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Abstract

Financial and macroeconomic time-series data often exhibit infrequent but large
jumps. Such jumps may be considered as outliers that are independent of the underly-
ing data-generating processes and contaminate inferences on their model. In this study,
we investigate the effects of such jumps on asymptotic inference for large-dimensional
common factor models. We first derive the upper bound of jump magnitudes with which
the standard asymptotic inference goes through. Second, we propose a jump-correction
method based on a series-by-series outlier detection algorithm without accounting for
the factor structure. This method gains standard asymptotic normality for the factor
model unless outliers occur at common dates. Finally, we propose a test to investigate
whether the jumps at a common date are independent outliers or are of factors. A
Monte Carlo experiment confirms that the proposed jump-correction method retrieves
good finite sample properties. The proposed test shows good size and power. Two
small empirical applications illustrate usefulness of the proposed methods.
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1 Introduction

The common factor model is found to be a useful and effective tool for statistical inference
with financial or economic high-dimensional data sets. Major applications are found in the
empirical asset pricing literature of the well-known Arbitrage Pricing Theory (Ross, 1976).
For classical examples, Lehmann and Modest (1988) and Connor and Korajczyk (1988)
apply a multifactor model to cross sections of stock returns. Recently, Ando and Bai (2014)
develop a multifactor model with group structure and apply it to Chinese stock returns. The
list of studies pertaining to fixed-income assets such as government and corporate bonds
includes Litterman and Scheinkman (1991), Elton et al. (1995), Ang and Piazzesi (2003),
and Ludvigson and Ng (2009). Eichengreen et al. (2012) and Longstaff et al. (2011) are
recent examples of using the credit default swap spreads of banks and sovereign debts. Lustig
et al. (2011) and Engel et al. (2014) provide applications to currency returns. There is also a
strand of research investigating macroeconomic time-series data using dynamic factor models
following, as far as the author knows, Geweke (1977), Sargent and Sims (1977), and Stock
and Watson (2002ab). This list is by no means comprehensive.

One remarkable feature of such data sets is that they often exhibit infrequent but large
jumps. While the source and dates of these jumps are sometimes of interest by themselves,
we may simply consider the jumps nuisance outliers that are independent of the underlying
data-generating processes. For examples of the former case, jumps in stock markets reflect
important news or announcements pertaining to individual firms or to the market as a whole.
In foreign exchange markets, the relative importance of common and idiosyncratic jumps has
been discussed by Engle et al. (1990). Here, the jump-free factor model must be estimated
in order to identify the jumps correctly. In the latter case, it is well-recognized that such
outliers can easily contaminate inferences on the underlying jump-free model. Therefore, a
large amount of research has gone into identifying and correcting such outlier effects. The
most popular issue was to detect outliers in the stationary autoregressive moving average
(ARMA) models, for which methods have been proposed by Fox (1972), Box and Tiao
(1975), Tsay (1986), and Chen and Liu (1993), among others. For examples of unit root
and cointegration tests, see Franses and Haldrup (1994), Vogelsang (1999), and Perron and
Rodriguez (2003) and for examples of inference for conditionally heteroskedastic models with
outliers, see Franses and Ghijsels (1999) and Charles and Darné (2005).!

In this perspective, a strand of literature uses high-frequency data to asymptotically infer jump-free
processes or the jump itself. See Barndorff-Nielsen and Shephard (2007), Ait-Sahalia and Jacod (2014), and
the references therein. Ait-Sahalia and Xiu (2015) apply principal component analysis using high-frequency



Following the aforementioned outlier detection/correction literature, in this paper we
investigate the effects of outliers on the recently developed asymptotic inference for large-
dimensional common factor models using the principal component approach (e.g., Bai and
Ng, 2002; Bai, 2003; Amengual and Watson, 2007; and Bates et al., 2013). To make this
attempt feasible and attractive, we extend the standard large-dimensional common factor
model as follows. First, we model the infrequent jumps of each response variable as incre-
ments of a mixture of Poisson processes, with the intensity parameter p/T', where p is a small
constant value and T' is the time dimension of data. This is a popular strategy to model
infrequent events in financial time series. See Georgiev (2002), Leipus and Viano (2003),
and Perron and Qu (2010). The jumps are infrequent because the probability of a jump
at a given time goes to zero as T — oo. Second, the magnitudes of jumps are modeled
as a function of data dimension. This device provides useful asymptotic approximations of
the effects of jumps on inferences. Third, we consider jumps that occur at dates specific to
one response variable (idiosyncratic jumps) and those that occur at the same date in other
response variables (common jumps). Finally, we consider the possibility of the underlying
factors exhibiting large jumps. This is in contrast to the case where jumps are independent
from the factors and thus they are regarded as outliers.

Under this setting, we first derive the upper bounds of jump magnitudes with which
the standard asymptotic inference goes through. Furthermore, we provide two useful ap-
plications of this result. The first application pertains to a method to correct the effects
of outliers on inferences. This is a simple application of a series-by-series outlier detection
algorithm without considering the factor structure in the data. This method enables us to
apply standard asymptotic normality of common factor models unless common jumps occur.
Even when they do, the consistency of factor estimates is obtained. The second application
pertains to the factor jump test—a test to investigate whether jumps at a common date are
independent outliers or are of factors. This test is important because outliers may spuriously
induce jumps in factor estimates even if the true factors have no jumps.

A Monte Carlo experiment confirms the following results in finite samples. First, indepen-
dent large outliers easily contaminate the standard asymptotic inference in large-dimensional
factor models. They significantly deteriorate the coverage rates of asymptotic confidence in-
tervals, reduce the correlation between the true and estimated factors, and induce over- and
under-estimation of a number of factors. However, the proposed jump-correction method

retrieves good finite sample properties unless T' is too small. Finally, the factor jump test

financial data.



shows good size when the outliers are sufficiently large. The test also exhibits good power.
We then apply these methods to daily log-returns data of 25 currencies against the U.S. dollar
for the recent financial crisis period. We observe infrequent large jumps in many currencies
and identify a few common ones. From the common jumps on May 6-7 and September 30,
2008, a factor closely related to currencies such as the Hungarian forint, Norwegian krone,
and Polish zloty shows strong evidence of jumps. On the other hand, a factor related to
currencies such as the Swiss franc and Japanese yen exhibits no jump. This factor exhibits
very weak evidence of jumps during that period. We also apply the method to Japanese
prefectural new car registration data for the period January 1985 to December 2014. Note
that there were two large earthquakes, in 1995 and 2011. We find that the jumps following
the 2011 earthquake represent a jump in a common factor, whereas the jumps following the
1995 earthquake do not represent a jump in factors.

The rest of this paper is structured as follows. Section 2 presents our model and assump-
tions. Section 3 provides the upper bounds with which the standard asymptotic inference
results go through. Section 4 discusses two useful applications: the jump-correction method
and the factor jump tests. Section 5 investigates their finite sample properties via Monte
Carlo simulations. Section 6 serves as two small empirical applications, and section 7 con-
cludes the paper. We use the following notations throughout the paper. The Euclidean
norm of vector x is denoted by ||z||. For matrices, we use the vector-induced norm. Symbols
O(-) and o(-) denote the standard asymptotic order of sequences; symbol = represents the
convergence in probability under probability measure P, and symbol = denotes the conver-
gence in distribution. Symbols O,(-) and o,(-) are the orders of convergence in probability
under P. We let ¢y = min {\/N, \/T}

2 Model and assumptions

2.1 Model

We consider the common factor model with cross-sectional dimension N and time-dimension
T where N and T are both large:

v =NF, +uy, fori=1.. ,Nandt=1,..T, (1)

where z, is the ith response variable at time ¢, F} is an 7 X 1 vector of common factors,

A; is an r x 1 vector of factor loadings, and wu; is an idiosyncratic error. Without loss of



generality, we use demeaned data so that intercepts are omitted from the model. In matrix
form, model (1) can be written as
X* = FA+ u, (2)

where X* = [z7,...,2%] is a T x N matrix with zf = [2]}, ..., 2} being a T' x 1 vector of
response variables, F' = [Fi, .., Fr|' is a T x r matrix of common factors, A = [Aq, ..., A\x]" is
an N x r matrix of factor loadings, and u = [uy,...,uy] is a T x N matrix of idiosyncratic
errors with w; = [u;1, ..., u;r] being a T' x 1 vector.
In this study, we consider the model in which response variable z7, is not observed but
T 18, so that
Ty = Thy + Zit, (3)
where z; consists of infrequently occurring jumps. Specifically, we consider the following

increments of a mixture of Poisson processes:
c SC
Zit = N0 + Nylit- (4)

In the two terms on the right-hand side of (4), 7 and 7;, are i.i.d. Bernoulli random
variables with probabilities p¢/T" and p/T, respectively, where p® and p are (typically small)
positive constants. The main idea behind these intensity parameters is that the expected
number of jumps is constant in each series as T' expands. Recently, important developments
have established the convergence results of the Poisson process with this intensity parameter.?
See Georgiev (2002) and Leipus and Viano (2003) for theoretical developments, and Perron
and Qu (2010) for an empirical example. Furthermore, 67, and ¢, are random variables
associated with jump magnitudes. Note that if the first term shows a jump (nf = 1),
every response variable (z; for every i) also jumps on the same date ¢. Therefore, we call
them common jumps. On the other hand, the second term consists of jumps occurring
on idiosyncratic dates, and so we call them idiosyncratic jumps. Lastly, we assume that
both common and idiosyncratic jumps are independent of the underlying factors and so are

regarded as nuisance outliers in the factor model.

2.2 Assumptions

This section introduces our assumptions. Assumptions 1 to 5 apply to model (1), following
the standard literature of Bai (2003) and Bates et al. (2013).

2Note that the theoretical results derived here quantitatively depend on this assumption. It is interesting
to consider more general settings of the intensity parameter, although a thorough treatment is beyond the
scope of this study. Thus, we maintain this simple assumption for the sake of brevity.
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Assumption 1. F||F|* < oo and T-' 3. F,F! % $p, as T — oo, for some positive

definite matrix Y.

Assumption 2. E|\|| < A < oo and A'A/N & %), as N — oo, for some positive
definite matrix Xj.

Assumption 3. The following conditions hold for all N and T, where M is a generic
constant.

(a) E(uy) =0, Eluy|® < M.

(b) yn(s,t) = E(uus/N) for all (s,t),

|vn (s, )| < M for all s,

and
T S ln(s, 1) < M.

(¢) Kijus = E(uyujs) for all (i,7,s,t). |Kiju| < |kij| for some x;; and for all ¢, while

NSRS kil < M,
and
1N =N =T T
(NT) ! >ict Zj:l Dot D [Kijes| < M.
(d) For every (s,t),

E|NTY2SN (uiguiy — B(uisu; 4<]\4
i=11Wis Wit uzsuzt)] = .

Assumption 4. For all (4, j,s,t), Fy, u;s, and A; are mutually independent.

Assumption 5. The eigenvalues of XY, are distinct.

Assumptions 6 and 7 specify the jump process (4) regarded as outliers.

Assumption 6. The followings hold for all (3, j, s, t)
(a) 2zi and 7}, are mutually independent.

(b) m¢, 03, mjs, and J;5 are mutually independent.

(c) &5, and 4, follow i.i.d.N(0, 0% ).



Assumption 7. With kyr > 0 as an arbitrary function of N and T, the standard

deviation of jumps is oyt = k1o, where 0 < 0 < oo is a fixed constant.

Assumption 6 (a) ensures that jumps are independent outliers in the factor model. Fur-
thermore, Assumption 6 (c¢) assumes that jump magnitudes follow a normal distribution
with zero mean. However, normality is not essential and solely for derivational simplicity
and we can replace this assumption with the corresponding moment conditions E(J) = 0,
E(0%) = O(k%;), and E(6*) = O(k%;). The zero-mean assumption is not without loss of
generality, however, since it solves an identification problem and greatly simplifies theoret-
ical results, we keep this assumption within this paper.®> Assumption 7 assumes that the
standard deviation of jumps is asymptotically large and represented by scale factor kyr.
As shown later, this enables us to obtain meaningful asymptotic results pertaining to jump
magnitudes.

