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Abstract

In this paper, we consider residual-based bootstrap methods ‡ la GonÁalves and Per-
ron (2014) to construct the conÖdence interval for structural impulse response functions
in factor-augmented vector autoregressions. In particular, we compare the bootstrap
with factor estimation (Procedure A) with the bootstrap without factor estimation
(Procedure B). In theory, both procedures are asymptotically valid under a conditionp
T=N ! 0, where N and T are the cross-sectional dimension and the time dimension,

respectively. Even when
p
T=N ! 0 is irrelevant, Procedure A still accounts for the

e§ect of the factor estimation errors on the impulse response function estimate and it
achieves good coverage rates in most cases. On the contrary, Procedure B is invalid in
such cases and tends to undercover if N is much smaller than T . However, Procedure
B is implemented more straightforwardly from the standard structural VARs and the
length of the conÖdence interval is shorter than that of Procedure A in Önite samples.
Given that Procedure B still gives a satisfactory coverage rate unless N is very small,
it remains in consideration of empirical use, although using Procedure A is safer as it
correctly accounts for the e§ect of the factor estimation errors.
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1 Introduction

Factor-augmented vector autoregressions (FAVARs), introduced by Bernanke et al. (2005)

and further explored by Stock and Watson (2005, 2010) in addition to many other empirical

studies, have various attractive features for empirical researchers. For example, the factors

essentially reduce the data dimension, enabling a conventional small-scale VAR framework to

accommodate the vast amount of information contained in a large panel data set. In addition,

if we consider that certain concepts in economic models such as productivity and ináation

are better captured by latent factors measured by using multiple indicators rather than by

a single speciÖc series (e.g., Sargent and Sims, 1977; Boivin and Giannoni, 2006), FAVAR is

a suitable speciÖcation to address such measurement issues. Therefore, the literature on the

empirical applications of FAVARs is rapidly growing across various topics and a current but

non-comprehensive list includes Ang and Piazzesi (2003), Giannone et al. (2005), Boivin et

al. (2009, 2013), Acconcia and Simonelli (2008), Moench (2008), Ludvigson and Ng (2009a,

2009b), and Gilchrist et al. (2009), among others.

In this paper, we discuss methods to construct the conÖdence interval for structural

impulse response functions (IRFs) in FAVARs when the latent factors are, in particular,

estimated by using the principal component (PC) estimation method. The seminal work

by Bai and Ng (2006) develops inferential theory for the coe¢cients in factor-augmented

regression models including FAVARs by using a large dimensional factor model. They show

that under certain conditions including
p
T=N ! 0 as N; T ! 1; where N and T are

the cross-sectional dimension and the time dimension, respectively, the e§ect of the factor

estimation errors on their coe¢cient estimates becomes negligible. This result implies that

latent factors can be replaced with their PC estimate in VARs and that the asymptotic conÖ-

dence interval for the coe¢cients can be constructed in the usual manner. Furthermore, this

approach is straightforwardly applied to IRFs because they are a function of the coe¢cients

in the FAVAR model.

On the contrary, the e§ect of the factor estimation errors on the coe¢cient estimates

can be relevant when the data set involves N much smaller than T such that the condi-

tion
p
T=N ! 0 is considered to be inappropriate. Therefore, bootstrap methods are a

strong alternative to Bai and Ngís (2006) asymptotic conÖdence intervals. To that e§ect,

GonÁalves and Perron (2014) and Shintani and Guo (2015) study the theoretical proper-

ties of residual-based bootstrap conÖdence intervals for the coe¢cients in factor-augmented

regression models, showing their asymptotic validity under the more general framework of
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p
T=N ! c with 0 $ c < 1. Yet, their models are reduced form, and in this paper we

extend them to models that involve structural identiÖcation schemes in VARs. In particu-

lar, we consider the recursive restriction scheme with sign restrictions as well as two major

impulse response-based identiÖcations: the short-run and the long-run restrictions consid-

ered by Stock and Watson (2005) via Monte Carlo simulations. In doing so, we focus on

comparisons between the conÖdence intervals produced by the method ‡ la GonÁalves and

Perron (2014) and an alternative method that may be used in empirical studies. The former

method, as recommended by GonÁalves and Perron (2014), implements factor estimations

in the bootstrap repetitions. This procedure is called Procedure A. The alternative method

does not estimate factors in the bootstrap replications, treating the original estimate as the

observed processes. This procedure is called Procedure B and its algorithm is implemented

more straightforwardly from the standard structural VAR. In essence, Procedure A accounts

for the uncertainty associated with the factor estimation in the conÖdence interval, while

Procedure B does not. By contrast, Procedure B may give a shorter conÖdence interval than

Procedure A. As such, we discuss the advantages and disadvantages of both procedures.

Our Öndings are summarized as follows. In theory, both procedures are asymptotically

valid when
p
T=N ! 0 holds. However, Procedure A better mimics the factor estimation

errors even when
p
T=N ! 0 is not relevant. In Önite samples, Procedure A provides a

good coverage rate in most cases, while Procedure B tends to undercover if N is very small

compared with T . On the contrary, the length of the conÖdence interval of Procedure B

is shorter than that of Procedure A. Therefore, we conclude that given that Procedure B

still provides a satisfactory coverage rate unless N is very small compared with T , it is in

consideration of empirical use, although using Procedure A is safer as it correctly accounts

for the e§ect of the factor estimation errors. Finally, the asymptotic conÖdence interval tends

to provide erratic coverage rates, especially when the errors are not normally distributed.

The rest of the paper is organized as follows. Section 2 introduces the structural models

and their reduced-form counterparts. The basic assumptions of the models are introduced

as well. Section 3 discusses the assumptions and method for structural identiÖcation and

asymptotic properties of the IRF estimator. In section 4, we propose bootstrap inference

procedures and investigate their asymptotic properties. Section 5 assesses the Önite sample

properties of the suggested procedures via Monte Carlo simulations, using artiÖcial data,

along with calibrated models of US macroeconomic data. Section 6 provides concluding

remarks. Finally, the appendices include technical derivations.

Throughout the paper, the following notations are used. The Euclidean norm of vector
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x is denoted by kxk. For matrices, the vector-induced norm is used. The symbols ì
p!î and

ì d!î represent convergence in probability under the probability measure P and convergence
in distribution, respectively. Op(&) and op(&) are the order of convergence in probability
under P . We deÖne P ! as the bootstrap probability measure, conditional on the original

sample. For any bootstrap statistic T !, we write T !
p!! 0, in probability, or T ! = op!(1), in

probability, when for all + > 0; P !(jT !j > +) = op(1). We write T ! = Op!(&), in probability,
when for all + > 0 there exists M(+) <1 such that limN;T!1 P [P

!(jT !j > M(+)) > +] = 0:

We also write T ! d!! D, in probability, if, conditional on a sample with a probability that

converges to one, T ! converges in distribution to D under P !. Let 0 = min
np

N;
p
T
o
and

L be the standard lag operator. Chol(X) denotes the Cholesky decomposition of a positive

deÖnite matrix X returning a lower triangular matrix W with positive diagonal elements

such that W 0W = X. The operator vec(X) transforms an m(m matrix X into an m2 ( 1
vector by stacking the columns and vech(X) stacks only the element on and above the main

diagonal of a square matrix X.

2 Models and assumptions

2.1 Models

Consider the following factor model:

Xt = :s + -sF st + ust ; t = 1; :::; T; (1)

where Xt is an N ( 1 vector of the response variables and N is the (typically large) number

of equations. The large set of response variables Xt are assumed to be driven by much lower

dimensional unobservable factors F st (r(1) with time-invariant unobservable factor loadings
-s = [?s1; :::; ?

s
N ]
0 (N ( r). ust = [u

s
1t; :::; u

s
Nt]

0 is an N ( 1 vector of the idiosyncratic errors
and :s is an N(1 vector of the constants. Of particular interest, the model allows the latent
factors F st to be fundamental or to have structural interpretations. Hence, they are designed

to form the structural VAR of order p with r ( r coe¢cient parameters .sj (j = 1; :::; p), an

r ( 1 constant vector Bs, and structural shocks est (r ( 1) so that

F st = Bs +
Pp

j=1.
s
jF

s
t%j + est ; (2)

where the order p and number of factors r are assumed to be Öxed and known for simplicity

and E(este
s0
t ) = Ir. When the variables are written without their associated t subscript, they
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denote the entire matrix of observations, for example, X = [X1; :::; XT ]
0 is a T ( N matrix

and F s = [F s1 ; :::; F
s
T ]
0 is a T ( r matrix. The goal is to establish a valid inference procedure

on the structural IRFs generated from these models. Given that invertibility is assured,

models (1) and (2) can be rewritten in vector moving-average form such that

Xit = :s + ?s0i /
s(L)est + uit; for i = 1; & & & ; N

where /s(L) )
P1

j=0/
s
jL

j with /s0 = Ir and /s(L) =
h
Ir *

Pp
j=1.

s
jL

j
i%1
. Let the struc-

tural IRF of the response variable Xit at time horizon h (h = 0; 1; 2; & & & ) be 'ih. Then,

'ih )
@Xit+h

@est
= ?s0i /

s
h:

This class of models is called the FAVARs, introduced by Bernanke et al. (2005) and fur-

ther explored by Stock and Watson (2005). Bernanke et al. (2005) include an observable

structural factor as well as unobservable factors in F st . Under the assumption that the ob-

servable and unobservable factors are separately identiÖed, this extension does not add any

complications to the analysis, and the results in this paper hold. Second, in many empir-

ical applications, accounting for individual serial correlations in Xit is desired so that Xt

can be replaced by A(L)Xt in the above models, where A(L) = [A1(L); & & & ; AN(L)]0 and
Ai(L) = 1 + Ai;1L + & & & + Ai;piL

pi . However, consistency and asymptotic normality of the

coe¢cients Ai;j (i = 1; & & &N; and j = 1; & & & pi) are obtained by using the least squares of the
current response variable Xit on the factors and the past response variables Xi;t%j. Hence,

we use the simple models (1) and (2) throughout the paper.

While these models can be estimated by using the maximum likelihood principle with

respect to the identifying assumptions, the maximum likelihood estimators for models of

such a large dimension may have questionable Önite sample properties. Thus, we instead

consider the less computationally demanding PC estimation studied by Bai and Ng (2006).

To this end, we state the estimable reduced-form representations of (1) and (2) following the

conventional strategy in the VAR literature. Rewrite the models by using an r( r invertible
matrix B that captures the contemporaneous correlations among F st , so that Ft = BF st . It

then follows that - = -sB%1, .j = B.sjB
%1; et = Best ; and B = BBs. The constant and

idiosyncratic errors in (1) are not a§ected by the factor structure, so : = :s and ut = ust .

The reduced-form models are

Xt = :+ -Ft + ut; (3)

Ft = B +
Pp

j=1.jFt%j + et: (4)
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To simplify the notation, let Z = [K; F(%1); F(%2); ::: ,F(%p)] be a T ( (rp + 1) matrix, where
K is a T ( 1 vector of ones and F(%j) = [F1%j; :::; FT%j]

0; and let . = [B; .1; :::;.p]
0 be an

(rp + 1) ( r matrix so that (4) can equivalently be written as F = Z. + e: The constant

terms in the models can be omitted if the data are demeaned.1

The estimation procedure is as follows. First, the factors are extracted from (3) by using

the PC method to Önd the solution of

(F̂ ; -̂) = argmin
(;F

PN
i=1

PT
t=1(Xit * ?0iFt)

2; (5)

with normalization F̂ 0F̂ =T = Ir. Second, we estimate the VAR equation (4) by adopting

the least squares approach using F̂t. As pointed out by Bai and Ng (2013), when estimat-

ing models by using the PC method, a well-known rotation problem arises, implying that

the factors are not individually identiÖed in the reduced form. DeÖne the rotation matrix

pertaining to the PC estimation as

HNT = V %1
NT (F̂

0F=T )(-0-=N), (6)

where VNT is an r( r diagonal matrix whose main diagonal elements are the r largest eigen-
values of XX 0=(TN) in descending order and whose probability limit is Q%1 = p limH

0

NT as

N; T !1; given it exists.

