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Abstract

Towards the �nancial crisis of 2007 to 2008, speculative bubbles prevailed in various
�nancial assets. Whether these bubbles are an economy-wide phenomenon or market-
speci�c events is an important question. This study develops a testing approach to
investigate whether the bubbles lie in the common or in the idiosyncratic components
of large-dimensional �nancial panel data sets. To this end, we extend the right-tailed
unit root tests to common factor models, benchmarking the panel analysis of non-
stationarity in idiosyncratic and common component (PANIC) proposed by Bai and
Ng (2004). We �nd that when the PANIC test is applied to the explosive alternative
hypothesis as opposed to the stationary alternative hypothesis, the test for the idio-
syncratic component may su¤er from the nonmonotonic power problem. In this paper,
we newly propose a cross-sectional (CS) approach to disentangle the common and the
idiosyncratic components in a relatively short explosive window. This method �rst es-
timates the factor loadings in the training sample and then uses them in cross-sectional
regressions to extract the common factors in the explosive window. A Monte Carlo
simulation shows that the CS approach is robust to the nonmonotonic power problem.
We apply this method to 24 exchange rates against the U.S. dollar to identify the
currency values that were explosive during the �nancial crisis period.
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1 Introduction

Testing for speculative bubbles in asset prices is a long-standing problem for which numerous

econometric techniques have been developed. The most recent studies include the seminal

work of Phillips et al. (2011) in which they pay attention to the link between speculative

bubbles and explosive behaviors of the asset price data.1 Their strategy is to �t a univariate

autoregressive (AR) model and test whether the root is greater than unity. While this

paper is motivated by these studies, it explicitly accounts for an empirical fact that during

the �nancial crisis of 2007 to 2008, speculative bubbles prevailed in various �nancial assets

such as real estate, stocks, bonds, commodities, as well as exchange rates. It is important

to investigate whether these bubbles are an economy-wide phenomenon or market-speci�c

events. In order to answer such a question, we formally analyze how panel data of asset

prices comove in an explosive environment.2

In this paper, we tackle the abovementioned problem by using the large-dimensional com-

mon factor model with principal component estimation. The common factor model is now a

driving force to e¤ectively investigate comovements of large panel data sets. Bai (2003) and

Bai and Ng (2006) have discovered that when the series have no time trends, the principal

component method provides a consistent estimate for the common and the idiosyncratic

components. When the series have stochastic trends of integrating order one, the standard

practice is to induce stationarity by transforming the original data by �rst-di¤erencing prior

to identifying and estimating the common and the idiosyncratic components. See Bai (2004)

and the seminal work of Stock and Watson (2002, 2005) for empirical examples. One the

other hand, if one is interested in identifying whether these stochastic trends lie in the com-

mon or in the idiosyncratic components, Bai and Ng (2004) suggest applying the augmented

Dickey�Fuller (hereafter, �ADF�) tests (Dickey and Fuller, 1979) for either the common or

the idiosyncratic components estimated by the �rst-di¤erenced data. This method is re-

ferred to as the panel analysis of nonstationarity in idiosyncratic and common component

(hereafter, �PANIC�). A strong advantage of this method is the common and the idio-

syncratic components being separately identi�ed under the null hypothesis of random walk

by using the �rst-di¤erenced data. More precisely, the standard ADF tests can be used

1Phillips et al. (2011) and Phillips and Yu (2011) developed a method for a single bubble. Phillips et al.
(2015ab) modi�ed it to account for multiple bubbles. For other testing methods, see Gürkaynak (2008) for
a survey.

2When the cross-sectional dimension is not large, Phillips and Magdalinos (2008) developed a limit theory
for least squares estimation of the cointegration system among explosive time series.
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for the null hypothesis of random walk against the alternative hypothesis of stationarity

(hereafter, the�stationary test�), because under the alternative hypothesis of stationarity,

the �rst-di¤erenced series is over-di¤erenced but it remains stationary so that the tests have

power. Further, Bai and Ng�s (2004) simulation study shows that the common test has a

good size and power regardless of the idiosyncratic components being stationary or random

walk. The same can be said of the idiosyncratic tests. Therefore, the PANIC approach

successfully disentangles the common and the idiosyncratic components.

The central question of this paper is whether this convenient property of the PANIC

approach is available even when one tests against the alternative hypothesis of an explosive

process, that is, the right-tailed version of the ADF test (hereafter,�the explosive test�). To

this end, we �rst con�rm that the common and the idiosyncratic explosive tests constructed

by the PANIC method have local asymptotic power as the standard tests do. This is a local

analysis in the sense that the �rst-order autoregressive coe¢ cient is assumed to shrink to

one at rate T�1, where T is the time dimension of the panel data set. This particular rate

enables the test statistics to have a limiting distribution under the alternative hypothesis

and provides a meaningful approximation to the �nite sample power. Most importantly, the

local power result applies to either the stationary or the explosive tests.

A potential problem of the local asymptotic framework is that it only considers small

deviations from the unit root. Recently, it is understood that the asymptotic results under

the local asymptotic framework may not adequately approximate the �nite sample behaviors

of the test statistics if the true parameter value is distant from the null hypothesis (see,

e.g., Deng and Perron, 2008). With this caveat in mind, we take a nonlocal approach

that considers the autoregressive root that shrinks to one at a slower rate than T�1. In

particular, we use the moderate deviations framework developed by Phillips and Magdalinos

(2007). Importantly, under this framework, we �nd that explosive idiosyncratic components

may be identi�ed as a common factor if some idiosyncratic components are explosive in a

non-local order. This leads to the fact that the common and the idiosyncratic tests have size

distortions and deterioration of power.

A Monte Carlo simulation illustrates our theoretical results. We �rst con�rm that as

long as the stationary test is concerned, the PANIC approach provides very good size and

power in every case in study. This is consistent with Bai and Ng (2004). However, despite

our local asymptotic results, the explosive tests behave very di¤erently from the stationary

tests when the process is moderately or strongly explosive in �nite samples as follows. First,

the common test shows signi�cant size distortions when some idiosyncratic components are
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explosive. This is because the common factor is now identi�ed as the moderately explo-

sive individual response variables. Second, when the common component is explosive, the

idiosyncratic test also su¤ers from size distortions for the same reason. Finally and most

importantly, the idiosyncratic test shows an upward power function as long as it is weakly

explosive, as supported by our local asymptotic result. However, the power function starts

to decline at some point and then may reach zero as the explosiveness is strengthened, as

our moderate deviations asymptotic result discovers. This phenomenon is the well-known

nonmonotonic power problem that is widely documented in the context of structural change

tests (see Perron, 1991 and Vogelsang, 1999). What is new in this paper is that the source

of nonmonotonic power is the identi�cation failure between the common factors and explo-

sive idiosyncratic errors. Further, as far as the authors know, this is the �rst study that

documents the nonmonotonic power problem in the unit root test.

Finally, we attempt to provide a new method to test for speculative bubbles in the

common and the idiosyncratic components. This method takes advantage of the fact that in

many empirical situations, bubbles appear only in a certain subperiod and the series are not

explosive in the rest of the sample period. Therefore, we can set a training sample during

which no or only weak explosive behaviors exist. We then use cross-sectional regressions

to estimate the common components in the explosive window as coe¢ cients attached to

the factor loadings, while the factor loadings are estimated in the training sample. We

call this the cross-sectional (hereafter, �CS�) method. It is shown that both the common

and idiosyncratic tests achieve the correct size asymptotically and are consistent under the

moderate deviations framework. A Monte Carlo simulation shows that the CS common test

considerably reduces the size distortions. More importantly, the CS idiosyncratic test is

robust to the nonmonotonic power problem.

