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Abstract

Financial and macroeconomic time-series data often exhibit infrequent but large
jumps. Such jumps may be considered as outliers that are independent of the underly-
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common factor models. We Arst derive the upper bound of jump magnitudes with which
the standard asymptotic inference goes through. Second, we propose a jump-correction
method based on a series-by-series outlier detection algorithm without accounting for
the factor structure. This method gains standard asymptotic normality for the factor
model unless outliers occur at common dates. Finally, we propose a test to investigate
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1 Introduction

The common factor model is found to be a useful and eBective tool for statistical inference

with Dnancial or economic high-dimensional data sets. Major applications are found in the

empirical asset pricing literature of the well-known Arbitrage Pricing Theory (Ross, 1976).

For classical examples, Lehmann and Modest (1988) and Connor and Korajczyk (1988)

apply a multifactor model to cross sections of stock returns. Recently, Ando and Bai (2014)

develop a multifactor model with group structure and apply it to Chinese stock returns. The

list of studies pertaining to Dxed-income assets such as government and corporate bonds

includes Litterman and Scheinkman (1991), Elton et al. (1995), Ang and Piazzesi (2003),

and Ludvigson and Ng (2009). Eichengreen et al. (2012) and LongstaB et al. (2011) are

recent examples of using the credit default swap spreads of banks and sovereign debts. Lustig

et al. (2011) and Engel et al. (2014) provide applications to currency returns. There is also a

strand of research investigating macroeconomic time-series data using dynamic factor models

following, as far as the author knows, Geweke (1977), Sargent and Sims (1977), and Stock

and Watson (2002ab). This list is by no means comprehensive.

One remarkable feature of such data sets is that they often exhibit infrequent but large

jumps. While the source and dates of these jumps are sometimes of interest by themselves,

we may simply consider the jumps nuisance outliers that are independent of the underlying

data-generating processes. For examples of the former case, jumps in stock markets re`ect

important news or announcements pertaining to individual Drms or to the market as a whole.

In foreign exchange markets, the relative importance of common and idiosyncratic jumps has

been discussed by Engle et al. (1990). Here, the jump-free factor model must be estimated

in order to identify the jumps correctly. In the latter case, it is well-recognized that such

outliers can easily contaminate inferences on the underlying jump-free model. Therefore, a

large amount of research has gone into identifying and correcting such outlier eBects. The

most popular issue was to detect outliers in the stationary autoregressive moving average

(ARMA) models, for which methods have been proposed by Fox (1972), Box and Tiao

(1975), Tsay (1986), and Chen and Liu (1993), among others. For examples of unit root

and cointegration tests, see Franses and Haldrup (1994), Vogelsang (1999), and Perron and

Rodrcdguez (2003) and for examples of inference for conditionally heteroskedastic models with

outliers, see Franses and Ghijsels (1999) and Charles and Darnce (2005).1

1In this perspective, a strand of literature uses high-frequency data to asymptotically infer jump-free
processes or the jump itself. See Barndor?-Nielsen and Shephard (2007), AZ[t-Sahalia and Jacod (2014), and
the references therein. AZ[t-Sahalia and Xiu (2015) apply principal component analysis using high-frequency
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Following the aforementioned outlier detection/correction literature, in this paper we

investigate the eBects of outliers on the recently developed asymptotic inference for large-

dimensional common factor models using the principal component approach (e.g., Bai and

Ng, 2002; Bai, 2003; Amengual and Watson, 2007; and Bates et al., 2013). To make this

attempt feasible and attractive, we extend the standard large-dimensional common factor

model as follows. First, we model the infrequent jumps of each response variable as incre-

ments of a mixture of Poisson processes, with the intensity parameter p=T , where p is a small

constant value and T is the time dimension of data. This is a popular strategy to model

infrequent events in Dnancial time series. See Georgiev (2002), Leipus and Viano (2003),

and Perron and Qu (2010). The jumps are infrequent because the probability of a jump

at a given time goes to zero as T ! 1. Second, the magnitudes of jumps are modeled
as a function of data dimension. This device provides useful asymptotic approximations of

the eBects of jumps on inferences. Third, we consider jumps that occur at dates speciDc to

one response variable (idiosyncratic jumps) and those that occur at the same date in other

response variables (common jumps). Finally, we consider the possibility of the underlying

factors exhibiting large jumps. This is in contrast to the case where jumps are independent

from the factors and thus they are regarded as outliers.

Under this setting, we Drst derive the upper bounds of jump magnitudes with which

the standard asymptotic inference goes through. Furthermore, we provide two useful ap-

plications of this result. The Drst application pertains to a method to correct the eBects

of outliers on inferences. This is a simple application of a series-by-series outlier detection

algorithm without considering the factor structure in the data. This method enables us to

apply standard asymptotic normality of common factor models unless common jumps occur.

Even when they do, the consistency of factor estimates is obtained. The second application

pertains to the factor jump test|a test to investigate whether jumps at a common date are

independent outliers or are of factors. This test is important because outliers may spuriously

induce jumps in factor estimates even if the true factors have no jumps.

A Monte Carlo experiment conDrms the following results in Dnite samples. First, indepen-

dent large outliers easily contaminate the standard asymptotic inference in large-dimensional

factor models. They signiDcantly deteriorate the coverage rates of asymptotic conDdence in-

tervals, reduce the correlation between the true and estimated factors, and induce over- and

under-estimation of a number of factors. However, the proposed jump-correction method

retrieves good Dnite sample properties unless T is too small. Finally, the factor jump test

Anancial data.
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shows good size when the outliers are suiciently large. The test also exhibits good power.

We then apply these methods to daily log-returns data of 25 currencies against the U.S. dollar

for the recent Dnancial crisis period. We observe infrequent large jumps in many currencies

and identify a few common ones. From the common jumps on May 6{7 and September 30,

2008, a factor closely related to currencies such as the Hungarian forint, Norwegian krone,

and Polish zloty shows strong evidence of jumps. On the other hand, a factor related to

currencies such as the Swiss franc and Japanese yen exhibits no jump. This factor exhibits

very weak evidence of jumps during that period. We also apply the method to Japanese

prefectural new car registration data for the period January 1985 to December 2014. Note

that there were two large earthquakes, in 1995 and 2011. We Dnd that the jumps following

the 2011 earthquake represent a jump in a common factor, whereas the jumps following the

1995 earthquake do not represent a jump in factors.

The rest of this paper is structured as follows. Section 2 presents our model and assump-

tions. Section 3 provides the upper bounds with which the standard asymptotic inference

results go through. Section 4 discusses two useful applications: the jump-correction method

and the factor jump tests. Section 5 investigates their Dnite sample properties via Monte

Carlo simulations. Section 6 serves as two small empirical applications, and section 7 con-

cludes the paper. We use the following notations throughout the paper. The Euclidean

norm of vector x is denoted by kxk. For matrices, we use the vector-induced norm. Symbols
O(%) and o(%) denote the standard asymptotic order of sequences; symbol p! represents the

convergence in probability under probability measure P , and symbol ) denotes the conver-

gence in distribution. Symbols Op(%) and op(%) are the orders of convergence in probability
under P . We let cNT = min

np
N;
p
T
o
.

2 Model and assumptions

2.1 Model

We consider the common factor model with cross-sectional dimension N and time-dimension

T where N and T are both large:

x"it = +
0
iFt + uit; for i = 1; :::; N and t = 1; :::; T; (1)

where x"it is the ith response variable at time t, Ft is an r ( 1 vector of common factors,
+i is an r ( 1 vector of factor loadings, and uit is an idiosyncratic error. Without loss of
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generality, we use demeaned data so that intercepts are omitted from the model. In matrix

form, model (1) can be written as

X" = Fo + u; (2)

where X" = [x"1; :::; x
"
N ] is a T ( N matrix with x"i = [x

"
i1; :::; x

"
iT ]

0 being a T ( 1 vector of
response variables, F = [F1; ::; FT ]

0 is a T ( r matrix of common factors, o = [+1; :::; +N ]0 is
an N ( r matrix of factor loadings, and u = [u1; :::; uN ] is a T ( N matrix of idiosyncratic

errors with ui = [ui1; :::; uiT ]
0 being a T ( 1 vector.

In this study, we consider the model in which response variable x"it is not observed but

xit is, so that

xit = x
"
it + zit; (3)

where zit consists of infrequently occurring jumps. SpeciDcally, we consider the following

increments of a mixture of Poisson processes:

zit = 4
c
t5
c
it + 4it5it: (4)

In the two terms on the right-hand side of (4), 4ct and 4it are i:i:d: Bernoulli random

variables with probabilities pc=T and p=T , respectively, where pc and p are (typically small)

positive constants. The main idea behind these intensity parameters is that the expected

number of jumps is constant in each series as T expands. Recently, important developments

have established the convergence results of the Poisson process with this intensity parameter.2

See Georgiev (2002) and Leipus and Viano (2003) for theoretical developments, and Perron

and Qu (2010) for an empirical example. Furthermore, 5cit and 5it are random variables

associated with jump magnitudes. Note that if the Drst term shows a jump (4ct = 1),

every response variable (xit for every i) also jumps on the same date t. Therefore, we call

them common jumps. On the other hand, the second term consists of jumps occurring

on idiosyncratic dates, and so we call them idiosyncratic jumps. Lastly, we assume that

both common and idiosyncratic jumps are independent of the underlying factors and so are

regarded as nuisance outliers in the factor model.

2.2 Assumptions

This section introduces our assumptions. Assumptions 1 to 5 apply to model (1), following

the standard literature of Bai (2003) and Bates et al. (2013).

2Note that the theoretical results derived here quantitatively depend on this assumption. It is interesting
to consider more general settings of the intensity parameter, although a thorough treatment is beyond the
scope of this study. Thus, we maintain this simple assumption for the sake of brevity.
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Assumption 1. E kFtk
4 < 1 and T$1

PT
t=1 FtF

0
t

p! rF , as T ! 1; for some positive
deDnite matrix rF .

Assumption 2. E k+ik ) + < 1 and o0o=N
p! r%, as N ! 1; for some positive

deDnite matrix r%.

Assumption 3. The following conditions hold for all N and T , where M is a generic

constant.

(a) E(uit) = 0; Ejuitj8 )M:
(b) :N(s; t) = E(u

0
sut=N) for all (s; t),

j:N(s; t)j )M for all s;

and

T$1
PT

s=1

PT
t=1 j:N(s; t)j )M:

(c) <ij;ts = E(uitujs) for all (i; j; s; t). j<ij;ttj ) j<ijj for some <ij and for all t, while

N$1PN
i=1

PN
j=1 j<ijj )M;

and

(NT )$1
PN

i=1

PN
j=1

PT
s=1

PT
t=1 j<ij;tsj )M:

(d) For every (s; t),

E
$$$N$1=2PN

i=1[uisuit + E(uisuit)]
$$$
4

)M:

Assumption 4. For all (i; j; s; t), Ft; uis, and +j are mutually independent.

Assumption 5. The eigenvalues of rFr% are distinct.

Assumptions 6 and 7 specify the jump process (4) regarded as outliers.

Assumption 6. The followings hold for all (i; j; s; t)

(a) zit and x
"
js are mutually independent.

(b) 4ct , 5
c
it, 4js, and 5js are mutually independent.

(c) 5cit and 5js follow i:i:d:N(0; >
2
NT ).
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Assumption 7. With kNT , 0 as an arbitrary function of N and T , the standard

deviation of jumps is >NT = kNT>, where 0 < > <1 is a Dxed constant.

Assumption 6 (a) ensures that jumps are independent outliers in the factor model. Fur-

thermore, Assumption 6 (c) assumes that jump magnitudes follow a normal distribution

with zero mean. However, normality is not essential and solely for derivational simplicity

and we can replace this assumption with the corresponding moment conditions E(5) = 0,

E(52) = O(k2NT ), and E(5
4) = O(k4NT ). The zero-mean assumption is not without loss of

generality, however, since it solves an identiDcation problem and greatly simpliDes theoret-

ical results, we keep this assumption within this paper.3 Assumption 7 assumes that the

standard deviation of jumps is asymptotically large and represented by scale factor kNT .

As shown later, this enables us to obtain meaningful asymptotic results pertaining to jump

magnitudes.

Throughout the paper, factors are estimated using the principal component method, that

is,

(ô; F̂ ) = argmin
%;F

PN
i=1

PT
t=1(xit + +

0
iFt)

2; (5)

imposing a normalization F̂ 0F̂ =T = Ir, where Ir is the r-dimensional identity matrix. This

yields F̂ , that is,
p
T times r eigenvectors of XX 0 corresponding to its r largest eigenvalues

and ô = X 0F̂ (F̂ 0F̂ )$1.

3 Asymptotic results

This section presents the asymptotic results on inference for large-dimensional factor models

as established by the literature in the presence of jumps. Again, jumps in this section are

regarded as outliers independent of the underlying factor model. We examine the conditions

for the scale of jump magnitudes kNT under which standard results are unaBected. To this

end, we study the insight of Bates et al. (2013), who discuss the conditions for magnitudes

of factor loading instabilities with which standard asymptotic results go through.

We Drst consider the asymptotic normality originally obtained by Bai (2003) in the

following theorem.