Throughout the paper, factors are estimated using the principal component method, that
is,

(A, F) = arg min S S (i — X, (5)

imposing a normalization F'E /T = I., where I, is the r-dimensional identity matrix. This
yields F, that is, VT times r eigenvectors of X X’ corresponding to its r largest eigenvalues
and A = X'F(F'F)1,

3 Asymptotic results

This section presents the asymptotic results on inference for large-dimensional factor models
as established by the literature in the presence of jumps. Again, jumps in this section are
regarded as outliers independent of the underlying factor model. We examine the conditions
for the scale of jump magnitudes ky7; under which standard results are unaffected. To this
end, we study the insight of Bates et al. (2013), who discuss the conditions for magnitudes
of factor loading instabilities with which standard asymptotic results go through.

We first consider the asymptotic normality originally obtained by Bai (2003) in the

following theorem.

3Suppose E(d;;) = § < co. Then, under the following additional conditions on the original factor model,
a model with non zero mean jumps can be regarded as a model with zero mean jumps. When common jumps
occur (n§ = 1), the condition is E()\;) = A # 0 for all ¢. Then, the new factor at ¢ is defined as F; + p/A in
the case of r = 1 so that the new jumps have zero mean. When a idiosyncratic jump occurs (n,, = 1), the
condition is E(F;) = pup # 0 for all ¢. Then the new loading is defined as \; + 1/ p to be compatible with
the model with zero mean jumps.



Theorem 1 (Asymptotic normality of factors and factor loadings) Suppose Assumptions
1-7 hold and g follows i.i.d. with mean zero and variance 0. (i) If kny = o(T"?) and
n; =0, then

NY2(F, — H'F,)) = N(0,V'QT,Q'V™1), (6)

as N,T — oo under VN/T — 0, where H = Vyt(F'F/T)(NA/N), Q = VV2u's, '/,
and Ty = AVar(N—1/? Zf\il Aiit). Matrices Vg and V' are diagonal, the main diagonals
being the 7 largest eigenvalues of XX'/(NT) and Z}\/ZEFE}\M, respectively, and U is the

etgenvector matriz corresponding to the latter.
(’L’L) If knt = O(TN71/2>, then

TY2(\; — H7')\) = N(0,Q'®;Q 1), (7)

where ®; = AVar(T~Y2 Y], Fiuy), as N,T — oo under VT /N — 0.
111 Ny =1, — 0, and ky7 = o(min T orifny =0 an
Ifn¢ =1, T/N — 0, and k in { NY27-1/2 NYATS/A ¢ =0 and
kyt = o(min {TI/Q, N1/2, N1/4T3/4}), then

(N + Tﬁle’t)fl/z(j\;Ft — A\ Fy) = N(0,1), (8)
where Vi = A;EKlf‘tZXl)\i and Wy = F{EEIQEEIF}, as N, T — oo.

Parts (i) and (ii) of this theorem imply that the upper bounds of jump magnitudes
are given by /T for factor estimates and T / VN for factor loading estimates to obtain
standard asymptotic normality. We interpret these upper bounds as a larger T' of the data
set extending the bound so that it helps obtain asymptotic inferences for both estimators
in the presence of outliers. On the other hand, a larger N lowers the bound for factor
loadings and hence may harm the inference for factor loadings. This is intuitive because
the source of contamination is jumps and they are infrequent so that the total number of
jumps in a data set does not increase as T increases, but increases as N does.* In addition,
whether the jumps are common or idiosyncratic does not affect the asymptotic distribution
of the factor loading estimate, unlike that of the factor estimate. This is because of the
assumptions on the infrequent nature of the jumps. The factor loadings are estimated using
a time series regression of the i¢th series. However, there are few jumps over time, regardless
of their common or idiosyncratic properties. This is in contrast to the factor estimate,

in which the cross-section regression at time t is in effect. That is, if common jumps are

4If we employ an intensity parameter that shrinks at a slower rate in order to consider more frequent
jumps, then the upper bound of ky7 will decrease in terms of 7.
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present at time ¢, all the cross-sectional observations at time ¢ have jumps and undermine
the asymptotic results of the factor estimate. Part (iii) pertains to the common component
and the upper bound is more complicated. This is because the convergence rate is now
cyT = min {\/N NT } so that not only a large 7', but also a large N helps to diminish the
error terms.

The theorem also implies that the asymptotic normality of Fy is available only when
common jumps do not occur at t (nf = 0). To deal with this problem, the following corollary

guarantees its consistency with the timing of common jumps.

Corollary 1 (Consistency of factors under common jumps) Suppose Assumptions 1-7 hold
and n¢ = 1. If kyp = o(N'/?), then

We next consider the upper bound of jump magnitudes with which the information

F,— H'F,

= 0,(1), (9)

as N, T — oo.

criteria of Bai and Ng (2002) give consistent estimates for the number of factors r. The

information criteria are defined as

7 =arg max logV(l)+1xg(N,T), (10)

0<I<lmax

U A N

where V() = SN ST (@ — A FD? and F! is the principal component factor estimate,
~ A o

assuming [ factors and A, = (X1, F/'EY) (X, Flay). We obtain the following theorem

as a direct consequence of Amengual and Watson (2007).

Theorem 2 (Information criteria) Suppose A1-A7 hold, with E(F,F)) = Yp, E(MX,) =
Sa, and E(u}) = o2 If knr = O(max {1, TYVAN"V41) | then 7 Ly as N, T — oo.

The condition for the consistent estimation of r is more stringent than the conditions for
the asymptotic normality of factors and factor loadings. Indeed, when N grows faster than
T, the upper bound becomes kyr = 0(1) and no jumps are allowed, in theory. Overall, the
upper bounds we have derived in Theorems 1 and 2 and Corollary 1 are closely linked to the
nature of the infrequent jumps in our model. Except for the factor estimate at the common
jump timing, the upper bounds increase (or are unchanged) as T increases, and shrink (or
are unchanged) as N increases. The intuition behind these results is consistent with the
fact that the total number of jumps increases as N increases, but remains unchanged when
T increases. Therefore, a more general specification of the jump model could possibly be

applied to implement a similar investigation, although this is beyond the scope of this paper.
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4 Two useful applications
4.1 Series-by-series jump-correction algorithm

This section discusses two useful applications of the results presented in the previous section.
The first pertains to the correction of jump effects. We consider the algorithms developed for
univariate time-series data. For this, we apply them series-by-series without considering their
common factor structure. The idea is that if jumps are outliers, removing their effects will
not change their factor structure. We then identify and estimate the common components
with the set of individually jump-corrected response variables.® We propose the following

algorithm.
Algorithm: Implement the following steps for ¢ =1, ..., N.

Step 1. Compute 7;(t) = v},/5;, where 0}, is the residual from a fit of the tentative
univariate jump-free model using z; without considering its common factor structure. Use a

standard deviation estimate ; of v}, = x}, — Z;; , which is not affected by the jumps present

in {xit}thl.ﬁ

Step 2. If maxy<;<r |7:(t)| > &, where £ is a predetermined critical value,

T; = arg max |7;(t)]

is considered a possible jump location. Go to Step 3. If max;<;<7 |7:(¢)| < &, the ith series
exhibits no (more) jumps. Assume that ¥, = x; for all ¢, and go back to Step 1 to proceed
with the (i + 1)th series.

Step 3. Replace z; with the fitted value obtained in Step 1 so that j;“TZ = Z;5,. Go

back to Step 1 and use 2, as a new x;;.

5For an extension to the autoregressive integrated moving average (ARIMA) model with additive and
innovational outliers, see Chen and Liu (1993). Franses and Ghijsels (1999) and Charles and Darné (2005)
provide methods using conditionally heteroskedastic models.

SFor example, Chen and Liu (1993) propose the following three methods: (1) the median absolute devi-
ation method; (2) the a%-trimmed method; and (3) the omit-one method. In our Monte Carlo simulations
and empirical examples, we use method (1), with the following specific form:

&; = 1.483 x median {|0}, — 07|},

where #; is the median of {0},},_,, as proposed by Andrews et al. (1972).

9



Next, we discuss the asymptotic justification for this algorithm. Let the fitted value of

the univariate model be #;;. Then, we can write the numerator of 7;(¢) as

o A
Uy = T — Lit,

= zp+ (-r;kt - iit)a (11)

where the term z}, — Z;; includes the estimation errors and the model specification errors
pertaining to fitting the individual time series. When z;; includes jumps where z;, is the
largest, the first term in (11) naturally dominates the second term, and |7;(t)| is informative
about the location. On the other hand, if there is no jump, then z; = 0 for all ¢ and
0}, = af, — &y = v} so that |7;(¢)| should not exceed the critical value ¢ if it is sufficiently
large.

Therefore, the choice of £ plays an important role, in practice. Because no theoretical
guidelines can be provided, we have conducted a Monte Carlo experiment with various critical
values, ranging from 2 to 20. The results are provided on request. They demonstrate good
coverage rates for the factors, factor loadings, and common components by choosing a value
between ¢ = 4 and 8, so a good choice may be £ = 5. However, in practice, more than one

critical value should be used to check the sensitivity of the empirical results.

Theorem 3 Suppose that factors (F') and factor loadings (A) are estimated by (5) and the
number of factors (r) is estimated by (10) using z},. If Assumptions 1-7 hold and &}, — a7},
satisfies the upper bounds derived in Theorems 1 and 2 and Corollary 1 for every jump, then
the followings hold.

(i-a) If n¢ = 0, then (6) holds under /N /T — 0, as N, T — co.

(i-b) If ni =1, then (9) holds, as N,T — oc.

(ii) (7) holds under NT/N — 0 and VN/T — ¢ (0 < ¢ < 00), as N,T — oc.

(iii) (8) holds as N, T — oc.

(i) + L r, as N, T — co.

Given the high-level condition that %}, — z}, satisfies the upper bounds, this theorem is
a direct consequence of Theorems 1 and 2 and Corollary 1 and no extra proof is needed.
Several useful implications follow. Part (i-a) states that unless common jumps occur at ¢, we
can have standard asymptotic inferences for the factors in Bai (2003) without any additional
condition (we already have condition v/N/T' — 0 in the standard result). In other words,
Theorem 1(i) states that if the jumps are not larger than VT, we obtain asymptotic results,

10



although they can be asymptotically identified with the algorithm because they are explosive
as T — oo. Therefore, what we require is only the existing condition v/N/T' — 0. Part
(i-b) suggests that the consistency of factor estimates is guaranteed, even in the presence of
common jumps. However, the asymptotic normality of v N (Fy — H'F}) is not guaranteed if
common jumps occur at time ¢. Part (ii) means that the inference for factor loading requires
condition vN/T — ¢ (0 < ¢ < o0) in addition to the existing condition v/7'/N — 0. If this
is not satisfied, jumps smaller than or equal to T'/ v/N may not be detected in theory because
T/ VN — ¢! < 0o. This means again that jumps remain in the data and may contaminate
the inference results. However, this condition is not more restrictive than that required in
part (i-a). Finally, part (iii) simply ensures that after correcting the jumps, the common
component estimate has the standard asymptotic normal result and part (iv) guarantees that

Bai and Ng’s (2002) information criteria can consistently estimate the number of factors.

*

Remark 1 The condition &}, — x, satisfying the upper bounds is high level, and must be
verified case by case. For example, let the individual series follow x}, = (1 + v},, where v}, is
a zero-mean white noise (but has a common factor structure) and z; = I(t = T;)0;.

Case 1: The univariate model is fitted by the full-sample ordinary least squares. Then,

fy = T Z;r:l T,
= u+ T vk 4+ T8,

Given that the jump is detected at t = T;, the remaining jump in the corrected data is

*
i

ok oA
T, — Ty, = Ty, — Ty

_ -1 T * —1 *
= T3, vy +T0; - Uity

- Op(l) + Op<T_1]fNT).

Hence, the jump magnitude is now multiplied by T~ . If T knp — o0, then the remaining
Jump s further reduced to O,(T2kyt) in the next loop of the algorithm.

Case 2: The univariate model is fitted by the ordinary least squares using the data,
excluding x;r,. Then,

~ — T *
Ty =p+T 12,5:1%-
4T

In this case, the jump-free univariate model is consistently estimated as the second term

11



vanishes. The remaining jump is

A% * _ A L
Tir, — Ty, = Tty — Tygys
_ —1T * *
= T ) v — Uiy s
AT,
= Op(1)>

so that it satisfies the upper bound as long as knt — oc.