The usefulness of the proposed approach is illustrated in an empirical example of the

exchange-rate system during the �nancial crisis of 2007 to 2008. We use 24 bilateral exchange

rates against the U.S. dollar (USD) from August 1, 2007 to January 31, 2009. It is clearly

observed that many of them exhibit extreme movements in this period. The question of

interest is whether these explosive behaviors are due to the common components that are

ascribed to the value of the USD or the idiosyncratic components that pertain to the values

of the paired individual currencies. We �nd that the common component is explosive in

both the PANIC and the CS tests. Hence, the USD exhibits an explosive behavior in

this period. As for the idiosyncratic components, the PANIC tests are insigni�cant except

for the Indonesian rupiah. This may suggest that the widespread explosive behaviors in
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the exchange-rate system during the �nancial crisis are mainly attributed to the USD and

most other currencies are stable. However, when the CS approach is used, eight currencies

are judged explosive in their idiosyncratic components at the 10% signi�cance level. These

include the so-called safe haven currencies: the Japanese yen and the Swiss franc. Therefore,

the CS approach provides additional perspectives for widely observed explosive behaviors in

the exchange-rate system during the �nancial crisis period.

The structure of the paper is as follows. Section 2 introduces the model, assumptions,

and the existing PANIC tests. Section 3 uses a local and a nonlocal asymptotic framework to

investigate the theoretical properties of the right-tailed PANIC tests. Section 4 studies the

�nite sample size and power of the PANIC tests via Monte Carlo simulations. In section 5,

we propose a new CS method to disentangle the common and the idiosyncratic components.

In addition, the theoretical and �nite sample properties of the CS method are investigated in

this section. Section 6 gives an empirical example to illustrate the usefulness of the proposed

method and section 7 concludes the paper. Throughout the paper, the following notations

are used. The Euclidean norm of vector x is denoted by kxk. For matrices, the vector-
induced norm is used. The symbols O(�) and o(�) denote the standard asymptotic orders
of sequences. The symbol

p! represents convergence in probability under the probability

measure P and the symbol ) denotes convergence in distribution. Op(�) and op(�) are the
orders of convergence in probability under P .

2 Model and test statistics

We consider the common factor model

Xit = �
0
iFt + Uit; for i = 1; :::; N and t = 1; :::; T; (1)

where Xit is a scalar of the observed random variable, Ft and �i are r�1 vectors of common
factors and factor loadings, respectively, and Uit is a scalar of idiosyncratic errors. In this

paper, we focus on the essence of problem by considering the case of r = 1 without losing

any substance. The common factor follows the �rst-order autoregressive (AR1) process so

that

Ft = �Ft�1 + et; (2)

where � is an autoregressive coe¢ cient and et is a white noise disturbance. Furthermore,

the idiosyncratic errors follow AR1 processes

Uit = �iUi;t�1 + zit; (3)
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where �i is the autoregressive coe¢ cient of the ith cross-section and zit is a white noise

disturbance. Let F0 = e0 and Ui0 = zi0.

We consider the following assumptions on this model. LetM <1 be a generic constant.

Assumption 1. For every t = 0; 1; :::; T , et � i:i:d:(0; �2) and E jetj4 �M:

Assumption 2.
(a) �i is a nonrandom quantity satisfying j�ij � M or a random quantity satisfying

E j�ij4 �M .
(b) N�1PN

i=1 �
2
i

p! �2�, where �� is a positive constant.

Assumption 3. For every t; s = 0; 1; :::; T , the following holds.
(a) zit � i:i:d:(0; �2i ) and E jzitj

8 �M .
(b) Let 
st = N

�1PN
i=1E(ziszit). Then, j
ssj � M and T�1

PT
s=1

PT
t=1 j
stj � M for all

s and t.

(c) Let �ij = E(zitzjt). Then,
PN

i=1

���ij�� �M for all j and N�1PN
i=1

PN
j=1

���ij�� �M .
(d) Let �st = E

���N�1=2PN
i=1[ziszit � E(ziszit)]

���4. Then, �st �M .
Assumption 4. zis; et; and �j are mutually independent for every (i; j; s; t).

The model and assumptions follow those of Bai and Ng (2004), who considered the

unit root test against the alternative hypothesis of stationarity for the common and the

idiosyncratic components. In this paper, we are interested in the test against the alternative

hypothesis of explosive process. For the common component,

H0 : � = 1 versus H1 : � > 1: (4)

We are also interested in the hypotheses for the ith idiosyncratic component,

H0 : �i = 1 versus H1 : �i > 1: (5)

At �rst glance, this testing problem has already been explored. Under a restriction of

� = 1, the model is essentially the same as Bai and Ng�s (2004) PANIC. They propose

a method of separately identifying the common factors and the idiosyncratic errors under

the null hypothesis of the common factors following random walks. It is based on the �rst-

di¤erenced data so that

xit = �ift + uit; (6)
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where xit = Xit � Xi;t�1, ft = Ft � Ft�1, and uit = Uit � Ui;t�1. In the following, we
assume that there are T + 1 observations t = 0; 1; :::; T for Xit (so that Ft and Uit) for

notational simplicity. The common factors and factor loadings can be estimated using xit
by the principal component method so that

(f̂t; �̂i) = arg min
f�igNi=1;fftg

T
t=1

PN
i=1

PT
t=1(xit � �ift)2; (7)

with normalization T�1
PT

t=1 f̂
2
t = 1. This minimization problem gives a common factor

estimate f̂ = [f̂1; :::; f̂T ]
0 as the

p
T -times eigenvectors of xx0 corresponding to the largest

eigenvalue, where x is a T �N matrix with the (t; i)th element being xit. The factor loadings

are estimated by �̂i = 1
T

PT
t=1 f̂txit. Furthermore, the level common factor is estimated by

F̂t =
Pt

s=1 f̂s and the level idiosyncratic errors are estimated by Ûit =
Pt

s=1 ûis, where

ûis = xis � �̂if̂s.
The unit root test for the common component (hereafter, the �common test�) can be

implemented by using a t-test for H0 : � = 0 in the regression

f̂t = �F̂t�1 + error; (8)

so that

tF̂ =
�̂

se(�̂)
; (9)

where �̂ is an OLS estimator for � and se(�̂) represents its standard errors. Note that the

regression can potentially include an intercept and a time trend with appropriate references

to critical values of Dickey and Fuller (1979). When the errors are suspected to be serially

correlated, we can also include the lags of f̂t in the regression. However, the model with

no lags is relevent in asset price data in which no serial correlations are present in their

�rst di¤erences.3 If necessary, we can extend the fremework to the model with p lags under

appropriate conditions for p as in Bai and Ng (2004).

The unit root test for the ith idiosyncratic component (referred to as the �idiosyncratic

test�) is implemented by using a t-test for H0 : �i = 0 in the regression

ûit = �iÛi;t�1 + error; (10)

so that

tÛ(i) =
�̂i

se(�̂i)
; (11)

3Phillips and Yu (2011) also consider only the model with p = 0.
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where the same note as tF̂ applies.