3Suppose E("it) = " <1. Then, under the following additional conditions on the original factor model,
a model with non zero mean jumps can be regarded as a model with zero mean jumps. When common jumps
occur ($ct = 1), the condition is E(%i) = % 6= 0 for all i. Then, the new factor at t is deAned as Ft + )=% in
the case of r = 1 so that the new jumps have zero mean. When a idiosyncratic jump occurs ($it = 1), the
condition is E(Ft) = )F 6= 0 for all t. Then the new loading is deAned as %i + )=)F to be compatible with
the model with zero mean jumps.
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Theorem 1 (Asymptotic normality of factors and factor loadings) Suppose Assumptions

1{7 hold and uit follows i.i.d. with mean zero and variance >
2
u. (i) If kNT = o(T 1=2) and

4ct = 0, then

N1=2(F̂t +H 0Ft)) N(0; V $1QttQ
0V $1); (6)

as N; T ! 1 under
p
N=T ! 0, where H = V $1NT (F̂

0F=T )(o0o=N); Q = V 1=2u0r
$1=2
% ,

and tt = AV ar(N$1=2PN
i=1 +iuit). Matrices VNT and V are diagonal, the main diagonals

being the r largest eigenvalues of XX 0=(NT ) and r
1=2
% rFr

1=2
% , respectively, and u is the

eigenvector matrix corresponding to the latter.

(ii) If kNT = O(TN
$1=2), then

T 1=2(+̂i +H$1+i)) N(0; Q0$1viQ
$1); (7)

where vi = AV ar(T
$1=2PT

t=1 Ftuit), as N; T !1 under
p
T=N ! 0.

(iii) If 4ct = 1; T=N ! 0, and kNT = o(min
%
N1=2T$1=2; N1=4T 3=4

&
) or if 4ct = 0 and

kNT = o(min
%
T 1=2; N1=2; N1=4T 3=4

&
), then

(N$1Vit + T
$1Wit)

$1=2(+̂
0
iF̂t + +

0
iFt) =) N(0; 1); (8)

where Vit = +
0
ir
$1
% ttr

$1
% +i and Wit = F

0
tr

$1
F vir

$1
F Ft, as N; T !1.

Parts (i) and (ii) of this theorem imply that the upper bounds of jump magnitudes

are given by
p
T for factor estimates and T=

p
N for factor loading estimates to obtain

standard asymptotic normality. We interpret these upper bounds as a larger T of the data

set extending the bound so that it helps obtain asymptotic inferences for both estimators

in the presence of outliers. On the other hand, a larger N lowers the bound for factor

loadings and hence may harm the inference for factor loadings. This is intuitive because

the source of contamination is jumps and they are infrequent so that the total number of

jumps in a data set does not increase as T increases, but increases as N does.4 In addition,

whether the jumps are common or idiosyncratic does not aBect the asymptotic distribution

of the factor loading estimate, unlike that of the factor estimate. This is because of the

assumptions on the infrequent nature of the jumps. The factor loadings are estimated using

a time series regression of the ith series. However, there are few jumps over time, regardless

of their common or idiosyncratic properties. This is in contrast to the factor estimate,

in which the cross-section regression at time t is in eBect. That is, if common jumps are

4If we employ an intensity parameter that shrinks at a slower rate in order to consider more frequent
jumps, then the upper bound of kNT will decrease in terms of T .
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present at time t, all the cross-sectional observations at time t have jumps and undermine

the asymptotic results of the factor estimate. Part (iii) pertains to the common component

and the upper bound is more complicated. This is because the convergence rate is now

cNT = min
np

N;
p
T
o
so that not only a large T , but also a large N helps to diminish the

error terms.

The theorem also implies that the asymptotic normality of F̂t is available only when

common jumps do not occur at t (4ct = 0). To deal with this problem, the following corollary

guarantees its consistency with the timing of common jumps.

Corollary 1 (Consistency of factors under common jumps) Suppose Assumptions 1{7 hold

and 4ct = 1. If kNT = o(N
1=2), then

'''F̂t +H 0Ft

''' = op(1), (9)

as N; T !1.

We next consider the upper bound of jump magnitudes with which the information

criteria of Bai and Ng (2002) give consistent estimates for the number of factors r. The

information criteria are deDned as

r̂ = arg max
0%l%lmax

log V (l) + l ( g(N; T ); (10)

where V (l) .
PN

i=1

PT
t=1(xit + +̂

l0
i F̂

l
t )
2 and F̂ lt is the principal component factor estimate,

assuming l factors and +̂
l

i = (
PT

t=1 F̂
l
t F̂

l0
t )
$1(
PT

t=1 F̂
l
txit). We obtain the following theorem

as a direct consequence of Amengual and Watson (2007).

Theorem 2 (Information criteria) Suppose A1-A7 hold, with E(FtF
0
t) = rF , E(+i+

0
i) =

r%, and E(u
2
it) = >

2. If kNT = O(max
%
1; T 1=4N$1=4

&
), then r̂

p! r as N; T !1.

The condition for the consistent estimation of r is more stringent than the conditions for

the asymptotic normality of factors and factor loadings. Indeed, when N grows faster than

T , the upper bound becomes kNT = o(1) and no jumps are allowed, in theory. Overall, the

upper bounds we have derived in Theorems 1 and 2 and Corollary 1 are closely linked to the

nature of the infrequent jumps in our model. Except for the factor estimate at the common

jump timing, the upper bounds increase (or are unchanged) as T increases, and shrink (or

are unchanged) as N increases. The intuition behind these results is consistent with the

fact that the total number of jumps increases as N increases, but remains unchanged when

T increases. Therefore, a more general speciDcation of the jump model could possibly be

applied to implement a similar investigation, although this is beyond the scope of this paper.
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4 Two useful applications

4.1 Series-by-series jump-correction algorithm

This section discusses two useful applications of the results presented in the previous section.

The Drst pertains to the correction of jump eBects. We consider the algorithms developed for

univariate time-series data. For this, we apply them series-by-series without considering their

common factor structure. The idea is that if jumps are outliers, removing their eBects will

not change their factor structure. We then identify and estimate the common components

with the set of individually jump-corrected response variables.5 We propose the following

algorithm.

Algorithm: Implement the following steps for i = 1; :::; N .

Step 1. Compute I i(t) = v̂"it=>̂i, where v̂
"
it is the residual from a Dt of the tentative

univariate jump-free model using xit without considering its common factor structure. Use a

standard deviation estimate >̂i of v
"
it = x

"
it+ x̂it , which is not aBected by the jumps present

in fxitg
T
t=1.

6

Step 2. If max1%t%T jI i(t)j , K, where K is a predetermined critical value,

T̂i = arg max
1%t%T

jI i(t)j ;

is considered a possible jump location. Go to Step 3. If max1%t%T jI i(t)j < K, the ith series
exhibits no (more) jumps. Assume that x̂"it = xit for all t, and go back to Step 1 to proceed

with the (i+ 1)th series.

Step 3. Replace xiT̂i with the Dtted value obtained in Step 1 so that x̂
"
iT̂i
= x̂iT̂i . Go

back to Step 1 and use x̂"it as a new xit.

5For an extension to the autoregressive integrated moving average (ARIMA) model with additive and
innovational outliers, see Chen and Liu (1993). Franses and Ghijsels (1999) and Charles and Darnfe (2005)
provide methods using conditionally heteroskedastic models.

6For example, Chen and Liu (1993) propose the following three methods: (1) the median absolute devi-
ation method; (2) the .%-trimmed method; and (3) the omit-one method. In our Monte Carlo simulations
and empirical examples, we use method (1), with the following speciAc form:

/̂i = 1:483(median fjv̂!it + ev!i jg ;

where evi is the median of fv̂!itg
T
t=1, as proposed by Andrews et al. (1972).
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Next, we discuss the asymptotic justiDcation for this algorithm. Let the Dtted value of

the univariate model be x̂it. Then, we can write the numerator of I i(t) as

v̂"it = xit + x̂it;

= zit + (x
"
it + x̂it); (11)

where the term x"it + x̂it includes the estimation errors and the model speciDcation errors
pertaining to Dtting the individual time series. When zit includes jumps where ziTi is the

largest, the Drst term in (11) naturally dominates the second term, and jI i(t)j is informative
about the location. On the other hand, if there is no jump, then zit = 0 for all t and

v̂"it = x
"
it + x̂it = v"it so that jI i(t)j should not exceed the critical value K if it is suiciently

large.

Therefore, the choice of K plays an important role, in practice. Because no theoretical

guidelines can be provided, we have conducted a Monte Carlo experiment with various critical

values, ranging from 2 to 20. The results are provided on request. They demonstrate good

coverage rates for the factors, factor loadings, and common components by choosing a value

between K = 4 and 8, so a good choice may be K = 5. However, in practice, more than one

critical value should be used to check the sensitivity of the empirical results.

Theorem 3 Suppose that factors (F ) and factor loadings (o) are estimated by (5) and the

number of factors (r) is estimated by (10) using x̂"it. If Assumptions 1{7 hold and x̂
"
it + x"it

satisHes the upper bounds derived in Theorems 1 and 2 and Corollary 1 for every jump, then

the followings hold.

(i-a) If 4ct = 0, then (6) holds under
p
N=T ! 0, as N; T !1.

(i-b) If 4ct = 1, then (9) holds, as N; T !1.
(ii) (7) holds under

p
T=N ! 0 and

p
N=T ! c (0 ) c <1), as N; T !1.

(iii) (8) holds as N; T !1.
(iv) r̂

p! r, as N; T !1.

Given the high-level condition that x̂"it + x"it satisDes the upper bounds, this theorem is

a direct consequence of Theorems 1 and 2 and Corollary 1 and no extra proof is needed.

Several useful implications follow. Part (i-a) states that unless common jumps occur at t, we

can have standard asymptotic inferences for the factors in Bai (2003) without any additional

condition (we already have condition
p
N=T ! 0 in the standard result). In other words,

Theorem 1(i) states that if the jumps are not larger than
p
T , we obtain asymptotic results,
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although they can be asymptotically identiDed with the algorithm because they are explosive

as T ! 1. Therefore, what we require is only the existing condition
p
N=T ! 0. Part

(i-b) suggests that the consistency of factor estimates is guaranteed, even in the presence of

common jumps. However, the asymptotic normality of
p
N(Ft +H 0Ft) is not guaranteed if

common jumps occur at time t. Part (ii) means that the inference for factor loading requires

condition
p
N=T ! c (0 ) c <1) in addition to the existing condition

p
T=N ! 0. If this

is not satisDed, jumps smaller than or equal to T=
p
N may not be detected in theory because

T=
p
N ! c$1 <1. This means again that jumps remain in the data and may contaminate

the inference results. However, this condition is not more restrictive than that required in

part (i-a). Finally, part (iii) simply ensures that after correcting the jumps, the common

component estimate has the standard asymptotic normal result and part (iv) guarantees that

Bai and Ng's (2002) information criteria can consistently estimate the number of factors.

Remark 1 The condition x̂"it + x"it satisfying the upper bounds is high level, and must be
veriHed case by case. For example, let the individual series follow x"it = L+ v

"
it, where v

"
it is

a zero-mean white noise (but has a common factor structure) and zit = I(t = Ti)5i.

Case 1: The univariate model is Htted by the full-sample ordinary least squares. Then,

x̂it = T$1
PT

t=1 xit;

= L+ T$1
PT

t=1 v
"
it + T

$15i:

Given that the jump is detected at t = Ti; the remaining jump in the corrected data is

x̂"iTi + x
"
iTi

= x̂iTi + x
"
iTi
;

= T$1
PT

t=1 v
"
it + T

$15i + v"iTi ;

= Op(1) +Op(T
$1kNT ):

Hence, the jump magnitude is now multiplied by T$1. If T$1kNT !1, then the remaining
jump is further reduced to Op(T

$2kNT ) in the next loop of the algorithm.

Case 2: The univariate model is Htted by the ordinary least squares using the data,

excluding xiTi. Then,

x̂it = L+ T
$1PT

t=1
t6=Ti

v"it:

In this case, the jump-free univariate model is consistently estimated as the second term
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vanishes. The remaining jump is

x̂"iTi + x
"
iTi

= x̂iTi + x
"
iTi
;

= T$1
PT

t=1
t6=Ti

v"it + v
"
iTi
;

= Op(1);

so that it satisHes the upper bound as long as kNT !1.

4.2 Factor jump tests

So far, jumps follow Assumption 6 and are independent of factor structure. Moreover, from

Assumption 1 (E kFtk < 1), underlying factors should not show large jumps. However, if
we allow for the underlying factors to jump, we also observe common jumps in the response

variables, but they must be identiDed as factor jumps. From an empirical perspective,

whether factors show jumps or not is an important question but very often not a priori

known to researchers.

To illustrate this, we present two dissimilar models exhibiting common jumps at time t.

If the jumps are outliers independent of factors, the model is the same as (3) and (4),

xit = +
0
iFt + zit + uit: (11)

On the other hand, if the jumps are of factors, by denoting them by Jt, an r( 1 vector, the
model becomes

xit = +0i(Ft + Jt) + uit;

= +0iFt + +
0
iJt + uit; (12)

with Jt 1 (0; >2NT Ir) and are independent from Ft, +i, and uit. The two models have very

diBerent implications, but they cannot be distinguished by observing xit. To this end, we

propose a factor jump test for the null hypothesis of model (11) against the alternative

hypothesis (12) as follows.