Finally, let the reduced-form IRF of the ith response variable Xi at horizon h (h =

0; 1; 2; :::) be  ih. Then,

 ih )
@Xit+h

@et
= ?0i/h:

Since the statistical properties of the IRF estimates are often discussed in terms of the

reduced-form IRFs, it is important to note that, as in standard structural VAR analysis, the

structural IRF can be represented by its reduced-form counterpart,

'ih =  ihB = ?0i/hB; (7)

by using the reduced-form parameters.

1For simplicity, the theoretical derivations in this paper do not include the constant term, assuming that
the data are demeaned. In practice, when the model does not include a constant term and demeaned data
are used, the researcher should make sure that the residuals are demeaned in the bootstrap procedures. See
section 4.1.
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2.2 Assumptions

We discuss the standard regularity conditions for the remainder of the analysis. First, let the

data-generating processes above be deÖned on a probability space (5;z; P ) and let M <1
be a generic constant.

Assumption A.

(a) The loadings ?i are either deterministic such that k?ik $ M or stochastic such that

E k?ik
4 $ M . In either case, -0-=N ! 6(, where 6( is an r ( r positive deÖnite

matrix 6(.

(b) The eigenvalues of the r ( r matrix 6(6F are distinct.

(c) ?i, ujs and et are mutually independent for all (i; j; s; t).

Assumption B.

(a) E(uit) = 0 and E juitj
8 $M for all (i; t):

(b) N%1PN
i=1

PN
j=1 jQ ijj

2 $ M , where Q ij = E(uitujt). T%1
PT

s=1

PT
t=1 jRtsj

2 $ M; where

Rts = E(N%1PN
i=1 uituis):

(c) For every (t; s), E
&&&N%1=2PN

i=1[uisuit * E(uisuit)]
&&&
4

$M:

(d) For each i, T%1=2
PT

t=1 Ftuit
d! N(0;7i), where 7i ) V ar

'
T%1=2

PT
t=1 Ftuit

(
:

Assumption C.

(a) E(et) = 0; E(ete0t) = 6e an r ( r positive deÖnite matrix, and E(ete0s) = 0r&r for all

t 6= s.

(b) E jeltj
4 $M for all l = 1; :::; r; and t.

(c) For h = 1; 2; :::, T%1=2
PT

t=p+1 vec (Zte
0
t)

d! N(0;6Z ,6e) with 6Z ) p limT!1 Z
0Z=T .

(d) T%1=2
PT

t=1 (ete
0
t * 6e)

d! N(0;6e , 6e):
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(e) The roots of det(Ir * .1z * .2z2 * & & & * .pzp) = 0 lie outside the unit circle.

(f) The r ( r matrix B has full rank.

Assumptions A and B have been discussed in Bai and Ng (2006). In particular, Assump-

tion A(b) guarantees the uniqueness of the limit of the factor rotation matrix. Assumption

A(c) imposes the independence of the factors, factor loadings, and idiosyncratic errors as

in Bai and Ng (2006), and it greatly simpliÖes the moment conditions without losing much

substance in our context. Assumption B(b) allows for idiosyncratic errors to have weak serial

and cross-sectional dependence. Assumption C consists of the basic assumptions in the VAR

literature. It enforces a stable system that is estimable by using the least squares method.

Assumption C(a) imposes a white noise property with a Öxed covariance matrix on fetg to
obtain a structural identiÖcation using up to the second moments of the residuals. Finally,

these assumptions are on the parameters and variables fFt;-;.; ut; etg in the reduced-form
representation rather than the structural entities fF st ;-s;.s; ust ; estg. This is mainly for no-
tational simplicity in the technical proofs; however, researchers may need to validate these

assumptions for the structural entities, in which case, all of these assumptions are stated

by using the structural counterparts. For example, Assumption C(a) can be replaced by

the same assumption on est with a small notational change from 6e to B%16eB
0%1. This

assumption holds since est = B%1et and B is a Öxed full rank matrix.

3 Structural inference

Once the reduced-form models have been estimated, structural parameter estimates can be

obtained by using the contemporaneous coe¢cient matrix B̂: Several identifying methods

are applied in empirical research; however, we particularly consider the popular recursive

scheme by imposing the following assumption.

Assumption D. Q%10B is an upper or lower triangular matrix and the signs of its

diagonal elements are known.

A glitch in the FAVAR context arises when B̂ is obtained through the Cholesky decompo-

sition. This is because the recursive restrictions must be imposed not on matrix B itself but

on its rotation Q%10B as the latter is the asymptotic counterpart of B̂. This is the case of the

B-estimator of L¸tkepohl (2005) and the structural IRF is only locally identiÖed. In order

7



to obtain the unique estimate, we Öx the sign of '̂ih if the sign of '̂i0 is not desired. This

restriction includes the limit of the rotation matrix Q and it is not straightforward to inter-

pret restrictions on such non-structural entities. Hence, we further break down Assumption

D into the following set of su¢cient conditions to ascertain its feasibility.2

Assumption Dí. The following three restrictions imply Assumption D:

(a) 6F is diagonal;

(b) 6( is diagonal;

(c) B is an upper triangular matrix and the signs of ?0iB = 'i0 are known.

The Örst two parts of Assumption Dí imply that the model involves orthogonal factors and

loadings in its reduced form, which are statistical assumptions. Given these two statistical

restrictions, we are able to impose a recursive structure directly on B as in a conventional

structural VAR. Finally, the signs of the elements of ?0iB can be deduced from the underlying

economic model. The identiÖcation is implemented as follows:

ID (recursive identiÖcation with sign restriction):

1. Obtain B̂ such that B̂ = Chol(ê0ê=T ):

2. Change the signs of '̂ih (h = 1; :::), if the signs of '̂i0 are not desired.

Under these identifying assumptions and the method, we obtain the following theorems

about the consistency and asymptotic normality of the structural parameters and the struc-

tural IRF.

Theorem 1 (Consistency of the structural parameters) Under Assumptions A, B, C, and
D, ?̂

s

i * ?si
p! 0; .̂s * .s p! 0; and '̂ih * 'ih

p! 0; for all i as N; T !1.
2Lemma 3 in Appendix A provides a proof that Assumption Dí implies Assumption D.
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Theorem 2 (Asymptotic distribution of structural IRFs) Under Assumptions A, B, C, and
D, p

T ('̂ih * 'ih)
d! N(0;5'ih);

8i as T;N !1 and
p
T=N ! 0 provided @'ih=@U 6= 0, where U = [?i; vec(.)0; vech(B)0]0,

5'ih =
@'0ih
@U0

52i
@'ih
@U

;

and 52i = diag(53i;5+;5B) with 53i ) Q%107iQ
%1,

5+ ) [(Ip ,Q%10)6Z(Ip ,Q%1)]%1

(
)
(Ip ,Q%10)6Z(Ip ,Q%1)], [Q%106eQ%1

*

([(Ip ,Q%10)6Z(Ip ,Q%1)]%10;

and 5B is deÖned in Appendix A.

There are two remarks on these results. First, despite the implication that the structural

IRFs only involve structural parameters, when we consider the distribution of the IRF es-

timate, we present the expression in terms of the reduced-form parameters as in L¸tkepohl

(1990, 2005), so that the asymptotic covariance estimates are easily constructed. Second,

more importantly, the asymptotic approximation is reasonable when
p
T=N ! 0 is relevant.

However, if N is smaller than T and
p
T=N ! c (c > 1) is more appropriate, then the

parameter estimates su§er from asymptotic bias, as suggested by Ludvigson and Ng (2009b)

and GonÁalves and Perron (2014).

Remark 1 Stock and Watson (2005) and other empirical studies also consider valid impulse
response-based identiÖcation schemes such as short-run and long-run restrictions. The Önite

sample properties when using these identifying schemes are discussed via the Monte Carlo

simulations in section 5.

4 Bootstrap inference

4.1 Procedures

This section outlines the residual-based bootstrap algorithms used to construct the conÖ-

dence interval for the IRFs. We consider the independent and identically distributed (i.i.d.)
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bootstrap for the VAR shocks in order to make use of the white noise property of fetg. This
treatment is not as trivial regarding the idiosyncratic errors in the factor model. Here, we

also illustrate the i.i.d. resampling for the homoskedastic idiosyncratic errors fuitg; however,
the e§ects of the potential heteroskedasticity in fuitg on the IRF estimates are accounted for
by employing the wild bootstrap procedure as suggested by GonÁalves and Perron (2014).

The same can be said for the serial correlations in the idiosyncratic errors by employing a

relevant bootstrap method to account for the dependence in the original idiosyncratic errors.

In this paper, we compare two alternative algorithms that are straightforwardly imple-

mented in empirical studies. The Örst method, as recommended by GonÁalves and Perron

(2014), implements factor estimation in the bootstrapping repetitions. This is called Proce-

dure A. The second method does not estimate factors in the bootstrap repetitions, treating

the original factor estimate as the observed processes. Therefore, the implementation is no

more involved than standard small-scale structural VAR models. This is called Procedure

B. We Örst outline Procedure A as follows.

Procedure A: Bootstrap with factor estimation

1. Estimate the model by using the PC procedure, obtaining the parameter estimates -̂;

.̂; and B̂ as well as the residuals ût and êt. Obtain the structural IRF estimate '̂i:

2. Make sure that the residuals ûit and êt are demeaned. Resample the residuals êt
with replacements and label them e!t . Generate the bootstrapped sample F

!
t by using

F !t = B̂ +
Pp

j=1 .̂jF
!
t%j + e!t . In addition, resample the residuals ût with replacements

and label them u!t .
3 Generate the bootstrapped response variables X! by using X!

t =

:̂+ -̂F !t + u!t .
4

3. By using the bootstrapped response variables X!
t , estimate (F̂

!; -̂!) following the Örst

step of the PC procedure. Then, estimate the VAR equation of F̂ !t to obtain the

bootstrapped estimates .̂! and B̂! using the second step of the PC procedure. This

yields the bootstrap IRF estimates '̂!i .

4. Repeat steps 2 and 3 R times.

3Here, one can implement another bootstrap scheme that mimics the properties of the idiosyncratic errors.
4The bias-correction method discussed by Kilian (1998) is applied. The bias is estimated by taking the

average of #̂!j *H!#̂jH
!"1 in another bootstrap loop in Procedure A and by #̂!!j * #̂j in Procedure B.
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5. Store the recentered statistic s ) '̂!ih* '̂ih. Sort the statistics and select the 100 &Y=2th

and 100 &(1*Y=2)th percentiles (s(5=2); s(1%5=2)). The resulting 100 &(1*Y)% conÖdence
interval for 'ih is ['̂ih * s(1%5); '̂ih * s(5)] for h = 0; 1; :::.

In step 2, the bootstrap sampleX!
t shares the same data-generating process as the original

sample Xt. In step 3, the bootstrap IRF estimates involve the same identiÖcation and

estimation methods as the original IRF estimate, suggesting that the dispersions of all the

bootstrap estimates can mimic the sampling distribution of the original estimates.

Procedure B: Bootstrap without factor estimation
Procedure B is the same as Procedure A except for a change in step 3, which is formalized

as follows:

3. By using the bootstrapped observations X!
t and factors F

!
t , estimate -̂

!!, .̂!! and B̂!!.

This yields the bootstrap IRF estimates '̂!!i .

Procedure B is a natural and simple extension of the methods conducted in standard

structural VAR analyses since it generates the VAR variables as if they were observable.

Hence, it does not involve factor estimation in the procedure, and F̂ !t is not generated.

Finally, the bootstrap interval speciÖed in step 5 is known as Hallís (1992) percentile intervals.

One can alternatively use what is commonly called Efronís percentile method by storing

s ) '̂!ih and constructing
)
s(5); s(1%5)

*
; however, this method is not asymptotically centered

(see Efron and Tibshirani, 1994). It is found that the IRFs are likely to produce non-centered

distributions because of structural identiÖcations and factor estimation errors. Another

popular choice is the percentile-t interval. However, it is observed that the percentile-t is

inaccurate for IRF estimates, especially over long horizons when the sample size is small

(Kilian, 1999).

4.2 Asymptotic validity

This section studies the asymptotic validity of the proposed procedures. The asymptotic

validity of Procedures A and B is given in Theorems 3 and 4, respectively, under
p
T=N ! 0,

with remarks on higher-order correctness following. For Procedure A, we obtain the following

theorem.
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Theorem 3 (Asymptotic validity of Procedure A) Under Assumptions A, B, C, and D,

sup
x2R

jP ! [('̂!ih * '̂ih) $ x]* P [('̂ih * 'ih) $ x]j p! 0;

for all i as N; T !1, and
p
T=N ! 0.