As Bai and Ng (2004) point out this approach is convenient because the common and the

idiosyncratic components are separately identi�ed by using the �rst-di¤erenced data, so that

the test statistics (9) and (11) have the standard Dickey and Fuller�s (1979) distribution

under the null hypothesis. If the alternative hypothesis of stationarity is true, the series

become over-di¤erenced, but they remain stationary so that the test has nontrivial power.

Further, their simulation study shows that the common test has a good size and power

regardless of the idiosyncratic components being stationary or random walk. The same can

be said of the idiosyncratic test. Therefore, the PANIC approach successfully disentangles

the common and idiosyncratic components.

Remark 1 (Bai and Ng, 2004) Let Assumptions 1�4 hold. (i) Under the null hypothesis
of � = 1 together with j�ij � 1 for all i,

tF̂ )
R 1
0
W (r)dW (r)hR 1
0
W (r)2dr

i1=2 ;
as N; T ! 1, where W (r) is the standard Wiener process de�ned on r 2 [0; 1]. (ii) Under
the null hypothesis of �i = 1 together with � = 1 and

���j�� � 1 for all j 6= i,
tÛ(i))

R 1
0
Wi(r)dWi(r)hR 1
0
Wi(r)2dr

i1=2 ;
as N; T !1, where Wi(r) is the standard Wiener process de�ned on r 2 [0; 1].

This result is trivially applicable to our right-tailed testing problems (4) and (5) if the

researcher knows � = 1 and �i = 1 for all i. However, the right-tailed test must con�rm that

the null distribution is available in (i) � = 1 so that the null is true but j�ij > 1 for some i.
This is because the �rst-di¤erence series xit is no longer stationary and the consistent factor

estimate may be unavailable. We must also ensure that �i = 1 in case (ii), so that the null

is true but j�j > 1 and/or
���j�� > 1 for some j 6= i. More importantly, the above results do

not provide any information on the power of the common and the idiosyncratic tests.

3 Theoretical results

Bai and Ng (2004) investigate the �nite sample properties of the unit root tests (9) and (11)

but against the stationary alternative hypothesis via Monte Carlo simulations. They show
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that the common test has a good size and nontrivial power regardless of the idiosyncratic

components being stationary or random walk. The same can be said of the idiosyncratic

test. However, the theoretical power properties of these tests under the explosive alternative

hypothesis have not been discussed. To discover this issue, this section conducts theoret-

ical investigations on the power properties of the explosive tests by using two asymptotic

frameworks. The �rst approach is a local alternative framework and its result is expected to

capture the �nite sample properties of the test when the explosiveness is weak.4 However,

it is well-known that local asymptotic frameworks often fail to provide good approximations

on the �nite sample behavior of the test when the true parameter value is distant from the

null. Therefore, we also use a nonlocal asymptotic framework, in particular, the moderate

deviations framework developed by Phillips and Magdalinos (2007), to investigate situations

of stronger explosiveness.

3.1 Results under the local deviations framework

We �rst show that the asymptotic local power of the PANIC tests is obtained for the common

and the idiosyncratic components. The following assumption is considered in this subsection.

Assumption 5. The autoregressive coe¢ cients satisfy � = 1 + c=T and �i = 1 + ci=T ,
where c and ci are �xed constants.

As in the literature, Assumption 5 considers the local alternative hypothesis that shrinks

to the null hypothesis at rate T�1. The noncentrality parameters c and ci could either be

positive or negative, where c > 0 and ci > 0 consider the explosive tests and c < 0 and

ci < 0 pertain to the stationary tests. Therefore, the local asymptotic result is symmetric in

the sense that it is valid either against the explosive alternative hypothesis or the stationary

alternative hypothesis. More importantly, the speci�c rate T�1 helps us derive the limiting

distributions of the test statistics5 and the autoregressive coe¢ cient estimators as follows.

Theorem 1 Suppose that Assumptions 1�5 hold. Let W (r) and Wi(r) be independent

standard Wiener processes and Wc(r) and Wci(r) be independent Ornstein and Uhlenbeck

processes de�ned on r 2 [0; 1].
4It is also pointed out that the result is symmetric in the sense that it applies to either stationary or

explosive test.
5See Phillips (1988), Perron (1989), and Nabeya and Tanaka (1990) for detail.
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(i-a) If c = 0 and ci � 0 for any i, then

tF̂ )
R 1
0
W (r)dW (r)hR 1
0
W (r)2dr

i1=2 ;
as N; T !1.
(i-b) If c > 0 and ci � 0 for any i, then

T �̂ ) c+

R 1
0
Wc(r)dW (r)R 1
0
Wc(r)2dr

;

as N; T !1.
(ii-a) If ci = 0; cj � 0 for any j 6= i, and c � 0, then

tÛ(i))
R 1
0
Wi(r)dWi(r)hR 1
0
Wi(r)2dr

i1=2 ;
as N; T !1.
(ii-b) If ci > 0, cj � 0 for any j 6= i, and c � 0, then

T �̂i ) ci +

R 1
0
Wc;i(r)dWi(r)R 1
0
Wc;i(r)2dr

;

as N; T !1.

We provide a proof of this theorem in the appendix. This theorem con�rms the following

facts. First, parts (i-a) and (ii-a) show that the size of the common (idiosyncratic) test is

robust to local deviations in the idiosyncratic (common and other idiosyncratic) components.

As for the power, parts (i-b) and (ii-b) ensure that the common (idiosyncratic) test has the

standard local power even though the idiosyncratic (common and other idiosyncratic) com-

ponents deviate from the random walk as long as the deviations are local. Therefore, this

theorem theoretically con�rms Bai and Ng�s (2004) Monte Carlo �ndings in both stationary

and explosive tests and implies that the PANIC can disentangle the common and the idio-

syncratic explosive components as well. However, the potential problem of this asymptotic

framework is that it only considers small deviations from the unit root.

9



3.2 Results under the moderate deviations framework

It is well-known that the asymptotic results under local asymptotic frameworks may not

adequately approximate the �nite sample behaviors of the test statistics. For example, in

the context of structural change testing in linear regression models, a certain type of test

statistics may have good power when the magnitude of change is assumed to quickly shrink

to zero as the sample size increases, but they lose power when the break is assumed to be

�xed. In �nite samples, this class of tests typically draws a concave-shaped power function,

called the nonmonotonic power problem.6 One reason of this phenomenon is that under the

alternative hypothesis, a change in the conditional mean and a change in the persistence

parameter are not separately identi�ed. Yamamoto and Tanaka (2015) extend this idea to

structural change tests in factor loadings, pointing out that the factor loading structural

change and the extra common factors may not separately be identi�ed under the alternative

hypothesis of common breaks. In such a case, the standard tests of Breitung and Eickmeier

(2011) su¤er from the nonmonotonic power problem.

The purpose of this subsection is to theoretically explain why the PANIC tests potentially

have size distortions and the nonmonotonic power problem despite our local asymptotic re-

sults. Here, we claim that an identi�cation problem between the common factors and the

explosive idiosyncratic errors occurs under the alternative hypothesis of explosive idiosyn-

cratic components. To this end, we take a nonlocal approach that assumes the explosive root

shrinking to one at a slower rate than T�1. In particular, we use the moderate deviations

framework developed by Phillips and Magdalinos (2007).