Factor jump test

Step 1. Estimate the jump-free factors F̂t and factor loadings +̂i using the jump-

correction procedure proposed in the previous subsection.

Step 2. Obtain residuals from cross-sectional regression: ûit = xit + +̂
0
iF̂t at t for

i = 1; :::; N .
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Step 3. Let a factor jump be suspected at t = T c. Implement an F test for the null

hypothesis H0 : :1 = 0r'1 against the alternative hypothesis H1 : :1 6= 0r'1 in the following
cross-sectional regression:

ûiT c = :0 + +̂
0
i:1 + "i, for i = 1; :::; N; (13)

that is,

F J =
(SSRr + SSRu)=r
SSRu=(N + r + 1)

;

where SSRr and SSRu are the restricted and unrestricted sums of squared regression resid-

uals (13).

If the test rejects the null hypothesis, we conclude that the common jumps at time T c

are of factors. If not, the jumps are outliers independent of factors. We formally present the

property of this test in the following theorem.

Theorem 4 Let Assumptions 1{7 hold. (i) Under model (11) of the null hypothesis that

jumps are independent of common factors, rF J ) Q2r as N; T !1. (ii) Under model (12)
of the alternative hypothesis that jumps are part of common factors, F J !1 as N; T !1.

Remark 2 We can also consider a t test in regression (13) for individual factors to in-

vestigate whether an individual factor jumps or not. This version is especially useful if the

estimated individual factors can be identiHed and interpreted.

5 Monte Carlo simulation

In this section, we study the Dnite sample properties of asymptotic inference for common

factor models in the presence of jumps via Monte Carlo simulations. We examine how inde-

pendent jumps contaminate the standard inference and how the proposed jump-correction

method improves performance. We also investigate the Dnite sample size and power of the

proposed factor jump test.

We generate the data by

x"it = +0iFt + uit; (14)

xit = x"it + zit; (15)

zit = 4ct5
c
it + 4it5it; (16)
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where Ft 1 i:i:d:N(0; Ir); +i 1 i:i:d:N(0; Ir); and uit 1 i:i:d:N(0; 1) unless otherwise

stated. Jump process zit has a common component, where 4
c
t 1 i:i:d:B(pc=T ) and 5

c
it 1

i:i:d:N(0; >2), and an idiosyncratic component, where 4it 1 i:i:d:B(p=T ) and 5it 1 i:i:d:N(0; >2).
Importantly, jumps are independent of factor structure in this model. Throughout this ex-

periment, the jump-correction method assumes a white noise for every series and we use the

critical value K = 5 for jI i(t)j. We consider a case in which jumps are not corrected (denoted
by \no correction" in the tables) and one in which jumps are corrected using the proposed

method (denoted by \correction" in the tables). The number of replications is 3,000.

We Drst investigate the distributional properties of the factor and factor loading estimates.

For this, we set r = 1 and compute the coverage rate and average length of the conDdence

intervals of (rotation-adjusted) factor HFt, factor loading +iH
$1, and common component

+0iFt.
7 The asymptotic conDdence intervals are constructed by Bai (2003) such that

[F̂t + z0=2
q
dV ar(F̂t); F̂t + z0=2

q
dV ar(F̂t)];

[+̂i + z0=2
q
dV ar(+̂i); +̂i + z0=2

q
dV ar(+̂i)];

[+̂
0
iF̂t + z0=2

q
dV ar(+̂

0
iF̂t); F̂

0
t +̂i + z0=2

q
dV ar(+̂

0
iF̂t)];

where, respectively,

dV ar(F̂t) = (N$1PN
j=1 û

2
jt)(
PN

j=1 +̂
0
j+̂j)

$1;

dV ar(+̂i) = (T$1
PT

s=1 û
2
is)(
PT

s=1 F̂
0
sF̂s)

$1;

dV ar(+̂
0
iF̂t) = [(N$1PN

j=1 û
2
jt)+̂

0
j(N

$1PN
j=1 +̂

0
j+̂j)

$1+̂i + (T
$1PT

s=1 û
2
is)F̂

0
t(T

$1PT
s=1 F̂

0
sF̂s)

$1F̂t;

and z0=2 is the 100( (1+ S=2)% quantile of the standard normal distribution. We consider

the set of parameter values associated with jump magnitudes > = [0; 5; 10; 50; 100], that

are in turn associated with jump frequencies (pc; p) = [(1; 0); (5; 0); (0; 1), (0; 5); (1; 1)];

and the set of sample sizes (N; T ) = [(20; 500); (50; 200); (100; 100); (200; 50); (500; 20)]. We

set S = 0:1 to consider the 90% conDdence intervals for, without loss of generality, FT ;

+1, and +
0
1FT . The results are reported in Tables 1 to 3. Tables 1(a) and 1(b) give the

coverage rate and average length8 of the conDdence interval of H 0FT . They show that even

when jumps are not corrected, the coverage rate goes close to 0.9 except for the case of

7Since we set r = 1 in this experiment, H is a scalar. Still, it is important to incorporate it because it is
not necessarily 1.

8The average length is the average of the di?erence between the upper conAdence limit and the lower
conAdence limit over the Monte Carlo replications.
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(N; T ) = (500; 20); however, the average length in`ates as > increases. On the other hand,

when jumps are corrected, the coverage rate is again close to 0.9, except for the case of

(N; T ) = (500; 20); and the average length does not in`ate. This shows that the proposed

jump-correction method works well for factor estimation as long as
p
N=T ! 0 is relevant,

as discussed in Theorem 3 (i-a). We now examine the results of factor loadings in Tables

2, by investigating the coverage rates.9 When jumps are not corrected, the coverage rate

signiDcantly deteriorates as > increases. On the other hand, when jumps are corrected, we

observe signiDcant improvement except for the case of (N; T ) = (500; 20), where a jump

occurs every four periods, which makes the approximation p=T ! 0 inappropriate. We

also observe that the coverage rate deteriorates when (N; T ) = (20; 500), because condition
p
T=N ! 0 as required in Theorem 3(ii) may not be relevant; however, the errors are

minor in this case. Finally, Tables 3 shows the conDdence interval results for the common

component. Again, the coverage rate moves away from the nominal level 0.9 as > increases

when jumps are not corrected; however, jump correction signiDcantly improves performance

except for the case of (N; T ) = (500; 20). We again observe some errors in coverage rate for

the case of (N; T ) = (20; 500), but they are minor. We also compare the root mean squared

errors (RMSEs) of the common component computed by

RMSE =

q
(NT )$1

PT
t=1

PN
i=1(+

0
iFt + +̂

0
iF̂t)

2;

with and without jump corrections. As Table 4 shows, the RMSE deteriorates signiDcantly

as the jumps become larger when they are not corrected. However, it is unaBected by the

magnitude of jumps when the jump correction is implemented.

The above results are direct consequences of Theorems 1 and 3. However, a good coverage

ratio of F̂T without jump correction should be further inspected. We here show that the

observed coverage rate is pointwise and does not re`ect a good estimate for
n
F̂t

oT
t=1

as a

series. To this end, we compute the correlation coeicient between the estimated factorn
F̂t

oT
t=1

and the (rotated) true factor fH 0Ftg
T
t=1. Table 5 gives the average correlation

coeicient over simulation. When jumps are not corrected, it moves signiDcantly away from

1 as > becomes larger. This is the case even if all the jumps are idiosyncratic (pc = 0).

The average correlation coeicient moves very close to 1 when jumps are corrected in almost

all cases. Furthermore, Figure 1 gives a sample path of a true factor and factor estimates

without jump correction when the data show (a) common jumps at t = b0:5T c with > = 10
9The average lengths of the factor loadings and the common component are also contaminated as the

jumps become large and are not corrected. Hence, these are suppressed to save space.
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and (b) an idiosyncratic jump in x1t at t = b0:5T c with > = 100. The factor estimate exhibits
a jump in response to these outliers at t = b0:5T c. Thus, we do not obtain a good estimate
for the series as a whole. More importantly, this occurs even if the outlier is idiosyncratic as

long as the magnitude is suiciently large.

Table 6 investigates Theorems 2 and 3(iv) and reports the average estimated number of

factors by Bai and Ng's (2002) information criteria. We here set the true number of factors to

r = 4 and consider the three suggested information criteria (ICp1, ICp2, and ICp3). In every

case of the sample size and jump frequency, the number without jump correction moves away

from 4 as > increases. One must be careful because our theory does not tell us the direction

of either under- or over-estimation. For example, it tends to over-estimate when common

jumps occur; we also observe signiDcant over-estimation when only one idiosyncratic jump

occurs, that is, (pc; p) = (0; 1). However, we observe under-estimation when idiosyncratic

jumps are more frequent, (pc; p) = (0; 5). Of importance is that, after jumps are corrected,

it recovers the true number 4 in most cases as suggested by Theorem 3 (iv).

We next check if the results are robust to another speciDcation of the data-generating

process. We Drst consider the case in which the factor follows an autoregressive process.

SpeciDcally, we generate Ft = 0:5Ft$1 + et, where et 1 i:i:d:N(0; 1) and other components

in the data-generating process are the same as the previous cases. Thus, each individual

series follows an AR(1) process. In the jump-correction algorithm, the individual models

are selected from possible ARMA(p,q) models up to p = 4 and q = 2 using the Schwarz

information criterion (SIC). Table 7 reports the coverage rate of the 90% conDdence interval

for the common component. The results are very similar to the white noise case presented in

Table 3. The results of the factor, the factor loading, and the number of factors are also very

similar to those of the white noise case and, thus, are not presented here in order to conserve

space. Finally, let us consider two cases where models for individual series are misspeciDed

in the jump-correction algorithm. In the Drst case, the factor follows the same AR(1) process

as in the previous case. In the second case, the factor follows an ARCH(1) model so that

Ft 1 N(0; ht), where ht =
p
1 + 0:5F 2t$1. In both cases, the white noise model is Dtted for

individual series in the jump-correction algorithm. As Table 8 shows, the coverage rates of

the 90% conDdence interval are very close to those under the correct speciDcations. This

supports the fact that misspeciDcations of the individual series are allowed to obtain the

inference for the jump-free common factor model.

Finally, we investigate the size and power of the factor jump test. In Figure 1 we showed

that even if the true factors do not jump, independent outliers in the response variables (even
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if it occurs in one response variable) could cause a spurious jump in the factor estimate,

showing the importance of this test. We Drst examine the size of the test. The data in

models (14) and (15), that is, under the null hypothesis of no factor jumps, are generated

with r = 2. We also simplify the model by assuming that no idiosyncratic jumps occur.

Thus, we generate process (16) with

zit = I(t = b0:5T c)( 5cit;

where 5cit 1 i:i:d:N(0; >2). On the other hand, to investigate power of the test, we assume
that zit = 0 for all i and t, so that although no independent outliers are present, the factors

jump such that

Ft = F
"
t + F

J
t ;

where F "t 1 i:i:d:N(0; Ir) represents jump-free factors and F
J
t = [I(t = b0:5T c) ( 5, 0]

with 5 1 N(0; >2) corresponds to a jump of the Drst factor. Since the jump-free factor

estimates used in Steps 1 and 2 can aBect the performance of the test, it is instructive to

compare the results for the following two cases. Case 1 considers an unfeasible test that

assumes the presence of true jump-free observations x"it. The test is constructed from the

factors and factor loadings estimated using them. Case 2 pertains to a feasible test that uses

jump-corrected factor and factor loading estimates to construct the test.

Table 9 reports the size of the factor jump test at the nominal 5% level with the set

of jump magnitudes and sample sizes. Case 1 illustrates a very good size; however, the

feasible test in Case 2 suBers some size distortions when > is small. This is consistent with

the theory, because, as elaborated in the proof of Theorem 4 in the appendix, the pseudo-

true coeicients attached to factor loading estimates in the cross-section regression of Step

2 have random quantity in Dnite samples. However, since they shrink to zero at the rate of

op(k
$1
NTN

$1=2), the size improves remarkably as > becomes large. The size is also distorted

when T is small, because the jump-correction algorithm does not work well in such cases, as

shown in Tables 1 and 2. However, the size improves as T increases. Table 10 illustrates the

power as a rejection frequency of the test at the nominal 5% level. It shows that the test

has good power against factor jumps. Finally, it is concerned that the choice of the critical

value K may aBect the Dnite sample size of the factor jump test. To address this concern, we

conduct a Monte Carlo simulation under the same setup and show that the size and power

are good when K = 5 as well. The results are provided upon request.
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6 Empirical examples

6.1 Daily currency returns against the U.S. dollar

Much attention has been paid to comovements of currency returns. Especially, recent empir-

ical evidence of deviation from the theory of uncovered interest parity has motivated many

researchers and policy makers to identify the risk factors in currency markets besides interest

rate diBerentials. For example, Lustig et al. (2011) apply a common factor model to monthly

returns on 35 currencies against the U.S. dollar (minus the interest diBerential). Using the

estimates of principal component factors, they identify the global risk factor as the series

closely related to the world's stock market volatility and Dnd it consists of an important el-

ement of exchange rate dynamics. While they use monthly data, it is well-known that large

jumps are likely to occur if daily currency returns data are used. It is known that common

and idiosyncratic jumps occur in currency markets for several reasons. Engle et al. (1990)

discuss the importance of volatility spillovers across diBerent currency markets on the same

date against idiosyncratic jumps that re`ect country-speciDc news on fundamentals. They

use a meteorological analogy of meteor showers and heat waves. In addition, Maynard and

Phillips (2001) Dnd that daily spot exchange rate data can be contaminated by spikes that

appear on the same date across diBerent currencies.

