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Innovation and collaboration patterns between research establishments* 

 

Hiroyasu INOUE†, Kentaro NAKAJIMA‡, and Yukiko Umeno SAITO§ 

 

Abstract 

 

This study empirically investigates the determinants of the productivity of knowledge creation by 

collaboration. By using the Japanese patent database, we extracted establishment-level patent co-invention 

information, and found the following results. First, we find an inverse U-shaped pattern in the relationship 

between the similarity of knowledge stocks and the quality of patents. That is, moderate diversity in 

knowledge stocks between establishments rather than extreme similarity or extreme diversity is important 

for knowledge creation. Second, focusing on the differences in technology class, we find inverse U-shaped 

pattern only in the high-technology class. This implies that the common knowledge between 

establishments is important in the invention of high technology patents. Third, we find that the physical 

distance between collaborating establishments has a negative effect on the quality of patents. 
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1. Introduction 

 

The exchange of ideas between researchers is crucial for knowledge creation. Different researchers have a 

different knowledge stock, which causes the exchange of different ideas. However, how large should the 

optimal difference in knowledge stocks between researchers be for innovation? Is a larger difference better? 

There is much debate on the role of the diversity of knowledge stocks on innovation.  

 

Empirical research on innovation mainly focuses on the diversity of workers’ characteristics, such as 

gender and ethnicity, as proxies for the difference in knowledge stocks. In fact, many studies have explored 

the role of diversity in innovation and found that more diversity is better for innovation (Breschi, Lissoni, 

and Malerba, 2003; Garcia-Vega, 2006; Østergaard, Timmermans, and Kristinsson, 2011).  

 

On the other hand, Berliant and Fujita’s (2008) seminal study theoretically pointed out the nonlinear effects 

of diversity on knowledge creation. They pointed out that common knowledge between collaborating 

agents is important as well as the diversity. Common knowledge between agents enables them to 

communicate with each other, and as a result, they exchange different ideas effectively. That is, moderate 

diversity in knowledge stocks between agents rather than extreme similarity or extreme diversity is 

important for knowledge creation. 

 

This study empirically tests the nonlinear effect of diversity on knowledge creation by using 

establishment-level collaborations from Japanese patent data. Long panel establishment-level collaboration 

data in patent creation enables us to capture the similarity/diversity between knowledge stocks of 

collaborating establishments. First, we define knowledge stocks in an establishment through the 

establishment’s history of patent applications. In particular, we define knowledge stocks in an 

establishment as a vector whose elements contain the numbers of the establishment’s applied patents in 

each technology class. Then, we define the knowledge similarity between collaborating establishments by 

the uncentered correlation of these knowledge stock vectors in each establishment proposed by Jaffe (1986). 

 

This study also focuses on the physical distance between collaborating establishments. Inoue, Nakajima, 

and Saito (2013) found that the collaborating relationships between establishments in inventing patents are 

geographically localized. This implies that physical distance impedes the collaborations between 

establishments. Similarly, physical distance may also matter to the quality of the collaborative patent. This 

study estimates how much the geographic distance affects the quality of patents. 

 

As the results, we find an inverse U-shaped pattern between similarity of knowledge stocks and quality of 

patents, which strongly supports Berliant and Fujita’s (2008) theoretical prediction. Furthermore, we find 
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that the geographical distance between collaborating establishments has a weak negative effect on the 

quality of patents. Second, focusing on the differences in technology class, we find inverse U-shaped 

pattern only in high-technology class. This implies that the common knowledge between establishments is 

important in the high-technology inventions. Third, we find that the physical distance between 

collaborating establishments has a negative effect on the quality of patents. 

 

The next section presents our data and demonstrates how to extract establishment information from the 

patent database. Section 3 discusses the empirical strategy and provides definitions of variables. Section 4 

shows the result, and Section 5 summarizes and discusses the implication of the results. 

 

2. Data 

 

We extracted establishment-level co-invention dataset in Japan. We utilized the Institute of Intellectual 

Property patent database (Goto and Motohashi, 2007), which includes all patent publications (the Patent 

Gazette) in Japan. This database includes basic patent information such as patent ID; application date, 

publication date, names and addresses of applicants; and names and addresses of inventors. The database 

also includes the number of citations received by each patent. The citation information is based on citations 

included in patents and given by reviewers. We used recorded patents rather than published patents. In 

Japan, applicants cannot acquire patent rights through patent applications only. Patents have to pass 

reviews and must be recorded with payment of fees. That is, recorded patents are generally better in 

quality than patents that are just applied for.  