Assumption 6. The autoregressive coe¢ cients satisfy � = 1 + c
kT
and �i = 1 + ci

kT
,

where c � 0; ci � 0 and kT is a deterministic sequence such that kT !1 and kT = o(T ).

The quantities c and ci (i = 1; :::; N) are again noncentrality parameters but now take

a nonnegative value to focus on the explosive case. Of interest is the fact that the scaling

factor kT is an arbitrary deterministic function of T that satis�es kT ! 1 strictly slower

than T . This way, we can consider stronger explosiveness than that in the local assumption.

A typical formulation is kT = T �, where 0 < � < 1.

6As far as the authors know, Perron (1991) is the �rst paper to point out this problem in structural
change tests. See Vogelsang (1999), Perron and Yamamoto (2016), and the references therein.
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Under this nonlocal setting, the principal component estimate may not appropriately

identify the common components. We illustrate this fact in the following theorem by con-

sidering two cases. The �rst case assumes that c > 0 but ci = 0 for all i, so that only the

common factor is explosive. The second case is ci > 0 for some or all i but c = 0, so that

only the idiosyncratic errors are explosive.

Theorem 2 Let Assumptions 1�4 and 6 hold. If kT grows slow enough so that �TT�1=2 and
�Ti T

�1=2 go to in�nity, as T !1, then the following equation holds for the factor estimate

V f̂t = Aft +Bft +N
�1PN

i=1 aiuit +N
�1PN

i=1 biuit; (12)

where V is the largest eigenvalue of N�1T�1xx0, and the quantities A, B, ai, and bi satisfy

the following properties.

(i) If c > 0 and ci = 0 for all i, then

A = Op(�
TT�1=2), B = Op(1);

ai = Op(�
TT�1=2), and bi = Op(1).

(ii) If c = 0 and ci > 0, then

A = Op(1), B = Op(�Ti T
�1=2);

ai = Op(1), and bi = Op(�Ti T
�1=2).

In a nutshell, the principal component estimate may have an asymptotic bias if the true

factor or idiosyncratic errors are moderately explosive. This is in contrast to the local case

where the factors are always consistently estimated. In the following, let the bound for V

given in (A.12) be tight. Part (i) shows that when the true factor is explosive, the asymptotic

bias consists of the �rst and the third terms of (12), because the weights V �1A and V �1ai
do not vanish, whereas V �1B and V �1bi do. The implication of these results to the unit

root tests is clear. The factor estimate is a sum of the true explosive factors contaminated

by nonexplosive idiosyncratic errors. However, since the true factor dominates this bias

component, the factor estimate remains explosive and the power of the common test remains.

As for the idiosyncratic test, the idiosyncratic component estimate comprises the residuals

from the regression using the biased factor estimate as a regressor. Therefore, the residuals

are also biased and the idiosyncratic test may su¤er from size distortions.

On the other hand, part (ii) considers the case where the idiosyncratic errors are ex-

plosive. Here, the factor estimate is contaminated in a di¤erent way. The nonvanishing
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asymptotic bias now consists of the second and the fourth terms in (12), where the weights

V �1B and V �1bi are bounded. Now, the latter becomes a dominant component in the fac-

tor estimates, because the true factor is not explosive while the idiosyncratic errors are so.

Therefore, we identify the weighted average of explosive idiosyncratic errors as a common

factor. This has an interesting insight for the common factor estimate in an explosive en-

vironment because even if the factor is not explosive, as long as the data includes explosive

idiosyncratic components, they may be identi�ed as a common factor.

We can also derive clear implications of part (ii) to the testing. First, when some idio-

syncratic errors are explosive, the size of the common test would be distorted because the

factor estimate is now dominated by the explosive idiosyncratic errors. More interestingly,

since the factor estimate consists of explosive idiosyncratic errors, the residuals from the re-

gression of an explosive response variable on the series including itself become nonexplosive

even though the true process is explosive. This causes a power loss of the idiosyncratic tests

as the idiosyncratic errors become more explosive.

Remark 2 We illustrate the power loss of the idiosyncratic test by taking a special case of
(ii) where only the ith cross-sectional unit has explosive idiosyncratic errors. We have

f̂t � biuit; (13)

where ���denotes asymptotic equality. In such a case,

�̂i =
�PT

t=1 f̂
2
t

��1 �PT
t=1 f̂txit

�
;

�
�
b2i
PT

t=1 u
2
it

��1 �
bi
PT

t=1 uitxit

�
;

=
�
b2iT

�1PT
t=1 u

2
it

��1 �
bi�iT

�1PT
t=1 uitft + biT

�1PT
t=1 u

2
it

�
;

� b�1i ; (14)

because the numerator of the third line is dominated by the second term. Then,

ûit = uit + �ift � �̂if̂t;
� uit + �ift � uit;
= �ift; (15)

by using (13) and (14), so that the idiosyncratic residuals inherit the time-series properties

of the true common factor. Hence, the idiosyncratic test loses power.

Remark 3 We illustrate the identi�cation problem between the factors and errors in the

next section via Monte Carlo simulation.
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4 Finite sample size and power of the PANIC tests

This section investigates the �nite sample properties of the PANIC tests via Monte Carlo

simulations. Although our main focus is the empirical size and power of the explosive

test, those of the stationary test are also presented for reference. Further, while the latter

experiment overlaps Bai and Ng�s (2004) simulation results, it is instructive to illustrate how

di¤erently the explosive and stationary PANIC tests behave. The data is generated by the

models (1), (2), and (3) with �i, uit, zit, F0, and U0i independently drawn from the standard

normal quasi random variables in each replication. In order to evaluate the size and power,

we vary the values of � and �i from 1:0 to 1:01 for the explosive test and from 1:0 to 0:0 for

the stationary test. Based on the same data, the results using the regression models that

include (A) no intercept and no time trend, (B) an intercept but no time trend, and (C) an

intercept and a linear time trend are reported. The common test uses the estimated factor

and the idiosyncratic test presents the size and power of the �rst response variable, that is,

i = 1, but this is without loss of generality because the Monte Carlo design is symmetric

for any i. Each panel of Figures 1 to 5 contains two lines. The solid line is the result using

the estimated common and idiosyncratic components and they are labeled as �estimated.�.

The dotted line is the result that hypothetically uses the true common and idiosyncratic

components and is labeled as �observed�for reference. We use N = 100 and T = 100, unless

otherwise stated. The number of replications is 5,000.

We �rst consider the size of the tests by using the 5% nominal level. Figure 1 and Figure

2 report the size of the common test as a function of �i and the size of the idiosyncratic test

as a function of �, respectively. In both �gures, the left-hand-side panels show the size of

the explosive test and the right-hand-side panels show the size of the stationary test. The

size of the stationary test is very good in every case, in the same line as Bai and Ng (2004).

As they claim, the PANIC approach successfully disentangles the common and idiosyncratic

components and the common and idiosyncratic tests can be implemented without worrying

about the behavior of the other component. However, if we look at the size of the explosive

test, the results are very di¤erent. The left-hand-side panels of Figure 1 show that the size

of the common test is close to the nominal level when the idiosyncratic component is not

very explosive (�i is approximately smaller than 1:002); however, the size quickly reaches

one as �i increases. Further, as shown in the left-hand-side panels of Figure 2, the size of

the idiosyncratic test is also distorted towards zero as � increases. These size distortions

are expected from Theorem 2 under the moderate deviations framework. However, it is
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clearly suggested that the convenient property of Bai and Ng (2004) no longer applies to the

explosive test.