We provide a small empirical example related to such data. To this end, we use the daily

log-returns on 25 major foreign currencies with relatively stable volatilities against the U.S.

dollar for the recent Dnancial crisis period.10 The sample period is from August 1, 2007,

to September 30, 2008, totaling 305 business days. The currency returns are computed as

ri;t = log(ei;t=ei;t$1); where eit is the daily spot exchange rate of currency i against the U.S.

dollar at day t. Table 11 gives the list of currencies. The data, ei;t, are quoted at 15:00 EST

by Bankers Trust Co., and are downloaded from the Datastream database. Figure 2 plots

the 25 individual currency returns, clearly showing a few large jumps in many currencies.

The question is how to estimate the common factors out of this data set.

To this end, we Drst identify the dates of outliers using the proposed method. For this,

we Dt ARMA(p; q) models up to p = 4 and q = 2 selected by SIC to individual series and

use the critical value of 5 for jI i(t)j.11 Table 11 gives the number of jumps identiDed using
10The Hong Kong dollar has a lower and upper limits of its level against the U.S. dollar, however, the

daily log returns do not seem to be restricted much, hence, it is added to the data set. Lustig et al. (2011)
do not exclude it either.
11This follows the practical recommendation in section 4.1. We report the results using 9 = 5 . The results

using other choices of 9 are provided upon request, for both examples.
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this method. Jumps are relatively scarce, but 13 out of 25 currencies exhibit them. Figure

3 provides information on how many series exhibit a jump each day, with no jump or only a

few jumps occurring on most days considered as individual jumps. However, nine and seven

jumps are identiDed on May 6 and 7 and four jumps on September 29, 2008.

Turning to factor estimation, Figures 4-1 and 4-2 present the Drst and second estimated

factors, respectively. For each set of Dgures, panel (a) shows the factor estimates with and

without jump correction and panel (b) gives their diBerence. A visual inspection shows that

the Drst factor estimate includes three jumps, on May 6 and 7 and September 29, 2008. The

second factor estimate may also exhibit jumps on these days. To examine whether these

jumps are due to the independent outliers or jumps in the factors, we present the results

of the factor jump tests in Table 12: an F test for a jump of the two factors jointly and

t tests for a jump of each factor. The table shows that the null hypothesis of independent

outliers is rejected at the 5% level for the jumps on May 6, 2008, suggesting that they are

a jump of factors. We also Dnd that the t test for the Drst factor is signiDcant at the 5 %

level but insigniDcant for the second factor. Finally, we try to interpret the factor estimates

by looking at the jump-free factor loading estimate in Figure 5. The Drst factor is widely

related to some European currencies (the Hungarian forint, the Norwegian krone, the Polish

zloty, etc.), the Australian dollar, and the New Zealand dollar. In contrast, the second factor

is closely related to a few major currencies such as the Swiss franc and the Japanese yen.

Given that the latter two currencies exhibit much more market liquidity, we may conclude

that a factor jump is found in the common risk factor related to currencies with less liquidity,

that is, the Drst factor. On the other hand, the common jumps on September 29, 2008, are

deemed to have been caused by the rejection of the government's 700 USD billion bank

bailout plan in the United States.12 However, the factor jump test shows that its eBect on

the foreign exchange markets was limited, because it had nothing to do with the underlying

common factors.

6.2 Japanese prefectural data following earthquake shocks

The second example involves the new car registrations data for 47 Japanese prefectures. The

data consist of monthly spans from January 1985 to December 2014 (seasonally adjusted) and

are taken from the Nikkei CIDIc database. We consider a monthly growth rate computed

by the Drst diBerence of its natural logarithms so that the time dimension of the data is

12The Dow Jones industrial average index lost 777.68 points. As of April 2016, this is the largest daily
drop in history.
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T = 12(30+1 = 359. Instead of presenting all 47 series, Figure 6 gives the individual series
of four selected prefectures illustrating the features of the data well. The top two panels

present Tokyo and Osaka, the two largest prefectures in Japan, while the two Dgures at the

bottom two panels represent Hyogo and Miyagi prefectures. Hyogo prefecture clearly exhibits

a large jump in January 1995, because it was the epicenter of the Great Hanshin earthquake.

On the other hand, Miyagi prefecture also exhibits a large jump in 2011 following the Great

East Japan earthquake in March 2011. Tokyo and Osaka may only be indirectly aBected by

these events. The question we examine is again whether these large jumps aBect our factor

estimation.

To this end, we Drst follow the series-by-series jump-correction procedure. We Dt ARMA(p; q)

models up to p = 4 and q = 2 selected by SIC to individual series and set the critical value

of jI i(t)j at 5. Table 13 shows that only one prefecture exhibits a jump following the 1995
earthquake, whereas 23 prefectures experienced a jump after the 2011 earthquake. From

Bai and Ng's (2002) information criteria (ICp2), the number of factors estimated with the

original data is four, but this becomes two with jump-corrected data. Hence, the number of

factors is contaminated by these jumps. Finally, Figure 7 gives the Drst four non-corrected

estimates (in the top four panels) and the two jump-corrected factor estimates (in the bot-

tom two panels). As expected, the non-corrected estimates exhibit jumps. In particular,

the second and third non-corrected estimates exhibit jumps in March 2011. To examine

whether these jumps are of factors, we implement factor jump tests in Table 14. We observe

strong evidence of factor jumps in March 2011, with p-value 0:00 for the F -test. The t-tests

indicate that the jump is associated with the Drst factor with p-value 0:02, while the p-value

for the second factor is 0:41. Finally, it is interesting to see that the fourth non-corrected

factor estimate shows a large jump in January 1995 following the Great Hanshin earthquake,

although only Hyogo prefecture exhibits a jump. Table 14 shows no evidence of factor jumps

in January 1995. Therefore, we conclude that the jump in factor estimate in January 1995

was spuriously caused by an individual outlier in Hyogo prefecture and that the factors did

not jump. As several studies document,13 the Great East Earthquake had a larger impact

on economic activity than the Great Hanshin Earthquake did, mainly because the former

was followed by a large tsunami and an unprecedented accident at the Fukushima nuclear

power plant. This dual feature of the disaster may have aBected nationwide supply chains

and consumers' durable purchasing behaviors.

13For example, Jaussaud et al. (2015).
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7 Conclusion

Financial and economic time-series data often exhibit infrequent but large jumps. This paper

explored the problems pertaining to such jumps in recently developed large-dimensional com-

mon factor models. To make this attempt feasible and attractive, we introduce the following

extensions of the standard model. First, jumps are modeled as increments of a mixture of

Poisson processes independent of the underlying factor structure. Second, the jump magni-

tudes are modeled as a function of data dimension to derive meaningful asymptotic results.

Third, we consider idiosyncratic jumps and common jumps. Under this setting, we primarily

derive the upper bounds of jump magnitudes with which the standard asymptotic inference

goes through. Furthermore, this result is followed by two useful applications: the series-by-

series jump-correction method and the factor jump test. A Monte Carlo experiment conDrms

that independent large outliers easily contaminate standard asymptotic inference. However,

the proposed jump-correction method retrieves good Dnite sample properties unless T is very

small. The factor jump test shows good size when outliers are suiciently large and exhibit

good power. The usefulness of the proposed method is highlighted in a small empirical ex-

ample using daily log-returns data of 25 currencies against the U.S. dollar as well as Japanese

prefectural new car registration data following the two large earthquakes.
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Appendix : Proof of Theorems

For notational simplicity, we assume that E kFtk
2
= >2F for all t, E k+ik

2
= +2 for all i,

and E(u2it) = >
2
u in the following proofs. This simpliDcation does not qualitatively aBect our

Dnal results.

Lemma 1: Let bt =
PN

i=1

PN
j=1E(zitzjt) and dt =

PT
s=1

PN
i=1

PN
j=1E(ziszitzjszjt). From

Assumptions 6 and 7, we have

bt =

8
<

:
O(k2NTN); if 4ct = 1

O(k2NTNT
$1); if 4ct = 0

;

and
|b = T$1

PT
t=1 bt = Op(k

2
NTNT

$1):

We also have

dt =

8
<

:
O(k4NTN

2); if 4ct = 1

O(k4NT max fNT$1; N2T$2g); if 4ct = 0
;

and

|d = T$1
PT

t=1 dt =

8
<

:
Op(k

4
NTN

2T$1); if pc = 0

Op(k
4
NT max fNT$1; N2T$2g); if pc 6= 0

:

.

Proof of Lemma 1: For all i and t, E(z2it) = k2NT>
2 if 4ct = 1 and E(z2it) =

p
T
>2 if

4ct = 0. Because E(zitzjt) = 0 for i 6= j, by Assumption 6,

bt =
PN

i=1E(z
2
it) +

PN
i=1

PN
j=1

i6=j

E(zitzjt)

=
PN

i=1E(z
2
it) =

8
<

:
k2NTN>

2 + k2NTN(p=T )>
2, if 4ct = 1

k2NTN
p
T
>2; if 4ct = 0

;

and the result for bt follows. For |b,

E(|b) = T$1pck
2
NTN>

2 + T$1
PT

t=1 k
2
NTN(p=T )>

2;

= T$1pck
2
NTN>

2 + k2NTN(p=T )>
2;

= O(k2NTNT
$1);
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and the result follows.
We turn to the bound of dt. From Assumption 6(c), E(z4it) = k4NT3>

4 if 4ct = 1 and
E(z4it) = (p=T )k

4
NT3>

4 if 4ct = 0 for all i and t, and so

dt =
PT

s=1

PN
i=1

PN
j=1E(ziszitzjszjt);

=
PN

i=1E(z
4
it) +

PN
i=1

PN
j=1

i6=j

E(z2it)E(z
2
jt)

+
PT

s=1
s 6=t

PN
i=1E(z

2
is)E(z

2
it) +

PT
s=1
s 6=t

PN
i=1

PN
j=1

i6=j

E(ziszitzjszjt);

= I + II + III + IV:

If 4ct = 1, then

I = Nk4NT3>
4 +N(p=T )k4NT3>

4;

II = (N2 +N)k4NT>
4 + (N2 +N)(p=T )2k4NT>

4;

III = N(T + 1)(p=T )k4NT>
4 +N(T + 1)(p=T )2k4NT>

4;

and IV = 0. Therefore, term II dominates and dt = O(k
4
NTN

2). If 4ct = 0, then

I = N(p=T )k4NT3>
4;

II = (N2 +N)(p=T )2k4NT>
4;

III = N(T + 1)(p=T )2k4NT>
4;

and IV = 0. Therefore, dt = O(k
4
NT max fNT$1; N2T$2g). For |d,

E( |d) = T$1pcNk
4
NT3>

4 +N(p=T )k4NT3>
4;

+T$1pc(N
2 +N)k4NT>

4 + (N2 +N)(p=T )2k4NT>
4;

+T$1pcN(T + 1)(p=T )k4NT>
4 +N(T + 1)(p=T )2k4NT>

4;

= I + II + III + IV + V + V I:

If pc 6= 0, then term III dominates and E( |d) = O(k4NTN2T$1). If pc = 0, then terms I; III;
and V are zero. Then, E( |d) = O(k4NT max fNT$1; N2T$2g). !

