 294 1992
LS 15 97 162 268 1970 0 66 134 262 1995

4 IV 5 36 54 77 547 0 17 33 57 620
LS 10 35 49 66 330 0 17 30 48 396

m = 250, φ = 0.8
2 IV 10 93 165 304 1979 0 53 125 279 1984

LS 14 106 178 308 1976 0 70 148 300 1999
4 IV 5 34 53 80 765 0 15 32 59 1855

LS 6 37 53 72 312 0 18 33 54 397



Table 6: Delay Time (k∗ = [m/2], σvw = 0.5, m̄ = 8m)

γ = 0.25 γ = 0.45
h min 1Q 2Q 3Q max min 1Q 2Q 3Q max

m = 50, φ = 0
2 IV −21 33 62 115 368 −24 34 66 126 373

LS −17 32 54 95 374 −24 34 61 113 375
4 IV −21 14 22 34 313 −24 14 23 36 346

LS −17 13 19 27 146 −24 13 19 29 165
m = 50, φ = 0.4

2 IV −20 31 60 112 372 −24 31 64 125 375
LS −18 32 57 100 375 −24 34 63 118 375

4 IV −20 14 22 34 370 −24 13 23 36 332
LS −18 13 20 29 122 −24 13 20 30 161

m = 50, φ = 0.8
2 IV −22 23 51 102 375 −24 20 52 114 374

LS −20 33 62 113 373 −24 32 66 125 375
4 IV −22 11 21 36 373 −24 10 22 39 369

LS −20 13 22 33 176 −24 13 23 36 214
m = 100, φ = 0

2 IV −32 69 126 225 749 −48 72 138 261 749
LS −43 66 115 194 750 −49 71 131 229 744

4 IV −32 30 46 66 532 −48 30 48 71 737
LS −43 27 40 56 199 −49 27 42 60 221

m = 100, φ = 0.4
2 IV −33 68 124 222 749 −49 70 137 253 749

LS −45 70 120 200 747 −49 73 137 234 746
4 IV −33 29 45 66 613 −49 30 47 72 557

LS −45 28 41 58 216 −49 28 43 61 255
m = 100, φ = 0.8

2 IV −46 58 118 216 750 −49 55 125 250 750
LS −46 73 131 221 746 −49 77 148 264 746

4 IV −46 25 43 67 501 −49 24 45 71 731
LS −46 29 45 64 245 −49 30 47 69 304

m = 250, φ = 0
2 IV −103 185 318 574 1867 −124 195 354 664 1865

LS −85 170 289 498 1875 −124 180 325 567 1871
4 IV −103 78 115 166 1005 −124 79 121 177 1222

LS −85 71 103 141 452 −124 71 106 148 486
m = 250, φ = 0.4

2 IV −104 181 320 583 1864 −124 189 344 661 1875
LS −85 174 298 515 1871 −124 185 340 591 1868

4 IV −104 77 115 166 1201 −124 77 120 177 1412
LS −85 73 105 143 504 −124 73 108 151 509

m = 250, φ = 0.8
2 IV −105 169 309 558 1864 −124 173 340 633 1873

LS −103 185 326 561 1851 −124 192 363 653 1870
4 IV −105 73 113 168 1489 −124 72 117 177 1719

LS −103 76 112 157 702 −124 77 116 169 891



Table 7: Size of the Tests with a Break in Correlation (k∗ = 1)

γ = 0.25 γ = 0.45
σ2
uv m̄ LS(+) LS(–) LS(0) LS(+) LS(–) LS(0)

m = 50, φ = 0
1m 0.064 0.062 0.063 0.050 0.047 0.048

0 4m 0.062 0.063 0.061 0.056 0.056 0.056
8m 0.064 0.063 0.064 0.059 0.056 0.057
1m 0.029 0.111 0.062 0.015 0.104 0.048

0.4 4m 0.040 0.106 0.067 0.022 0.110 0.054
8m 0.037 0.101 0.064 0.022 0.106 0.053

m = 50, φ = 0.4
1m 0.072 0.066 0.069 0.053 0.055 0.050

0 4m 0.071 0.070 0.066 0.059 0.065 0.063
8m 0.071 0.068 0.069 0.065 0.062 0.060
1m 0.023 0.131 0.071 0.013 0.122 0.052

0.4 4m 0.038 0.128 0.072 0.022 0.133 0.062
8m 0.038 0.124 0.072 0.019 0.127 0.061

m = 50, φ = 0.8
1m 0.090 0.090 0.090 0.071 0.073 0.070

0 4m 0.104 0.105 0.102 0.083 0.088 0.084
8m 0.103 0.098 0.103 0.085 0.082 0.085
1m 0.047 0.159 0.100 0.034 0.133 0.078