This result is of the Örst order; therefore, to better understand the Önite sample properties

of inference, higher-order terms in the estimation errors must be investigated. For simplicity,

let us consider the case of no serial correlations in the idiosyncratic errors fuitg, i.e. Rts = 0
for all t 6= s in Assumption B(b). The errors in the original structural parameter estimation

can be expanded into three components: errors pertaining to the contemporaneous coe¢cient

matrix B̂, factor estimation errors, and combinations of these errors. Let us now take the

structural IRF at horizon 0 as an example. The expansion of the original estimate is
p
T ('̂i0 * 'i0) = T%1=2B0H 0

NTHNTF
0ui + T 1=2"0H 0%1

NT?i

+T%1=2"0HNTF
0ui| {z }

(I): errors in B̂

+T%1=2B0H 0
NT F̂

0(F * F̂H 0%1
NT )?i + T%1=2B0H 0

NT (F̂ * FH 0
NT )

0ui| {z }
(II): factor estimation errors

+T%1=2"0F̂ 0(F * F̂H 0%1
NT )?i + T%1=2"0(F̂ * FH 0

NT )
0ui| {z }

(III): (I) and (II)

: (8)

where " = B̂ * HNTB. In the original estimate, the terms in (I), (II), and (III) are of

op(1); Op(
p
T=02), and op(1); respectively. Hence, the term of Op(

p
T=02) = op(1) underp

T=N ! 0. When we use Procedure A, the bootstrap parameter estimates take the same

form in the bootstrap space, so that
p
T (e'!i0 * '̂i0) = T%1=2B̂0H!0

NTH
!
NTF

!0u!i + T 1=2"!0H!0%1
NT ?̂i

+T%1=2"!0H!
NTF

!0u!i| {z }
(I): errors in Ŝ"

+T%1=2B̂0H!0
NT F̂

!0(F ! * F̂ !H!%10
NT )?̂i + T%1=2B̂0H!0

NT (F̂
! * F !H!0

NT )
0u!i| {z }

(II): factor estimation errors

+T%1=2"!0F̂ !0(F ! * F̂ !H!0%1
NT )?̂i + T%1=2"!0(F̂ ! * F !H!0

NT )
0u!i| {z }

(III): (I) and (II)

: (9)

with

H!
NT = V̂ %1(F̂ !0F !=T )(-̂0-̂=N) (10)
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where V̂ is a diagonal matrix whose elements are eigenvalues of X!X!0=(TN) in descending

order. The validity follows under the stated conditions, which guarantee that all the terms

in (9) are of the same stochastic order under P ! as those in (8) under P . Hence, (I) and

(III) disappear as N; T ! 1, and so does (II) with the additional condition
p
T=N ! 0.

We now prove the validity of Procedure B.

Theorem 4 (Asymptotic validity of Procedure B) Under Assumptions A, B, C, and D,

sup
x2R

&&P !
)
('̂!!i;h * '̂i;h) $ x

*
* P

)
('̂i;h * 'i;h) $ x

*&& p! 0;

for all i as N; T !1;
p
T=N ! 0.

In Procedure B, the bootstrap estimate of the structural IRF at the contemporaneous

timing of the shock is expanded in the bootstrap space as follows:

p
T ('̂!!i0 * '̂i0) ) T%1=2B̂0F !0u!i + T 1=2"!!0?̂i

+T%1=2"!!0F !0u!i| {z }
(I): errors in B̂""

; (11)

with "!! = B̂!! * B. The higher-order terms associated with factor estimation errors (II)

and (III) in (9) do not appear in (11). Hence, we expect the conÖdence intervals constructed

by Procedure B to be generally tighter than those constructed by Procedure A because of

the factor estimation errors. On the contrary, the interval given by Procedure B captures

sampling variations less accurately than Procedure A does, especially when N is signiÖcantly

smaller than T (
p
T=N ! 0 does not hold), because the terms in (II) that are not present

in Procedure B are relevant. When the errors in the contemporaneous matrix estimate " are

not small, the terms in (I) and (III) can play a signiÖcant role. This leads to coverage errors

over short horizons that depend on the structural identiÖcation scheme; however, the e§ect

of " does diminish over long horizons. Finally, the normal approximation neither accounts

for the factor estimation errors (II) and (III) nor captures the e§ect of (I).

5 Finite sample properties

5.1 Monte Carlo simulations with artiÖcial data

This section reports the Monte Carlo simulation results to assess the Önite sample properties

of the bootstrap procedures. We consider a simple VAR(1) model so that the response

13



variables xi;t are generated by xi;t = ?ift + ui;t; with the factors (ft : r ( 1) evolving such
that ft = .ft%1+et (i = 1; :::; N and t = 1; :::; T ), where ?i = [?i;1; :::; ?i;r]0 is an r(1 vector,
. is an r( r matrix, and et = Best , where e

s
t = [e

s
t;1; :::; e

s
t;r]

0. We set r = 2 and the particular

choice of the parameter values is

. =

2

40:4 0

0 0:4

3

5 and B =

2

41 0:5

0 1

3

5 ;

unless otherwise stated. The factor loadings ?i;j (j = 1; 2) are generated from i.i.d. standard

normal distributions.

We consider the following three patterns of the error terms. (1) est;j and ui;t follow i.i.d.

standard normal distributions and this case is called ìGaussian,î(2) est;j and ui;t follow i.i.d.-

centered chi-square distributions with one degree of freedom with unit variance and this case

is called ìChi,îand (3) est;j follows i.i.d. standard normal distributions and ui;t follows the

independent normal distribution of random variance generated by the uniform distribution

U [0:5; 1:5] and this case is called ìHetero.î

We report the result for the IRF of the Örst response variable to a structural shock of

the Örst factor. Because the estimation errors in B̂ can a§ect the results, as we conjectured

in section 4.2, we study the following three popular structural identiÖcation schemes. The

Örst scheme is the recursive identiÖcation described in Section 3. This is called ìID1.î The

second structural identiÖcation scheme is the short-run restriction and this is called ìID2.î

This method is based on a di§erent assumption from the recursive scheme and assumes that

the IRF of the second response variable to the structural shock of the Örst factor at time

h = 0 is zero. Without loss of generality, take the IRFs of the Örst r response variables to

the r structural shocks. Then, we have an r( r matrix of the structural IRFs '1:r;h and the
reduced-form IRFs  1:r;h at time horizon h, respectively. The matrix consists of the Örst r

response variables stacked in rows and r shocks in columns. Following Stock and Watson

(2005), the B matrix is estimated by

B̂ =  ̂
%1
1:r;0'̂1:r;0;

where

'̂1:r;0 = Chol
h
 ̂1:r;0(ê

0ê=T ) ̂
0
1:r;0

i
;

 ̂1:r;0 = [?̂1; :::; ?̂r]
0 ) -̂1:r, and ê is a T ( r matrix of the reduced-form VAR residuals. In

addition, we consider the long-run restriction based on the identifying assumption that the
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same IRF at the inÖnite horizon is zero. This is called ìID3.î In practice, the B matrix is

obtained by

B̂ =  ̂
%1
1:r;1'̂1:r;1;

where

'̂1:r;1 = Chol
h
 ̂1:r;1(ê

0ê=T ) ̂
0
1:r;1

i
;

and  ̂1:r;1 = -̂1:r

h
Ir * .̂

i%1
. In our data-generating process (r = 2), these identifying

assumptions are achieved by additionally imposing zero on the (2,1) element of the N ( 2
factor loadings matrix - = [?1; :::; ?N ]0:5

Since the e§ect of the sample size on the inference results is of major interest, we com-

pare the results of the four (T;N) combinations (T;N) = (40; 50); (40; 200); (120; 50); and

(120; 200). The experiment is based on 3,000 replications with 399 bootstrap repetitions.

The results for equal-sided conÖdence intervals of the 95% nominal level are reported. By

default, the bias correction of Kilian (1998) is applied where the bias for .̂ is estimated by

using another 300 bootstrap replications. The coverage rates and median of the lengths of

the conÖdence intervals for the structural IRFs up to Öve periods are reported. As a com-

parison, the results obtained by using the asymptotic normal approximations are reported

as well (denoted by ìNormalî).

Tables 1 and 2 show the results of Procedures A, B, and the asymptotic approximations

under ìGaussianî and ìChi,î respectively. In Table 1, we observe that the coverage rate of

Procedure A is close to the nominal level of 95% in most cases. We see errors in the coverage

rate at h = 0 when ID2 or ID3 is used; however, the coverage rate improves as the sample size

increases. Procedure B also reports a satisfactory coverage rate, but it tends to undercover in

many cases compared with Procedure A because the interval of Procedure B does not account

for the factor estimation errors. In theory, the undercoverage of Procedure B would be most

distinct in the case of a larger T and a smaller N , where the condition
p
T=N ! 0 is less

appropriate. This is most clearly evidenced when ID2 or ID3 is used or over longer horizons

in ID1. On the contrary, the length of Procedure B is always shorter than that of Procedure

A as our theory predicts. Table 2 shows that the Öndings of both bootstrap procedures

are robust even when the errors follow the chi-square distribution. Finally, the asymptotic

normal interval tends to show the coverage errors as the time horizon increases (see Tables

1 and 2). Further, the normal approximation becomes exacerbated when the errors are not

5More precisely, by doing this, the 2( 2 matrices of the short-run structural IRF '1:2;0 = &1:2B and the
long-run structural IRF '1:2;1 = &1:2[I2 * #]"1B are upper triangular matrices.
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normally distributed (see Table 2). Table 3 reports the results under ìHetero.î Here, we use

the wild bootstrap of GonÁalves and Perron (2014) by modifying step 2 of the algorithms

in section 4.1 such that e!k;t = êk;t]
e
k;t and u

!
i;t = ûi;t]

u
i;t, where ]

e
k;t and ]

u
i;t are independent

draws from the standard normal distribution at all k; i; and t. The results in Table 3 are

similar to those in Tables 1 and 2, although when ID2 or ID3 is used, the coverage rate at

h = 0 is unstable. In Table 4, we further investigate the cases of small N to assess how

di§erently the two bootstrap procedures behave. In particular, we set (T;N) = (120; 10);

(120; 30); (240; 10); and (240; 30). We focus on the Gaussian case. We now observe more

signiÖcant undercoverage in Procedure B, while Procedure A can mitigate the problem.

5.2 Monte Carlo simulation using empirical data

Finally, we present an empirical experiment to ascertain the robustness of the obtained re-

sults by using actual economic data. To this end, we use 129 monthly US macroeconomic

time series investigated by McCracken and Ng (2015).6 Although the data span the period

from January 1960 to December 2014,7 we use the data up to December 2007 to exclude

the Önancial crisis period in which some series exhibit explosive behaviors.8 All series are

transformed into stationary processes following them, and outliers are removed by using

the method proposed by Yamamoto (2015).9 In addition, the data are demeaned and stan-

dardized to have unit standard deviations. We use a model with two factors and the lag

order four, although slight variations in the number of factors and lag order do not a§ect

the qualitative results. We also Önd that the Örst factor is closely related to real economic

activity measures (e.g., production) and that the second factor has a stronger correlation

with the price variables. This Önding is consistent with those of Sargent and Sims (1977)

and Stock and Watson (2005). Hence, for identiÖcation, we assume that the producer price

index is contemporaneously a§ected by the second factor but not by the Örst factor. We

select the order of the VAR to be four. The models are then identical to those described in

the previous subsection, except with a higher lag order.

6These data can be downloaded from the authorís website. The original data consist of 133 series; however,
four series (real manufacturing and trade industries sales, new orders for consumer goods, new orders for
nondefense capital goods, and consumer sentiment index) are not available for the full sample and thus they
are omitted from our data set.

7The original data set starts from January 1959, but Öve series of new private housing permits are available
from January 1960; hence, we use all other series from January 1960 as well.

8If we include the Önancial crisis period, the stationary assumption of the VAR model is violated.
9This method corrects outliers that exceed Öve times the standard error estimate in the Öltered individual

series.
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The aim here is to evaluate the coverage properties of Procedures A and B. However, the

coverage probabilities of the conÖdence intervals constructed from the actual data cannot

be calculated. Hence, we use the following calibration experiment in order to replicate an

approximation of the actual data-generating process.