Lemma 2: From Assumptions 1{7,

T$1
PT

t=1

'''F̂t +H 0Ft

'''
2

= Op(JNT );

where

JNT =

8
<

:
max fk4NTT$2; k2NTN$1T$1g ; if pc 6= 0

max
%
k4NT c

$2
NTT

$2; k2NTN
$1T$1

&
; if pc = 0

;

as N; T !1.
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Proof of Lemma 2: Using steps very similar to those applied in the proof of Theorem
1 of Bates et al. (2013), we start with the results of the proof of Theorem 1 of Bai and Ng
(2002):

F̂t +H 0Ft = (NT )$1
n
F̂ 0Fo0ut + F̂

0uoFt + F̂
0uut + F̂

0Fo0zt

+F̂ 0ZoFt + F̂
0Zzt + F̂

0uzt + F̂
0Zut

o

.
P8

h=1 dht; (A.1)

where d1t = (NT )
$1F̂ 0Fo0ut, etc. Since

T$1
PT

t=1

'''F̂t +H 0Ft

'''
2

) 8
P8

h=1

/
T$1

PT
t=1 kdhtk

2
0
:

and we know from Bai and Ng (2002) that the terms for d1t; d2t; and; d3t are Op(c
$2
NT ), we

consider the bounds for the remaining terms. For h = 4,

kd4tk
2 ) N$2(T$1

PT
s=1

'''F̂s
'''
2

)
| {z }

=tr(Ir)=r

(T$1
PT

s=1 kFsk
2
)| {z }

p
!32F

ko0ztk
2
:

where

E ko0ztk
2
=

PN
i=1

PN
j=1E(+

0
i+j)E(zitzjt);

) +2bt:

Therefore,

T$1
PT

t=1E kd4tk
2 ) N$2r>2F+

2|b;

and so from the result of |b in Lemma 1, we obtain

T$1
PT

t=1 kd4tk
2
= Op(k

2
NTN

$1T$1):

For h = 5;

kd5tk
2 ) N$2T$1(T$1

PT
s=1

'''F̂s
'''
2

) kZoFtk
2 ;

where

E kZoFtk
2
=

PT
s=1

PN
i=1

PN
j=1 jE(ziszjs)jE

''+0iFt+0jFt
'' ;

) T+2>2F
|b:

Therefore,

E kd5tk
2 ) N$2r+2>2F

|b;

so that
T$1

PT
t=1 kd5tk

2
= Op(k

2
NTN

$1T$1):
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For h = 6,

kd6tk
2
= N$2T$1(T$1

PT
s=1

'''F̂s
'''
2

) kZ 0ztk
2
;

where
E kZztk

2
=
PT

s=1

PN
i=1

PN
j=1 jE(ziszitzjszjt)j = dt:

Therefore,

E kd6tk
2 ) N$2T$1rdt;

so that
T$1

PT
t=1E kd6tk

2 ) N$2T$1r |d;

and

T$1
PT

t=1 kd6tk
2
=

8
<

:
Op(k

4
NTT

$2); if pc 6= 0

Op(k
4
NT max fN$1T$2; T$3g); if pc = 0

;

or by using symbol cNT = min
np

N;
p
T
o
,

T$1
PT

t=1 kd6tk
2
=

8
<

:
Op(k

4
NTT

$2); if pc 6= 0

Op(k
4
NT c

$2
NTT

$2); if pc = 0
:

For h = 7;

kd7tk
2
= N$2T$1(T$1

PT
s=1

'''F̂s
'''
2

) kuztk
2 ;

where

E kuztk
2
=

PT
s=1

PN
i=1

PN
j=1E(uisuis)E(zitzjt);

) T>2ubt:

Therefore,

E kd7tk
2 ) N$2r>2ubt;

so that
T$1

PT
t=1E kd7tk

2 ) N$2r>2u
|b;

and
T$1

PT
t=1 kd7tk

2
= Op(k

2
NTN

$1T$1):

For h = 8;

kd8tk
2
= N$2T$1(T$1

PT
s=1

'''F̂s
'''
2

) kZutk
2 ;

where

E kZutk
2
=

PT
s=1

PN
i=1

PN
j=1E(uituit)E(ziszjs);

) T>2u
|b:
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Therefore,

E kd8tk
2 ) N$2r>2u

|b;

so that
T$1

PT
t=1 kd8tk

2
= Op(k

2
NTN

$1T$1):

Therefore, the stochastic orders of the Dve terms are Op(k
2
NTN

$1T$1); Op(k
2
NTN

$1T$1);
Op(k

4
NTT

$2); Op(k
2
NTN

$1T$1), and Op(k
2
NTN

$1T$1) if pc 6= 0. The third term becomes

Op(k
4
NT c

$2
NTT

$2) if pc = 0. The result follows.!

Lemma 3: From Assumptions 1{7, the following hold:

(a)
'''T$1

PT
t=1(F̂t +H

0Ft)F
0
t

''' = Op(c
$2
NT ) +Op(kNTN

$1=2T$1) +Op(k
2
NTN

$1=2T$2);

(b)
'''T$1

PT
t=1(F̂t +H

0Ft)F̂
0
t

''' = Op(c
$2
NT ) +Op(kNTN

$1=2T$1) +Op(k
2
NTN

$1=2T$2);

(c)
'''T$1

PT
t=1(F̂t +H

0Ft)uit

''' = Op(c
$2
NT ) +Op(kNTN

$1=2T$1) +Op(k
2
NTN

$1=2T$2);

(d)
'''T$1

PT
t=1(F̂t +H

0Ft)et

''' = Op(c
$2
NT ) +Op(kNTN

$1=2T$1) +Op(k
2
NTN

$1=2T$2):

Proof of Lemma 3: (a) We start with Bai and Ng's (2002) expression:

T$1
PT

t=1(F̂t +H
0Ft)F

0
t = N$1T$2(F̂ 0Fou0F + F̂ 0uoF 0F + F̂ 0uu0F + F̂ 0Fo0Z 0F

+F̂ 0ZoF 0F + F̂ 0ZZ 0F + F̂ 0uZ 0F + F̂ 0Zu0F );

=
P8

h=1Dh:

Terms D1 +D2 +D3 do not involve jumps and their sum is Op(c
$2
NT ). In the following, we

compute the stochastic orders for terms D4 to D8.
For D4,

N$1T$2
'''F̂ 0Fo0Z 0F

''' ) N$1T$1
'''T$1=2F̂

'''
''T$1=2F

'' ko0Z 0Fk ;

) N$1T$1
'''T$1=2F̂

'''
''T$1=2F

''
qPT

t=1

PN
i=1 k+ik

2 z2it kFtk
2;

and, from independent assumptions (Assumptions 4 and 6(a)), we obtain

E(k+ik
2 z2it kFtk

2
) = E k+ik

2E(z2it)E kFtk
2 ;

=

8
<

:
k2NT>

2+2>2F + k
2
NT (p=T )>

2+2>2F , if 4ct = 1

k2NT (p=T )>
2+2>2F , if 4ct = 0

:

Therefore,

E
PT

t=1

PN
i=1 k+ik

2 z2it kFtk
2
= Nk2NT (pc + p)>

2+2>2F ;
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so that
ko0Z 0Fk = Op(kNTN1=2):

This results in
D4 = Op(kNTN

$1=2T$1):

For D5,

N$1T$2
'''F̂ 0ZoF 0F

''' ) N$1T$1
'''F̂ 0Zo

'''
''T$1=2F

''''T$1=2F
'' ;

where '''F̂ 0Zo
''' )

r
PT

t=1

PN
i=1

'''F̂t
'''
2

z2it k+ik
2:

However,

E
'''F̂t
'''
2

z2it k+ik
2
=

8
<

:
k2NT>

2+2r + (p=T )k2NT>
2+2r, if 4ct = 1

(p=T )k2NT>
2+2r, if 4ct = 0

;

E
PT

t=1

PN
i=1 k+ik

2 z2it

'''F̂t
'''
2

= Nk2NT (pc + p)>
2+2r;

so that
'''F̂ 0Zo

''' = Op(k2NTN1=2) and D5 = Op(kNTN
$1=2T$1).

For D6,

N$1T$2
'''F̂ 0ZZ 0F

''' ) N$1T$2
r
PN

i=1

PT
t=1

PT
s=1

'''F̂tzitzisF 0s
'''
2

:

However,

E
'''F̂tzitzisF 0s

'''
2

= E
'''F̂t
'''
2

E(z2it)E(z
2
is)E kFsk

2

=

8
<

:
k2NT>

2E(z2it)>
2
F r + (p=T )k

2
NT>

2E(z2it)>
2
F r, if 4cs = 1

(p=T )k2NT>
2E(z2it)>

2
F r, if 4cs = 0

;

so that

PT
s=1E

'''F̂tzitzisF 0s
'''
2

) k2NT>
2(pc + p)E(z

2
it)>

2
F r;

=

8
<

:
[k2NT>

2(pc + p)>
2
F r]k

2
NT (1 + p=T )>

2, if 4ct = 1

[k2NT>
2(pc + p)>

2
F r]k

2
NT (p=T )>

2, if 4ct = 0
;

so that PT
t=1

PT
s=1E

'''F̂tzitzisF 0s
'''
2

) [k2NT>
2(pc + p)]

2>2F r;

and PN
i=1

PT
t=1

PT
s=1E

'''F̂tzitzisF 0s
'''
2

) N [k2NT>
2(pc + p)]

2>2F r:

27



Therefore, D6 = Op(k
2
NTN

$1=2T$2).
For D7,

N$1T$2
'''F̂ 0uZ 0F

''' ) N$1T$2
r
PN

i=1

PT
t=1

PT
s=1

'''F̂tuitzisF 0s
'''
2

:

However,

E
'''F̂tuitzisF 0s

'''
2

= E
'''F̂t
'''
2

E(u2it)E(z
2
is)E kFsk

2 ;

=

8
<

:
k2NT>

2>2ur>
2
F + (p=T )k

2
NT>

2>2ur>
2
F , if 4cs = 1

(p=T )k2NT>
2>2ur>

2
F , if 4cs = 0

;

so that PT
s=1E

'''F̂tuitzisF 0s
'''
2

= k2NT (pc + p)>
2>2ur>

2
F ;

and PN
i=1

PT
t=1

PT
s=1E

'''F̂tuitzisF 0s
'''
2

= NTk2NT (pc + p)>
2>2ur>

2
F :

Therefore, D7 = Op(kNTN
$1=2T$3=2). For D8, we use a similar computation as D7 to obtain

D8 = Op(kNTN
$1=2T$3=2). Therefore, terms D4 and D5 consist of the second component

and terms D7 and D8 correspond to the third component of the Dnal result. Term D6 is
dominated by terms D4 and D5, and we obtain the Dnal result.
(b) We essentially follow the same computation as (a).
(c) We start with

T$1
PT

t=1(F̂t +H
0Ft)uit = N$1T$2(F̂ 0Fou0ui + F̂

0uoF 0ui + F̂
0uu0ui + F̂

0Fo0Z 0ui

+F̂ 0ZoF 0ui + F̂
0ZZ 0ui + F̂

0uZ 0ui + F̂
0Zu0ui);

=
P8

h=1Dh:

Terms D1 +D2 +D3 do not involve jumps and their sum is Op(c
$2
NT ). In the following, we

compute the stochastic bounds for D4 to D8. For D4,

N$1T$2
'''F̂ 0Fo0Z 0ui

''' ) N$1T$1
'''T$1=2F̂

'''
''T$1=2F

'' ko0Z 0uik ;

) N$1T$1
'''T$1=2F̂

'''
''T$1=2F

''
qPT

t=1

PN
j=1 k+jk

2 z2jtu
2
it;

and

E(k+jk
2 z2jtu

2
it) = E k+jk

2E(zjt)
2E(u2it);

=

8
<

:
k2NT>

2+2>2u + k
2
NT (p=T )>

2+2>2u, if 4ct = 1

k2NT (p=T )>
2+2>2u, if 4ct = 0

;
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so that
D4 = Op(kNTN

$1=2T$1):

For D5,

N$1T$2
'''F̂ 0ZoF 0ui

''' ) N$1=2T$3=2
'''N$1=2F̂Zo

'''
| {z }

=Op(kNT ) by D5 in (a)

''T$1=2Fui
'' ;

= Op(kNTN
$1=2T$3=2):

For D6,

N$1T$2
'''F̂ 0ZZ 0ui

''' ) N$1T$2
r
PN

j=1

PT
t=1

PT
s=1

'''F̂tzjtzjsuis
'''
2

:

However,

E
'''F̂tzjtzjsuis

'''
2

= E
'''F̂t
'''
2

E(z2jt)E(z
2
js)E(u

2
is);

=

8
<

:
k2NT>

2E(z2jt)>
2
ur + (p=T )k

2
NT>

2E(z2jt)>
2
ur, if 4cs = 1

(p=T )k2NT>
2E(z2jt)>

2
ur, if 4cs = 0

;

so that

PT
s=1E

'''F̂tzjtzjsuis
'''
2

) pck
2
NT>

2E(z2jt)>
2
ur + pk

2
NT>

2E(z2jt)>
2
ur;

=

8
<

:
[k2NT>

2(pc + p)>
2
ur]k

2
NT (1 + p=T )>

2, if 4ct = 1

[k2NT>
2(pc + p)>

2
ur]k

2
NT (p=T )>

2, if 4ct = 0
;

so that PT
t=1

PT
s=1E

'''F̂tzitzisuis
'''
2

) [k2NT>
2(pc + p)>

2
u]
2r;

and PN
i=1

PT
t=1

PT
s=1E

'''F̂tzitzisuis
'''
2

) N [k2NT>
2(pc + p)>

2
u]
2r:

Therefore,

D6 = Op(k
2
NTN

$1=2T$2):

For D7,

N$1T$2
'''F̂ 0uZ 0ui

''' ) N$1T$2
r
PN

i=1

PT
t=1

PT
s=1

'''F̂tuitzisuis
'''
2

:

However,

E
'''F̂tuitzisuis

'''
2

= E
'''F̂t
'''
2

E(u2it)E(z
2
is)E(u

2
is);

=

8
<

:
k2NT>

2>4ur + (p=T )k
2
NT>

2>4ur, if 4cs = 1

(p=T )k2NT>
2>4ur, if 4cs = 0

;
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so that PT
s=1E

'''F̂tuitzisuis
'''
2

= k2NT (pc + p)>
2>4ur;

and PN
i=1

PT
t=1

PT
s=1E

'''F̂tuitzisuis
'''
2

= NTk2NT (pc + p)>
2>4ur:

Therefore, D7 = Op(kNTN
$1=2T$3=2).