4.2 Factor jump tests

So far, jumps follow Assumption 6 and are independent of factor structure. Moreover, from
Assumption 1 (E ||F|| < 00), underlying factors should not show large jumps. However, if
we allow for the underlying factors to jump, we also observe common jumps in the response
variables, but they must be identified as factor jumps. From an empirical perspective,
whether factors show jumps or not is an important question but very often not a priori
known to researchers.

To illustrate this, we present two dissimilar models exhibiting common jumps at time .

If the jumps are outliers independent of factors, the model is the same as (3) and (4),
Tip = NFy + zig + wi. (11)

On the other hand, if the jumps are of factors, by denoting them by J;, an r x 1 vector, the

model becomes

zie = N(Fp+Jp) + w,

with J; ~ (0,0%1,) and are independent from F}, \;, and u;. The two models have very
different implications, but they cannot be distinguished by observing x;. To this end, we
propose a factor jump test for the null hypothesis of model (11) against the alternative

hypothesis (12) as follows.

Factor jump test

Step 1. Estimate the jump-free factors F, and factor loadings \i using the jump-
correction procedure proposed in the previous subsection.

Step 2. Obtain residuals from cross-sectional regression: u; = x; — 5\;}7} at t for
i=1,..,N.

12



Step 3. Let a factor jump be suspected at ¢ = T°. Implement an F' test for the null
hypothesis Hy : 7; = 0,x1 against the alternative hypothesis Hy : 7; # 0,x; in the following

cross-sectional regression:
Ujpe :704—5\;%—{—5% fori=1,...,N, (13)

that is,
P (SSR, — SSR,)/r

~ SSR,/(N —r—1)’
where SSR, and SSR, are the restricted and unrestricted sums of squared regression resid-
uals (13).

If the test rejects the null hypothesis, we conclude that the common jumps at time 7T
are of factors. If not, the jumps are outliers independent of factors. We formally present the

property of this test in the following theorem.

Theorem 4 Let Assumptions 1-7 hold. (i) Under model (11) of the null hypothesis that
jumps are independent of common factors, rF’ = x* as N,T — oo. (i) Under model (12)

of the alternative hypothesis that jumps are part of common factors, F? — oo as N, T — oo.

Remark 2 We can also consider a t test in regression (13) for individual factors to in-
vestigate whether an individual factor jumps or not. This version is especially useful if the

estimated individual factors can be identified and interpreted.

5 Monte Carlo simulation

In this section, we study the finite sample properties of asymptotic inference for common
factor models in the presence of jumps via Monte Carlo simulations. We examine how inde-
pendent jumps contaminate the standard inference and how the proposed jump-correction
method improves performance. We also investigate the finite sample size and power of the
proposed factor jump test.

We generate the data by

r = NI+ ua, (14)
Tyt = I':t + Zits (15)
Zie = N;05 + Nlit, (16)
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where F, ~ i.i.d.N(0,1.), \; ~ 4.i.d.N(0,1.), and w;; ~ 4.i.d.N(0,1) unless otherwise
stated. Jump process z; has a common component, where 7 ~ i.i.d.B(p./T) and J, ~
i.i.d.N(0,0?), and an idiosyncratic component, where n,, ~ i.i.d. B(p/T) and §;; ~ i.i.d.N (0, 0?).
Importantly, jumps are independent of factor structure in this model. Throughout this ex-
periment, the jump-correction method assumes a white noise for every series and we use the
critical value £ = 5 for |7;(t)|. We consider a case in which jumps are not corrected (denoted
by “no correction” in the tables) and one in which jumps are corrected using the proposed
method (denoted by “correction” in the tables). The number of replications is 3,000.

We first investigate the distributional properties of the factor and factor loading estimates.
For this, we set r = 1 and compute the coverage rate and average length of the confidence
intervals of (rotation-adjusted) factor HF}, factor loading A\; H ', and common component

ALF;." The asymptotic confidence intervals are constructed by Bai (2003) such that

[y = oo\ Var(E), By + zapa\/ Var(E)),
i = Zap2\/ Var(\), As + zaga\/ Var(A)),

Al A ~l A ~ ~/

(NEFy — 202 @”()\iFt)a A+ Za /2 @'()‘iﬁt)]a

(3

where, respectively,

A~ RN —

Var(ly) = (N712£1U?t)(2£1AjAJ) "

Var(\) = (T a5) (o, FLF)
—~— Al o~ B Y B NN B . A -~ I
Var(\NE) = (N5 ad) (NS NA) T + (T S @) (T S, FUR) R,

and z,/2 is the 100 x (1 — a/2)% quantile of the standard normal distribution. We consider
the set of parameter values associated with jump magnitudes o = [0, 5, 10,50, 100], that
are in turn associated with jump frequencies (p.,p) = [(1,0), (5,0), (0,1), (0,5), (1,1)],
and the set of sample sizes (N,T") = [(20, 500), (50, 200), (100, 100), (200, 50), (500, 20)]. We
set @ = 0.1 to consider the 90% confidence intervals for, without loss of generality, Fr,
A1, and \]Fp. The results are reported in Tables 1 to 3. Tables 1(a) and 1(b) give the
coverage rate and average length® of the confidence interval of H'Fyr. They show that even

when jumps are not corrected, the coverage rate goes close to 0.9 except for the case of

"Since we set 7 = 1 in this experiment, H is a scalar. Still, it is important to incorporate it because it is
not necessarily 1.

8The average length is the average of the difference between the upper confidence limit and the lower
confidence limit over the Monte Carlo replications.
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(N, T) = (500, 20); however, the average length inflates as o increases. On the other hand,
when jumps are corrected, the coverage rate is again close to 0.9, except for the case of
(N,T) = (500,20), and the average length does not inflate. This shows that the proposed
jump-correction method works well for factor estimation as long as vV N /T — 0 is relevant,
as discussed in Theorem 3 (i-a). We now examine the results of factor loadings in Tables
2, by investigating the coverage rates.” When jumps are not corrected, the coverage rate
significantly deteriorates as ¢ increases. On the other hand, when jumps are corrected, we
observe significant improvement except for the case of (N,T) = (500,20), where a jump
occurs every four periods, which makes the approximation p/T" — 0 inappropriate. We
also observe that the coverage rate deteriorates when (N, T") = (20, 500), because condition
VT/N — 0 as required in Theorem 3(ii) may not be relevant; however, the errors are
minor in this case. Finally, Tables 3 shows the confidence interval results for the common
component. Again, the coverage rate moves away from the nominal level 0.9 as ¢ increases
when jumps are not corrected; however, jump correction significantly improves performance
except for the case of (V,T) = (500,20). We again observe some errors in coverage rate for
the case of (N,T) = (20,500), but they are minor. We also compare the root mean squared

errors (RMSEs) of the common component computed by

RMSE =/ (NT) S0, SN (N — X2

with and without jump corrections. As Table 4 shows, the RMSE deteriorates significantly
as the jumps become larger when they are not corrected. However, it is unaffected by the
magnitude of jumps when the jump correction is implemented.
The above results are direct consequences of Theorems 1 and 3. However, a good coverage
ratio of Fy without jump correction should be further inspected. We here show t%lat the
as a

t=1
series. To this end, we compute the correlation coeflicient between the estimated factor

T
{Ft} and the (rotated) true factor {H'F,}/_,. Table 5 gives the average correlation
t=1

coefficient over simulation. When jumps are not corrected, it moves significantly away from

observed coverage rate is pointwise and does not reflect a good estimate for {Ff}

1 as o becomes larger. This is the case even if all the jumps are idiosyncratic (p. = 0).
The average correlation coefficient moves very close to 1 when jumps are corrected in almost
all cases. Furthermore, Figure 1 gives a sample path of a true factor and factor estimates

without jump correction when the data show (a) common jumps at ¢t = |0.57 | with o = 10

9The average lengths of the factor loadings and the common component are also contaminated as the
jumps become large and are not corrected. Hence, these are suppressed to save space.
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and (b) an idiosyncratic jump in zy; at ¢t = [0.57"] with o = 100. The factor estimate exhibits
a jump in response to these outliers at t = |0.57|. Thus, we do not obtain a good estimate
for the series as a whole. More importantly, this occurs even if the outlier is idiosyncratic as
long as the magnitude is sufficiently large.

Table 6 investigates Theorems 2 and 3(iv) and reports the average estimated number of
factors by Bai and Ng’s (2002) information criteria. We here set the true number of factors to
r = 4 and consider the three suggested information criteria (IC,1, IC,2, and IC,3). In every
case of the sample size and jump frequency, the number without jump correction moves away
from 4 as o increases. One must be careful because our theory does not tell us the direction
of either under- or over-estimation. For example, it tends to over-estimate when common
jumps occur; we also observe significant over-estimation when only one idiosyncratic jump
occurs, that is, (p.,p) = (0,1). However, we observe under-estimation when idiosyncratic
jumps are more frequent, (p.,p) = (0,5). Of importance is that, after jumps are corrected,
it recovers the true number 4 in most cases as suggested by Theorem 3 (iv).

We next check if the results are robust to another specification of the data-generating
process. We first consider the case in which the factor follows an autoregressive process.
Specifically, we generate Fy = 0.5F,_1 + e;, where ¢; ~ 1.i.d.N(0,1) and other components
in the data-generating process are the same as the previous cases. Thus, each individual
series follows an AR(1) process. In the jump-correction algorithm, the individual models
are selected from possible ARMA (p,q) models up to p = 4 and ¢ = 2 using the Schwarz
information criterion (SIC). Table 7 reports the coverage rate of the 90% confidence interval
for the common component. The results are very similar to the white noise case presented in
Table 3. The results of the factor, the factor loading, and the number of factors are also very
similar to those of the white noise case and, thus, are not presented here in order to conserve
space. Finally, let us consider two cases where models for individual series are misspecified
in the jump-correction algorithm. In the first case, the factor follows the same AR(1) process
as in the previous case. In the second case, the factor follows an ARCH(1) model so that
F, ~ N(0, hy), where hy = /1 + 0.5F? ;. In both cases, the white noise model is fitted for
individual series in the jump-correction algorithm. As Table 8 shows, the coverage rates of
the 90% confidence interval are very close to those under the correct specifications. This
supports the fact that misspecifications of the individual series are allowed to obtain the
inference for the jump-free common factor model.

Finally, we investigate the size and power of the factor jump test. In Figure 1 we showed

that even if the true factors do not jump, independent outliers in the response variables (even
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if it occurs in one response variable) could cause a spurious jump in the factor estimate,
showing the importance of this test. We first examine the size of the test. The data in
models (14) and (15), that is, under the null hypothesis of no factor jumps, are generated
with » = 2. We also simplify the model by assuming that no idiosyncratic jumps occur.

Thus, we generate process (16) with
zie = 1(t = |0.5T]) x &5,

where 6, ~ 7.i.d.N(0,0?). On the other hand, to investigate power of the test, we assume
that z;; = 0 for all 4 and ¢, so that although no independent outliers are present, the factors
jump such that

F,=F+F/,

where F} ~ i.i.d.N(0, I,) represents jump-free factors and F = [I(t = [0.5T]) x 4, 0]
with § ~ N(0,0%) corresponds to a jump of the first factor. Since the jump-free factor
estimates used in Steps 1 and 2 can affect the performance of the test, it is instructive to
compare the results for the following two cases. Case 1 considers an unfeasible test that
assumes the presence of true jump-free observations z7,. The test is constructed from the
factors and factor loadings estimated using them. Case 2 pertains to a feasible test that uses
jump-corrected factor and factor loading estimates to construct the test.