1. Estimate the model and obtain the coe¢cient estimates and residuals.

2. Generate the quasi-observations from the calibrated model with the error terms re-

sampled from fêtg and fûtg with replacement. The fêtg are orthonormalized by
est = êt6̂e

%1=2, where 6̂e%1=2 is the Cholesky-decomposed covariance matrix of êt. This

allows est to be interpreted as a structural innovation.

3. By using each generated data set, construct 95% conÖdence intervals for the IRFs using

the proposed bootstrap procedure with 599 repetitions and see if the true (calibrated)

IRFs are included in the estimated interval. In doing so, we allow for heteroskedasticity

in fûtg and use the wild bootstrap.

4. Repeat steps 2 and 3 3; 000 times to evaluate the coverage rates.

We consider the IRFs of ináation (CPI: all items), short-term interest rate (3-month

Treasury bill), a production index (Industrial Production Index), and the unemployment

rate (Civilian Unemployment Rate) to the Örst factor shock. Table 5-a provides the coverage

rates for the IRFs for 8 periods using Procedures A and B and Table 5-b shows the median

length of the conÖdence intervals over the replications. Procedure A yields coverage rates

very close to the 95% nominal level for all four variables. Therefore, the good Önite sample

properties of this bootstrap procedure are conÖrmed by this calibrated experiment. The

coverage rates of Procedure B tend to be below the nominal level, as the theory suggests.

Hence, the results are also consistent with the theoretical Öndings in this empirical example.

6 Conclusions

This paper discussed how to design residual-based bootstrap methods for the conÖdence

interval of structural IRFs in FAVARs. The methods are based on the bootstrap procedure

for factor-augmented models suggested by GonÁalves and Perron (2014) and are extended

into the context of structural FAVARs. We compared procedures with and without factor

estimation in the bootstrap repetitions. In theory, both procedures are asymptotically valid
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under a condition
p
T=N ! 0, where N and T are the cross-sectional dimension and the time

dimension, respectively. Even when
p
T=N ! 0 is irrelevant, Procedure A still accounts for

the e§ect of the factor estimation errors on the IRF estimate and achieves good coverage rates

in most cases. On the contrary, Procedure B is invalid in such cases and tends to undercover

if N is much smaller than T . However, Procedure B is implemented more straightforwardly

from the standard structural VARs and the length of the conÖdence interval is shorter than

that of Procedure A in Önite samples. Given that Procedure B still gives a satisfactory

coverage rate unless N is very small, it remains in consideration of empirical use, although

using Procedure A is safer as it correctly accounts for the e§ect of the factor estimation

errors.
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Appendix A: Proof of Theorems

In this appendix, the subscript NT for the PC rotation matrix HNT is suppressed and it
is denoted by H.

Lemma 1. Under Assumptions A, B, and C, the following hold for j = 0; 1; & & & ; p.
(a) T%1

PT
t=j+1

444F̂t *HFt

444
444F̂t%j *HFt%j

444 = Op(0
%2);

(b) T%1
PT

t=j+1(F̂t *HFt)
0Ft%j = Op(0

%2);

(c) T%1
PT

t=j+1(F̂t%j *HFt%j)
0Ft = Op(0

%2);

(d) T%1
PT

t=j+1(F̂t *HFt)
0F̂t%j = Op(0

%2);

(e) T%1
PT

t=j+1(F̂t%j *HFt%j)
0F̂t = Op(0

%2);

(f) T%1
PT

t=j+1(F̂t%j *HFt%j)
0et = Op(0

%2);

(g) T%1
PT

t=j+1(F̂t *HFt)
0ut = Op(0

%2):

Proof of Lemma 1: Part (a) is a direct consequence of Lemma A1(a) of Bai and Ng
(2006). For j = 1; & & & ; p, the Cauchy-Schwarz inequality yields

PT
t=j+1

444F̂t *HFt

444
444F̂t%j *HFt%j

444 $
r
PT

t=j+1

444F̂t *HFt

444
2
r
PT

t=j+1

444F̂t%j *HFt%j

444
2

;

but this is Op(T0
2). For parts (b) and (c), Lemma A1(b) of Bai and Ng (2006) is also directly

applied to get

T%1
PT

t=j+1(F̂t *HFt)
0Ft%j = Op(0

%2) for j = 0; 1; & & & ; p;

T%1
PT

t=j+1(F̂t%j *HFt%j)
0Ft = Op(0

%2) for j = 1; & & & ; p:

For parts (d) and (e), if we apply parts (a), (b), and (c) to the equations

PT
t=j+1(F̂t *HFt)

0F̂t%j =
PT

t=j+1(F̂t *HFt)
0Ft%j *

PT
t=j+1(F̂t *HFt)(F̂t%j *HFt%j);

PT
t=j+1(F̂t%j *HFt%j)

0F̂t =
PT

t=j+1(F̂t%j *HFt%j)
0Ft *

PT
t=j+1(F̂t%j *HFt%j)(F̂t *HFt);

we obtain the results. Part (f) directly follows from Lemma A1 (iv) of Bai and Ng (2006).
Part (g) is the same as Baiís (2003) Lemma B1, which is shown under weaker assumptions
than ours.

Lemma 2. Under Assumptions A, B, and C, ê
0ê
T
*Q%106eQ

%1 = Op(0
%2).
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Proof of Lemma 2: First, we expand the residuals ê.

ê = F̂ * Ẑ.̂ = FH 0 + (F̂ * FH 0)* Ẑ.̂;

= eH 0 + Z.H 0 + (F * FH 0)* Ẑ.̂;

= eH 0 + (F̂ * FH 0) +
h
Z(Ip ,H 0)* Ẑ

i
(Ip ,H 0%1).H 0

+Ẑ
h
(Ip ,H 0%1).H 0 * .̂

i
: (A.1)

Then,

ê0ê=T = H (e0e=T )H 0 + T%1(F̂ * FH 0)0(F̂ * FH 0)

+H.0(Ip ,H 0%1)0T%1
h
(Z(Ip ,H 0)* Ẑ)0(Z(Ip ,H 0)* Ẑ)

i
(Ip ,H 0%1).H 0

+
h
(Ip ,H 0%1).H 0 * .̂

i0
T%1Ẑ 0Ẑ

h
(Ip ,H 0%1).H 0 * .̂

i
+ cross terms,

= H(e0e=T )H 0 + I + II + III + cross terms. (A.2)

By using Lemma 1(a), kIk = Op(0
%2) and kIIk = Op(0

%2). Further, kIIIk = Op(T
%1) by

using (A.5). Note that (A.5) is shown later without using this result. The cross terms are
C + C 0, where

C = He0(F̂ * FH 0)=T| {z }
Op(;#2)

+H
'
e0
h
Z(Ip ,H 0)* Ẑ

i
=T
(

| {z }
Op(;#2)

(Ip ,H 0%1).H 0

+H
'
e0Ẑ=T

(

| {z }
Op(T#1=2)

h
(Ip ,H 0%1).H 0 * .̂

i

| {z }
Op(T#1=2)| {z }

Op(T#1)

+
'
(F̂ * FH 0)0

h
Z(Ip ,H 0)* Ẑ

i
=T
(

| {z }
Op(;

#2)

(Ip ,H 0%1).H 0

+
h
(F̂ * FH 0)Ẑ=T

i

| {z }
Op(;

#2)

h
(Ip ,H 0%1).H 0 * .̂

i

| {z }
Op(T#1=2)

+H.0(Ip ,H 0%1)0
6h
Z(Ip ,H 0)* Ẑ

i0
Ẑ=T

7

| {z }
Op(;

#2)

h
(Ip ,H 0%1).H 0 * .̂

i

| {z }
Op(T#1=2)

;

so that C = Op(0
%2).

Lemma 3: Under Assumptions A, B, C, and Dí, B̂ constructed by (ID) satisÖes
444B̂ *HB

444 p!
0 as N; T !1.
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Proof of Lemma 3: We Örst show that Assumption Dí implies Assumption D. To
this end, we show that under Assumptions Dí (a) and (b), Q%1 becomes a diagonal matrix.
Combining this fact and the fact that B is triangular according to Assumption Dí (c) yields
the result. The proof is similar to Bai and Ngís (2013) PC1 condition. We start with

F̂ 0F=T = (F̂ * FH 0)0F +HF 0F=T = HF 0F=T +Op(0
%2):

DeÖne HF = (F
0F=T )H. From the deÖnition of H,

H = V %1
NT (F̂

0F=T )(-0-=N) = V %1
NTH

0
F (-

0-=N) +Op(0
%2);

so that multiplying by F 0F=T on both sides gives

HF = V %1
NTH

0
F (-

0-=N)(F 0F=T ) +Op(0
%2):

Multiplying by VNT on each side and taking the transpose gives

(F 0F=T )(-0-=N)HF = HFVNT +Op(0
%2):

Denote Q%1F = 6FQ
%1 where 6F = p limT!1 F

0F=T . In the limit,

6F6(Q
%1
F = Q%1F V;

with V ) p lim
N;T!1

VNT . This equation suggests that Q%1F is a matrix consisting of the eigen-

vectors of 6F6(. Since 6F6( is diagonal according to Assumptions Dí (a) and (b) and it
has distinct eigenvalues under Assumption A(b), each eigenvalue is associated with a unique
eigenvector, and each eigenvector has a single nonzero element. This implies that Q%1F is
diagonal. Now, since 6F is diagonal and so is Q%1F , as shown above, Q

%1 = 6FQ
%1
F is a

diagonal matrix. Finally, it is straightforward to obtain
444B̂ *HB

444 = kChol (ê0ê=T )*HBk ;

! p

44Chol(Q%10BB0Q%1)*Q%10B
44 ;

= 0;

where the second line uses Lemma 2 and 6e = BB0. The third line uses the triangularity of
Q%10B and the sign restriction.

Proof of Theorem 1: We show the results for the individual structural parameters ?si
and .s. First, the reduced-form estimate ?̂i is expanded into the following form (see Bai,
2003, proof of Theorem 2):

?̂i = H 0%1?i + T%1HF 0ui + T%1F̂ 0(F * F̂H 0%1)?i + T%1(F̂ * FH 0)0ui: (A.3)

Lemma 3 tells us that " = Ŝ *HS p! 0, which in turn implies that ` = Ŝ%1*S%1H%1 p! 0.
Then, the estimate for the structural parameter ?si = S 0?i is given by

?̂
s

i = Ŝ 0?̂i = S 0?i + "0H 0%1?i + T%1S 0H 0HF 0ui + T%1"0HF 0ui

+T%1Ŝ 0F̂ 0(F * F̂H 0%1)?i + T%1Ŝ 0(F̂ * FH 0)0ui: (A.4)
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Rearranging the terms in (A.4) gives

?̂
s

i * ?si = T%1S 0H 0HF 0ui + "0H 0%1?i + T%1"0HF 0ui

+T%1Ŝ 0F̂ 0(F * F̂H 0%1)?i + T%1Ŝ 0(F̂ * FH 0)0ui;

= I + II + III + IV + V:

Since I = Op(T
%1=2), II = op(1), III = op(T

%1=2) according to Assumption B(e) and Lemma
3 and IV; V = Op(0

%2) from Lemma 1 (d) and (g), it is shown that ?̂
s

i * ?si
p! 0. For .s,

the least squares estimate for . is given by

.̂ =
'
Ẑ 0Ẑ

(%1 '
Ẑ 0F̂

(
;

=
'
Ẑ 0Ẑ

(%1 '
Ẑ 0FH 0

(
+
'
Ẑ 0Ẑ

(%1
Ẑ 0(F̂ * FH 0);

=
'
Ẑ 0Ẑ

(%1 h
Ẑ 0Z(Ip ,H 0)(Ip ,H 0%1).H 0 + Ẑ 0eH 0

i
+
'
Ẑ 0Ẑ

(%1
Ẑ 0(F̂ * FH 0);

=
'
Ẑ 0Ẑ

(%1 h
Ẑ 0Ẑ(Ip ,H 0%1).H 0

i
+
'
Ẑ 0Ẑ

(%1 '
Ẑ 0eH 0

(

+
'
Ẑ 0Ẑ

(%1 h
Ẑ 0(Z(Ip ,H 0)* Ẑ)(Ip ,H 0%1).H 0

i
+
'
Ẑ 0Ẑ

(%1
Ẑ 0(F̂ * FH 0);