Next, we consider the power of the tests at the 5% nominal level. Figure 3 reports

the empirical power functions of the common test. Again, the left-hand-side and the right-

hand-side panels correspond to the explosive and the stationary tests, respectively. Here,

we present the power functions of the common test under �i = 1 for all i, that is, no

contamination from any idiosyncratic components. This is because the setting at �i > 1 does

not show any unique features of power of the common tests, except for the size distortions

that are already reported in Figure 1.7 The power functions of the stationary test are again

standard as the right-hand-side panels of Figure 3 illustrate. This feature is consistent with

Bai and Ng�s (2004) �nding. It is also observed that the power functions of the stationary

and explosive alternative hypotheses are very close to the ones using the true common factor

(dotted lines).

Of interest are the power functions of the idiosyncratic test in Figure 4. Again, we see

the standard power functions for the stationary test in the right-hand-side panels. Although

there are discrepancies between the powers of the stationary test using the estimated idio-

syncratic component and the true idiosyncratic component, these are minor. On the other

hand, the power functions for the explosive alternative hypothesis are very di¤erent from

the ones for the stationary alternative hypothesis. They show a clear concave shape, which

suggests the nonmonotonic power problem documented in the aforementioned literature. As

we discussed in section 3, this can be explained as follows. When the explosive coe¢ cient �i
is only slightly larger than one, the power increases as �i diverges from one. This is consistent

with our Theorem 1 and the Monte Carlo experiment illustrates that the test indeed has a

local power. However, when the explosive coe¢ cient becomes moderately larger than one,

the explosive response variable is identi�ed as a common factor and the residuals become

nonexplosive as we discussed in Theorem 2 (ii). Hence, the power function starts to decrease

eventually into zero as �i increases. This property is empirically important, because the

moderate or strong individual explosive behaviors may not be detected even though they are

the ones that should not be overlooked compared to weak (or local) explosive behaviors.

So far, when we set �i > 1, it applies to all i. An interesting question is whether these

problems are mitigated when not all idiosyncratic components are explosive or only one

is. To answer this question, Figure 5 investigates the following two cases: (a) only one

7Therefore, the power functions of the explosive test in the case of �i > 1 start at a point above 0:05 but
draw an upward curve. The starting point of the power function with �i > 1 can be referred to in Figure 1.
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idiosyncratic component is explosive (�1 � 1:0, but �i = 1:0 for all i 6= 1) and (b) ten

idiosyncratic components are explosive (�i � 1:0 for i = 1; :::; 10, but �i = 1:0 for all i � 11).
Case (a) is reported in the left-hand-side panels and case (b) is reported in the right-hand-

side panels. For both cases, the top panels show the size of the common test for explosive

alternative. We observe that the common test has considerable size distortions even when one

idiosyncratic component is explosive. This is because only one explosive response variable is

identi�ed as a common factor. The size of the idiosyncratic test is presented in the middle

panels. The idiosyncratic test shows size distortions even when the common factor is not

explosive but some other idiosyncratic components are so. Again, this is because only one

explosive individual response variable is identi�ed as a common factor.8 Finally, the bottom

panels are the power functions of the idiosyncratic test for the �rst idiosyncratic component

tÛ(1). Similar to Figure 4, they clearly show nonmonotonic power here. Therefore, the

size distortion and the power problem remain even if only one idiosyncratic component is

explosive.

Finally, we validate the identi�cation problem suggested in Theorem 2 (ii) by investigating

the correlation between the estimated and true common factors, as well as the correlation

between the estimated factor and the idiosyncratic errors. If the stated identi�cation problem

occurs, the former decreases but the latter increases as the idiosyncratic errors become more

explosive. To this end, in Figure 6-1, we generate the same data as in the left-hand-side panels

of Figure 4 and compute the average of (absolute value of) correlation coe¢ cients between the

estimated and true common factors Corr(f̂t; ft) as well as the correlation coe¢ cient between

the estimated factor and the idiosyncratic errors Corr(f̂t; u1t) in the left-hand-side panel. In

addition, we consider the case where only one idiosyncratic component has explosive errors as

in the bottom left-hand-side panel of Figure 5. The results are presented in the right-hand-

side panel of Figure 6-1. Both panels of Figure 6-1 clearly show that as the idiosyncratic

errors become more explosive, the estimated factor is less correlated with the true factor

but more correlated with the idiosyncratic errors. This is consistent with Theorem 2 (ii).

Next, as equation (15) in Remark 2 suggests, we compute the average (absolute) correlation

coe¢ cients between the estimated and true idiosyncratic components Corr(û1t; u1t) and the

correlation between the estimated idiosyncratic components and the true factor Corr(û1t; ft).

This is presented in Figure 6-2. Again, the left-hand-side panel considers the model with all

the idiosyncratic components being explosive, while the right-hand-side panel corresponds

8Note that we can consider an idiosyncratic test for any observations i � 11 but particularly use the
idiosyncratic test for the last observation tÛ (N). This is again without loss of generality.
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to the model with only one idiosyncratic unit having explosive errors. They show that as the

idiosyncratic errors become more explosive, the estimated idiosyncratic components become

less correlated with the true idiosyncratic errors but more correlated with the true common

factor. Therefore, the estimated idiosyncratic components inherit the time-series properties

of the true common factor, resulting in a power reversal.

5 Cross-sectional approach for testing speculative bubbles

5.1 Algorithm

This section attempts to provide a new method to test speculative bubbles in the common

and the idiosyncratic components. The method is based on the following two key ingredients.

First, it takes advantage of the fact that bubbles appear only in a certain subperiod and the

series are not explosive in the rest of the sample period. If this is the case, we can time-wise

localize the explosive behaviors by considering the models

Ft =

8<: Ft�1 + et, for t = 1; :::; T

�Ft�1 + et for t = T + 1; :::; T + h
; (16)

and

Uit =

8<: Ui;t�1 + zit, for t = 1; :::; T

�iUi;t�1 + zit for t = T + 1; :::; T + h
; (17)

with h being the length of the window, so that the data is assumed to have a certain period

t 2 [1; T ] in which no explosive behaviors exist in either common or idiosyncratic components.
We call this the training sample.9 On the other hand, the period of interest t 2 [T +1; T +h]
is called the explosive window. If identifying the timing of initiation of explosive window is

an issue, an existing time-stamping method can be implemented for xit series-by-series. See

Phillips et al. (2011).

The second key element is using cross-sectional regressions to estimate the common fac-

tors in the explosive window instead of using the principal component estimation of the

�rst-di¤erenced series. This is because the �rst-di¤erenced series of the explosive process re-

mains explosive and violates Assumption 3. Hence, the common factors are not consistently

estimated. To address this problem, we estimate the factor loadings in the training sample

9We can easily show that the weak (local) explosive process with the autoregressive coe¢ cient 1+ c
T and

1 + ci
T can exist in the training sample.
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under a nonexplosive environment. Then, we use them as regressors in the cross-sectional

regressions in the explosive window, to estimate the common components as the coe¢ cients

attached to the factor loadings. In this way, we can avoid the identi�cation problem between

the common and the explosive idiosyncratic components that are investigated in section 3.2.