Table 9 reports the size of the factor jump test at the nominal 5% level with the set
of jump magnitudes and sample sizes. Case 1 illustrates a very good size; however, the
feasible test in Case 2 suffers some size distortions when ¢ is small. This is consistent with
the theory, because, as elaborated in the proof of Theorem 4 in the appendix, the pseudo-
true coefficients attached to factor loading estimates in the cross-section regression of Step
2 have random quantity in finite samples. However, since they shrink to zero at the rate of
0,k N~Y2), the size improves remarkably as o becomes large. The size is also distorted
when T is small, because the jump-correction algorithm does not work well in such cases, as
shown in Tables 1 and 2. However, the size improves as T increases. Table 10 illustrates the
power as a rejection frequency of the test at the nominal 5% level. It shows that the test
has good power against factor jumps. Finally, it is concerned that the choice of the critical
value £ may affect the finite sample size of the factor jump test. To address this concern, we
conduct a Monte Carlo simulation under the same setup and show that the size and power

are good when & = 5 as well. The results are provided upon request.
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6 Empirical examples
6.1 Daily currency returns against the U.S. dollar

Much attention has been paid to comovements of currency returns. Especially, recent empir-
ical evidence of deviation from the theory of uncovered interest parity has motivated many
researchers and policy makers to identify the risk factors in currency markets besides interest
rate differentials. For example, Lustig et al. (2011) apply a common factor model to monthly
returns on 35 currencies against the U.S. dollar (minus the interest differential). Using the
estimates of principal component factors, they identify the global risk factor as the series
closely related to the world’s stock market volatility and find it consists of an important el-
ement of exchange rate dynamics. While they use monthly data, it is well-known that large
jumps are likely to occur if daily currency returns data are used. It is known that common
and idiosyncratic jumps occur in currency markets for several reasons. Engle et al. (1990)
discuss the importance of volatility spillovers across different currency markets on the same
date against idiosyncratic jumps that reflect country-specific news on fundamentals. They
use a meteorological analogy of meteor showers and heat waves. In addition, Maynard and
Phillips (2001) find that daily spot exchange rate data can be contaminated by spikes that
appear on the same date across different currencies.

We provide a small empirical example related to such data. To this end, we use the daily
log-returns on 25 major foreign currencies with relatively stable volatilities against the U.S.
dollar for the recent financial crisis period.!'® The sample period is from August 1, 2007,
to September 30, 2008, totaling 305 business days. The currency returns are computed as
e = log(e;¢/€i1—1), where e; is the daily spot exchange rate of currency ¢ against the U.S.
dollar at day t. Table 11 gives the list of currencies. The data, e;;, are quoted at 15:00 EST
by Bankers Trust Co., and are downloaded from the Datastream database. Figure 2 plots
the 25 individual currency returns, clearly showing a few large jumps in many currencies.
The question is how to estimate the common factors out of this data set.

To this end, we first identify the dates of outliers using the proposed method. For this,
we fit ARMA(p,q) models up to p = 4 and ¢ = 2 selected by SIC to individual series and

use the critical value of 5 for |7;(¢)|.!* Table 11 gives the number of jumps identified using

10The Hong Kong dollar has a lower and upper limits of its level against the U.S. dollar, however, the
daily log returns do not seem to be restricted much, hence, it is added to the data set. Lustig et al. (2011)
do not exclude it either.

' This follows the practical recommendation in section 4.1. We report the results using & = 5 . The results
using other choices of ¢ are provided upon request, for both examples.

18



this method. Jumps are relatively scarce, but 13 out of 25 currencies exhibit them. Figure
3 provides information on how many series exhibit a jump each day, with no jump or only a
few jumps occurring on most days considered as individual jumps. However, nine and seven
jumps are identified on May 6 and 7 and four jumps on September 29, 2008.

Turning to factor estimation, Figures 4-1 and 4-2 present the first and second estimated
factors, respectively. For each set of figures, panel (a) shows the factor estimates with and
without jump correction and panel (b) gives their difference. A visual inspection shows that
the first factor estimate includes three jumps, on May 6 and 7 and September 29, 2008. The
second factor estimate may also exhibit jumps on these days. To examine whether these
jumps are due to the independent outliers or jumps in the factors, we present the results
of the factor jump tests in Table 12: an F' test for a jump of the two factors jointly and
t tests for a jump of each factor. The table shows that the null hypothesis of independent
outliers is rejected at the 5% level for the jumps on May 6, 2008, suggesting that they are
a jump of factors. We also find that the ¢ test for the first factor is significant at the 5 %
level but insignificant for the second factor. Finally, we try to interpret the factor estimates
by looking at the jump-free factor loading estimate in Figure 5. The first factor is widely
related to some European currencies (the Hungarian forint, the Norwegian krone, the Polish
zloty, etc.), the Australian dollar, and the New Zealand dollar. In contrast, the second factor
is closely related to a few major currencies such as the Swiss franc and the Japanese yen.
Given that the latter two currencies exhibit much more market liquidity, we may conclude
that a factor jump is found in the common risk factor related to currencies with less liquidity,
that is, the first factor. On the other hand, the common jumps on September 29, 2008, are
deemed to have been caused by the rejection of the government’s 700 USD billion bank
bailout plan in the United States.!? However, the factor jump test shows that its effect on
the foreign exchange markets was limited, because it had nothing to do with the underlying

common factors.

6.2 Japanese prefectural data following earthquake shocks

The second example involves the new car registrations data for 47 Japanese prefectures. The
data consist of monthly spans from January 1985 to December 2014 (seasonally adjusted) and
are taken from the Nikkei CIDIc database. We consider a monthly growth rate computed

by the first difference of its natural logarithms so that the time dimension of the data is

12The Dow Jones industrial average index lost 777.68 points. As of April 2016, this is the largest daily
drop in history.
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T =12x30—1 = 359. Instead of presenting all 47 series, Figure 6 gives the individual series
of four selected prefectures illustrating the features of the data well. The top two panels
present Tokyo and Osaka, the two largest prefectures in Japan, while the two figures at the
bottom two panels represent Hyogo and Miyagi prefectures. Hyogo prefecture clearly exhibits
a large jump in January 1995, because it was the epicenter of the Great Hanshin earthquake.
On the other hand, Miyagi prefecture also exhibits a large jump in 2011 following the Great
East Japan earthquake in March 2011. Tokyo and Osaka may only be indirectly affected by
these events. The question we examine is again whether these large jumps affect our factor
estimation.

To this end, we first follow the series-by-series jump-correction procedure. We fit ARMA(p, q)
models up to p = 4 and ¢ = 2 selected by SIC to individual series and set the critical value
of |7;(t)| at 5. Table 13 shows that only one prefecture exhibits a jump following the 1995
earthquake, whereas 23 prefectures experienced a jump after the 2011 earthquake. From
Bai and Ng’s (2002) information criteria (/C,2), the number of factors estimated with the
original data is four, but this becomes two with jump-corrected data. Hence, the number of
factors is contaminated by these jumps. Finally, Figure 7 gives the first four non-corrected
estimates (in the top four panels) and the two jump-corrected factor estimates (in the bot-
tom two panels). As expected, the non-corrected estimates exhibit jumps. In particular,
the second and third non-corrected estimates exhibit jumps in March 2011. To examine
whether these jumps are of factors, we implement factor jump tests in Table 14. We observe
strong evidence of factor jumps in March 2011, with p-value 0.00 for the F-test. The t-tests
indicate that the jump is associated with the first factor with p-value 0.02, while the p-value
for the second factor is 0.41. Finally, it is interesting to see that the fourth non-corrected
factor estimate shows a large jump in January 1995 following the Great Hanshin earthquake,
although only Hyogo prefecture exhibits a jump. Table 14 shows no evidence of factor jumps
in January 1995. Therefore, we conclude that the jump in factor estimate in January 1995
was spuriously caused by an individual outlier in Hyogo prefecture and that the factors did
not jump. As several studies document,'® the Great East Earthquake had a larger impact
on economic activity than the Great Hanshin Earthquake did, mainly because the former
was followed by a large tsunami and an unprecedented accident at the Fukushima nuclear
power plant. This dual feature of the disaster may have affected nationwide supply chains

and consumers’ durable purchasing behaviors.

3For example, Jaussaud et al. (2015).
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7 Conclusion

Financial and economic time-series data often exhibit infrequent but large jumps. This paper
explored the problems pertaining to such jumps in recently developed large-dimensional com-
mon factor models. To make this attempt feasible and attractive, we introduce the following
extensions of the standard model. First, jumps are modeled as increments of a mixture of
Poisson processes independent of the underlying factor structure. Second, the jump magni-
tudes are modeled as a function of data dimension to derive meaningful asymptotic results.
Third, we consider idiosyncratic jumps and common jumps. Under this setting, we primarily
derive the upper bounds of jump magnitudes with which the standard asymptotic inference
goes through. Furthermore, this result is followed by two useful applications: the series-by-
series jump-correction method and the factor jump test. A Monte Carlo experiment confirms
that independent large outliers easily contaminate standard asymptotic inference. However,
the proposed jump-correction method retrieves good finite sample properties unless 7' is very
small. The factor jump test shows good size when outliers are sufficiently large and exhibit
good power. The usefulness of the proposed method is highlighted in a small empirical ex-
ample using daily log-returns data of 25 currencies against the U.S. dollar as well as Japanese

prefectural new car registration data following the two large earthquakes.
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Appendix : Proof of Theorems

For notational simplicity, we assume that E ||F}|* = 0% for all t, E||\;]|> = \? for all i,

and E(u3) = o2 in the following proofs. This simplification does not qualitatively affect our
final results.

Lemma 1: Let b, = Zfil Zjvzl E(zitzj) and dy = Zstl Zf\il Zjvzl E(ziszitzjszjt). From
Assumptions 6 and 7, we have
O(K3eNTY), ifj=0
and ~
b=T713" b =0, (k3 NT™).

We also have

o[ ot -1
O(kypmax {NT1 N2T2}), if n¢ =0
and
PP ! T

O, (kipmax {NT1, N?T2}), ifp. £0

Proof of Lemma 1: For all ¢ and t, E(z) = kip0o? if nf = 1 and E(23) = Lo? if
ng = 0. Because E(z;z;:) = 0 for ¢ # j, by Assumption 6,

by = sz\il E(Zi) + Z’f\il Z;V:1E(Zitzjt)

i#]
_ Y g2y — k%, No?+ k%N (p/T)o?, ifnf =1
= 2us= it) =
' k2 NLo?, if s = 0

and the result for b, follows. For b,

E(D) = T 'pk No*+T 'S0 k3 N(p/T)o?,
= T_lpck]QVTNU2 + k?VTN(p/T)UQ)
= O(kxpNT™),
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and the result follows.
We turn to the bound of d;. From Assumption 6(c), E(z}) = kip30* if n° = 1 and
E(z}) = (p/T)kxnp30t if n¢ = 0 for all i and ¢, and so
dy = 23:1 Zz]\il Zj\; E(ziszuzjs2jt),
= il B(a) + i YL () B(2)

i#)
T N T N <N
Do 2in E(2)E(z,) + D1 2iot Zj:1E(zisZitzjszjt)v
s#t s#t i#£j
= [+ I1T+I1IT+1V.

If nf =1, then

I = Nkyp30* + N(p/T)kyr30*,
IT = (N*=N)kyzo' + (N? = N)(p/T)*kiyro*,
I = N(T =1)(p/T)kyro" + N(T = 1)(p/T)*kyz0",
and IV = 0. Therefore, term /1 dominates and d; = O(kxpN?). If nf = 0, then
I = N(p/T)k30,
IT = (N*=N)(p/T)*kyro’,
IIT = N(T —1)(p/T)*kygpo,
and IV = 0. Therefore, d; = O(kypmax {NT~!, N*T~2}). For d,
E(d) = T 'peNkyp30* + N(p/T)kyy30,
+T 7 pe(N? = N)kiypo® + (N* = N)(p/T) ko,
+T 7 peN(T = 1) (p/T)kiyro® + N(T = 1)(p/T)*kiyzo*,
= I+1T+I1IT+1IV4+V4+VIL

If p. # 0, then term 11 dominates and E(d) = O(k%,N*T~1). If p, = 0, then terms I, I11,

and V are zero. Then, F(d) = O(kjyymax {NT~* N*T7%}). &

Lemma 2: From Assumptions 1-7,

2

TS ||[F = HE|| = 0,(Jnr),
where
max { kT2, k3, N 'T1}, if p. #0

vr = max{k4 2 T2 k2 Nflel} ifp.=0 7
NTYNT y VNT ) Pe =

as N, T — oo.
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Proof of Lemma 2: Using steps very similar to those applied in the proof of Theorem
1 of Bates et al. (2013), we start with the results of the proof of Theorem 1 of Bai and Ng
(2002):
F,—HF, = (NT)™ {F’FA’ut + F'ulF, + Bl + F'FA'z,
+F'ZAF, + F'Z 2 + Fluz, + F'Zut}
= Yo dus (A1)

where dy; = (NT) " F'FA'u, etc. Since

. 2
TS | F- R|| <8 (T S ldwd?)

and we know from Bai and Ng (2002) that the terms for dy;, do, and, ds; are Op(c&QT), we
consider the bounds for the remaining terms. For h = 4,

N

lda® < NT2(T 20 || Fy 2)(T*1 > omt IES) 1A 2]
—tr(I,)=r ﬂtz:"}
where
BNzl = 325 300 BOVA)E (22,
< Nb.
Therefore,

TS0 Eldy|® < N72ro%A%,

and so from the result of b in Lemma 1, we obtain

TS0 dadl = Op(k NTIT).