= (Ip ,H 0%1).H 0 +
'
T%1Ẑ 0Ẑ

(%1 )
T%1(Ip ,H)Z 0eH 0*

+
'
T%1Ẑ 0Ẑ

(%1 h
T%1(Ẑ * Z(Ip ,H 0))0eH 0

i

+
'
T%1Ẑ 0Ẑ

(%1 h
T%1Ẑ 0(Z(Ip ,H 0)* Ẑ)(Ip ,H 0%1).H 0

i

+
'
T%1Ẑ 0Ẑ

(%1 h
T%1Ẑ 0(F̂ * FH 0)

i
: (A.5)

Since T%1Ẑ 0Ẑ = Op(1), the last three terms in (A.5) are Op(0
%2) using Lemma 1. The

estimate for the structural parameter .s = (Ip ,B0).B0%1 is then

(Ip , B̂0).̂B̂0%1 = (Ip ,B0).B0%1 + (Ip ,B0H 0)(T%1Ẑ 0Ẑ)%1
)
T%1(Ip ,H)Z 0eB0%1*

+(Ip ,B0)
h
.H 0 + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0eH 0

i
`0

+(Ip , "0)[(Ip ,H 0%1). + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0e]B0%1

+(Ip , "0)
h
(Ip ,H 0%1). + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0eH 0

i
`0

+(Ip ,B)[T%1Ẑ 0(F̂ * FH 0)]B0%1; (A.6)
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or

.̂s * .s = (Ip ,B0H 0)(T%1Ẑ 0Ẑ)%1
8
T%1(Ip ,H

9
Z 0eB0%1)

+(Ip ,B0)
h
.H 0 + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0eH 0

i
`0

+(Ip , "0)[(Ip ,H 0%1). + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0e]B0%1

+(Ip , "0)
h
(Ip ,H 0%1). + (T%1Ẑ 0Ẑ)%1T%1(Ip ,H)Z 0eH 0

i
`0

+(Ip ,B)[T%1Ẑ 0(F̂ * FH 0)]B0%1;

= I + II + III + IV + V:

Since I = Op(T
%1=2), II, III; IV = op(1) according to Lemma 3, and V = Op(0

%2) from
Lemma 1(a), we obtain .̂s*.s p! 0. These imply the result for the structural IRF estimate
'̂i;h * 'i;h

p! 0, for any i.

Lemma 4: Let â = vech
8
ê0ê
T

9
and a = vech (Q%10SS 0Q%1). Then,
p
T (â * a)

d! N(0;6<)

as N; T !1 and
p
T=N ! 0.

Proof of Lemma 4: This result is the same as the conventional structural VAR proven
by L¸tkepohl (2005) based on the Cholesky identiÖcation. The di§erence in this context is
that ê involves factor estimation errors, meaning that the expression of ê0êp

T
is (A.2), but, as

in Lemma 2, it is shown that the terms associated with the factor estimation errors are at
most Op(

p
T0%2) and are negligible when

p
T=N ! 0 under our assumptions. Hence, we

can apply this result, and the explicit form of 6< is given by

6< = 2D
+
r

)
(Q%10SS 0Q%1), (Q%10SS 0Q%1)

*
D+0
r ;

where D+
r = (D

0
rDr)

%1D0
r is the Moore-Penrose inverse of the duplication matrix Dr.

Proof of Theorem 2: Given that the reduced-form parameter estimates ?̂i and .̂ are
asymptotically normal as N; T !1 and

p
T=N ! 0 under Assumptions A and B (see Bai

and Ng, 2006) up to rotation and B̂ is asymptotically normal according to Lemma 4, the
delta method implies that the structural IRF is asymptotically normal with the variance
given in the theorem.

Theorems 3 and 4 are shown by using Lemmas BT1 to BT4. These lemmas are proven
by more primitive conditions than in Lemmas BT-B and BT-C, which are shown to hold in
Appendix B under Procedures A and B.

Lemma BT-B: Suppose Assumptions A, B, and C hold. Under the proposed bootstrap
Procedures A and B, the following holds:
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(a) E!(u!it) = 0 for all (i; t).

(b) T%1
PT

t=1

PT
s=1 jR

!
stj
2 = Op(1);where R!st = E!(N%1PN

i=1 e
!
ise

!
it). N

%1PN
i=1

PN
j=1

&&Q !ij
&&2 =

Op(1);where Q !ij = E!(e!ite
!
jt).

(c) T%2
PT

t=1

PT
s=1E

!
&&&N%1=2PN

i=1[u
!
isu

!
it * E!(u!isu

!
it)]
&&&
2

= Op(1).

(d) For each i, 7!%1=2i T%1=2
PT

t=1 F
!
t u

!
it
d!! N(0; Ir); in probability, where7!i ) V ar!

'
T%1=2

PT
t=1 F

!
t u

!
it

(

and p lim7!i = Q%107iQ
%1:

Lemma BT-C: Suppose Assumptions A, B, and C hold. Under the proposed bootstrap
Procedures A and B, the following holds:

(a) E!(e!t ) = 0; E
! ke!tk

2 = Op(1), and e!t and e
!
s are independent for all t 6= s.

(b) 6!%1=2T%1=2
PT

t=p+1 vec(Z
!
t e
!0
t )

d! N(0; Ipr2), in probability, where6! ) V ar!
'

1p
T

PT
t=1 Z

!
t e
!0
t

(
,

where p lim6! = [(Ip ,Q%10) 6Z (Ip ,Q%1)], (Q%106eQ%1), in probability.

(c) The roots of det(Ir * .̂1z * .̂2z2 * & & & * .̂pzp) = 0 lie outside the unit circle.

Lemma BT1. Under Assumptions A and B and Conditions BT1 and BT2, the following
conditions hold for j = 0; 1; & & & ; p:
(a) T%1

PT
t=j+1

444F̂ !t *H!F !t

444
444F̂ !t%j *H!F !t%j

444 = Op!(0
%2).

(b) T%1
PT

t=j+1(F̂
!
t *H!F !t )F̂

!0
t%j = Op!(0

%2):

(c) T%1
PT

t=j+1(F̂
!
t%j *H!F !t%j)F̂

!0
t = Op!(0

%2):

(d) T%1
PT

t=j+1(F̂
!
t *H!F !t )F

!0
t%j = Op!(0

%2):

(e) T%1
PT

t=j+1(F̂
!
t%j *H!F !t%j)F

!0
t = Op!(0

%2):

(f) T%1
PT

t=j+1(F̂
!
t%j *H!F !t%j)e

!0
t = Op!(0

%2):

(g) T%1
PT

t=1(F̂
!
t *H!F !t )u

!
it = Op!(0

%2); in probability.

Proof of Lemma BT1: As shown in Lemma A1, we only prove the case of j = 0. We
have

F̂ !t *H!F !t = V !%1
'
T%1

PT
s=1 F̂

!
s R

!
st + T%1

PT
s=1 F̂

!
s b

!
st + T%1

PT
s=1 F̂

!
s ]

!
st + T%1

PT
s=1 F̂

!
s ]

!
ts

(
;

= V !%1 (A!1t + A!2t + A!3t + A!4t) ;
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where V ! = Op!(1),

R!st = E!
'
N%1PN

i=1 u
!
isu

!
it

(
;

b!st = N%1PN
i=1[u

!
isu

!
it * E(u!isu

!
it)];

]!st = N%1PN
i=1 ?̂

0
iF

!
s u

!
jt:

For part (a),

T%1
PT

t=1

444F̂ !t *H!F !t

444
2

$ 4T%1
P4

k=1

PT
t=1 kAktk

2 :

For the term of A!1t,

T%1
PT

t=1 kA
!
1tk

2 $ T%1(T%1
PT

s=1

444F̂ !s
444
2

)(T%1
PT

t=1

PT
s=1 R

!2
st );

= T%1 ( I ( II;

but I is r according to the property of PC and II is Op(1) from Lemma BT-B(b). Hence,
this is Op(T%1). For the term of A!2t,

T%1
PT

t=1 kA
!
2tk

2 $ (T%1
PT

s=1

444F̂ !s
444
2

)(T%2
PT

t=1

PT
s=1 b

!2
st );

= I ( II;

but I is r and II is Op!(N%1) from Lemma BT-B(c). Hence, this is Op!(N%1). For the term
of A!3t,

T%1
PT

t=1 kA
!
3tk

2 = T%1
PT

t=1 T
%2

44444
PT

s=1 F̂
!
s F

!0
s

-̂0u!t
N

44444 ;

$

0

@T%1
PT

t=1

44444
-̂0u!t
N

44444

2
1

A
444T%1

PT
s=1 F̂

!
s F

!0
s

444 ;

= I ( II;

but I = Op!(N
%1) according to the independence between ?̂i and u!it and II is Op(1) and

II = Op!(1). Hence, this is Op!(N%1). For parts (b) and (c),

T%1
PT

t=1(F̂
!
t *H!F !t )F̂

!0
t =

P4
k=1 b

!
k;

where

b!1 = T%1
PT

t=1A1tF̂
!0
t $ (T

%1PT
t=1 kA

!
1tk

2

| {z })
=Op(T#1)

1=2
(T%1

PT
t=1

444F̂ !t
444
2

| {z }
=r

)1=2;

b!2 = T%1
PT

t=1A2tF̂
!0
t $ (T

%1PT
t=1 kA

!
2tk

2

| {z })
Op(N#1)

1=2
(T%1

PT
t=1

444F̂ !t
444
2

| {z }
=r

)1=2;

b!3 = T%1
PT

t=1A3tF̂
!0
t $ (T

%1PT
t=1 kA

!
3tk

2

| {z }
=Op(N#1)

)1=2(T%1
PT

t=1

444F̂ !t
444
2

| {z }
=r

)1=2;
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and the order of b!4 is the same as that of b
!
3. Therefore, T%1

PT
t=1(F̂

!
t * H!F !t )F̂

!0
t =

Op(T
%1) + Op(N

%1) and the result follows. The proof of parts (d) and (e) is the same as

that of parts (b) and (c) but changes T%1
PT

t=1

444F̂ !t
444
2

= r into T%1
PT

t=1 kF
!
t k

2 = Op!(1),

which is satisÖed by Lemma BT-C(c). Part (f) is shown by using T%1
PT

t=1 ke
!
tk
2 = Op!(1)

according to Lemma BT-C(a). Part (g) is shown by using T%1
PT

t=1 u
!2
it = Op!(1) from

Lemma BT-B(a).

Lemma BT2. Suppose Assumptions A, B, C, and D hold. Then,
(a)

444B̂! *H!B̂
444 p!! 0 in probability as N; T !1;

(b)
444B̂!! * B̂

444 p!! 0 in probability as N; T !1.

Proof of Lemma BT2: This proof requires two steps. Step 1 shows that the identifying
restrictions hold in the bootstrap space, i.e. the same restrictions are relevant as in the limits
of the original estimates. Step 2 conÖrms the convergence results used to prove Lemma 2 in
the bootstrap space.
Step 1: We show that the following conditions analogous to Assumption Dí hold: 1.

F !0F !=T
p!! Ir in probability; 2. -̂0-̂=N is a diagonal matrix; 3. B̂ is an upper or lower

triangular matrix, and the signs of the diagonal elements of Q!%10B̂ are known. 1 is because
F !0F !=T

p!! F̂ 0F̂ =T = Ir. 2 is because -̂0-̂=N = VNT by construction of the PCs and VNT is
a diagonal matrix. The triangularity of B̂ in 3 holds because B̂ = Chol

8
ê0ê
T

9
. Finally, the

signs are deduced in the bootstrap replications from the signs of the structural IRF estimates
as in the original estimates. Hence, Assumption D holds in the bootstrap space. This gives
the fact that Q!%10B̂ is a triangular matrix and the signs of its diagonal matrix are known.
Step 2 (Procedure A): We Örst ensure that

kê!0ê!=T *H!(e!0e!=T )H!0k = Op(0
%2);

by following the same discussion as Lemma 2 given Lemma BT1 and (A.11). Then, we
obtain 444B̂! *H!0B̂

444 = jjChol (ê!0ê!=T )| {z }
!Q"#10B̂B̂0Q"#1| {z }
Q"#10B̂

* H!0Ŝ| {z } jj
!Q"#10B̂

p!! 0

in probability, using the facts E!(e!0e!=T ) = B̂B̂0; Q!%10B̂ is triangular and the sign restric-
tions hold.
Step 2 (Procedure B): We Örst show that

kê!!0ê!!=T * e!0e!=Tk = op(1);
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by following standard OLS estimates (because no factor estimation is involved in Procedure
B). Hence, 444B̂!! * B̂

444 = jjChol(ê!!0ê!!=T )| {z }
!B̂B̂0| {z }

B̂

* B̂jj p!! 0

in probability, by using E!(e!0e!=T ) = B̂B̂0.