For D8,

N$1T$2
'''F̂ 0Zu0ui

''' ) N$1T$2
r
PN

j=1

PT
s=1

PT
t=1

'''F̂tzjtujsuis
'''
2

:

However,

E
'''F̂tzjtujsuis

'''
2

= E
'''F̂t
'''
2

E(z2jt)E(u
2
js)E(u

2
is);

=

8
<

:
k2NT>

2>4ur + (p=T )k
2
NT>

2>4ur, if 4ct = 1

(p=T )k2NT>
2>4ur, if 4ct = 0

so that PT
s=1E

'''F̂tzjtujsuis
'''
2

= k2NT (pc + p)>
2>4ur;

and PN
i=1

PT
s=1

PT
t=1E

'''F̂tzjtujsuis
'''
2

= NTk2NT (pc + p)>
2>4ur;

so that D8 = Op(kNTN
$1=2T$3=2). Therefore, term D4 corresponds to the second component

and terms D7 and D8 consist of the third component of the Dnal result. Terms D5 and D6

are dominated by term D4. We obtain the Dnal result.
(d) We essentially follow the same computation as (c).!

Proof of Theorem 1: Part (i): We start (A.1). Terms d1t to d3t have nothing to do
with jumps, and we know that from Theorem 1 of Bai (2003), if there is no jump,

p
N(F̂t +H 0Ft) = V

$1(F̂ 0F=T )N$1=2PN
i=1 +iuit +Op(N

1=2T$1=2c$1NT ) +Op(c
$1
NT ):

Therefore, the stochastic bound of terms d1t to d3t (multiplied by
p
N) is given as above.

In the rest of this proof, we compute the stochastic order for terms d4t to d8t (multiplied byp
N).
For d4t,

N$1=2T$1
'''F̂ 0Fo0zt

''' = N$1=2
'''F̂ 0F=T

''' ko0ztk ;

= N$1=2
'''F̂ 0F=T

'''
qPN

i=1 k+izitk
2;
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where

E k+izitk
2
= E k+ik

2E(z2it) =

8
<

:
k2NT>

2+2 + (p=T )k2NT>
2+2, if 4ct = 1

(p=T )k2NT>
2+2, if 4ct = 0

;

so that

PN
i=1 k+izitk

2
=

8
<

:
Op(k

2
NTN); if 4ct = 1

Op(k
2
NTNT

$1); if 4ct = 0
:

Therefore,

N$1=2T$1
'''F̂ 0Fo0zt

''' =

8
<

:
Op(kNT ), if 4ct = 1

Op(kNTT
$1=2), if 4ct = 0

:

For d5t,

N$1=2T$1
'''F̂ 0ZoFt

''' ) T$1
'''N$1=2F̂ 0Zo

'''
| {z }

=Op(kNT )

kFtk ;

= Op(kNTT
$1):

For d6t,

N$1=2T$1
'''F̂ 0Zzt

''' ) N$1=2T$1
r
PN

i=1

PT
s=1

'''F̂sziszit
'''
2

;

where

E
'''F̂sziszit

'''
2

= E
'''F̂s

'''
2

E(z2is)E(z
2
it)

=

8
<

:
k2NT>

2E(z2it)r + (p=T )k
2
NT>

2E(z2it)r, if 4
c
t = 1

(p=T )k2NT>
2E(z2it)r, if 4ct = 0

;

so that

PT
s=1E

'''F̂sziszit
'''
2

= k2NT (pc + p)>
2E(z2it)r;

=

8
<

:
[k2NT>

2(pc + p)r]k
2
NT (1 + p=T )>

2, if 4ct = 1

[k2NT>
2(pc + p)r]k

2
NT (p=T )>

2, if 4ct = 0
;

and

N$1=2T$1
'''F̂ 0Zzt

''' =

8
<

:
Op(k

2
NTN

$1=2T$1), if 4ct = 1

Op(k
2
NTN

$1=2T$3=2), if 4ct = 0
:
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For d7t,

N$1=2T$1
'''F̂ 0uzt

''' ) N$1=2T$1
r
PN

i=1

PT
s=1

'''F̂suiszit
'''
2

;

where

E
'''F̂suiszit

'''
2

= E
'''F̂s

'''
2

E(u2is)E(z
2
it);

=

8
<

:
k2NT>

2>2ur + k
2
NT (p=T )>

2>2ur, if 4
c
t = 1

k2NT (p=T )>
2>2ur, if 4ct = 0

;

so that

PN
i=1

PT
s=1E

'''F̂suiszit
'''
2

=

8
<

:
NTk2NT>

2>2ur +Nk
2
NTp>

2>2ur, if 4
c
t = 1

Nk2NTp>
2>2ur, if 4ct = 0

:

Hence,

N$1=2T$1
'''F̂ 0uzt

''' =

8
<

:
Op(kNTT

$1=2), if 4ct = 1

Op(kNTT
$1), if 4ct = 0

:

For d8t,

N$1=2T$1
'''F̂ 0Zut

''' ) N$1=2T$1
r
PN

i=1

PT
s=1

'''F̂szisuit
'''
2

;

where

E
'''F̂szisuit

'''
2

= E
'''F̂s

'''
2

E(z2is)E(u
2
it);

=

8
<

:
k2NT>

2>2ur + k
2
NT>

2(p=T )>2ur, if 4
c
s = 1

k2NT>
2(p=T )>2ur, if 4cs = 0

;

so that PT
s=1E

'''F̂szisuit
'''
2

= k2NT>
2(pc + p)>

2
ur;

and PN
i=1

PT
s=1E

'''F̂suiszit
'''
2

= Nk2NT>
2(pc + p)>

2
ur:

Therefore,

N$1=2T$1
'''F̂ 0Zut

''' = Op(kNTT$1).

This computation gives

p
N(d4t + d5t + d6t + d7t + d8t) =

8
<

:
Op(kNT ), if 4ct = 1

Op(kNTT
$1=2), if 4ct = 0

;
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to complete the proof.

Part (ii): We extend the factor loading estimate:

+̂i = (F̂ 0F̂ )$1F̂ 0Xi;

= (F̂ 0F̂ )$1F̂ 0F+i + (F̂
0F̂ )$1F̂ 0ui;

= (F̂ 0F̂ )$1F̂ 0F̂H$1+i + (F̂ 0F̂ )$1F̂ 0(F̂ + FH)H$1+i

+(F̂ 0F̂ )$1H 0F 0ui + (F̂
0F̂ )$1(F̂ + FH)0ui;

so that

T 1=2(+̂i +H$1+i) = T$1=2H 0F 0ui + T
$1=2(F̂ + FH)0ui + T$1=2F̂ 0(F̂ + FH)H$1+i;

= Op(1) +Op(T
1=2c$2NT ) +Op(kNTN

$1=2T$1=2) +Op(k
2
NTN

$1=2T$3=2);

= I + II + III + IV;

from Lemma 3 (b) and 3 (c). The condition for term II to diminish is

T 1=2c$2NT = max

6
T 1=2

N
;
T 1=2

T

7
! 0;

or
p
T=N ! 0. Further, the condition for term III to diminish is

kNTN
$1=2T$1=2 = kNT (

p
T=N)(

p
N=T )! 0;

which is implied when kNT (
p
N=T ) is bounded or

kNT = O(T=
p
N):

The condition for term IV to diminish is

k2NTN
$1=2T$3=2 = O(kNT (

p
T=N)(

p
N=T 2));

or
kNT = O(T

2=
p
N);

which is satisDed when kNT = O(T=
p
N). Hence, the additional condition is kNT =

O(T=
p
N).

Part (iii): We start with

cNT (+̂
0
iF̂t + +

0
iFt) = cNT (F̂t +H 0Ft)

0H$1+i + cNTF
0
tH(+̂i +H

$1+i) + cNT (F̂t +H 0Ft)(+̂i +H$1+i);

= I + II + III:

We Drst consider terms I and II. For term I; because kH$1+ik is a bounded quantity,

cNT (F̂t+H 0Ft) =

8
<

:

cNTp
N
V $1(F 0F=T )N$1=2PN

i=1 +iuit +Op(c
$1
NT ) +Op(N

$1=2T$1=2kNT cNT ); if 4
c
t = 0

cNTp
N
V $1(F 0F=T )N$1=2PN

i=1 +iuit +Op(c
$1
NT ) +Op(N

$1=2kNT cNT ); if 4ct = 1
;
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by using the result of Theorem 1 (i). For II, because kF 0tHk is a bounded quantity,

cNT (+̂i+H$1+i) =
cNTp
T
H 0T$1=2

PT
t=1 Ftuit+Op(c

$1
NT )+Op(kNT cNTN

$1=2T$1)+Op(k
2
NT cNTN

$1=2T$2);

by using the result of Theorem 1 (ii). Term III diminishes if terms I and II do. Therefore,
if 4ct = 0, then the conditions are

kNT = o(N
1=2T 1=2c$1NT ), kNT = o(N

1=2Tc$1NT ); and kNT = o(N
1=4Tc

$1=2
NT );

and they are reduced to kNT = o(max
%
T 1=2; N1=2; N1=4T 3=4

&
). If 4ct = 1, then the conditions

are
kNT = o(N

1=2c$1NT ), kNT = o(N
1=2Tc$1NT ); and kNT = o(N

1=4Tc
$1=2
NT );

and they are reduced to kNT = o(max
%
1; N1=2T$1=2; N1=4T 3=4

&
).!

Proof of Corollary 1: This immediately holds because from Theorem 1 (a), if 4ct = 1;
then

'''F̂t +H 0Ft

''' =
P3

h=1 dht +
P8

h=4 dht;

= op(1) +Op(kNTN
$1=2):

Therefore, we have op(1) if kNT = o(N
$1=2).!

Proof of Theorem 2: We Drst show that A1{A9 of Amengual and Watson (2007)
hold. A1, A2, and A5 are implied by the stated conditions. A3 and A4 are the same as
our Assumptions 1 and 2. A6 is weaker than our Assumption 3. A7 to A9 hold under our
Assumption 4. We now use Observation 1 of Bates et al. (2013) and require

k2NT
PN

i=1

PT
t=1E kzitFtk

2
= O(max fN; Tg);

or
k2NT>

2
F

PN
i=1

PT
t=1E(z

2
it) = O(max fN; Tg); (A.2)

under our simpliDcation assumptions. However,

PT
t=1E(z

2
it) = (pc + p)k

2
NT>

2;

and PN
i=1

PT
t=1E(z

2
it) = N(pc + p)k

2
NT>

2:

Hence, (A.2) becomes

k2NT>
2
FN(pc + p)k

2
NT>

2 = O(max fN; Tg);
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or
k4NT = O(max f1; T=Ng);

or
kNT = O(max

%
1; T 1=4N$1=4&).

This completes the proof.!

Proof of Theorem 4: (i) We consider the cross-sectional regression

ûit = :0 + +̂
0
i:1 + "i; for i = 1; :::; N; (A.3)

where "i is the error term. We know that the residuals ûit become

ûit = uit + zit + (+
0
iFt + +̂

0
iF̂t); (A.4)

under H0 and

ûit = uit + +
0
iJt + (+

0
iFt + +̂

0
iF̂t); (A.5)

under H1, where +̂i and F̂t are the jump-corrected estimates. We show that the regression
model (A.3) induced by true process (A.4) has a pseudo-true coeicient :1 = 0 and the
model (A.3) induced by true process (A.5) has a pseudo-true coeicient :1 6= 0 with error
term "i having a Dnite variance. First, note that under H0, (A.4) becomes

ûit = +̂
0
i(HFt + F̂t) + (+iH

$1 + +̂i)0HFt + uit + zit;

so that

:0 = 0;

:1 = p lim
N;T!1

(HFt + F̂t| {z }
=Op(N!1=2)

) = 0;

"i = (+iH
$1 + +̂i| {z }

=Op(T!1=2)

)0HFt + uit + zit + op(1);

= I + II + III + op(1);

from Theorem 3 (i-b) and 3 (ii). Therefore, error "i consists of three terms, I; II; and III.
Term I shrinks to zero, term II a Dnite variance >2u, and term III variance k2NT>

2. Since

the F test is invariant to model scaling, the one from the regression of k$1NT ûit on k
$1
NT +̂i is

the same as that applied to regression model (A.3) with

:0 = 0;

:1 = p lim
N;T!1

k$1NT (HFt + F̂t) = 0;

"i = k$1NT zit + op(1).