For h =5,
2 o1t =T | f | 2
lds:||> < N=>TN(T Zszl‘Fs VIZAR?2,
where
T N «N
E”ZAFtHQ = Zs:lZi:le:l ’E(Ziszjs)‘EH/\;FtA;FtHa
< TXo%b.
Therefore, )
E||ds||* < N72rX20%b,
so that

T YT ldsl? = O, (ke N7'T7).
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For h = 6,

where

Therefore,

so that

and

T30 dsd” =

2 rome1e1 =T |25 o 2
[declI” = N=*T7 (T 3oy ||F5|| ) 12727,

E|Zu|* =Y 30, Z;V:l |E(2iszinzjszje)| = di.
E ||dg||* < N72°T7'rd,,

TS B | < N7 d,

0, (k4 T2), if po # 0
0, (k4 max {N"1T-2,T-%}), ifp.=0

or by using symbol cy7 = min {\/N, \/T},

For h =7,

where

Therefore,

so that

and

For h = 8,

where

I T 70
Op(k?VTc]_\%“TiQ)v if Pe = 0
~ |12
Idea|* = N2 T S A el

Eluzl® = Yoy Yok Yooty Eluisuss) E(zuz),
S TO'th.

E ||dz|]* < N %ro02b,,
-1 T 2 -2 27
T Zt:1 E ||d7t|| <N Taubv

T YT ldnll? = O, (ke N7'T7).

S T P ey R | IS T 2
dsill” = N72T7 (T 32y ||Fs|| ) 1 2"

E || Zuw|’ Yot Do Yo Bluiui) E(zis250),

< Tob.
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Therefore, ~
Blldg|® < N"*ro?b,

so that . )

I > it ldselI” = Op(k?VTN_lT_I)
Therefore, the stochastic orders of the five terms are O, (k%N 'T7'), O,(k%N~'T™1),
Op(kj{,TT_z), Op(k3+N7'T71), and O,(k%,N*T") if p. # 0. The third term becomes
O, (kxrenmT~2) if p. = 0. The result follows.Hl

Lemma 3: From Assumptions 1-7, the following hold:

() | T (B = HE)E| = Oy(cx%) + Oyllwe N1 1) + O,k N72T72),
) [T SEAE ~ HEIE]| = Oplex) + OplhurNVT) 4 0 R3, N V2T2),
(© | T LB~ HF)ua| = Op(c3) + Opllxe N V2T ) + Oy (e N7V2T72),
(d) ‘Til Z?:1(ﬁt_H,Ft)et = 0 (CNT) Op(knTN ™~ Y27 1) +Op(k]2VT N7VRTT 2)

Proof of Lemma 3: (a) We start with Bai and Ng’s (2002) expression:
T (F,— HF)F = N'T2(FFAF + FulF'F + F'ud'F + F'FNZ'F
+EF'ZAF'F + F'ZZ'F + F'uZ'F + F' Zu'F),
= 22:1 Dp.

Terms D1 + Dy + D3 do not involve jumps and their sum is Op(c]}%p). In the following, we
compute the stochastic orders for terms D, to Ds.
For Dy,

NT2

AFA’Z’FH < N7

T2E| |2 F | N 2 F

T2 [T 2 F | S S IR 2 IR

N7

IN

and, from independent assumptions (Assumptions 4 and 6(a)), we obtain

E|NIPEGLE|E,
k2002 N0 4 k3p(p/T)o? Mo, if e =1

Kp(p/T)o?Xo0%, if 7 = 0

E(|l 4 1E®)

Therefore,
T 2
EY Ez L I Za HFtH = Nk (pe + p)o 2)\201:,
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so that
INZF| = Oy(knrN'2).

This results in
Dy = O, (kypN~Y2T71).

For Dy,
NT2|| B ZAF | < NOT [ Bza|| TR T E
where
A ~ 112
|72 < ﬁ?_l 9l 1o A DY
However,
12 k202N + (p/T)k% .02 M2, ifnt =1
E ‘ Ft Zi2t H)\ZH2 _ NT (p/ ) NT 771& ’
(p/T)szVTUQ)\QTa ifn;=0
~ 112
ES S IllP 28 | B = NEXr(pe + p)o®A°r,

s0 that HFZAH = 0,(k2,,NY2) and D5 = O, (knrN-/2T1).

For Dﬁ,
A2 || £y o A2 [N =T T || 2 12
NI FZZFHgN T Zi:thzlzszllthitziSFs
However,
7 ! 2 & 12 2 2 2
Bl|fzrl| = E||B| BCECIEIR
B0 B(2)0%r + (o) I B(:R)o%r, it nt =1
(p/T) Ko E(3)r, ifng=0
so that

) 2
thitzisF; < k12VT<72(pc +p)E(zi)O%’T,

S B

(k3r0? (pe + p)oar)kir(1+p/T)o?, if nf =1
[kXr0®(pe + p)ogr kX (p/T)0?, if nf =0

9

so that

R 2
Zle Zstl E ‘ thitzist/ < Uf]QVTUZ(pC + p)]QU?ﬂ",

and

~ 2
S S Y B | el < Nkgo® (e + p)Pobr.
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Therefore, Dg = O, (k% N~/2T72).

For D,
—1mp=2 || 1, 7t —1—2 N T T Ay 2

N T F UZ F S N T Zi:l Zt:l 25:1 Ftuztzsts
However,

7 |17 s 11 2 2 2

B bk = B|E| BaREEIEIRE,
B k3 ro0%c%ros + (p/T)k3po?c2ros, ifné=1
(p/T)kz 0?02, if g =0
so that )
2321 E ’ FiuyzisFL || = k3 (pe + p)oioiror,

and

. 2
Zij\;l Zle Zle B || FruuzisFy|| = NTkYp(pe + p)oorot.
Therefore, D; = O, (kyrN~Y/2T~3/2). For Dg, we use a similar computation as Dy to obtain
Dg = O,(knrN~Y2T73/2). Therefore, terms D, and Ds consist of the second component
and terms D; and Dg correspond to the third component of the final result. Term Dg is
dominated by terms D4 and Ds, and we obtain the final result.

(b) We essentially follow the same computation as (a).

(c) We start with

TS (B, — HF)uy = N'T2(F'FAu; + F'ubF'u; + Fluv'u; + F'FN Z'u,
+F' ZNF'u; + F' ZZ'w; + F'uZ'u; + F' Zu';),
= 22:1 Dy.

Terms D; + Dy + D3 do not involve jumps and their sum is O,(cy%). In the following, we
compute the stochastic bounds for D, to Dg. For Dy,

F'FN Z'y;

N~T2 < N7

Tfl/QFH HTfl/QFH HAIZ/UZH ’

TR 2| S S P 2,

Nt

IN

and

BNl 25u) = E NI Bz *B(uf),

k302 XN0? + k20 (p/T)o? N0, ifnf =1

Rer(p/T)0* X202, ifng =0
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so that
Dy = Oy(kypN7Y2T71).

For Ds,
NIT2|| P ZAF || < NPT | NSREZA|| T R
—_————
:Op(kNT) by D5 in (a)
= Oy (kypN7Y2T73/2),
For Dy,
N N 2
N2 \E' ZZ gNlTQ\/ZjV_ S ST I Fzgez s
However,
N 2 ~ 112
E|Bzjzpus| = E‘Ft B(22)E(:2)E(u2),
kro?E(z3)oir + (p/T)k{poE(25,)our, it g =1
(p/T)kXro*E (25,0, ifng=0
so that
N 2
S B B < pddaot B+ ka0t B2,

[kJQVTUQ(pC + p)air}k?\IT(l + p/T)027 ifp =1

= s

[k3r0®(pe + p)oir]kXr (p/T)0?, if 7§ = 0
so that )
Zthl Zstl E ) Fyziziswss|| < [k]QvTUQ(pc + P)UZ]27"a
and
N T T ~ 2 2 2 272
Dimt 21 s B ‘ Fizyzisuis|| < N[kxpo®(pe +p)oy]r.
Therefore,
D = O, (k3 N~12T72).
For Dy,
. . 2
N7 HF’uZ’ui < N—lT—2\/ SV ST ST N Bz
However,
. 2 2
Bz = BB B@3)EE)EW).
k2. 0%0tr 4+ (p/T)k% 020ty if n¢ =1
NT u p NT u Ns
(p/T)K3 0%, if ;=0
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so that

4

. 2
Fouyzisuis|| = kJQVT(pc +p)020 T,

S E|

and )
= NTk;]QVT(pC + p)azafﬂ".

Fiugzisuis

L LT B
Therefore, D; = Op(k:NTN—l/?T—‘?/?),

For D,
A2 || 12 N T T ~ 2
NTT HF Zuwui|| < NTT Zj:l D et Dot ‘ Fizjiujsuis
However,
. 2 112
E||Bzm| = B|B| BEEWE)EC),
kpololir + (p/T)k3roladr, ifnf =1
(p/T)k%po%olr, if n¢ =0
so that
23:1 E ‘ thjtujsuis kNT(pc + p)0204r
and

th]tujsuls = NTk3(pe + p)oioir,

Zz 1 Zs 1 Et 1 E ‘
so that Dg = O, (knr N —1/2p-3/ 2). Therefore, term D, corresponds to the second component
and terms D; and Dy consist of the third component of the final result. Terms D5 and Dg
are dominated by term D,. We obtain the final result.

(d) We essentially follow the same computation as (c).l

Proof of Theorem 1: Part (i): We start (A.1). Terms dy; to ds; have nothing to do
with jumps, and we know that from Theorem 1 of Bai (2003), if there is no jump,

VN(F, — H'F) =V Y F'F/T)N 2SN Ny 4+ Op(NYV2T7V260L) + O,(cnh).

Therefore, the stochastic bound of terms dy; to dz; (multiplied by v/ N) is given as above.
In the rest of this proof, we compute the stochastic order for terms dy; to dg; (multiplied by

V).
For dy;,

Nl HF’FA’zt

NV | BE/T|| 1A,
N2 HF/F/TH Vi ezl
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where

oro® X+ (p/T)kRro® ", i nf =1
E|Nizall* = E NP E(z2) = NT 2 ¢

(p/T)kJZVTUQ)‘Qa ifpi =0
so that
O,(k%rN), ifnf =1
DARE DY LR S T
Oy (B NT, it 55 = 0
Therefore,
N2l HF/FA/Zt Op(kNT)v if 77? =1 '
Op(k‘NTT_l/Z), if 77? =0
For dx;,
N2 HF’ZAEt < T—1HN—1/2F’ZAH I1E,
—_——
=0p(knT)
— Op(kNTT_l).
For dg;,
R 2
N-V2p-1 < Nl/QTl\/ZZ{\il Zstl‘ ZisZitll
where
2 2
|| = BB BGREED)
kJQVTUQE(ZiQt)T + (p/T)k]QVTUQE(ZiQt)T7 if py =1
(p/T)Kga*E()r, ifn=0
so that
2 2
s=1 s%is%it = k pc+p ( )’I“,
(kXp0?(Pe + p)r]kXr(1+p/T)o?, if nf =1
(k%70 (pe + p)r]kRr(p/T)0?, if nf =0
and

0, (3 NV2TY, if 1 = 1

N2t HF,ZZtH _ |
0, (k2 N=Y2T=3/2) if ns = 0
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For dy;,

2

N_I/QT_l HFIUZtH < N_1/2T_1\/Zi]i1 ZST:1 Fsuiszit )
where
. 2 & |12 2 2
E ‘ Fouiszi = F ) Fy|| E(u,)E(z;),
B k%po%0?r + k.(p/T)o?a?r, if nf =1
K (p/T)0%0%r, ifrf=0
so that
. 2 NTkpo%02r + Nk3rpoiair, if nt =1
2511 ZST:1 E ‘ Fouiszi|| = M o t :
NE%paio?r, itnf=0
Hence,
N-1/2p-1 HFIUZt _ Op(kntT~12), if nf =1 '
Op(kNTTil)a it ny =0
For dg;,
. . 2
J\f_l/zj—,_1 HF/ZUtH S N_I/ZT_I\/sz‘V_l ZZ:I ‘ Fszisuit )
where
. 2 2
E Fszisuit = F FS E(Zfs)E<u$t)7
B k3 r02c?r + k0% (p/T)o’r, if n¢ =1
Kz (p/T)o2r, if =0
so that )
23:1 E ) Fszisuit = kZQVTO-Q(pc + p)Uiﬁ
and
N T ; 2 2 2 2
Zi:l Zs:l E ’ Fsuiszit = NkNTJ (pc + p)O’uT.
Therefore,
N7V E Zuy || = O, (kneT7Y).