In doing this, we consider an asymptotic framework of N; T !1, but h is �xed.10 We call
this approach the cross-sectional (CS) method and the steps are described as follows.

Algorithm:
Step 1. Use the �rst-di¤erenced data xit for t = 1; :::; T to estimate the factor loadings

�i by using the principal components method (7). Denote the factor loadings estimated in

the training sample by �̂
�
i .

Step 2. At t = T + 1, estimate the level of common factors by the cross-sectional

regression of fXitgNi=1 on
n
�̂
�
i

oN
i=1

so that

eFt = �PN
i=1 �̂

�
i �̂
�0
i

��1 �PN
i=1 �̂

�
iXit

�
;

and the idiosyncratic components by

eUit = Xit � �̂
�0
i
eFt:

Then, repeat Step 2 for t = T + 2; :::; T + h.

Step 3. Construct the common test t�eF by using eFt and eft = eFt � eFt�1 in the regression
(8) and the idiosyncratic test t�eU(i) by using eUit and euit = eUit � eUi;t�1 in the regression (10)
for t = T + 1; :::; T + h.

We now discuss an asymptotic justi�cation of the CS method in the following theorem.

Note that the time dimension of the testing period is now h instead of T , and hence, we now

denote � = 1 + c
kh
and �i = 1 +

ci
kh
in Assumption 7.

Theorem 3 (i) Let Assumptions 1�4 hold. Under the null hypothesis of � = 1,

t�eF )
R 1
0
W (r)dW (r)hR 1
0
W (r)2dr

i1=2 ,
10This is a standard assumption in the panel data model with a short time dimension, where the common

factors are regarded as parameters. See, for example, Robertson and Sara�dis (2015).
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and under the null hypothesis of �i = 1;

t�eU(i))
R 1
0
Wi(r)dWi(r)hR 1
0
Wi(r)2dr

i1=2 ,
as h ! 1 after N; T ! 1, where W (r) and Wi(r) are independent standard Wiener

processes de�ned on r 2 [0; 1].
(ii) Let the OLS estimates for � and �i in Step 3 be �̂

�
and �̂

�
i and Assumptions 1�5 hold.

Under the alternative hypothesis of c 6= 0,

h�̂
� ) c+

R 1
0
Wc(r)dW (r)R 1
0
Wc(r)2dr

,

and under the alternative hypothesis of ci 6= 0,

h�̂
�
i ) ci +

R 1
0
Wc;i(r)dWi(r)R 1
0
Wc;i(r)2dr

,

as h!1 after N; T !1, whereWc(r) andWc;i(r) are independent Ornstein and Uhlenbeck

processes de�ned on r 2 [0; 1].
(iii) Let Assumptions 1�4 and 6 hold. Under the alternative hypothesis of c > 0 and

(1 + c
kh
)h !1;

��ht�eF )
r

c

2�2
j�j > 0;

where � � N(0; �2=2c) and under the alternative hypothesis of ci > 0 and (1 + ci
kh
)h !1;

��hi t
�eU(i))

r
ci
2�2i

j�ij > 0;

where �i � N(0; �2i =2ci) as h!1 after N; T !1.

This theorem shows that the common test asymptotically achieves the correct size and is

consistent under the moderate deviations framework. The idiosyncratic test also attains the

correct size asymptotically and it is consistent under the moderate deviations framework.

Notice that these results are obtained only under a sequential limit: �rst N and T ! 1,
then h!1. The proof is as follows. In the �rst step (N; T !1), we obtain the consistent
estimate for the common factors. In the second step (h ! 1), we can simply replace the
estimated factors with its true counterparts to construct the tests. As the literature shows,

this is a stronger assumption than the limit obtained underN , T , and h!1 simultaneously.

Hence, we investigate whether this asymptotic approximation reasonably approximates �nite

sample behaviors of the tests in the following subsection.
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5.2 Finite sample properties of the CS method

This subsection investigates the �nite sample property of the CS method via Monte Carlo

simulation. The data is generated by (1), (16), and (17) with r = 1. All of �i, uit, zit, F0,

and U0i are independently drawn from the standard normal quasi random variables in each

replication. The sample size is N; T = 100 and we consider three cases for the length of

explosive window h = 10, 20, and 30. The size and power of the following tests at the 5%

nominal level are computed through 5,000 replications: the CS tests and the PANIC tests

using the explosive window. Further, we present the tests by using the true common and

idiosyncratic components for the explosive window, labeled as �observed.�The �observed�is

a counterfactual experiment and would merely give us a benchmark to evaluate performance

of the CS and the PANIC tests.

Figure 7 presents the size of the common and idiosyncratic tests in the left-hand-side

and right-hand-side panels, respectively. The top, middle, and bottom panels correspond to

h = 10, 20, and 30 cases. Consistent with our �ndings in section 4, the PANIC common test

has serious size distortions when the idiosyncratic components are explosive and the PANIC

idiosyncratic test becomes undersized when the common component is explosive. Although

the CS common test also shows size distortions, they are considerably smaller than the

PANIC tests. As for the CS idiosyncratic test, we now see over rejections especially when

h is large. Figure 8 reports the power of both tests in the same format as Figure 7. The

power functions of the CS and PANIC common tests are very similar and almost equivalent

to the counterfactual test. Most importantly, the right-hand-side panels of Figure 8 show

the power of idiosyncratic tests and suggest that the CS idiosyncratic test is robust to the

nonmonotonic power problem. In summary, the CS test su¤ers from size distortions that are

not present in the PANIC test when we have a relatively long explosive period. However, the

CS test performs well in general with a short explosive window and outweighs the PANIC

approach with respect to power in all cases.

6 Empirical example

Towards the �nancial crisis of 2007 to 2008, speculative bubbles prevailed in various �nancial

assets such as real estate, stock, bond, and commodity prices. This has been documented

in empirical literature; for example, Phillips and Yu (2011) consider examples of a home

price index, the crude oil price, and the spread between Baa and Aaa bond rates in the

United States. However, relatively less attention has been paid to explosive behaviors in
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exchange rates. One di¢ culty arises in testing bubbles in this case because when a bilateral

exchange rate, say the U.S. dollar (USD) measured by the Euro, exhibits a bubble, we

hardly tell which currency or both of them are susceptible to speculative investments. Here,

we try to shed light on this question by using the common factor approach considered in this

paper. Applying the common factor model to the exchange-rate system recently becomes

increasingly popular from various viewpoints. For example, Lustig et al. (2011) use the

common factor model for exchange-rate returns to identify the risk factors. Greenaway-

McGrevy et al. (2015) tries to identify the value of a single currency, that is, USD and Euro

factors, based on the principal component estimate. Engel et al. (2015) use the common

factors extracted from a cross-sectional data of bilateral exchange returns for forecasting.