 

Note that the publication date differs from the application date because of the reviewing time. To 

appropriately capture the timing of collaboration activities, we used the application date because it is closer 

to the timing of collaboration. We then restricted our sample to patents that were applied for from 1986 to 

2005. 

 

From this database, we identify patent-creating establishments by taking advantage of a convention of the 

Japanese patent system in which inventors register the address of the establishments to which they belong 

under “inventor’s address” (Inoue, Nakajima, and Saito, 2013, 2014). 

 

Here, we describe the algorithm for how to identify the establishments from our patent database, following 

Inoue, Nakajima, and Saito (2013, 2014). First, firms are identified through the names and addresses of 

applicants. We define a firm as an applicant when its name includes the term “company limited” or 

“kabushikigaisha” in Japanese. This definition simultaneously excludes all relatively small firms, such as 

private limited companies. Second, the patent-creating establishments are identified as follows. We check 
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whether the firm’s name is included in the inventor’s address. We then consider the inventor’s address 

with the firm name as the address of the establishment owned by the firm. 

 

Using this identification method, we gathered the following information. Table 1 gives a summary of the 

dataset. The dataset includes 1,967,361 patents. 1,189,262 patents out of them are applied for by 

establishments. On the collaboration, number of patents applied for by establishments’ collaborations are 

93,939. In the analysis, we use only on the collaborations between two firms because we focus on the 

bilateral relationships. Number of patents applied for by two establishments collaborations are 83,742. The 

number of firms as applicants is 56,592. The number of patent-creating establishments is 74,452. 

 

[Table 1 here] 

 

3. Empirical Strategy  

 

This study aims to estimate the effect of the similarity of knowledge stocks between collaborating 

establishments on the quality of patents created by their collaboration. The estimation equation is as 

follows: 

 

log quality!"# = 𝛼 + 𝛽!similarity!"# + 𝛽!(similarity!"#)! + 𝑍!"#! 𝛿 + 𝜀!"# , 

 

where log quality!"#  is the log of quality of patent 𝑝 created by the collaboration between establishments 

𝑖 and 𝑗, similarity!"# is the similarity of knowledge stocks between establishments 𝑖 and 𝑗 at the point of 

application for patent 𝑝, 𝑍!"# is the other characteristics of establishments 𝑖 and 𝑗, and their relationships, 

and 𝜀!"# is the error term. We estimate this equation by ordinary least squares. 

 

To measure knowledge quality, we use the number of received citations for each patent. Because the 

number of received citations is larger for older patents and differs depending on their technology class, we 

normalized the number of received citations by dividing it by the average number of received citations in 

all the patents applied for in the same year and in the same technology class (Hall and Jaffe 2000; 

Trajtenberg, 1990). 

 

Next, we define the similarity of the knowledge stocks. First, we define the knowledge stock in each 

establishment through its history of patent applications. The number of applied patents in each technology 

class prior to the establishment’s application for a patent constitutes the knowledge stock of the 

establishment in that period. That is, we define knowledge stock as a vector whose elements contain the 

numbers of applied patents in each technology class (Benner and Waldfogel, 2008). Second, we define the 
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knowledge similarity between collaborating establishments. When two establishments apply for a patent 

through collaboration, each establishment has its own knowledge stock as a vector whose elements contain 

the number of applied patents in each technology class. We define knowledge similarity as the Jaffe’s 

(1986) uncentered correlation for these two knowledge stock vectors. This similarity measure ranges from 

zero to one. In the estimation, we add the quadratic term of this variable to capture the nonlinear effect of 

similarity on patent quality. 

 

As the other covariates 𝑍!"#! , we first introduce geographic distance between collaborating establishments, 

which is found to cause collaborating friction. Inoue, Nakajima, and Saito (2013) found that 

establishment-level collaborations are significantly localized. This suggests the difficulty of collaborations 

between geographically remote establishments. Geographical distance may also reduce the quality of 

patents. To capture this effect, we include the physical distance between collaborating establishments as 𝑖 

and 𝑗. 

 

We also control for the establishments’ characteristics. The levels of creativity at establishments affect the 

quality of their collaborating patents independently from the collaboration characteristics. To control for 

the establishment’s creativity, we include the total number of patent inventions from each establishment. 

Furthermore, to capture the establishment’s tendency to undertake collaborative works, we include the 

total number of collaborative patents from each establishment. 