Lemma BT3: Suppose Assumptions A, B, C, and D hold. a. Let â! = vech
8
H!%1 ê"0ê"

T
H!0%1

9

and ea = vech
'
B̂B̂0

(
. Then,

p
T5

!%1=2
B (â! * ea) d! N(0; Ir(r+1)=2);

in probability as N; T ! 1 and
p
T=N ! 0. Moreover, p lim(6!<) = 6<. b. Let â

!! =

vech
8
ê""0ê""

T

9
and ea = vech

'
B̂B̂0

(
. Then,

p
T5

!!%1=2
B (â!! * ea) d! N(0; Ir(r+1)=2);

in probability as N; T !1. Moreover, p lim(5!!B ) = 5B.

Proof of Lemma BT3: Part (a) is a bootstrap analog of Lemma 4 and the proof di-
rectly follows its proof by replacing the original entities with the bootstrap counterparts. Part
(b) straightforwardly follows L¸tkepohl (2005) because under Procedure B the VAR residu-
als do not include the factor estimation errors. From Lemma 2, p lim(B̂B̂0) = Q%10BB0Q%1

so that p lim(5!B) = 5B and p lim(5
!!
B ) = 5B.

Lemma BT4: Suppose Assumptions A, B, C, and D hold. Then, H!0H! p!! Ir in
probability as N; T !1.

Proof of Lemma BT4: First,

F̂ !0F !=T = (F̂ ! * F !H!0)0F !=T +H!F !0F !=T;

then,
H!0 = H!0 *H!0F !0F !=T + F̂ !0F !=T * (F̂ ! * F !H!0)0F !=T: (A.7)

Right multiplying (A.7) by H! yields

H!0H! = [H!0H! *H!0(F !0F !=T )H!] + F̂ !0F̂ !=T

+F̂ !0(F !H!0 * F̂ !)=T * (F̂ ! * F !H!0)0F !H!=T;

= I + II + III + IV:
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Since F "0F "

T

p!! F̂ 0F̂
T
= Ir in probability, I = op!(1), II = Ir by construction, and III; IV =

Op!(0
%2) by Lemma BT1.

Proof of Theorem 3: We equivalently show that
p
T ('̂ih * 'ih)

d! N(0;5'ih) andp
T ('̂!ih * '̂ih)

d"! N(0;5'ih) in probability as N; T !1 and
p
T=N ! 0. In the Örst step,

we conÖrm that '̂!ih* '̂ih = op!(1) in probability by showing that it holds for the individual
parameters ?si and .

s. In the second step, we work on the limit distributions. First, let
"! = B̂! * H!B̂ = op!(1) in probability by Lemma BT2(a). This implies `

! = op!(1) in
probability. For ?si ,

?̂
s!
i * ?̂

s

i = T%1B̂!0H!0H!F !0u!i + "!0H!0%1?̂i + T%1"!0H!F !0u!i

+T%1B̂!0F̂ !0(F ! * F̂ !H!0%1)?̂i + T%1B̂!0(F̂ ! * F !H!0)0u!i ; (A.8)
= I + II + III + IV + V:

This is the bootstrap counterpart of (A.4). Hence, I = Op!(T
%1=2) from Lemma BT-B(d),

II = op!(1) from Lemma BT2(a), III = op!(T
%1=2) from Lemma BT-B(d) and Lemma

BT2(a), and IV , V = Op!(0
%2) from Lemma BT1 in probability. Hence, the RHS of (A.8)

is op!(1) in probability as N; T !1. For .s, it follows that

.̂s! * .̂s = (Ip , B̂0H!0)(T%1Ẑ!0Ẑ!)%1[T%1(Ip ,H!Z!0e!B̂0%1]

+(Ip , B̂0)
h
.̂H!0 + (T%1Ẑ!0Ẑ!)%1(Ip ,H!)Z!0e!H!0

i
`!

+(Ip , "!0)[(Ip ,H!0%1).̂ + (T%1Ẑ!0Ẑ!)%1T%1(Ip ,H!)Z!0e!]B̂0%1

+(Ip , "!0)
h
(Ip ,H!0%1).̂ + (T%1Ẑ!0Ẑ!)%1T%1(Ip ,H!)Z!0e!H!0

i
`!

+(Ip , B̂0)[T%1Ẑ!0(F̂ ! * F !H!0)]B̂0%1; (A.9)
= I + II + III + IV + V;

in probability under Lemma BT1. Now, (A.9) is analogous to (A.6). It is similarly shown
that I = op!(T

%1=2) and II, III, and IV are all op!(1) in probability under Lemma BT2.
V = Op!(0

%2) according to Lemma BT1. Hence, .̂s! * .̂s = op!(1) in probability. These
two facts imply '̂!ih * '̂ih

p!! 0 in probability as N; T ! 1. The second step involves
the limit distributions. I hypothetically consider the ìrotation-adjustedî version of the
reduced-form parameter estimates induced by H! in the bootstrap space. SpeciÖcally, the
rotation-adjusted estimates of ?̂

!
i , .̂

!, and B̂! are H!0?̂
!
i , (Ip , H!0).̂!H!0%1, and H!%1B̂!,

respectively. Given the fact that the structural IRF is identiÖed, all the H!s are eventually
cancelled out in the structural IRF estimate. For ?i, I construct a bootstrap analogue of
(A.3) left-multiplied by H!0 and scaled by

p
T :

p
T (H!0?̂

!
i *H!0H!0%1?̂i)

= T%1=2H!0H!F !0u!i + T%1=2H!0F̂ !0(F ! * F̂ !H!0%1)?̂i + T%1=2H!0(F̂ ! * F !H!0)0u!i ;

= T%1=2H!0H!F !0u!i +Op!(T
1=20%2) +Op!(T

1=20%2) (A.10)
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in probability from Lemma BT1, so that

p
T (H!0?̂

!
i * ?̂i)

d!! N(0; Q%107iQ
%1)

in probability as N; T ! 1 and
p
T=N ! 0 under Lemmas BT-B (i) and (j) and Lemma

BT4. For ., constructing a bootstrap analogue of (A.5) left-multiplied by (Ip ,H!0), right-
multiplied by H!0%1, and scaled by

p
T gives

p
T [(Ip ,H!0).̂!H!0%1 * (Ip ,H!0H!0%1).̂H!0H!0%1]

= T%1=2(Ip ,H!0)
'
T%1Ẑ!0Ẑ!

(%1
[Z!(Ip ,H!0)]

0
e!H!0H!0%1

+T%1=2(Ip ,H!0)
'
T%1Ẑ!0Ẑ!

(%1 h
Ẑ! * Z!(Ip ,H!0)

i0
e!H!0H!0%1

+T%1=2(Ip ,H!0)
'
T%1Ẑ!0Ẑ!

(%1
Ẑ!0(Z!(Ip ,H!0)* Ẑ!)(Ip ,H!0%1).̂H!0H!0%1

+T%1=2(Ip ,H!0)
'
T%1Ẑ!0Ẑ!

(%1
Ẑ!0(F̂ ! * F !H!0)H!0%1;

= T%1=2(Ip ,H!0)
'
T%1Ẑ!0Ẑ!

(%1
[Z!(Ip ,H!0)]

0
e!

+Op!(T
1=20%2) +Op!(T

1=20%2) +Op!(T
1=20%2) (A.11)

in probability under Lemma BT1. Since

T%1Ẑ!0Ẑ! = T%1[Z!(Ip ,H!0)]0Z!(Ip ,H!0)

+T%1
h
Ẑ! * Z!(Ip ,H!0)

i0
Z!(Ip ,H!0)

+T%1 [Z!(Ip ,H!0)]
0
h
Ẑ! * (Ip ,H!0)Z!

i
;

= T%1(Ip ,H!)Z!0Z!(Ip ,H!0) +Op!(T
1=20%2)

in probability, we obtain

p
T
h
(Ip ,H!0).̂!H!0%1 * .̂

i
;

= T%1=2(Ip ,H!0)(Ip ,H!)(Z!0Z!=T )(Ip ,H!0)(Ip ,H!)Z!0e! +Op!(T
1=20%2);

=
8
T%1Z!0Z!

9%1
T%1=2Z!0e! +Op!(T

1=20%2);

in probability by using Lemma BT4. Hence,

p
Tvec

h
(Ip ,H!0).̂!H!0%1 * .̂

i
d!! N(0; [Ir , 6%1Z!]

06![Ir , 6%1Z!]);

with 6Z! = p limZ!0Z!=T as N; T !1 and
p
T=N ! 0 under Lemma BT-C(b). Since

6Z!
p! (Ip ,Q%10)6Z(Ip ,Q%1)
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in probability, and the probability limit of 6! is given in Lemma BT-C(b),
p
Tvec

h
(Ip ,H!0).̂!H!0%1 * .̂

i

d!! N(0; [(Ip ,Q%10)6Z(Ip ,Q%1)]%1

(
)
(Ip ,Q%10)6Z(Ip ,Q%1)], [Q%106eQ%1

*

([(Ip ,Q%10)6Z(Ip ,Q%1)]%10)

in probability. Finally, forB, the rotation-adjusted version of B̂! isH!%1B̂! and
p
Tvech(H!%1B̂!*

B̂)
d!! N(0;5B) in probability from Lemma BT3(a). For the original estimate, it is straight-

forward to show from (A.3), (A.5), and Lemma 3 that
p
T (?̂i *H 0%1?i)

d! N(0; Q%107iQ
%1);

p
Tvec

h
.̂* (Ip ,H 0%1).̂H 0

i
d! N(0; [(Ip ,Q%10)6Z(Ip ,Q%1)]%1

([(Ip ,Q%10)6Z(Ip ,Q%1)], [Q%106eQ%1]
([(Ip ,Q%10)6Z(Ip ,Q%1)]%10);
p
Tvech(B̂ *HB)

d! N(0;5B);

and the result follows.

Proof of Theorem 4: With Procedure B, H! is not generated. Hence, we do not need
to introduce the rotation-adjusted parameter estimates. In addition, the expansions of the
bootstrap parameter estimates will have fewer terms in the absence of the factor estimation
errors. For ?si ,

?̂
s!!
i * ?̂

s

i = T%1Ŝ 0F !0u!i + "!!0?̂i + T%1"!!0F !0u!i = I + II + III: (A.12)

I = Op!(T
%1=2) under Lemma BT-B(d) and II; III = op!(1) in probability. For .s,

.̂s!! * .̂s = (Ip , B̂)(Z!0Z!)%1(Z!0e!B̂%1)

+(Ip , B̂)
h
.̂ + (Z!0Z!)%1Z!0e!

i
`!

+(Ip , "!)[.̂ + (Z!0Z!)%1Z!0e!]B̂%1

+(Ip , "!)
h
.̂ + (T%1Z!0Z!)%1T%1Z!0e!

i
`!

p!! 0

in probability. Next, consider the asymptotic distributions. For ?i,
p
T (?̂

!!
i * ?̂i) = T%1=2F !u!i

d!! N(0; Q%107iQ
%1)

in probability as N; T !1 from Lemma BT-B(d). For ., since

.̂!! * .̂ = (Z!0Z!=T )%1(Z!0e!=T );
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we obtain
p
Tvec(.̂!! * .̂) d!! N(0; [(Ip ,Q%10)6Z(Ip ,Q%1)]%1

(
)
(Ip ,Q%10)6Z(Ip ,Q%1)], [Q%106eQ%1

*

( [(Ip ,Q%10)6Z(Ip ,Q%1)]%10)

in probability as N; T ! 1, following the proof of Theorem 3. Finally, Lemma BT3(b)

guarantees
p
Tvech(B̂!! * B̂)

d!! N(0;5B) in probability as N; T !1.

Appendix B: Proof of Lemmas BT-B and BT-C

This appendix provides a proof that Lemmas BT-B and BT-C hold under Assumptions A,
B, and C and the bootstrapped residuals fu!tg and fe!tg generated by the proposed designs.
When we say that the cross-sectional dependence of fûtg is preserved in fu!tg, it means that
N%1=2PN

i=1 uit = Op(1) implies N%1=2PN
i=1 u

!
it = Op(1) in probability.