Under this model, error "i has a Dnite variance >
2 and pseudo-true coeicients :1 are zero at

rate op(N
$1=2) so that the F test multiplied by the numerator's degree of freedom has the

standard Chi square limit distribution.
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(ii) Under H1, (A.5) becomes

ûit = +̂
0
iHJt + (+̂i + +iH

$1)0HJt + +̂
0
i(HFt + F̂t)+ (+iH

$1 + +̂i)0HFt + uit; (A.6)

so that we obtain the regression model (A.3) with

:0 = 0;

:1 = p lim
N;T!1

HJt 6= 0;

"i = (+̂i + +iH$1
| {z }
=Op(T!1=2)

)0HJt + +̂
0
i(HFt + F̂t| {z }
=Op(N!1=2)

)+ (+iH$1 + +̂i| {z }
=Op(T!1=2)

)0HFt + uit + op(1);

= I + II + III + uit + op(1):

Terms II and III diminish as N; T !1 regardless of kNT . Hence, we separately consider
the cases where I diminishes and does not diminish. We Drst suppose that kNT < T 1=2.
Then, terms I; II;and III show a variance that shrinks to zero and uit has a Dnite variance
>2u. We next suppose that kNT , T 1=2. Now, scaling by k

$1
NTT

1=2 makes the regression model
(A.3) have

:0 = 0;

:1 = p lim
N;T!1

T 1=2k$1NTHJt 6= 0;

"i =
p
T (+̂i + +iH$1)0| {z }
)N(0;5(̂;i)

k$1NTHJt| {z }
,(0;32HH0)

+ op(1);

so that the error term "i has a zero mean and Dnite variance. The Dnal result follows.!
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Table 1(a). Coverage ratio of the conTdence interval for the factor

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.85 0.80 0.75
10 0.85 0.85 0.87 0.88 0.88 0.88 0.88 0.86 0.82 0.75
50 0.88 0.86 0.88 0.87 0.89 0.88 0.89 0.84 0.82 0.73
100 0.85 0.86 0.87 0.88 0.89 0.88 0.88 0.85 0.82 0.74

pc=5, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.87 0.88 0.87 0.88 0.84 0.85 0.85 0.67
10 0.83 0.85 0.83 0.87 0.85 0.88 0.88 0.85 0.90 0.63
50 0.87 0.85 0.89 0.87 0.90 0.88 0.90 0.83 0.91 0.67
100 0.87 0.86 0.89 0.88 0.89 0.88 0.89 0.84 0.90 0.71

pc=0, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.86 0.73 0.80
10 0.85 0.86 0.87 0.87 0.87 0.87 0.84 0.86 0.77 0.80
50 0.82 0.85 0.82 0.88 0.85 0.89 0.87 0.87 0.89 0.76
100 0.86 0.86 0.87 0.87 0.90 0.89 0.89 0.87 0.90 0.78

pc=0, p=5
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.84 0.85 0.87 0.88 0.87 0.88 0.85 0.87 0.79 0.72
10 0.84 0.86 0.84 0.88 0.82 0.88 0.80 0.81 0.84 0.35
50 0.80 0.86 0.84 0.87 0.87 0.87 0.89 0.78 0.90 0.40
100 0.86 0.86 0.89 0.89 0.89 0.87 0.89 0.89 0.90 0.80

pc=1, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.84 0.85 0.81 0.77
10 0.85 0.86 0.87 0.88 0.88 0.87 0.88 0.87 0.85 0.76
50 0.86 0.86 0.87 0.88 0.88 0.89 0.89 0.86 0.90 0.72
100 0.84 0.86 0.88 0.88 0.89 0.89 0.90 0.87 0.89 0.73
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Table 1(b). Average length of the conTdence interval for the factor

at the 90% nominal level

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.34 0.33 0.26 0.23 0.86 0.15
10 0.80 0.78 0.52 0.48 2.37 0.33 7.71 0.23 5.12 0.14
50 87.24 0.78 213.93 0.48 82.57 0.33 51.74 0.23 47.66 0.14
100 438.52 0.78 335.73 0.48 168.89 0.33 143.65 0.23 89.02 0.14

pc=5, p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.79 0.49 0.48 0.35 0.33 0.29 0.23 0.74 0.16
10 0.88 0.79 1.32 0.48 3.21 0.33 33.82 0.23 12.95 0.22
50 191.32 0.78 472.57 0.48 134.00 0.33 93.95 16.67 75.27 1.07
100 666.97 0.78 440.37 0.48 370.32 0.34 197.63 5.20 229.42 1.99

pc=0, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.33 0.33 0.24 0.23 0.16 0.14
10 0.79 0.78 0.48 0.47 0.34 0.33 0.25 0.23 0.19 0.14
50 13.83 0.78 26.70 0.47 15.84 0.33 16.58 0.23 16.17 0.14
100 243.78 0.78 134.88 0.47 86.35 0.33 80.17 0.23 37.30 0.14

pc=0, p=5
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.25 0.23 0.19 0.15
10 0.83 0.78 0.51 0.47 0.37 0.32 0.30 0.22 0.43 0.14
50 108.84 0.78 87.48 0.47 2634.54 0.32 47.27 0.38 54.86 0.93
100 421.01 0.78 233.91 0.47 184.07 0.36 480.69 13.42 79.54 7.05

pc=1, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.31 0.23 1.42 0.15
10 0.81 0.78 0.55 0.48 3.82 0.33 7.64 0.23 6.25 0.14
50 168.26 0.78 118.59 0.47 100.12 0.33 109.33 0.23 70.39 0.14
100 402.83 0.78 279.14 0.47 222.35 0.33 193.49 0.24 87.11 0.16
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Table 2. Coverage ratio of the conTdence interval for the factor loading

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.84 0.87 0.84 0.89 0.79 0.89 0.45 0.85
10 0.57 0.66 0.66 0.86 0.43 0.89 0.35 0.89 0.34 0.86
50 0.23 0.67 0.32 0.85 0.33 0.89 0.34 0.89 0.33 0.85
100 0.26 0.68 0.31 0.86 0.34 0.88 0.34 0.88 0.33 0.83

pc=5, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.60 0.65 0.79 0.87 0.77 0.89 0.64 0.89 0.33 0.73
10 0.40 0.64 0.35 0.87 0.13 0.89 0.06 0.91 0.06 0.78
50 0.01 0.66 0.01 0.85 0.01 0.89 0.01 0.77 0.01 0.67
100 0.01 0.68 0.00 0.85 0.01 0.88 0.01 0.69 0.01 0.65

pc=0, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.86 0.86 0.87 0.88 0.87 0.88 0.83 0.84
10 0.61 0.67 0.82 0.87 0.86 0.88 0.84 0.88 0.70 0.85
50 0.09 0.68 0.06 0.86 0.06 0.88 0.05 0.89 0.05 0.83
100 0.01 0.69 0.01 0.86 0.01 0.88 0.02 0.87 0.02 0.83

pc=0, p=5
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.63 0.66 0.84 0.86 0.86 0.87 0.85 0.87 0.75 0.79
10 0.54 0.66 0.74 0.87 0.78 0.88 0.74 0.86 0.52 0.79
50 0.02 0.70 0.02 0.86 0.03 0.87 0.03 0.79 0.03 0.50
100 0.00 0.71 0.00 0.88 0.01 0.86 0.01 0.12 0.01 0.06

pc=1, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.65 0.67 0.83 0.86 0.84 0.88 0.78 0.88 0.44 0.82
10 0.53 0.66 0.65 0.87 0.45 0.88 0.35 0.88 0.28 0.84
50 0.03 0.68 0.02 0.86 0.02 0.88 0.02 0.89 0.02 0.82
100 0.00 0.68 0.00 0.86 0.00 0.88 0.01 0.88 0.01 0.80
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Table 3. Coverage ratio of the conTdence interval for the common component

at the 90% nominal level
N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.90 0.88 0.89 0.83 0.90 0.51 0.86
10 0.84 0.87 0.80 0.89 0.58 0.89 0.48 0.90 0.42 0.86
50 0.58 0.88 0.54 0.88 0.50 0.90 0.47 0.90 0.42 0.86
100 0.58 0.88 0.52 0.89 0.50 0.90 0.45 0.89 0.43 0.85

pc=5, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.87 0.86
5 0.86 0.87 0.87 0.90 0.83 0.89 0.71 0.89 0.42 0.73
10 0.78 0.87 0.62 0.89 0.35 0.90 0.25 0.91 0.20 0.76
50 0.40 0.88 0.33 0.89 0.28 0.90 0.22 0.81 0.16 0.70
100 0.43 0.88 0.31 0.88 0.28 0.89 0.21 0.72 0.18 0.69

pc=0, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.90 0.90 0.89 0.89 0.89 0.88 0.87 0.85
10 0.87 0.87 0.87 0.88 0.89 0.89 0.87 0.88 0.76 0.85
50 0.40 0.87 0.23 0.89 0.18 0.90 0.16 0.89 0.14 0.84
100 0.15 0.88 0.11 0.88 0.11 0.89 0.11 0.88 0.11 0.85

pc=0, p=5
0 0.88 0.88 0.89 0.90 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.88 0.89 0.89 0.87 0.88 0.79 0.78
10 0.87 0.87 0.88 0.89 0.87 0.88 0.81 0.87 0.58 0.76
50 0.25 0.88 0.22 0.88 0.23 0.88 0.22 0.79 0.17 0.43
100 0.18 0.87 0.17 0.89 0.20 0.89 0.22 0.19 0.18 0.11

pc=1, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.86 0.87 0.89 0.89 0.88 0.89 0.83 0.89 0.52 0.83
10 0.84 0.87 0.79 0.89 0.59 0.89 0.48 0.89 0.39 0.85
50 0.41 0.88 0.29 0.89 0.23 0.89 0.19 0.89 0.14 0.83
100 0.31 0.88 0.25 0.88 0.19 0.89 0.17 0.88 0.13 0.83
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Table 4. RMSEs of the common component

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.06 0.05 0.03 0.03 0.03 0.02 0.09 0.03 1.01 0.09
10 0.07 0.06 0.11 0.03 0.76 0.03 1.83 0.04 3.73 0.10
50 4.29 0.05 9.18 0.03 17.11 0.03 33.35 0.05 78.45 0.11
100 15.06 0.05 36.14 0.03 67.81 0.03 131.96 0.05 318.93 0.12

pc=5, p=0
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.07 0.06 0.05 0.04 0.07 0.04 0.27 0.06 1.59 0.32
10 0.15 0.07 0.40 0.05 1.69 0.06 3.24 0.10 6.51 0.39
50 9.72 0.06 19.33 0.05 33.91 0.07 61.86 0.49 142.42 0.76
100 36.01 0.06 74.01 0.05 133.30 0.07 245.22 1.52 566.45 2.06

pc=0, p=1
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.05 0.05 0.03 0.03 0.03 0.02 0.04 0.03 0.12 0.09
10 0.06 0.05 0.04 0.03 0.04 0.02 0.08 0.03 0.37 0.09
50 1.69 0.05 2.63 0.03 3.50 0.02 5.18 0.03 13.32 0.08
100 6.69 0.05 8.97 0.03 11.78 0.02 18.06 0.03 50.38 0.08

pc=0, p=5
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.07 0.06 0.04 0.03 0.05 0.03 0.09 0.06 0.42 0.23
10 0.11 0.06 0.10 0.04 0.14 0.04 0.34 0.06 1.90 0.27
50 4.34 0.06 5.77 0.03 8.03 0.03 14.51 0.27 51.29 1.13
100 15.55 0.05 20.42 0.03 29.42 0.03 55.04 2.43 202.17 4.24

pc=1, p=1
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.06 0.06 0.03 0.03 0.04 0.03 0.10 0.04 1.09 0.12
10 0.08 0.06 0.13 0.03 0.77 0.03 1.89 0.05 4.05 0.13
50 5.05 0.06 10.35 0.03 18.79 0.03 36.20 0.05 88.05 0.13
100 18.36 0.05 40.29 0.03 74.02 0.03 142.53 0.06 356.16 0.15
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Table 5. Average correlation coeXcient between the estimated and true factors

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 1.00 0.71 0.98
10 0.96 0.97 0.96 0.98 0.75 0.99 0.52 0.99 0.51 0.97
50 0.43 0.97 0.37 0.98 0.43 0.99 0.45 0.99 0.48 0.96
100 0.41 0.97 0.37 0.98 0.42 0.99 0.45 0.99 0.47 0.96

pc=5, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.97 0.98 0.99 0.95 0.99 0.69 0.94
10 0.93 0.97 0.86 0.97 0.49 0.97 0.27 0.96 0.30 0.87
50 0.09 0.97 0.06 0.97 0.09 0.97 0.12 0.85 0.19 0.73
100 0.06 0.97 0.06 0.97 0.09 0.97 0.12 0.78 0.18 0.72

pc=0, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
10 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00 0.99 0.99
50 0.51 0.97 0.37 0.98 0.26 0.99 0.23 1.00 0.25 0.99
100 0.13 0.97 0.10 0.98 0.11 0.99 0.13 1.00 0.20 0.99

pc=0, p=5
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
10 0.95 0.97 0.96 0.98 0.97 0.99 0.96 0.99 0.89 0.99
50 0.23 0.97 0.15 0.98 0.13 0.99 0.15 0.93 0.20 0.62
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.36 0.19 0.24

pc=1, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.72 0.98
10 0.96 0.97 0.95 0.98 0.74 0.99 0.52 0.99 0.50 0.97
50 0.26 0.97 0.17 0.98 0.15 0.99 0.16 0.99 0.20 0.96
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.98 0.19 0.95
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Table 6. Estimated number of factors by Bai and Ng's (2002) information

criteria
N=50, T=200 N=100, T=100 N=200, T=50
no correction correction no correction correction no correction correction