 

This regression approach focuses on the bilateral relationship between establishments. Therefore, we 

restrict our sample to patents created by two establishments. Further, there are numerous establishments 

that do not publish patents intensively. These establishments do not have enough knowledge stocks 

measured by the history of patent publications. We only focus on establishments that intensively publish 

patents. Particularly, we restrict sample establishment that publish more than 500 patents. 

 

Table 2 shows the summary statistics of these variables. 

 

[Table 2 here] 

 

4. Results  

4.1. Baseline result  

 

Table 3 shows the estimation results. Column 1 shows the baseline result for the overall period from 1990 

to 2005. First, the coefficient for similarity of knowledge is positively significant at the 5% level. 

Furthermore, the coefficient for the quadratic term of similarity of knowledge is negatively significant at 
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the 5% level. This clearly shows the inverse U-shaped pattern of similarity of knowledge stocks in relation 

to patent quality. The peak of this inverse U-shape locates 0.194 in similarity. The peak locates within the 

domain of similarity index. This means that the patent quality neither increases nor decreases 

monotonically in the domain of knowledge similarity. 

 

Next, we introduce geographic distance into the estimation equation. Column 2 shows the result. Even if 

we control for the distance, the inverse U-shaped pattern can be observed as significant. Interestingly, the 

coefficient for the log of physical distance between collaborating partners is negatively significant. This 

implies that physical distance may impede the quality of collaborative work.  

 

In this study, we measure patent quality through number of citations. As mentioned above, our normalized 

numbers of citations are divided by the average of the number of citations in the same year and in the same 

technology class. We especially classified technologies based on three letters in the International 

Technological Classification (IPC). However, to control for the remaining technology class heterogeneity, 

we introduce three-digit fixed technology class effects. The result is shown in column 3. Even if we control 

for that, the results are unchanged.  

 

Patent quality is also affected by the establishments’ locations. In fact, it is indicated that creative 

establishments are heavily concentrated in large urban metropolitan areas (Inoue, Nakajima, and Saito, 

2014). To control for location effects, we introduce Tokyo fixed effects in the equation, but the results are 

unchanged (Column 4). Finally, to capture the periodical characteristics of patent quality, we introduce 

year fixed effects, but results are unchanged (Column 5). 

 

In summary, we can robustly find the inverse U-shaped pattern between similarity of knowledge stocks 

and patent quality. This inverse U-shaped pattern is robust if we control for the establishment’s creativity 

and any other characteristic of collaboration. Furthermore, the coefficient for the log of physical distance 

between collaborators is negatively significant in the most of specifications. This implies that difficulty of 

collaboration between geographically remote establishments may reduce the quality of collaborative 

patents. Because collaborations in knowledge creation require face-to-face communications that promote 

intensive discussions, sharing tacit information, and so on, geographic remoteness can be considered to 

impede communications and reduce the quality of patents. 

 

4.2. Time periods 

 

The inverse U-shaped pattern and the role of geographical distance would change with different time 

periods. We next conduct the same estimation by a five years window. We use the specification that 
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introduces fixed technology class, Tokyo, and year effects. 

 

Table 3 shows the results. Column 1 shows the result from 1990 to 1995, column 2 shows that from 1996 to 

2000, and column 3 shows that from 2001 to 2006. In the oldest period (Column 1), we cannot observe the 

inverse U-shape pattern, that is, coefficients for both similarity and quadratic term of the similarity are not 

significant. On the other hand, in the recent periods (Columns 2 and 3), we can observe the inverse U-shape 

pattern. This implies that relative to the earlier periods, recent patents are more technologically advanced, 

and the required background knowledge also increases and becomes more specialized. The increase of 

specialization in each establishment makes it difficult to communicate with each other, and this may 

increase the required similarity of background knowledge stocks between collaborators. Coefficients for 

distance are negatively significant in the recent periods (Columns 2 and 3). 

 

 

[Table 3 here] 

 

 

4.3. Technology difference 

 

The role of knowledge similarity may be different throughout technology classes. Patents in 

high-technology classes require more advanced knowledge, and this makes it difficult to communicate 

with each other. Under these circumstances, sharing common knowledge would become more important. 

In this section, we categorize patents by their technology classes, and investigate the inverse U-shaped 

pattern in knowledge similarity. 

 

4.3.1. Definition of technology class groups 

 

For the analysis, we need to define the height of technology. In general, a higher technology class requires 

more investments for invention. Therefore, we define the height of technology by the share of R&D 

investment. That is, the technology class that requires more investment for invention can be defined as a 

high-class technology.  