This computation gives

O,(knT), ifne=1
\/N(du + dst + de + dpy + dsy) = (k) K ;

Op(knrT~72), if 15 = 0
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to complete the proof.

Part (ii): We extend the factor loading estimate:

N o= (F'FY'E'X
= (F'F)” F’F)\ +(F FY 'y,
= (F'FYYFP'FH '\ — (F'F)™\F'(F — FHYH '\,
+(F'F) *H'F'u; + (F'F)"Y(F — FH)'u,,

so that

TV~ HON) = T+ TVE — FHYw — T2 F(F — P,
O,(1) + Op(Tl/QcEQT) + Op(]fNTN—mTfl/Q) + Op(k]ZVTN—l/szga/z)’
= I+IT+1IT+1V,

from Lemma 3 (b) and 3 (c¢). The condition for term I to diminish is
T1/2 T1/2
Tl/QCR[?T = Imax {N, T} — 0,

or VT /N — 0. Further, the condition for term I/] to diminish is

kneN7Y2T7V2 = o (VT /N)Y(VNT) — 0,
which is implied when ky7(v/N/T) is bounded or

knr = O(T/V'N).

The condition for term I'V to diminish is

kK NPT 732 = O(knp(VT /N) (VN T?)),

or

kNT — O(T2/\/N),

which is satisfied when kyr = O(T/ VN ). Hence, the additional condition is kyr =
O(T/V/N).

Part (iii): We start with

ent(NE = NE) = enp(By — HEYH '\ + exr FELHOw — HUN) + ene(F, — HE) (N — HUN\),
I+ 1I+1I1.

We first consider terms I and 1. For term I, because ||H')\;|| is a bounded quantity,

bty = | VT EETINT S0 N o Oplex) + Op(N T hvrer),if i =0
CNT\L't— t) = ,
SLVYF'F/T)NYV2 300, N + Opleiy) + Op(N ™ 2kyrent), if 9y =1
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by using the result of Theorem 1 (i). For I, because ||F/H]|| is a bounded quantity,

~ C
ent(N—H'A) = %HIT_I/Q Sty B+ Oy (ent) + 0y (kyrent N =211+ 0, (ki pene N H2T72),

by using the result of Theorem 1 (ii). Term /7] diminishes if terms I and I/ do. Therefore,
if n{ = 0, then the conditions are

kvt = o(NYV2TV2e3h), knr = o( NYV2Teyh), and kyr = o( NVATey ),
and they are reduced to kyr = o(max {Tl/Q, N1/2, N1/4T3/4}). If nf = 1, then the conditions

are
knr = o(N'2exh), knr = o(NV?Teph), and kyr = o(NY4Tey ),

and they are reduced to kyr = o(max {1, N*/2T~1/2 NVAT3/11) @

Proof of Corollary 1: This immediately holds because from Theorem 1 (a), if n{ =1,
then

Therefore, we have 0,(1) if kyz = o(N~/2).H

Ft - H'F| = 22:1 dps + 22:4 dp,

= 0,(1) + Op(kypN~V/2).

Proof of Theorem 2: We first show that A1-A9 of Amengual and Watson (2007)
hold. A1, A2, and A5 are implied by the stated conditions. A3 and A4 are the same as
our Assumptions 1 and 2. A6 is weaker than our Assumption 3. A7 to A9 hold under our
Assumption 4. We now use Observation 1 of Bates et al. (2013) and require

ke o0 X B llzaFi]|* = O(max {N, T}),
or R

kKr0p ey 2o B(27) = O(max {N, T}), (A.2)
under our simplification assumptions. However,

S E(22) = (pe + p)kdpo?,

and
Zi]\il ZtT:1 E(2;) = N(pe + p)kiyro™.
Hence, (A.2) becomes

k?VTU%?NQ)C + ]9)14512\/TU2 = O(max {N,T}),
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or
k;lVT - O(max{l,T/N}),

or
kNT == O(max {1, T1/4N_1/4}).

This completes the proof.l
Proof of Theorem 4: (i) We consider the cross-sectional regression
Uiy :70—1—5\;71—1-51-, fori=1,...,N, (A.3)

where ¢; is the error term. We know that the residuals @; become

i = wip + 2o + (N Fy — j\ipt)v (A4)
under Hy and
Ui = wi + Ny + (N Fy — N Fy), (A.5)

under H;, where 5\1 and Ft are the jump-corrected estimates. We show that the regression
model (A.3) induced by true process (A.4) has a pseudo-true coefficient 7; = 0 and the
model (A.3) induced by true process (A.5) has a pseudo-true coefficient v, # 0 with error
term ¢; having a finite variance. First, note that under Hy, (A.4) becomes

N

ZALZ't = )\Z(HFt — Ft) + ()\inl — 5\1)/HF¢ + Uit -+ Zit,

so that
Yo = 0,
= pN,lTiIEoo(\—\/—/HFt —F) =0,
=0, (N—1/2)
g = (/\Z»H_l — ;\Z)IHFt + wi + Zi + Op(l)a
N———
:OP(T_I/Z)
= T+ 11+ 111+ 0y(1),

from Theorem 3 (i-b) and 3 (ii). Therefore, error ¢; consists of three terms, I, 11, and I11.
Term I shrinks to zero, term [T a finite variance 02, and term II[ variance k%,02. Since
the F test is invariant to model scaling, the one from the regression of kﬁﬂﬁit on k;,;j\l is
the same as that applied to regression model (A.3) with

w?

PYO = 07

_ : -1 ) —
Y1 = pN,l%IEOOkNT(HFt F) =0,
g = k&%ﬂzzt + Op(l)'

Under this model, error ¢; has a finite variance 0? and pseudo-true coefficients v, are zero at
rate 0,(N ~1/2) 50 that the F test multiplied by the numerator’s degree of freedom has the
standard Chi square limit distribution.
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(77) Under H,, (A.5) becomes
i = NHT + (N — NH Y HI, + N(HF, — B) — (WNH ™ = N HE, + g, (A.6)

so that we obtain the regression model (A.3) with

Yo = 07

o= pN,lTirBooHJt#o’

s = Qo NHH + N(HE = ) — W = V) HE + i+ 0,(1),
— ~— —_———
=0,(T~1/2) =0,(N—1/2) =0, (T-1/2)

= T+ I+ 11T+ uy+ o0,(1).

Terms I1 and I11 diminish as N, T — oo regardless of kyr. Hence, we separately consider
the cases where I diminishes and does not diminish. We first suppose that kyp < T2
Then, terms I, I1,and I11 show a variance that shrinks to zero and u;; has a finite variance
o2. We next suppose that kyr > T%/2. Now, scaling by k:;,lTT 1/2 makes the regression model
(A.3) have

Y = 0,

71 = le%rEoo TPk H Iy # 0,

e = VTN —NHYY knrHJ, + 0p(1),
S ——

=N(0,95 .) ~(0,02HH")

so that the error term ¢; has a zero mean and finite variance. The final result follows.H
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Table 1(a). Coverage ratio of the confidence interval for the factor
at the 90% nominal level

N=20, T=500 [N=50, T=200 |N=100, T=100 |N=200, T=50  [N=500, T=20
no ) no ) no ) no , no ,
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.85 0.80 0.75
10 0.85 0.85 0.87 0.88 0.88 0.88 0.88 0.86 0.82 0.75
50 0.88 0.86 0.88 0.87 0.89 0.88 0.89 0.84 0.82 0.73
100 | 0.85 0.86 0.87 0.88 0.89 0.88 0.88 0.85 0.82 0.74
pc=5, p=0
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.87 0.88 0.87 0.88 0.84 0.85 0.85 0.67
10 0.83 0.85 0.83 0.87 0.85 0.88 0.88 0.85 0.90 0.63
50 0.87 0.85 0.89 0.87 0.90 0.88 0.90 0.83 0.91 0.67
100 | 0.87 0.86 0.89 0.88 0.89 0.88 0.89 0.84 0.90 0.71
pc=0, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.85 0.86 0.73 0.80
10 0.85 0.86 0.87 0.87 0.87 0.87 0.84 0.86 0.77 0.80
50 0.82 0.85 0.82 0.88 0.85 0.89 0.87 0.87 0.89 0.76
100 | 0.86 0.86 0.87 0.87 0.90 0.89 0.89 0.87 0.90 0.78
pc=0, p=5
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.85 0.71 0.75
5 0.84 0.85 0.87 0.88 0.87 0.88 0.85 0.87 0.79 0.72
10 0.84 0.86 0.84 0.88 0.82 0.88 0.80 0.81 0.84 0.35
50 0.80 0.86 0.84 0.87 0.87 0.87 0.89 0.78 0.90 0.40
100 | 0.86 0.86 0.89 0.89 0.89 0.87 0.89 0.89 0.90 0.80
pc=1, p=1
0 0.87 0.87 0.88 0.88 0.88 0.88 0.85 0.86 0.71 0.75
5 0.85 0.85 0.88 0.88 0.88 0.88 0.84 0.85 0.81 0.77
10 0.85 0.86 0.87 0.88 0.88 0.87 0.88 0.87 0.85 0.76
50 0.86 0.86 0.87 0.88 0.88 0.89 0.89 0.86 0.90 0.72
100 || 0.84 0.86 0.88 0.88 0.89 0.89 0.90 0.87 0.89 0.73
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Table 1(b). Average length of the confidence interval for the factor
at the 90% nominal level

N=20, T=500 |N=50, T=200 [N=100, T=100 |N=200, T=50 |N=500, T=20
no no no no no
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.34 0.33 0.26 0.23 0.86 0.15
10 0.80 0.78 0.52 0.48 2.37 0.33 7.71 0.23 5.12 0.14
50 8724 0.78 (21393 048 | 8257 033 | 51.74 023 | 4766 0.14
100 (43852 0.78 |33573 048 [168.89 0.33 |143.65 023 | 89.02 0.14
pc=5, p=0
0 0.78 0.78 047 047 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.79 0.49 0.48 0.35 0.33 0.29 0.23 0.74 0.16
10 0.88 0.79 1.32 0.48 3.21 033 | 3382 023 | 1295 0.22
50 (19132 0.78 |47257 048 |[134.00 033 | 9395 16.67 | 75.27 1.07
100 (666.97 0.78 |440.37 048 |[370.32 0.34 |197.63 520 |22942 1.99
pc=0, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.78 0.78 0.48 0.48 0.33 0.33 0.24 0.23 0.16 0.14
10 0.79 0.78 0.48 0.47 0.34 0.33 0.25 0.23 0.19 0.14
50 1383 078 | 26,70 047 | 1584 033 | 1658 0.23 | 16.17 0.14
100 ||243.78 0.78 | 13488 047 | 8635 033 | 8017 023 | 3730 0.14
pc=0, p=5
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.25 0.23 0.19 0.15
10 0.83 0.78 0.51 0.47 0.37 0.32 0.30 0.22 0.43 0.14
50 | 108.84 0.78 | 87.48 047 (263454 0.32 | 4727 038 | 54.86 0.93
100 421.01 0.78 |233.91 047 |184.07 036 |480.69 1342 | 7954 7.05
pc=1, p=1
0 0.78 0.78 0.47 0.47 0.33 0.33 0.23 0.23 0.15 0.15
5 0.79 0.78 0.48 0.48 0.34 0.33 0.31 0.23 1.42 0.15
10 0.81 0.78 0.55 0.48 3.82 0.33 7.64 0.23 6.25 0.14
50 |168.26 0.78 |118.59 047 |100.12 033 |[109.33 023 | 7039 0.14
100 (40283 0.78 |279.14 047 |22235 033 |19349 024 | 8711 0.16
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Table 2. Coverage ratio of the confidence interval for the factor loading