䃢 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3 ICp1 ICp2 ICp3
pc=1, p=0

0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 5.34 4.00 4.00 4.00 4.05 4.03 4.18
5 5.02 5.01 5.04 4.00 4.00 4.07 5.02 5.02 5.02 4.72 4.30 6.39 5.06 5.06 5.06 5.10 5.08 5.22
10 5.00 5.00 5.00 4.00 4.00 4.04 4.98 4.98 4.99 4.37 4.11 6.41 5.01 5.01 5.01 5.01 4.95 5.19
50 4.99 4.99 4.99 4.00 4.00 4.00 4.97 4.97 4.97 4.01 4.00 5.46 5.01 5.01 5.01 4.04 4.02 4.17
100 5.01 5.01 5.01 4.00 4.00 4.00 5.01 5.01 5.02 4.00 4.00 5.43 4.98 4.98 4.98 4.04 4.02 4.17

pc=5, p=0
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.34 4.00 4.00 4.00 4.05 4.03 4.18
5 8.76 8.56 8.98 4.04 4.01 4.44 9.05 9.05 9.15 6.83 4.80 10.92 9.06 9.06 9.06 9.11 9.08 9.26
10 8.97 8.97 8.97 4.02 4.01 4.25 8.98 8.98 9.07 5.22 4.31 10.88 9.02 9.02 9.02 8.58 8.19 9.20
50 9.02 9.02 9.02 4.00 4.00 4.00 9.01 9.01 9.08 4.00 4.00 6.10 8.97 8.97 8.97 4.03 4.01 4.21
100 9.02 9.02 9.02 4.00 4.00 4.00 9.01 9.01 9.11 4.00 4.00 6.08 8.99 8.99 8.99 4.05 4.03 4.27

pc=0, p=1
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.83 4.00 4.00 5.25 4.00 4.00 4.00 4.02 4.01 4.09
10 4.21 4.14 4.64 4.00 4.00 4.00 4.25 4.07 19.25 4.00 4.00 5.51 4.05 4.02 4.28 4.02 4.01 4.11
50 19.93 19.68 20.00 4.00 4.00 4.00 12.82 3.56 20.00 4.00 4.00 5.48 1.11 1.04 4.59 4.03 4.01 4.14
100 19.95 19.88 20.00 4.00 4.00 4.00 14.29 5.21 20.00 4.00 4.00 5.48 1.25 1.09 5.20 4.03 4.02 4.14

pc=0, p=5
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 5.30 4.00 4.00 5.27 4.00 4.00 4.00 4.00 4.00 4.00
10 4.03 4.01 4.18 4.00 4.00 4.00 4.00 3.99 15.24 4.00 4.00 6.64 2.99 2.57 3.76 4.00 4.00 4.02
50 1.03 1.01 1.66 4.00 4.00 4.00 1.00 1.00 16.96 4.00 4.00 6.29 1.00 1.00 1.00 4.00 4.00 4.07
100 1.06 1.02 2.13 4.00 4.00 4.00 1.00 1.00 16.76 4.00 4.00 6.22 1.00 1.00 1.00 4.00 4.00 4.07

pc=1, p=1
0 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.01 4.00 5.33 4.00 4.00 4.00 4.05 4.03 4.18
5 4.98 4.96 5.02 4.00 4.00 4.05 5.00 5.00 6.00 4.58 4.17 6.33 5.06 5.06 5.06 5.07 5.05 5.14
10 5.23 5.15 5.73 4.00 4.00 4.04 5.25 5.05 19.50 4.27 4.06 6.57 5.07 5.04 5.34 4.90 4.78 5.10
50 19.93 19.75 20.00 4.00 4.00 4.00 13.51 4.57 20.00 4.00 4.00 5.59 1.72 1.56 6.18 4.02 4.01 4.14
100 19.95 19.89 20.00 4.00 4.00 4.00 14.80 6.14 20.00 4.00 4.00 5.60 1.93 1.62 6.59 4.02 4.01 4.15

46



Table 7. Coverage ratio for the common component at the 90% nominal level

when the factor follows an AR(1) model

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20

䃢
no

correction
correction

no
correction

correction
no

correction
correction

no
correction

correction
no

correction
correction

pc=1, p=0
0 0.86 0.86 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.88 0.88 0.88 0.89 0.89 0.90 0.85 0.90 0.58 0.87
10 0.86 0.88 0.84 0.90 0.68 0.89 0.46 0.89 0.43 0.86
50 0.58 0.87 0.51 0.89 0.46 0.89 0.44 0.90 0.42 0.86
100 0.58 0.87 0.54 0.90 0.48 0.88 0.44 0.90 0.40 0.85

pc=5, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.85
5 0.88 0.89 0.88 0.89 0.86 0.89 0.77 0.89 0.47 0.72
10 0.81 0.88 0.70 0.89 0.45 0.90 0.26 0.90 0.21 0.54
50 0.41 0.86 0.30 0.89 0.24 0.89 0.22 0.81 0.16 0.40
100 0.41 0.88 0.32 0.90 0.24 0.89 0.20 0.74 0.16 0.34

pc=0, p=1
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.87 0.85
10 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.89 0.78 0.86
50 0.50 0.87 0.30 0.89 0.21 0.89 0.18 0.88 0.13 0.86
100 0.15 0.87 0.11 0.90 0.09 0.89 0.10 0.88 0.10 0.85

pc=0, p=5
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.88 0.89 0.89 0.88 0.87 0.81 0.80
10 0.88 0.89 0.90 0.89 0.88 0.89 0.83 0.88 0.62 0.74
50 0.29 0.87 0.22 0.89 0.21 0.88 0.22 0.83 0.18 0.12
100 0.17 0.87 0.19 0.90 0.19 0.88 0.20 0.27 0.18 0.07

pc=1, p=1
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.89 0.89 0.90 0.84 0.89 0.59 0.85
10 0.86 0.88 0.84 0.89 0.69 0.89 0.47 0.89 0.41 0.85
50 0.43 0.87 0.31 0.89 0.23 0.89 0.18 0.89 0.15 0.83
100 0.31 0.87 0.23 0.89 0.17 0.89 0.16 0.89 0.12 0.77
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Table 8. Coverage ratio for the common component at the 90% nominal level

when individual models are misspeciTed

N=20, T=500 N=50, T=200 N=100, T=100 N=200, T=50 N=500, T=20
䃢 AR ARCH AR ARCH AR ARCH AR ARCH AR ARCH

pc=1, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.88 0.88 0.89 0.88 0.90 0.89 0.90 0.88 0.88 0.86
10 0.88 0.87 0.89 0.89 0.88 0.88 0.89 0.88 0.86 0.86
50 0.87 0.87 0.89 0.89 0.90 0.88 0.90 0.88 0.85 0.85
100 0.88 0.88 0.90 0.89 0.88 0.89 0.88 0.88 0.84 0.83

pc=5, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.87 0.88 0.89 0.88 0.89 0.90 0.89 0.89 0.76 0.76
10 0.88 0.87 0.89 0.90 0.90 0.89 0.91 0.90 0.79 0.77
50 0.87 0.87 0.90 0.89 0.89 0.88 0.83 0.84 0.72 0.71
100 0.88 0.88 0.89 0.88 0.88 0.87 0.73 0.75 0.68 0.67

pc=0, p=1
0 0.86 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.88 0.88 0.89 0.88 0.90 0.89 0.88 0.87 0.85 0.84
10 0.88 0.87 0.89 0.89 0.89 0.88 0.89 0.88 0.84 0.83
50 0.87 0.87 0.89 0.89 0.88 0.87 0.88 0.87 0.84 0.83
100 0.88 0.88 0.90 0.89 0.89 0.88 0.88 0.87 0.84 0.83

pc=0, p=5
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.86 0.85
5 0.88 0.88 0.88 0.88 0.89 0.89 0.87 0.87 0.80 0.80
10 0.88 0.88 0.89 0.89 0.89 0.88 0.88 0.86 0.77 0.76
50 0.87 0.87 0.90 0.89 0.88 0.87 0.83 0.83 0.52 0.56
100 0.88 0.88 0.89 0.88 0.88 0.89 0.26 0.38 0.11 0.13

pc=1, p=1
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.86 0.85
5 0.87 0.87 0.89 0.88 0.90 0.89 0.89 0.88 0.85 0.83
10 0.88 0.88 0.89 0.90 0.89 0.88 0.89 0.88 0.84 0.84
50 0.87 0.87 0.90 0.89 0.90 0.87 0.89 0.87 0.82 0.82
100 0.88 0.87 0.90 0.89 0.88 0.89 0.88 0.88 0.82 0.81
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Figure 1. Sample path of factor and factor estimate in the presence of outliers
one common jump one idiosyncratic jump
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Table 9. Size of the factor jump test
N=20 N=50 N=100 N=200 N=500

䃢 T=500 T=200 T=100 T=50 T=20
Case 1: X* is available

5 0.05 0.06 0.05 0.04 0.04
10 0.05 0.07 0.06 0.05 0.05
50 0.05 0.07 0.06 0.06 0.04
100 0.05 0.07 0.07 0.06 0.05

Case 2: X* is estimated
5 0.07 0.01 0.03 0.03 0.65
10 0.06 0.08 0.12 0.20 0.56
50 0.05 0.07 0.07 0.07 0.08
100 0.05 0.07 0.07 0.06 0.06

Table 10. Power of the factor jump test
N=20 N=50 N=100 N=200 N=500

䃢 T=500 T=200 T=100 T=50 T=20
Case 1: X* is available

5 0.90 0.94 0.96 0.97 0.98
10 0.95 0.97 0.98 0.99 0.99
50 0.99 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00

Case 2: X* is estimated
5 0.58 0.34 0.35 0.39 0.56
10 0.76 0.62 0.65 0.65 0.76
50 0.95 0.92 0.93 0.92 0.95
100 0.98 0.96 0.96 0.96 0.98
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Figure 2. Log-returns on currencies against the U.S. dollar
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Figure 2. Log-returns on currencies against the U.S. dollar (continued)
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Table 11. List of currencies, number of jumps, and common jumps
# of jumps common jump dates

06 May 07 May 29 Sep
1 Australian Dollar AUSTR 1 X
2 Canadian Dollar CDNDL 0
3 Czech Republic Koruna CZECK 0
4 Danish Krone DANKR 0
5 Hong Kong Dollar HKDOL 8 X X X
6 Hungrian Forint HUNGF 1 X
7 Indian Rupee INDNR 3 X X
8 Indonesian Rupiah INDON 11 X
9 Japanese Yen JAPYN 0
10 Kuwaiti Dinar KUWTD 6 X
11 Mexican Peso MEXPF 3 X X X
12 New Zealand Dollar NEWZD 0
13 Norwegian Krone NORGK 0
14 Philippines Peso PHILP 4 X X
15 Polish Zloty POLZL 0
16 Singaporean Dollar SINGD 1
17 South Korean Won SKORW 10 X X
18 Swedish Krona SWEDK 0
19 Swiss Franc SWISF 0
20 UK Pound BRITP 7
21 Malaysian Ringgit MALAY 0
22 Taiwan Dollar TAIWD 2 X X
23 South African Rand SARCM 0
24 Thai Baht THAIB 8 X X
25 Euro EURO 0

Notes : 1. The column of "# of jumps" indicates how many jumps are detected by the proposed method between
                 Aug. 1, 2007 and Sep. 30, 2008.
             2. The common jumps dates are those on which more than 3 currencies have a jump. These currencies
                 have a mark "X".

Figure 3. Number of jumps in a day
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Figure 4. Factor estimates with and without jump correction

1) First factor

2) Second factor
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Figure 5. Factor loadings with jump correction

1) First factor

2) Second factor

Table 12. Factor jump tests:

Currency return data
F p-value t  (1st factor) p-value t  (2nd factor) p-value

2008/5/6 3.50** ( 0.05) -2.61** ( 0.02) -0.77 ( 0.45)
2008/5/7 3.11* ( 0.06) 2.49** ( 0.02) 0.53 ( 0.60)
2008/9/29 2.71* ( 0.09) 1.47 ( 0.15) -1.60 ( 0.12)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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Figure 6. Monthly growth rates of new car registrations

in selected Japanese prefectures
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Table 13. Prefectures showing a jump in earthquake periods

# of pref. Prefectures that have a jump
Jan 1995 1 Hyogo

Hokkaido, Aomori, Iwate, Miyagi, Akita, Yamagata
Fukushima, Ibaraki, Tochigi, Gunma, Saitama

Mar 2011 21 Chiba, Tokyo, Kanagawa, Yamanashi, Gifu,
Nagano, Shizuoka, Aichi, Shimane, Okayama,
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Figure 7. Japanese prefectural new car registration factor estimates

non-corrected
first factor second factor

third factor fourth factor
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Table 14: Factor jump tests:

Japanese prefectural new car registration data

F p-value t  (1st factor) p-value t  (2nd factor) p-value
Jan 1995 0.42 ( 0.66) -0.62 ( 0.54) 0.18 ( 0.86)
Mar 2011 8.15 ( 0.00) 2.49 ( 0.02) 0.83 ( 0.41)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.

56