 

However, our patent database does not include such R&D information. Therefore, we merge several 

databases and obtain information on the share of R&D investments over the total sales in each patent 

technology class. The detailed methodology is as follows. 

 

R&D investment information can be obtained from the Basic Survey of Japanese Business Structure and 
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Activities. It covers firms in the all industries with more than 50 employees and capital stock of over 30 

million yen. This database includes each firm’s sales, R&D investment, and industry code (JSIC). We create 

R&D intensity by dividing aggregated R&D investment and sales for each three-digit level industry code. 

 

Next, we identified the correspondence between three-digit level industry codes and patent technology 

classes. Each patent provides information of the applicant’s name and address; that is, the names and 

addresses of firms, which we merge with the Tokyo Shoko Research (TSR) firm database. The TSR covers 

826,169 Japanese firms, which is more than half of the total number of firms in Japan. This database 

includes the industry code for each firm. Merging TSR data with the patent database by the firm’s name 

and address information, we obtain the applicant firms’ industry information for each patent.  

 

Using the merged patent database, we create the composite of the industry code for each technology class. 

Precisely, focusing on the patents of one technology class, we calculate the number of patents per industry 

to which each applicant firm belongs. 

 

Finally, by using information on industry-level R&D investment shares, and by calculating the weighted 

average of R&D investment shares by the above mentioned industry composite, we obtain information on 

patent-technology class level R&D investment shares.1 

 

By using this data, we define four types of technology by the quantile of R&D investment shares: low, 

mid-low, mid-high, and high technology. Patent technology classes with R&D investment shares that 

locate the first quantile are defined as a low-technology class. Similarly, patent technology classes with 

R&D investment shares that locate the fourth quantile are defined as high-technology classes. 

 

4.3.2. Estimation results 

 

We estimate the equation by categorizing samples according to the four technology classes. Results are 

shown in Table 5. Columns 1, 2, and 3 show the results for the low-tech, mid-low tech, and mid-high tech 

patent classes. We cannot find any significant inverse U-shaped patterns in knowledge similarity and 

quality of patent. In the low-tech, mid-low tech, and mid-high tech patent creation, diversity of knowledge 

does not work. On the other hand, Column 4 shows the result for high-tech patent class, and we can 

observe significant inverse U-shaped patterns in knowledge similarity and quality of patents. Inverse 

U-shaped patterns can be observed in the high-technology patents. This implies the importance of common 

knowledge for the higher technologies. This may result from the fact that when there is collaboration in the 

                                                   
1 Results are available upon request. 
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high technology classes, each collaborating establishment specializes in a specific field of advanced 

knowledge, and this makes it difficult to communicate with each other.  

In the high-tech patents, the coefficient for distance is negatively significant (Column 4). This may imply 

that collaborations in high-tech patents require more face-to-face communications and sharing tacit 

information, and geographic proximities become more important. 

 

 

 [Table 5 here] 

 

 

5. Discussion 

 

This study has investigated the determinant for the quality of knowledge creation in collaborative work by 

using Japanese patent data. We obtained the following results from our estimations. First, throughout the 

periods and specifications, we robustly find inverse U-shaped patterns in the similarity of knowledge 

stocks and quality of patents. This strongly supports Berliant and Fujita’s (2008) theoretical prediction. To 

achieve high-quality knowledge creation, both extreme similarity and extreme diversity are not efficient. 

Moderate diversity, which means sharing a certain amount of common knowledge, is important for 

high-quality knowledge creations. However, previous empirical studies on the diversification of 

innovation do not consider the importance of common knowledge and focus only on the diversification of 

workers. 

 

Second, we find that physical distance between collaborators has a negative effect on the quality of patents, 

but this effect is not necessarily observed in all periods. Inoue, Nakajima, and Saito (2013) found that 

geographical distance caused strong frictions in forming collaboration relationships throughout the period. 

This implies that geographical distance works as an impediment for forming collaborative relationships, 

but distance does not work as an impediment on the quality of the collaborative work in all the periods.  

 

Third, we find heterogeneous patterns in inverse U-shape patterns in relation to technology. In the 

low-tech, mid-low tech, and mid-high tech class, there is no inverse U-shaped pattern. We find significant 

inverse U-shaped patterns only in high-technology. This implies the importance of common knowledge for 

the high-technologies, where the establishments are highly specialized in their own fields. 