at the 90% nominal level

N=20, T=500 [N=50, T=200 |N=100, T=100 |N=200, T=50  [N=500, T=20
no ) no ) no ) no ) no .
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.84 0.87 0.84 0.89 0.79 0.89 0.45 0.85
10 0.57 0.66 0.66 0.86 0.43 0.89 0.35 0.89 0.34 0.86
50 0.23 0.67 0.32 0.85 0.33 0.89 0.34 0.89 0.33 0.85
100 | 0.26 0.68 0.31 0.86 0.34 0.88 0.34 0.88 0.33 0.83
pc=5, p=0
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.60 0.65 0.79 0.87 0.77 0.89 0.64 0.89 0.33 0.73
10 0.40 0.64 0.35 0.87 0.13 0.89 0.06 0.91 0.06 0.78
50 0.01 0.66 0.01 0.85 0.01 0.89 0.01 0.77 0.01 0.67
100 | 0.01 0.68 0.00 0.85 0.01 0.88 0.01 0.69 0.01 0.65
pc=0, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.66 0.67 0.86 0.86 0.87 0.88 0.87 0.88 0.83 0.84
10 0.61 0.67 0.82 0.87 0.86 0.88 0.84 0.88 0.70 0.85
50 0.09 0.68 0.06 0.86 0.06 0.88 0.05 0.89 0.05 0.83
100 | 0.01 0.69 0.01 0.86 0.01 0.88 0.02 0.87 0.02 0.83
pc=0, p=5
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.63 0.66 0.84 0.86 0.86 0.87 0.85 0.87 0.75 0.79
10 0.54 0.66 0.74 0.87 0.78 0.88 0.74 0.86 0.52 0.79
50 0.02 0.70 0.02 0.86 0.03 0.87 0.03 0.79 0.03 0.50
100 | 0.00 0.71 0.00 0.88 0.01 0.86 0.01 0.12 0.01 0.06
pc=1, p=1
0 0.67 0.67 0.87 0.87 0.88 0.88 0.87 0.86 0.86 0.85
5 0.65 0.67 0.83 0.86 0.84 0.88 0.78 0.88 0.44 0.82
10 0.53 0.66 0.65 0.87 0.45 0.88 0.35 0.88 0.28 0.84
50 0.03 0.68 0.02 0.86 0.02 0.88 0.02 0.89 0.02 0.82
100 || 0.00 0.68 0.00 0.86 0.00 0.88 0.01 0.88 0.01 0.80
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Table 3. Coverage ratio of the confidence interval for the common component
at the 90% nominal level

N=20, T=500 [N=50, T=200 |N=100, T=100 |N=200, T=50  [N=500, T=20
no ) no ) no ) no ) no .
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.90 0.88 0.89 0.83 0.90 0.51 0.86
10 0.84 0.87 0.80 0.89 0.58 0.89 0.48 0.90 042 0.86
50 0.58 0.88 0.54 0.88 0.50 0.90 0.47 0.90 0.42 0.86
100 | 0.58 0.88 0.52 0.89 0.50 0.90 0.45 0.89 0.43 0.85
pc=5, p=0
0 0.88 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.87 0.86
5 0.86 0.87 0.87 0.90 0.83 0.89 0.71 0.89 0.42 0.73
10 0.78 0.87 0.62 0.89 0.35 0.90 0.25 0.91 0.20 0.76
50 0.40 0.88 0.33 0.89 0.28 0.90 0.22 0.81 0.16 0.70
100 | 0.43 0.88 0.31 0.88 0.28 0.89 0.21 0.72 0.18 0.69
pc=0, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.90 0.90 0.89 0.89 0.89 0.88 0.87 0.85
10 0.87 0.87 0.87 0.88 0.89 0.89 0.87 0.88 0.76 0.85
50 0.40 0.87 0.23 0.89 0.18 0.90 0.16 0.89 0.14 0.84
100 | 0.15 0.88 0.11 0.88 0.11 0.89 0.11 0.88 0.11 0.85
pc=0, p=5
0 0.88 0.88 0.89 0.90 0.90 0.90 0.88 0.88 0.87 0.86
5 0.87 0.87 0.89 0.88 0.89 0.89 0.87 0.88 0.79 0.78
10 0.87 0.87 0.88 0.89 0.87 0.88 0.81 0.87 0.58 0.76
50 0.25 0.88 0.22 0.88 0.23 0.88 0.22 0.79 0.17 0.43
100 | 0.18 0.87 0.17 0.89 0.20 0.89 0.22 0.19 0.18 0.11
pc=1, p=1
0 0.88 0.88 0.89 0.89 0.90 0.90 0.88 0.88 0.87 0.86
5 0.86 0.87 0.89 0.89 0.88 0.89 0.83 0.89 0.52 0.83
10 0.84 0.87 0.79 0.89 0.59 0.89 0.48 0.89 0.39 0.85
50 0.41 0.88 0.29 0.89 0.23 0.89 0.19 0.89 0.14 0.83
100 || 0.31 0.88 0.25 0.88 0.19 0.89 0.17 0.88 0.13 0.83
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Table 4. RMSEs of the common component

N=20, T=500 |N=50, T=200 |N=100, T=100 |N=200, T=50 |N=500, T=20
no no no no no
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.06 0.05 0.03 0.03 0.03 0.02 0.09 0.03 1.01 0.09
10 0.07 0.06 0.11 0.03 0.76 0.03 1.83 0.04 3.73 0.10
50 4.29 0.05 9.18 0.03 [ 1711 0.03 | 33.35 0.05 | 7845 0.1
100 | 15.06 0.05 | 36.14 0.03 | 67.81 0.03 (13196 0.05 |318.93 0.12
pc=>5, p=0
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.07 0.06 0.05 0.04 0.07 0.04 0.27 0.06 1.59 0.32
10 0.15 0.07 0.40 0.05 1.69 0.06 3.24 0.10 6.51 0.39
50 9.72 0.06 | 1933 0.05 | 3391 0.07 | 61.86 049 |14242 0.76
100 | 36.01 0.06 | 74.01 0.05 |133.30 0.07 |24522 152 |566.45 2.06
pc=0, p=1
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.05 0.05 0.03 0.03 0.03 0.02 0.04 0.03 0.12 0.09
10 0.06 0.05 0.04 0.03 0.04 0.02 0.08 0.03 0.37 0.09
50 1.69 0.05 2.63 0.03 3.50 0.02 5.18 0.03 | 13.32 0.08
100 [ 6.69 0.05 8.97 0.03 [ 11.78 0.02 | 18.06 0.03 | 50.38 0.08
pc=0, p=5
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.07 0.06 0.04 0.03 0.05 0.03 0.09 0.06 0.42 0.23
10 0.11 0.06 0.10 0.04 0.14 0.04 0.34 0.06 1.90 0.27
50 4.34 0.06 5.77 0.03 8.03 0.03 | 1451 027 | 51.29 1.13
100 | 1555 0.05 | 2042 0.03 | 2942 0.03 | 55.04 243 |20217 4.24
pc=1, p=1
0 0.05 0.05 0.03 0.03 0.02 0.02 0.03 0.03 0.05 0.06
5 0.06 0.06 0.03 0.03 0.04 0.03 0.10 0.04 1.09 0.12
10 0.08 0.06 0.13 0.03 0.77 0.03 1.89 0.05 4.05 0.13
50 5.05 0.06 | 10.35 003 | 1879 0.03 | 36.20 0.05 | 88.05 0.13
100 | 1836 0.05 | 40.29 0.03 | 74.02 0.03 | 14253 0.06 |356.16 0.15
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Table 5. Average correlation coeflficient between the estimated and true factors
N=20, T=500 N=50, T=200 N=100, T=100 [N=200, T=50 N=500, T=20
no . no ) no ) no ) no )
(o} correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 1.00 0.71 0.98
10 0.96 0.97 0.96 0.98 0.75 0.99 0.52 0.99 0.51 0.97
50 0.43 0.97 0.37 0.98 0.43 0.99 0.45 0.99 0.48 0.96
100 0.41 0.97 0.37 0.98 0.42 0.99 0.45 0.99 0.47 0.96
pc=>5, p=0
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.97 0.98 0.99 0.95 0.99 0.69 0.94
10 0.93 0.97 0.86 0.97 0.49 0.97 0.27 0.96 0.30 0.87
50 0.09 0.97 0.06 0.97 0.09 0.97 0.12 0.85 0.19 0.73
100 0.06 0.97 0.06 0.97 0.09 0.97 0.12 0.78 0.18 0.72
pc=0, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
10 0.97 0.97 0.98 0.98 0.99 0.99 0.99 1.00 0.99 0.99
50 0.51 0.97 0.37 0.98 0.26 0.99 0.23 1.00 0.25 0.99
100 0.13 0.97 0.10 0.98 0.11 0.99 0.13 1.00 0.20 0.99
pc=0, p=5
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
10 0.95 0.97 0.96 0.98 0.97 0.99 0.96 0.99 0.89 0.99
50 0.23 0.97 0.15 0.98 0.13 0.99 0.15 0.93 0.20 0.62
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.36 0.19 0.24
pc=1, p=1
0 0.97 0.97 0.99 0.98 0.99 0.99 1.00 1.00 1.00 0.99
5 0.97 0.97 0.99 0.98 0.99 0.99 0.98 0.99 0.72 0.98
10 0.96 0.97 0.95 0.98 0.74 0.99 0.52 0.99 0.50 0.97
50 0.26 0.97 0.17 0.98 0.15 0.99 0.16 0.99 0.20 0.96
100 0.08 0.97 0.07 0.98 0.09 0.99 0.12 0.98 0.19 0.95

45



Table 6. Estimated number of factors by Bai and Ng’s (2002) information

criteria
N=50, T=200 N=100, T=100 N=200, T=50
no correction correction no correction correction no correction correction
o ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3 | ICp1 ICp2 ICp3
pc=1, p=0
0 400 400 4.00 | 400 400 4.00 ] 400 400 400|400 4.00 534 (400 400 4.00 | 405 4.03 4.18
5 5.02 501 504 | 400 400 4.07 | 502 502 502|472 430 639 506 506 506|510 508 522
10 500 500 5.00 (400 400 4041 498 498 499|437 411 641|501 501 501|501 495 519
50 499 499 499 | 400 400 400 | 497 497 497 | 401 400 546 | 501 501 501|404 402 417
100 501 5.01 5.01 | 400 400 4.00( 501 501 502|400 4.00 543|498 498 498 | 404 402 417
pc=5, p=0
0 400 400 4.00 | 400 400 4.00] 400 400 400 401 400 534 (400 400 4.00 | 405 4.03 4.18
5 876 856 898 | 404 401 444905 905 915 | 6.83 480 1092( 9.06 9.06 9.06 | 9.11 9.08 9.26
10 897 897 897 | 402 401 425|898 898 907|522 431 10.88( 9.02 9.02 9.02 | 858 819 9.20
50 9.02 9.02 9.02 | 400 400 4.00 ] 9.01 9.01 908 | 400 4.00 6.10 | 897 897 897 | 403 4.01 4.21
100 || 9.02 9.02 9.02 | 400 4.00 4.00 [ 9.01 901 911 | 400 400 6.08 [ 899 899 899 | 405 4.03 427
pc=0, p=1
0 400 400 4.00 | 400 400 4.00| 400 400 400 401 4.00 533 400 400 4.00| 405 4.03 4.18
5 400 400 4.00 | 400 400 400 400 400 483|400 400 525 400 400 4.00 (402 401 4.09
10 421 414 464 | 400 400 4.00 | 425 4.07 1925| 400 4.00 551 | 405 402 428|402 401 4.1
50 19.93 19.68 20.00| 400 4.00 4.00 [|12.82 356 20.00| 400 4.00 548 | 111 1.04 459 | 403 4.01 4.14
100 |[19.95 19.88 20.00| 400 4.00 4.00 (1429 521 20.00| 400 400 548 | 125 1.09 520 | 403 4.02 4.14
pc=0, p=5
0 400 400 4.00 | 400 400 4.00 ] 400 400 400|401 400 533 400 400 4.00 | 405 403 4.18
5 400 400 400 | 400 400 4.00 ] 400 400 530|400 4.00 527 400 400 4.00 | 400 4.00 4.00
10 403 401 418 | 400 400 4.00 | 400 399 1524|400 4.00 664 (299 257 376|400 4.00 4.02
50 1.03 101 166 | 400 400 4.00 | 1.00 1.00 16.96| 400 4.00 6.29 | 1.00 100 1.00 | 400 4.00 4.07
100 1.06 102 213 | 400 4.00 400 1.00 1.00 16.76| 400 4.00 6.22 100 1.00 1.00 | 400 400 4.07
pc=1, p=1
0 400 400 400 | 400 400 400 400 4.00 400|401 400 533|400 400 4.00 (405 403 418
5 498 496 502 | 400 400 4.05] 500 500 6.00|458 417 633 506 506 506|507 505 514
10 523 515 573 | 400 400 404 ([ 525 505 1950| 427 406 657 || 507 504 534|490 478 510
50 19.93 19.75 20.00| 400 4.00 4.00 ||13.51 457 20.00| 400 4.00 559 (172 156 6.18 | 402 4.01 4.14
100 [[19.95 19.89 20.00| 400 4.00 4.00 [14.80 6.14 20.00| 400 400 560 | 193 162 6.59 | 402 4.01 4.15
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Table 7. Coverage ratio for the common component at the 90% nominal level
when the factor follows an AR(1) model