We construct a currency portfolio roughly by using an intersection of the aforementioned

three papers.11 Figure 9 plots 24 bilateral exchange rates against the USD in logarithm from

January 1, 2004 to January 31 2009, where their respective titles are the ISO4217 currency

codes that are fully described in Table 1. Following the literature, we set the �nancial

crisis period from August 1, 2007 to January 31, 2009 (the sample size h = 393). It is

clearly observed that many bilateral series exhibit extreme behaviors in this period. Most

currencies depreciated against the USD (increased in �gure), while the JPY is the one that

rapidly appreciated against the USD (decreased in �gure). We then performed a battery of

tests considered in this paper. The results using the regression with an intercept but no time

trend are reported in Table 1.12 We �rst test whether these explosive behaviors of individual

bilateral rates are statistically signi�cant series-by-series. The column �individual� shows

the right-tailed DF test applied to the bilateral rates in the �nancial crisis period. We see

that 13 bilateral exchange rates are signi�cantly explosive at the 10% level. This is consistent

with our visual inspection of Figure 9.

The question of interest is whether these explosive behaviors are due to the common

or the idiosyncratic component. According to the literature, the common components are

ascribed to the value of the USD and the idiosyncratic components pertain to the values of

the paired individual currencies. To this end, we employ the PANIC tests for the explosive

period from August 1, 2007 to January 31, 2009. Further, we perform the CS tests for the

same explosive period by using January 1, 2004 to July 31, 2007 as the training sample. We

11By following Lustig et al. (2011), we included some currencies that are partly pegged to the USD, for
example, the Hong Kong dollar and the Singapore dollar.
12The results using the augmented regression with an intercept and a linear time trend are qualitatively

similar, and hence, they are not separately reported.
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present the results by using two common factors following the literature13; however, other

variations of the number of factors provide qualitatively similar results.

The �rst common factor is signi�cantly explosive in both the PANIC and the CS tests

at the 5% level. It is concluded that the USD exhibits bubbles in this period, although

there is a caveat that the common tests may have size distortions. The second factor is

not explosive both in the PANIC and the CS tests. Therefore, the two approaches reach

the same conclusion for the common component. Let us move on to the idiosyncratic tests.

When we use the PANIC approach, all the idiosyncratic tests are insigni�cant, except for

the Indonesian rupiah. If we rely on this result, it is concluded that the widespread explosive

behaviors in exchange rates are mainly attributed to the USD and most other currencies are

stable. However, if we use the CS method, the results are strikingly di¤erent. We see that

eight currencies are signi�cant at the 10% level, three currencies out of them are signi�cant at

the 5% level. This �nding suggests that the explosive behaviors in the exchange-rate system

are because of not only the USD but also other currencies. For instance, idiosyncratic tests

of the Japanese yen and the Swiss franc are signi�cant at the 5% level. This may come from

the speculative demand for the safe-haven properties of these currencies as pointed out by

Habib and Stracca (2012) and Fatum and Yamamoto (2015). Therefore, we discovered that

explosive behaviors prevailed in the exchange-rate system during the �nancial crisis period

is not solely attributed to the value of the USD but other currencies as well. This example

shows that information extracted by the CS tests and the PANIC tests can be very di¤erent

and the CS approach provides additional perspectives.

7 Conclusions

Towards the �nancial crisis of 2007 to 2008, speculative bubbles prevailed in various �nancial

assets such as real estate, stocks, bonds, commodities, as well as exchange rates. Whether

these bubbles are an economy-wide phenomenon or market-speci�c events is an important

question. To address this question, in this paper, we have developed a testing approach to

investigate whether the speculative bubbles lie in the common or in the idiosyncratic com-

ponents in large-dimensional �nancial panel data sets. We �rst show that when the existing

PANIC tests are applied to the explosive alternative hypothesis as opposed to the station-

ary alternative hypothesis, both the common and the idiosyncratic tests exhibit serious size

distortions. More importantly, the idiosyncratic tests su¤er from the nonmonotonic power

13Lustig et al. (2011) and Greenaway-McGrevy et al. (2015) use two factor model while Engel et al.
(2015) consider three factors.
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problem. By using the moderate deviations framework of Phillips and Magdalinos (2007),

we �nd that the source of nonmonotonic power is an identi�cation failure between the com-

mon factors and the explosive idiosyncratic components. This paper attempts to provide

a cross-sectional method to disentangle the common and the idiosyncratic components in

a relatively short explosive window. The method is justi�ed by a sequential asymptotic

framework and it is robust to the nonmonotonic power problem. In an empirical example

using the 24 bilateral exchange rates, we discover that explosive behaviors prevailed in the

exchange-rate system during the �nancial crisis period is not solely attributed to the value

of USD but other currencies as well.
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Appendix: Technical derivations

Throughout the appendix, we use the notation � = min
np
N;
p
T
o
and denote kT by k

for simplicity.

Lemma A1. Under Assumptions 1, 3(a), 4, and 5, the following hold.
(a) T�1=2F[Tr] ) �Wc(r),
(b) T�3=2

PT
t=1 Ft ) �

R
Wc(r)dr;

(c) T�1
PT

t=1 Ft�1et ) �2
R
Wc(r)dW (r),

(d) T�2
PT

t=1 F
2
t ) �2

R
W 2
c (r)dr;

(e) T�1=2Ui;[Tr] ) �iWc;i(r),
(f) T�3=2

PT
t=1 Uit ) �i

R
Wc;i(r)dr;

(g) T�1
PT

t=1 Ui;t�1zit ) �2i
R
Wc;i(r)dW (r),

(h) T�2
PT

t=1 U
2
it ) �2i

R
W 2
c;i(r)dr,

where Wc(r) and Wc;i(r) are independent Ornstein and Uhlenbeck processes de�ned on
r 2 [0; 1].

Proof of Lemma A1. See Phillips (1987).

Lemma A2. Under Assumptions 1, 3, 4, and 5, the following hold.
(a) T�1

PT
t=1 f

2
t

p! �f , a positive constant,
(b) E(uit) = 0 and E juitj8 = O(1);
(c) j
�ssj = O(1) for all s and T�1

PT
s=1

PT
t=1 j
�stj = O(1), where 
�st = N�1PN

i=1E(uisuit),
(d)

PN
i=1

����ij�� = O(1) for all j and N�1PN
i=1

PN
j=1

����ij�� = O(1), where ��ij = E(uitujt),
(e) ��st = O(1), where �

�
st = E

���N�1=2PN
i=1[uisuit � E(uisuit)]

���4.
Proof of Lemma A2. (a) We start with

ft =
c

T
Ft�1 + et:

Squaring both sides, summing over t, and multiplying both sides by T�1 would yield

1

T

PT
t=1 f

2
t =

c2

T 3
PT

t=1 F
2
t�1 + 2

c

T 2
PT

t=1 Ft�1et +
1

T

PT
t=1 e

2
t ;

= I + II + T�1
PT

t=1 e
2
t

p! �2;

because I = Op(T�1) by using Lemma A1 (d) and II = op(T�1) by using Lemma A1 (c). The
convergence of the third term is implied by the weak law of large numbers by Assumption
1. Hence, the result follows.
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(b) It is straightforward that

E(uit) = E(Uit)� E(Ui;t�1) = 0;

by Assumptions 3 (a). Next,

E juitj8 = E
��� c
T
Ui;t�1 + zit

���8 ;
� 28 �max

�
c8i
T 8
E jUi;t�1j8 ; E jzitj8

�
;

but
E jUi;t�1j8 � T 8�8Ti E jzitj

8 ;

so that
c8i
T 8
E jUi;t�1j8 � c8i �8Ti E jzitj

8 ;

where �8Ti = (1+ ci
T
)8T ! exp(8ci) and E jzitj8 �M by Assumption 3 (a). Hence, the result

follows.
(c) Without loss of generality, let s � t. Consider

E(uisuit) = E
h�ci
T
Ui;s�1 + zis

��ci
T
Ui;t�1 + zit

�i
;