 

Following the theory by Berliant and Fujita (2008), under the circumstances, an iteration of collaborations 

increases the common knowledge between collaborators, and reduces the productivity of knowledge 

creation. Thus, they predict that knowledge-creating agents frequently switch collaborating partners that 
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have a different knowledge stock. Investigating these switching patterns may be a future project. 
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Table 1 Patent database and establishment-level collaborations 

Number of patents 1,967,361 

Number of patents applied for by establishments 1,189,262 

Number of patents applied for by establishments’ collaborations 93,939 

        Number of patents applied for by two establishments collaborations 83,742 

Number of establishments 74,452 

Number of firms  56,592 

 

Table 2 Summary statistics  

  Obs. Mean SD Median Min Max 

No. of citations received (normalized) 10866 1.172  2.034  0.568 0.000  49.100  

Knowledge similarity 10866 0.100  0.089  0.078 0.000  0.645  

Geographical distance (km) 10866 158.999  251.374  33.030 0.000  1370.259  
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Table 3 Baseline results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1) (2) (3) (4) (5) 

Correlation 0.363** 0.320** 0.462** 0.449** 0.548** 

 

(0.153) (0.155) (0.173) (0.195) (0.195) 

Correlation2 -0.935** -0.866** -1.072** -1.043** -1.248** 

 

(0.289) (0.291) (0.354) (0.414) (0.417) 

ln(distance) 

 

-0.00589* -0.00612 -0.0131** -0.0142** 

  

(0.00357) (0.00381) (0.00450) (0.00451) 

ln(# patenti × # patentj) 0.0129** 0.0123** 0.0148** 0.00847* 0.00990* 

 

(0.00416) (0.00417) (0.00484) (0.00507) (0.00505) 

ln(# citationsi × # citationsj) -0.00138 -0.00156 -0.00752* -0.00594 -0.00815* 

 

(0.00349) (0.00349) (0.00397) (0.00420) (0.00417) 

Constant 0.349** 0.387** 0.404** 0.515** -0.0522 

 

(0.0562) (0.0606) (0.0662) (0.0699) (0.0691) 

      Tech. class FEs No No Yes Yes Yes 

Tokyo FEs No No No Yes Yes 

Year FEs No No No No Yes 

      Observations 10866 10866 10866 10866 10866 

R-squared 0.002 0.002 0.020 0.044 0.066 
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Table 4 Time periods analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1) (2) (3) 

Correlation -0.387 1.038** 0.645* 

 

(0.698) (0.379) (0.337) 

Correlation2 1.775 -2.015** -1.851** 

 

(1.939) (0.829) (0.731) 

ln(distance) 0.0235* -0.0164** -0.0230** 

 

(0.0123) (0.00794) (0.00845) 

ln(# patenti × # patentj) 0.0137 0.0360** 0.00624 

 

(0.0172) (0.00991) (0.00915) 

ln(# citationsi × # citationsj) 0.00383 -0.00990 -0.0111 

 

(0.0135) (0.00864) (0.00711) 

Constant 0.276 0.177 0.446** 

 

(0.252) (0.126) (0.125) 

    Tech. class FEs Yes Yes Yes 

Tokyo FEs Yes Yes Yes 

Year FEs Yes Yes Yes 

    Periods 1991-1995 1996-2000 2001-2006 

Observations 1551 2812 4360 

R-squared 0.161 0.133 0.086 
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Table 5 Technology class analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (1) (2) (3) (4) 

Correlation -0.967 0.835 0.302 0.764** 

 

(0.950) (0.886) (0.397) (0.251) 

Correlation2 4.169 -1.970 -0.451 -1.843** 

 

(3.378) (2.756) (0.839) (0.512) 

ln(distance) -0.0170* -0.0177 0.0243** -0.0202** 

 

(0.00988) (0.0114) (0.0122) (0.00656) 

ln(# patenti × # patentj) 0.0162 0.0504** 0.0184 0.000718 

 

(0.0238) (0.0181) (0.0120) (0.00612) 

ln(# citationsi × # citationsj) -0.0111 -0.0209 -0.00782 -0.00609 

 

(0.0200) (0.0155) (0.00993) (0.00504) 

Constant -0.0606 -0.396* 0.00641 0.0796 

 

(0.293) (0.207) (0.237) (0.0831) 

     Tech. class FEs Yes Yes Yes Yes 

Tokyo FEs Yes Yes Yes Yes 

Year FEs Yes Yes Yes Yes 

     Sample Low-tech Mid-low tech Mid-high tech High-tech 

Observations 1840 1371 1968 5687 

R-squared 0.090 0.095 0.071 0.064 
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