N=20, T=500 N=50, T=200 N=100, T=100 [N=200, T=50 N=500, T=20
no . no . no . no . no .
o correction correction correction correction correction correction correction correction correction correction
pc=1, p=0
0 0.86 0.86 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.86
5 0.88 0.88 0.88 0.89 0.89 0.90 0.85 0.90 0.58 0.87
10 0.86 0.88 0.84 0.90 0.68 0.89 0.46 0.89 0.43 0.86
50 0.58 0.87 0.51 0.89 0.46 0.89 0.44 0.90 0.42 0.86
100 | 0.58 0.87 0.54 0.90 0.48 0.88 0.44 0.90 0.40 0.85
pc=5, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.87 0.85
5 0.88 0.89 0.88 0.89 0.86 0.89 0.77 0.89 0.47 0.72
10 0.81 0.88 0.70 0.89 0.45 0.90 0.26 0.90 0.21 0.54
50 0.41 0.86 0.30 0.89 0.24 0.89 0.22 0.81 0.16 0.40
100 | 0.41 0.88 0.32 0.90 0.24 0.89 0.20 0.74 0.16 0.34
pc=0, p=1
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.88 0.89 0.89 0.89 0.89 0.87 0.85
10 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.89 0.78 0.86
50 0.50 0.87 0.30 0.89 0.21 0.89 0.18 0.88 0.13 0.86
100 | 0.15 0.87 0.11 0.90 0.09 0.89 0.10 0.88 0.10 0.85
pc=0, p=5
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.88 0.89 0.89 0.88 0.87 0.81 0.80
10 0.88 0.89 0.90 0.89 0.88 0.89 0.83 0.88 0.62 0.74
50 0.29 0.87 0.22 0.89 0.21 0.88 0.22 0.83 0.18 0.12
100 | 0.17 0.87 0.19 0.90 0.19 0.88 0.20 0.27 0.18 0.07
pc=1, p=1
0 0.86 0.86 0.89 0.89 0.89 0.89 0.89 0.88 0.87 0.86
5 0.88 0.88 0.88 0.89 0.89 0.90 0.84 0.89 0.59 0.85
10 0.86 0.88 0.84 0.89 0.69 0.89 0.47 0.89 0.41 0.85
50 0.43 0.87 0.31 0.89 0.23 0.89 0.18 0.89 0.15 0.83
100 || 0.31 0.87 0.23 0.89 0.17 0.89 0.16 0.89 0.12 0.77
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Table 8. Coverage ratio for the common component at the 90% nominal level
when individual models are misspecified

N=20, T=500  [N=50, T=200 [N=100, T=100 |N=200, T=50 N=500, T=20
o AR ARCH AR ARCH AR ARCH AR ARCH AR ARCH

pc=1, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.88 0.88 0.89 0.88 0.90 0.89 0.90 0.88 0.88 0.86
10 0.88 0.87 0.89 0.89 0.88 0.88 0.89 0.88 0.86 0.86
50 0.87 0.87 0.89 0.89 0.90 0.88 0.90 0.88 0.85 0.85
100 | 0.88 0.88 0.90 0.89 0.88 0.89 0.88 0.88 0.84 0.83
pc=>5, p=0
0 0.87 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.87 0.88 0.89 0.88 0.89 0.90 0.89 0.89 0.76 0.76
10 0.88 0.87 0.89 0.90 0.90 0.89 0.91 0.90 0.79 0.77
50 0.87 0.87 0.90 0.89 0.89 0.88 0.83 0.84 0.72 0.71
100 | 0.88 0.88 0.89 0.88 0.88 0.87 0.73 0.75 0.68 0.67
pc=0, p=1
0 0.86 0.87 0.89 0.89 0.89 0.89 0.89 0.88 0.86 0.85
5 0.88 0.88 0.89 0.88 0.90 0.89 0.88 0.87 0.85 0.84
10 0.88 0.87 0.89 0.89 0.89 0.88 0.89 0.88 0.84 0.83
50 0.87 0.87 0.89 0.89 0.88 0.87 0.88 0.87 0.84 0.83
100 | 0.88 0.88 0.90 0.89 0.89 0.88 0.88 0.87 0.84 0.83
pc=0, p=5
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.86 0.85
5 0.88 0.88 0.88 0.88 0.89 0.89 0.87 0.87 0.80 0.80
10 0.88 0.88 0.89 0.89 0.89 0.88 0.88 0.86 0.77 0.76
50 0.87 0.87 0.90 0.89 0.88 0.87 0.83 0.83 0.52 0.56
100 | 0.88 0.88 0.89 0.88 0.88 0.89 0.26 0.38 0.11 0.13
pc=1, p=1
0 0.87 0.87 0.89 0.89 0.89 0.89 0.88 0.88 0.86 0.85
5 0.87 0.87 0.89 0.88 0.90 0.89 0.89 0.88 0.85 0.83
10 0.88 0.88 0.89 0.90 0.89 0.88 0.89 0.88 0.84 0.84
50 0.87 0.87 0.90 0.89 0.90 0.87 0.89 0.87 0.82 0.82
100 || 0.88 0.87 0.90 0.89 0.88 0.89 0.88 0.88 0.82 0.81
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Figure 1. Sample path of factor and factor estimate in the presence of outliers
one common jump one idiosyncratic jump
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-4 5 F
— factor
6 } 0
factor estimate
-8 -5

Table 9. Size of the factor jump test

N=20 N=50 N=100 N=200 N=500
o T=500 T=200 T=100 T=50 T=20
Case 1: X* is available
5 0.05 0.06 0.05 0.04 0.04
10 0.05 0.07 0.06 0.05 0.05
50 0.05 0.07 0.06 0.06 0.04
100 0.05 0.07 0.07 0.06 0.05
Case 2: X* is estimated
5 0.07 0.01 0.03 0.03 0.65
10 0.06 0.08 0.12 0.20 0.56
50 0.05 0.07 0.07 0.07 0.08
100 0.05 0.07 0.07 0.06 0.06

Table 10. Power of the factor jump test

N=20 N=50 N=100 N=200 N=500
o T=500 T=200 T=100 T=50 T=20
Case 1: X* is available
5 0.90 0.94 0.96 0.97 0.98
10 0.95 0.97 0.98 0.99 0.99
50 0.99 1.00 1.00 1.00 1.00
100 1.00 1.00 1.00 1.00 1.00
Case 2: X* is estimated
5 0.58 0.34 0.35 0.39 0.56
10 0.76 0.62 0.65 0.65 0.76
50 0.95 0.92 0.93 0.92 0.95
100 0.98 0.96 0.96 0.96 0.98
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Figure 2. Log-returns on

currencies against the U.S. dollar
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Figure 2. Log-returns on currencies against the U.S. dollar (continued)

16.SINGD 17.SKORW 18.SWEDK
0015 005 0025
0.04
001 0.02
003 0015
0.005
002 0.01
001
o 0.005
0
K 0
0005 -001
-0.005
001 002
003 -001
0015
004 -0015
-0.02 -0.05 -0.02
AugSep Oct NovDec Jan Feb Mar Apr May Jun Jul AugSep Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Aug Sep Oct NovDec Jan Feb Mar Apr MayJun Jul Aug Sep
19.SWISF 20.TAWD 21.BRITP
0.04 0015 0.025
0.03 oot 0.02
0015
0.02
0.005 001
0.01 0.005
0 0 0
001 o -0005
0008 -001
-002
001 0015
-0.03 002
-0.04 -0.015 -0.025
Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Aug Sep Oct NovDec Jan Feb Mar Apr MayJun Jul Aug Sep
22.MALAY 23.SARCM 24. THAIB
0.04 0.04 0.05
0,03 0.03
002 0.02
0.01
0.01
0
0
-001
-001
002
-002 003
-0.03 -0.04

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

25.EURO
0.025

0.02
0.015
0.01
0.005
0
-0.005
-0.01
-0015

-0.02

-0025
AugSep Oct NovDec Jan FebMar Apr May Jun Jul AugSep

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

51

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep



Table 11. List of currencies, number of jumps, and common jumps

# of jumps common jump dates
06 May 07May 29 Sep
1 Australian Dollar AUSTR 1 X
2 Canadian Dollar CDNDL 0
3 Czech Republic Koruna CZECK 0
4 Danish Krone DANKR 0
5 Hong Kong Dollar HKDOL 8 X X X
6 Hungrian Forint HUNGF 1 X
7 Indian Rupee INDNR 3 X X
8 Indonesian Rupiah INDON 11 X
9 Japanese Yen JAPYN 0
10 Kuwaiti Dinar KUWTD 6 X
1 Mexican Peso MEXPF 3 X X X
12 New Zealand Dollar NEWZzD 0
13 Norwegian Krone NORGK 0
14 Philippines Peso PHILP 4 X X
15 Polish Zloty POLZL 0
16 Singaporean Dollar SINGD 1
17 South Korean Won SKORW 10 X X
18 Swedish Krona SWEDK 0
19 Swiss Franc SWISF 0
20 UK Pound BRITP 7
21 Malaysian Ringgit MALAY 0
22 Taiwan Dollar TAIWD 2 X X
23 South African Rand SARCM 0
24 Thai Baht THAIB 8 X X
25 Euro EURO 0

Notes : 1. The column of "# of jumps" indicates how many jumps are detected by the proposed method between

Aug. 1,2007 and Sep. 30, 2008.

2. The common jumps dates are those on which more than 3 currencies have a jump. These currencies
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Figure 3. Number of jumps in a day
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Figure 4. Factor estimates with

1) First factor

&) Factor estimates

and without jump correction

b) Difference of factor estimates
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Figure 5. Factor loadings with jump correction

1) First factor

2) Second factor
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Table 12. Factor jump tests:
Currency return data
F p-value t (1stfactor) p-value t (2nd factor)  p-value

2008/5/6  3.50**  (0.05) 2.61% (0.02) -0.77 (0.45)
2008/5/7 3.11* (0.06) 2.49* (0.02) 0.53 (0.60)
2008/9/29  2.71*  (0.09) 1.47 (0.15) -1.60 (0.12)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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Figure 6. Monthly growth rates of new car registrations
in selected Japanese prefectures
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Table 13. Prefectures showing a jump in earthquake periods
# of pref. Prefectures that have a jump
Jan 1995 1 Hyogo
Hokkaido, Aomori, lwate, Miyagi, Akita, Yamagata
Fukushima, Ibaraki, Tochigi, Gunma, Saitama
Mar 2011 21 Chiba, Tokyo, Kanagawa, Yamanashi, Gifu,
Nagano, Shizuoka, Aichi, Shimane, Okayama,
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Figure 7. Japanese prefectural new car registration factor estimates
non-corrected
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Table 14: Factor jump tests:
Japanese prefectural new car registration data

F p-value t (1stfactor) p-value t (2nd factor) p-value

Jan 1995 042 (0.66) 062 (0.54) 018  (0.86)
Mar 2011 8.15 (0.00) 249  (0.02) 083  (0.41)

Note: ** and * indicate significance at the 5% and 10% levels, respectively.
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