Proof of Lemma BT-B:We closely follow the proof of Conditions A!(a), A!(b), A!(c),
and D of GonÁalves and Perron (2014), but under the i.i.d. bootstrap scheme with ?i, Ft,
and ujs considered to be mutually independent. For part (a), E!(u!it) = 0 holds since the
procedure requires fûitg to be demeaned in the time and cross-sectional directions before
resampling. Part (b) is shown by the following. Since fu!tg is an independent sequence over
time, R!st = 0 for s 6= t so that

T%1
PT

t=1

PT
s=1 jR

!
stj
2 = T%1

PT
t=1 jR

!
ttj
2 = Op(1);

since jR!ttj =
&&&N%1PN

i=1 û
2
it

&&& = Op(1). The result for Q !ij is trivial since the cross-sectional

dependence in uit is preserved in u!it. For part (c), by using the fact that fu!itg is independent
from fu!isg for t 6= s

E!
&&&N%1=2PN

i=1 [u
!
isu

!
it * E! (u!isu

!
it)]
&&&
2

= N%1PN
i=1

PN
j=1Cov

!(u!isu
!
it; u

!
jsu

!
jt);

= N%1PN
i=1

PN
j=1E

!(u!isu
!
itu

!
jsu

!
jt);

= N%1PN
i=1

PN
j=1E

!(u!isu
!
js)E

!(u!itu
!
jt);

$ N%1PN
i=1

PN
j=1

&&Q !ij
&&2 = Op(1);

by using part (b) and the result follows. Finally, we show part (d). Since fu!itg is independent
over time with mean zero and E(u!2it ) = a2i and fF !t g and fu!itg are independent, the central
limit theorem holds with the covariance matrix

7!i = E!
h
T%1

PT
t=1 F

!
t F

!0
t u

!2
it

i
= .̂(L)E!

h
T%1

PT
t=1 e

!
t e
!0
t u

!2
it

i
.̂(L)0;

= H.(L)H%1E!
h
T%1

PT
t=1 e

!
t e
!0
t u

!2
it

i
H%10.(L)0H 0 + op!(1).
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Since

T%1
PT

t=1 e
!
t e
!0
t

p

u!2it ! p lim
h
T%1

PT
t=1 êtê

0
tû
2
it

i
= a2iQ

%106eQ
%1 in probability,

and it is shown that
7!i = a2iQ

%10.(L)6e.(L)
0Q%1;

where a2i.(L)6e.(L)
0 = 7i.

Proof of Lemma BT-C: For part (a), E!(e!t ) = 0 is trivial since the proposed algorithms
ensure that fêtg is demeaned. It also holds that E! ke!tk

2 = Op(1) and independence between
e!t and e

!
s for s 6= t holds because fe!tg is an i.i.d. resampling of fêtg by construction. For

part (b), the central limit theorem holds since fe!tg is an i.i.d. sequence. The covariance is
given by

T%1
PT

t=1 Z
!
t e
!0
t

p! p limT%1
PT

t=1 Ẑtê
0
t in probability

=
)8
Ip ,Q%10

9
6Z
8
Ip ,Q%1

9*
,
8
Q%106eQ

%19 .

For part (c), by Assumption C(e), the roots of det(Ir*.1z*.2z2*& & &.pzp) = 0 are outside
the unit circle. These roots are equivalent to the roots of

det(H 0%1) det(Ir * .1z * .2z2 * & & & * .pzp) det(H 0) = 0;

because det(H 0) and det(H 0%1) are nonzero. Hence, the roots are equivalent to those of

det[H 0%1(Ir * .1z * .2z2 * & & & * .pzp)H 0] = 0;

or those of
det(Ir *H 0%1.1H

0z *H 0%1.2H
0z2 * & & & *H 0%1.pH

0zp) = 0:

However, these are asymptotically equivalent to the roots of

det(Ir * .̂1z * .̂2z2 * & & & * .̂pzp) = 0;

as N; T !1 by (A.5).
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Table 1. Coverage properties of IRFs (Gaussian, 95% level)

ID1: recursive restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 92.6 94.1 90.5 94.1 94.4 95.3 1.18 1.41 1.02 0.75 0.52 0.37
40 200 93.2 93.4 90.6 93.5 93.9 94.8 1.17 1.40 1.02 0.75 0.54 0.38
120 50 91.0 95.8 94.0 92.7 92.6 93.3 0.72 0.84 0.61 0.38 0.23 0.14
120 200 91.5 95.9 93.7 93.0 93.1 93.7 0.72 0.85 0.63 0.40 0.24 0.15
40 50 90.8 89.6 86.7 92.5 94.8 95.8 1.09 1.30 0.92 0.66 0.47 0.33
40 200 92.0 88.3 86.4 92.8 95.1 95.9 1.09 1.29 0.91 0.66 0.47 0.34
120 50 88.5 92.7 89.9 89.1 90.5 92.8 0.67 0.78 0.56 0.35 0.21 0.12
120 200 89.8 92.1 89.0 89.6 91.0 92.4 0.68 0.78 0.57 0.36 0.22 0.13
40 50 93.8 92.0 86.8 84.6 85.0 83.9 1.24 1.36 0.88 0.49 0.26 0.13
40 200 94.3 91.4 87.4 85.1 84.9 84.4 1.24 1.35 0.87 0.49 0.26 0.14
120 50 90.6 93.7 92.0 90.0 88.7 87.9 0.71 0.80 0.55 0.31 0.16 0.08
120 200 91.3 93.4 91.8 90.0 88.9 88.4 0.71 0.79 0.57 0.33 0.17 0.09

ID2: short-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 85.7 97.2 96.7 97.1 97.0 97.5 0.68 2.44 1.25 0.70 0.40 0.24
40 200 88.3 97.8 97.3 97.7 97.6 98.0 0.64 2.28 1.30 0.79 0.47 0.29
120 50 90.2 98.0 97.0 96.4 95.7 95.5 0.41 0.72 0.44 0.24 0.12 0.06
120 200 92.8 98.8 98.6 98.3 98.1 98.1 0.37 0.64 0.46 0.28 0.16 0.09
40 50 83.8 96.8 95.4 96.3 95.7 96.7 0.54 1.16 0.70 0.44 0.27 0.17
40 200 85.7 96.8 96.2 97.2 97.0 97.2 0.53 1.22 0.84 0.57 0.37 0.25
120 50 85.9 95.3 92.1 91.2 92.4 92.7 0.34 0.49 0.32 0.18 0.10 0.05
120 200 91.2 97.0 96.2 95.9 96.2 96.5 0.34 0.50 0.37 0.23 0.13 0.08
40 50 98.5 89.7 85.6 81.0 78.4 76.1 1.54 0.71 0.35 0.17 0.07 0.03
40 200 99.4 92.1 87.7 85.0 83.1 82.8 1.68 0.76 0.40 0.20 0.10 0.05
120 50 98.6 89.5 81.5 77.6 76.1 74.9 0.99 0.42 0.21 0.10 0.04 0.02
120 200 99.5 93.8 87.8 84.7 82.9 82.2 1.06 0.45 0.23 0.12 0.06 0.03

ID3: long-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 86.3 96.2 96.1 96.7 96.8 97.4 2.94 2.95 1.54 0.87 0.48 0.28
40 200 84.9 96.5 96.6 97.1 97.2 98.0 2.84 2.62 1.57 0.96 0.57 0.34
120 50 91.2 97.2 96.4 95.8 95.3 95.3 0.95 0.72 0.47 0.26 0.14 0.07
120 200 88.1 97.3 97.7 97.4 97.2 97.4 0.84 0.59 0.47 0.29 0.16 0.09
40 50 87.8 96.1 92.8 95.8 95.5 97.6 1.88 1.15 0.71 0.47 0.28 0.17
40 200 87.1 95.4 92.9 95.4 96.3 97.5 2.00 1.13 0.84 0.58 0.38 0.25
120 50 91.7 95.2 88.8 88.2 89.7 91.3 0.79 0.42 0.29 0.17 0.09 0.05
120 200 91.1 95.2 92.8 92.9 93.9 95.2 0.81 0.40 0.33 0.21 0.13 0.07
40 50 97.2 91.8 87.7 82.5 80.0 77.2 1.91 0.81 0.38 0.18 0.08 0.04
40 200 98.0 94.6 90.3 87.0 85.6 84.0 1.80 0.79 0.41 0.21 0.10 0.05
120 50 95.2 93.5 84.7 80.2 78.0 76.2 1.11 0.45 0.22 0.10 0.05 0.02
120 200 97.9 96.6 91.4 87.1 84.7 83.7 1.09 0.46 0.23 0.12 0.06 0.03
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Table 2. Coverage properties of IRFs (Chi, 95% level)

ID1: recursive restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 90.7 93.8 91.8 93.5 94.0 94.3 1.69 1.45 1.02 0.72 0.50 0.34
40 200 90.2 94.9 92.5 94.5 94.8 95.4 1.70 1.43 1.02 0.74 0.51 0.36
120 50 94.1 96.0 93.9 93.0 93.0 93.5 1.17 0.90 0.62 0.39 0.23 0.13
120 200 94.7 96.4 94.6 93.4 93.7 94.1 1.17 0.91 0.63 0.39 0.23 0.14
40 50 88.3 89.5 87.7 92.5 94.8 95.5 1.50 1.31 0.92 0.65 0.45 0.32
40 200 87.5 90.5 87.9 93.4 95.7 96.7 1.53 1.31 0.92 0.66 0.46 0.33
120 50 91.4 92.9 90.2 89.3 90.3 92.1 1.09 0.84 0.57 0.35 0.21 0.12
120 200 92.0 92.4 89.9 89.9 91.1 93.1 1.09 0.84 0.57 0.36 0.21 0.13
40 50 85.6 91.0 88.0 86.4 85.9 84.6 1.34 1.35 0.87 0.48 0.25 0.12
40 200 84.8 91.6 88.2 87.3 87.2 86.1 1.33 1.34 0.87 0.48 0.26 0.13
120 50 80.8 92.1 92.0 90.7 89.1 87.7 0.77 0.80 0.56 0.31 0.16 0.08
120 200 80.3 91.7 91.8 90.9 89.4 88.9 0.78 0.80 0.56 0.32 0.16 0.08

ID2: short-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 78.9 95.3 95.0 95.9 95.5 96.7 0.99 3.45 1.39 0.74 0.38 0.22
40 200 82.2 96.8 96.1 96.7 96.9 97.9 0.97 3.75 1.78 0.99 0.54 0.33
120 50 84.8 95.6 94.4 93.9 93.3 93.2 0.72 2.18 0.95 0.42 0.19 0.09
120 200 90.9 97.1 96.4 96.2 95.9 96.0 0.65 1.67 0.91 0.46 0.23 0.11
40 50 77.4 95.8 94.7 96.2 94.3 95.9 0.74 1.88 0.80 0.47 0.24 0.14
40 200 82.8 96.5 96.0 97.3 96.7 97.5 0.73 1.74 0.99 0.60 0.34 0.21
120 50 79.9 92.2 86.7 86.5 86.4 87.1 0.50 0.70 0.35 0.18 0.09 0.04
120 200 90.6 95.9 94.7 94.7 94.8 95.0 0.50 0.63 0.43 0.25 0.14 0.07
40 50 95.9 86.5 84.5 77.8 74.2 70.2 2.01 0.91 0.37 0.15 0.06 0.02
40 200 97.6 91.3 86.9 82.4 79.9 77.3 1.93 0.84 0.39 0.18 0.08 0.03
120 50 94.3 83.5 76.2 72.2 69.9 68.1 1.19 0.49 0.22 0.09 0.04 0.02
120 200 99.0 93.3 85.9 82.2 80.7 79.4 1.18 0.49 0.24 0.11 0.05 0.02