0.4 4m 0.067 0.174 0.119 0.048 0.166 0.106
8m 0.071 0.173 0.117 0.046 0.160 0.098

m = 100, φ = 0
1m 0.053 0.053 0.055 0.044 0.043 0.042

0 4m 0.053 0.053 0.052 0.047 0.050 0.049
8m 0.062 0.061 0.060 0.049 0.048 0.047
1m 0.023 0.099 0.054 0.012 0.109 0.048

0.4 4m 0.030 0.090 0.057 0.018 0.102 0.048
8m 0.035 0.089 0.058 0.019 0.102 0.050

m = 100, φ = 0.4
1m 0.053 0.054 0.053 0.044 0.047 0.045

0 4m 0.056 0.055 0.054 0.052 0.052 0.051
8m 0.065 0.062 0.062 0.049 0.052 0.049
1m 0.015 0.119 0.056 0.009 0.122 0.049

0.4 4m 0.027 0.113 0.061 0.012 0.129 0.053
8m 0.030 0.104 0.060 0.015 0.122 0.051

m = 100, φ = 0.8
1m 0.063 0.064 0.063 0.052 0.055 0.050

0 4m 0.072 0.071 0.071 0.062 0.061 0.058
8m 0.080 0.074 0.075 0.066 0.063 0.063
1m 0.021 0.144 0.073 0.014 0.135 0.062

0.4 4m 0.039 0.148 0.084 0.025 0.144 0.075
8m 0.039 0.124 0.074 0.023 0.137 0.064



Table 7: (continued)

γ = 0.25 γ = 0.45
σ2
uv m̄ LS(+) LS(–) LS(0) LS(+) LS(–) LS(0)

m = 250, φ = 0
1m 0.043 0.044 0.044 0.044 0.047 0.043

0 4m 0.050 0.053 0.052 0.048 0.047 0.047
8m 0.053 0.052 0.053 0.049 0.052 0.052
1m 0.018 0.093 0.048 0.006 0.110 0.045

0.4 4m 0.021 0.083 0.046 0.008 0.101 0.041
8m 0.031 0.091 0.053 0.010 0.104 0.047

m = 250, φ = 0.4
1m 0.043 0.045 0.045 0.044 0.046 0.045

0 4m 0.051 0.055 0.053 0.048 0.049 0.048
8m 0.053 0.052 0.052 0.051 0.053 0.054
1m 0.012 0.118 0.050 0.004 0.132 0.043

0.4 4m 0.016 0.099 0.048 0.005 0.122 0.036
8m 0.022 0.105 0.058 0.006 0.124 0.044

m = 250, φ = 0.8
1m 0.047 0.049 0.047 0.045 0.049 0.043

0 4m 0.055 0.058 0.057 0.052 0.052 0.052
8m 0.061 0.060 0.060 0.060 0.058 0.059
1m 0.014 0.131 0.062 0.006 0.139 0.050

0.4 4m 0.019 0.120 0.057 0.007 0.142 0.048
8m 0.022 0.119 0.063 0.009 0.131 0.053



Table 8: Empirical Results

(a) Tests for Structural Breaks

UDmax= 53.10∗∗∗ WDmax= 64.91∗∗∗

SupF(2|1) = 43.83∗∗∗ supF(3|2) = 13.34 supF(4|3) = 13.34 supF(5|4) = 8.51

(b) Estimation of the Number of Breaks

MBIC1: 2 MBIC2: 2

(c) Estimated Break Point and 95% Confidence Intervals

1st break: 1994.05 2nd break: 2007.09
CI (BP): [1993.11-1994.11] CI (BP): [2006.12-2008.11]
CI (KY): [1993.07-1994.08] CI (KY): [2004.09-2008.07]

Note: ∗ ∗ ∗, ∗∗ and ∗ denote 1%, 5% and 10% significance, respectively. The WDmax test statistic
depends on the significance level and the result in the table is when it is 0.01. The same test rejects
the null hypothesis with the 5% and 10% levels, respectively. Following Bai and Perron (1998),
each break date is the right end of the sub-sample and the new regime starts from 1 month after
the break date. The confidence intervals by Kurozumi and Yamamoto (2015) are obtained using the
sub-sample 1981.01-2006.12 for the first break and 1994.12-2012.12 for the second break, respectively,
where these sub-samples are chosen following the confidence intervals obtained by Bai and Perron
(1998).
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Figure 1: CUSUM monitoring