ID3: long-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 81.9 94.5 94.8 96.0 96.1 97.9 3.77 4.47 1.74 0.95 0.48 0.27
40 200 84.1 96.2 96.1 96.9 97.2 98.1 4.31 4.81 2.22 1.29 0.71 0.42
120 50 89.2 95.4 94.8 94.7 94.3 94.5 2.61 2.73 1.20 0.54 0.24 0.11
120 200 88.7 96.5 96.3 96.2 96.0 96.3 2.11 1.96 1.09 0.56 0.28 0.14
40 50 83.6 95.3 93.7 96.7 94.9 97.6 2.97 2.15 0.88 0.55 0.26 0.15
40 200 86.0 96.1 94.2 96.7 97.0 98.2 2.73 1.66 1.04 0.65 0.36 0.22
120 50 87.5 92.1 84.5 85.2 85.7 86.4 1.20 0.69 0.36 0.18 0.09 0.04
120 200 90.3 94.5 92.3 92.2 93.0 94.0 1.07 0.52 0.41 0.25 0.14 0.08
40 50 94.9 89.6 86.6 79.8 76.2 71.6 2.77 1.13 0.44 0.18 0.07 0.03
40 200 96.8 94.2 89.5 85.2 82.0 78.7 2.35 0.96 0.44 0.20 0.09 0.04
120 50 92.3 88.7 80.2 75.1 72.3 70.3 1.54 0.58 0.24 0.10 0.04 0.02
120 200 97.5 96.2 89.2 84.9 82.3 80.7 1.31 0.53 0.25 0.12 0.05 0.02
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Table 3. Coverage properties of IRFs (Hetero, 95% level)

ID1: recursive restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 93.6 94.3 91.1 93.5 94.5 95.1 1.20 1.42 1.05 0.75 0.54 0.39
40 200 93.5 93.8 91.3 94.0 94.2 94.5 1.18 1.40 1.02 0.74 0.53 0.38
120 50 91.7 96.1 93.8 92.5 92.1 92.6 0.72 0.84 0.61 0.38 0.23 0.14
120 200 92.3 96.3 94.1 92.6 92.5 93.1 0.73 0.85 0.62 0.39 0.24 0.14
40 50 91.6 90.4 86.3 92.2 94.6 95.6 1.11 1.31 0.93 0.68 0.50 0.36
40 200 91.2 90.5 86.7 92.7 94.3 95.2 1.09 1.30 0.93 0.67 0.48 0.34
120 50 88.6 92.6 90.1 90.0 90.6 92.3 0.67 0.77 0.56 0.35 0.21 0.13
120 200 89.7 92.7 90.7 89.9 91.5 93.0 0.68 0.79 0.57 0.36 0.22 0.13
40 50 94.8 92.9 86.9 85.0 84.8 84.4 1.25 1.37 0.89 0.51 0.28 0.15
40 200 94.8 92.6 87.4 85.6 85.5 84.9 1.25 1.35 0.88 0.50 0.27 0.14
120 50 91.1 93.5 92.2 90.8 89.0 88.5 0.71 0.79 0.56 0.31 0.17 0.08
120 200 92.0 94.1 92.9 91.4 90.4 89.6 0.72 0.80 0.57 0.32 0.17 0.09

ID2: short-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 86.0 97.8 96.7 97.2 96.1 97.2 0.63 1.73 0.94 0.55 0.33 0.20
40 200 87.0 98.5 98.0 98.2 97.7 98.0 0.57 1.73 1.15 0.74 0.46 0.31
120 50 92.0 98.3 96.1 94.9 94.2 94.1 0.39 0.59 0.35 0.18 0.09 0.05
120 200 91.6 98.5 98.0 97.8 97.6 97.3 0.36 0.60 0.42 0.25 0.14 0.08
40 50 82.5 96.2 94.7 96.0 94.8 96.4 0.56 1.22 0.72 0.44 0.27 0.17
40 200 86.7 97.4 96.6 97.2 97.2 97.8 0.55 1.28 0.87 0.58 0.37 0.25
120 50 84.6 95.1 92.0 91.9 92.5 93.0 0.35 0.48 0.31 0.18 0.10 0.05
120 200 90.0 97.2 96.3 96.2 96.4 96.3 0.35 0.51 0.37 0.23 0.13 0.07
40 50 98.8 88.5 83.9 79.0 77.1 75.2 1.61 0.72 0.34 0.16 0.07 0.03
40 200 99.6 91.6 88.1 84.8 83.4 82.6 1.75 0.77 0.40 0.20 0.10 0.05
120 50 98.1 89.1 81.3 76.9 74.2 73.3 0.98 0.41 0.20 0.09 0.04 0.02
120 200 99.5 93.1 86.4 83.4 81.5 80.8 1.06 0.44 0.22 0.11 0.06 0.03

ID3: long-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
40 50 84.9 97.3 96.2 97.2 96.1 97.6 2.18 2.17 1.22 0.73 0.41 0.25
40 200 82.9 97.7 96.8 97.3 97.4 98.1 2.25 1.98 1.41 0.92 0.58 0.37
120 50 90.2 97.9 94.9 93.8 93.1 92.2 0.79 0.58 0.35 0.19 0.10 0.05
120 200 87.5 97.9 97.6 97.3 97.5 97.3 0.78 0.54 0.41 0.25 0.14 0.08
40 50 88.3 96.1 92.0 95.6 95.1 97.4 1.95 1.22 0.73 0.48 0.28 0.17
40 200 86.1 95.9 93.6 95.4 96.7 97.8 2.16 1.23 0.91 0.63 0.41 0.27
120 50 91.7 95.6 89.6 88.5 89.5 90.9 0.77 0.41 0.28 0.16 0.09 0.05
120 200 91.0 95.6 93.6 93.4 94.5 95.7 0.80 0.39 0.33 0.21 0.13 0.07
40 50 97.2 92.0 87.1 82.2 79.1 76.5 1.90 0.80 0.38 0.18 0.08 0.04
40 200 98.0 94.5 91.0 87.8 86.1 84.3 1.85 0.81 0.42 0.21 0.11 0.05
120 50 95.4 93.8 84.8 80.3 77.2 76.0 1.08 0.43 0.21 0.10 0.04 0.02
120 200 98.1 96.8 90.4 87.0 84.9 82.8 1.12 0.47 0.24 0.12 0.06 0.03
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Table 4. Coverage properties of IRFs under small N (Gaussian, 95% level)

ID1: recursive restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
120 10 91.3 96.2 93.0 91.2 90.5 90.8 0.73 0.86 0.61 0.38 0.22 0.13
120 30 91.8 94.9 93.0 92.1 92.0 92.6 0.72 0.85 0.61 0.38 0.23 0.14
240 10 84.0 96.3 94.7 92.2 90.7 89.7 0.52 0.60 0.44 0.26 0.14 0.08
240 30 85.6 96.2 94.7 93.0 91.7 91.4 0.53 0.60 0.44 0.26 0.15 0.08
120 10 87.6 92.1 88.6 87.6 88.5 90.2 0.67 0.79 0.57 0.35 0.20 0.12
120 30 88.9 91.2 88.6 88.8 90.2 91.7 0.67 0.78 0.56 0.35 0.21 0.12
240 10 79.8 92.3 91.1 89.3 87.7 87.4 0.48 0.56 0.40 0.24 0.13 0.07
240 30 81.2 91.9 91.1 90.0 88.6 89.3 0.49 0.56 0.41 0.24 0.14 0.07
120 10 91.0 93.3 90.9 88.5 87.0 86.1 0.71 0.80 0.56 0.31 0.16 0.08
120 30 92.0 92.9 91.4 89.8 88.4 87.6 0.71 0.79 0.56 0.32 0.17 0.08
240 10 82.5 93.3 92.7 91.1 89.8 88.5 0.50 0.57 0.40 0.23 0.12 0.06
240 30 83.1 92.6 92.8 91.6 90.6 89.4 0.51 0.57 0.41 0.23 0.12 0.06

ID2: short-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
120 10 67.3 95.2 89.4 86.9 84.3 83.6 0.56 0.87 0.38 0.17 0.08 0.03
120 30 87.1 97.4 95.4 94.3 93.6 92.9 0.45 0.76 0.43 0.22 0.11 0.05
240 10 57.9 93.3 80.7 75.5 72.3 70.8 0.43 0.46 0.21 0.09 0.04 0.02
240 30 83.6 96.0 91.7 88.7 86.6 85.9 0.32 0.39 0.22 0.11 0.06 0.03
120 10 50.4 88.4 74.3 74.7 74.3 75.8 0.33 0.45 0.21 0.10 0.05 0.02
120 30 79.5 92.8 87.0 86.7 87.6 88.5 0.34 0.47 0.28 0.15 0.08 0.04
240 10 37.5 79.1 60.0 56.2 56.3 57.8 0.24 0.29 0.13 0.06 0.03 0.01
240 30 73.6 90.0 80.5 77.7 78.3 78.7 0.24 0.29 0.18 0.09 0.04 0.02
120 10 84.2 78.0 68.1 62.7 59.8 57.9 0.82 0.39 0.17 0.07 0.03 0.01
120 30 97.0 86.3 75.9 72.3 70.4 69.6 0.94 0.40 0.19 0.09 0.04 0.02
240 10 76.7 69.7 55.0 48.4 46.7 45.7 0.58 0.27 0.11 0.05 0.02 0.01
240 30 96.0 84.7 71.2 66.2 63.7 61.4 0.68 0.29 0.13 0.06 0.03 0.01

ID3: long-run restriction
Coverage Ratio (%) Length of C.I. (Median)

T N h=0 1 2 3 4 5 h=0 1 2 3 4 5
120 10 80.9 95.7 90.1 88.3 86.0 85.9 1.15 0.99 0.43 0.19 0.08 0.04
120 30 90.7 96.8 94.6 94.0 93.4 93.1 1.03 0.80 0.47 0.24 0.12 0.06
240 10 69.9 93.5 79.7 74.8 72.5 71.5 0.72 0.49 0.22 0.10 0.04 0.02
240 30 86.5 96.4 91.1 87.8 86.1 85.7 0.55 0.37 0.23 0.12 0.06 0.03
120 10 68.8 89.9 68.8 69.2 69.2 71.7 0.70 0.45 0.20 0.10 0.04 0.02
120 30 89.6 93.5 83.4 82.7 83.7 86.3 0.77 0.43 0.27 0.14 0.08 0.04
240 10 51.1 82.2 55.3 51.3 51.5 53.4 0.44 0.29 0.12 0.06 0.02 0.01
240 30 84.6 91.3 78.2 74.4 74.3 75.5 0.47 0.26 0.16 0.08 0.04 0.02
120 10 77.0 82.8 70.6 65.2 61.7 59.3 1.08 0.43 0.18 0.07 0.03 0.01
120 30 92.9 90.4 79.8 74.9 71.9 70.1 1.10 0.43 0.20 0.09 0.04 0.02
240 10 64.3 75.1 57.6 50.0 47.4 46.5 0.72 0.28 0.12 0.05 0.02 0.01
240 30 89.3 91.0 76.4 68.3 64.8 62.9 0.81 0.31 0.14 0.06 0.03 0.01
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Table 5-a. Coverage rate of conÖdence intervals for the calibrated US
macroeconomic model (95% level)

Proc h=0 1 2 3 4 5 6 7

Inflation A 90.8 92.0 91.7 92.1 92.2 91.6 90.9 90.3

B 89.6 91.6 90.9 91.3 91.6 91.4 91.2 90.9

Short rate A 90.6 90.4 90.1 91.1 92.3 92.2 92.1 91.9

B 71.4 80.2 76.3 82.5 85.4 87.8 89.6 90.9

Production A 97.0 95.8 97.4 96.4 96.0 95.0 94.0 92.7

B 79.7 91.2 84.2 88.5 87.2 88.0 87.7 87.9

Unemployment rate A 96.5 95.6 97.6 96.6 96.4 95.3 94.2 92.9

B 86.3 92.2 88.4 91.0 89.9 90.5 89.4 89.4

Table 5-b. Length of conÖdence intervals for the calibrated US macroeconomic
model (95% level)

Proc h=0 1 2 3 4 5 6 7

Inflation A 7.71 4.78 4.90 4.26 3.97 3.67 3.43 3.22

B 7.34 4.54 4.70 4.11 3.86 3.62 3.41 3.23

Short rate A 8.87 6.50 6.28 5.89 5.72 5.53 5.39 5.21

B 5.39 4.56 4.18 4.38 4.58 4.79 4.93 5.01

Production A 16.55 13.84 14.00 13.63 14.72 14.75 15.01 14.86

B 10.80 12.59 10.38 11.79 12.42 12.98 13.32 13.38

Unemployment rate A 13.69 11.55 11.25 11.10 11.81 11.86 12.11 11.94

B 10.29 10.75 9.12 10.07 10.49 10.91 11.12 11.12
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