=
c2i
T 2
E(Ui;s�1Ui;t�1) +

ci
T
E (Ui;s�1zit) +

ci
T
E (Ui;t�1zis) + E(ziszit);

= I + II + III + IV:

However,

I � c2i
T
E(T�1U2i;s�1) = O(T

�1);

by using Lemma A1 (e). For II,

II =
ci
T
E (Ui;s�1zit) =

ci
T
E[(Ui;s�1 � Uit)zit + uitzit + Ui;t�1zit];

=
ci
T
E[(Ui;s�1 � Uit)zit] +

ci
T
E(uitzit) +

ci
T
E(Ui;t�1zit);

= IIa+ IIb+ IIc:

However, since Ui;s�1 = zi;s�1 + �izi;s�2 + � � �+ �s�t�1i Uit;

IIa =
ci
T
E[
�
zi;s�1 + �izi;s�2 + �

2
i zi;s�3 + � � �+ (�s�t�1i � 1)Uit

	
zit];

=
ci
T
E[
�
zi;s�1 + �izi;s�2 + �

2
i zi;s�3 + � � �+ (�s�t�1i � 1)zit + �i(�s�t�1i � 1)Ui;t�1

	
zit];

=
ci
T
(�s�t�1i � 1)E(z2it) = O(T�1);
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by using Assumption 3 (a),

IIb =
ci
T
E[(zit +

ci
T
zi;t�1 +

ci
T
�izi;t�2 + � � �+

ci
T
�tiUi0)zit];

=
ci
T
E(z2it) = O(T

�1);

by using Assumption 3 (a), and

IIc =
ci
T 1=2

E(T�1=2Ui;t�1)| {z }
=O(1) by Lemma A1 (e)

E(zit) = 0;

so that II = O(T�1). For III,

III =
ci
T
E (Ui;t�1zis) =

ci
T
E (Ui;t�1)E(zis) = 0;

since Ui;t�1 and zis are independent as long as s � t. Therefore,

E(uisuit) = O(T�1) +O(T�1) +O(T�1) + 0 + E(ziszit);

=

8<: �2i +O(T
�1) if s = t

O(T�1) if s 6= t
:

We now consider


�st = E
h
N�1PN

i=1 uisuit

i
;

=

8<: N�1PN
i=1 �

2
i +O(T

�1) if s = t

O(T�1) if s 6= t
:

We also have PT
s=1 j
�stj = N�1PN

i=1 �
2
i +O(1);

so that
T�1

PT
s=1

PT
t=1 j
�stj = N�1PN

i=1 �
2
i +O(1) = O(1):

(d) Consider

��ij = E(uitujt) = E
h�ci
T
Ui;t�1 + zit

��cj
T
Uj;t�1 + zjt

�i
;

=
cicj
T 2
E(Ui;t�1Uj;t�1) +

ci
T
E(Ui;t�1zjt) +

cj
T
E(Uj;t�1zit) + E(zitzjt);

= I + II + III + IV:

For I,
I =

cicj
T 2
E(Ui;t�1Uj;t�1) =

cicj
T 2
�ij

hPt�1
l=0(1 +

ci
T
)l(1 +

cj
T
)l
i
;
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and by assuming without loss of generality ci � cj we obtainhPt�1
l=0(1 +

ci
T
)2l
i
� T (1 + ci

T
)2T = O(T );

so that I = �ij �O(T�1). For II,

II =
ci
T 1=2

E(T�1=2Ui;t�1)E(zjt) = 0;

by Assumption 3 (a), and similarly, III = 0. IV = �ij by de�nition. Therefore,

��ij = �ij[1 +O(T
�1)];

so that PN
i=1

����ij�� = [1 +O(T�1)]PN
i=1

���ij�� = O(1);
by Assumption 3 (c) and

N�1PN
i=1

PN
j=1

����ij�� = [1 +O(T�1)]N�1PN
i=1

PN
j=1

���ij�� = O(1);
by Assumption 3 (c) as well. Hence, the result follows.
(e) Since

uisuit =
c2

T 2
Ui;s�1Ui;t�1 +

c

T
Ui;s�1zit +

c

T
Ui;t�1zis + ziszit;

��st = E
���N�1=2PN

i=1 [uisuit � E(uisuit)]
���4 ;

= E

���� c2

T 2N1=2

PN
i=1 [Ui;s�1Ui;t�1 � E(Ui;s�1Ui;t�1)]

+
c

TN1=2

PN
i=1 [Ui;s�1zit � E(Ui;s�1zit)]

+
c

TN1=2

PN
i=1 [Ui;t�1zis � E(Ui;t�1zis)]

+
1

N1=2

PN
i=1 [ziszit � E(ziszit)]

����4 ;
= E j�1 + �2 + �3 + �4j4 ;
� 44 �max

�
E j�1j4 ; E j�2j4 ; E j�3j4 ; �st

	
:
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Consider E j�1j4. Since Ui;s�1 =
Ps�1

l=0 �
s�1�l
i zil and Ui;t�1 =

Pt�1
m=0 �

t�1�m
i zim,

E j�1j4 =
c8i
T 8
E
���N�1=2PN

i=1 [Ui;s�1Ui;t�1 � E(Ui;s�1Ui;t�1)]
���4 ;

=
c8i
T 8
E
���N�1=2PN

i=1

�Ps�1
l=0 �

s�1�l
i

Pt�1
m=0 �

t�1�m
i zilzim

�
Ps�1

l=1 �
s�1�l
i

Pt�1
m=0 �

t�1�m
i E(zilzim)

���4 ;
=

c8i
T 8
E
���N�1=2PN

i=1

Ps�1
l=0 �

s�1�l
i

Pt�1
m=0 �

t�1�m
i (zilzim � E(zilzim))

���4 ;
� c8i

T 8
E
���Ps�1

l=0 �
s�1�l
i

Pt�1
m=0 �

t�1�m
i

���N�1=2PN
i=1(zilzim � E(zilzim))

������4 ;
� c8i

T 8
T 8�8Ti E

���N�1=2PN
i=1(zilzim � E(zilzim))

���4 ;
= c8i �

8T
i M = O(1);

by Assumption 3(d). Next,

E j�2j4 =
c4i
T 4
E
���N�1=2PN

i=1 [Ui;s�1zit � E(Ui;s�1zit)]
���4 ;

=
c4i
T 4
E
���N�1=2PN

i=1

�Ps�1
l=0 �

s�1�l
i zilzit �

Ps�1
l=0 �

s�1�l
i E(zilzit)

����4 ;
=

c4i
T 4
E
���Ps�1

l=0 �
s�1�l
i N�1=2PN

i=1 [zilzit � E(zilzit)]
���4 ;

� c4i
T 4
T 4�4Ti E

���N�1=2PN
i=1 [zilzit � E(zilzit)]

���4 ;
= c4i �

4T
i M = O(1);

and E j�3j4 = O(1) is similarly shown. Therefore,

��st � 44 �max fO(1); �stg = O(1);

by using Assumption 3 (d). Hence, the result follows.

Lemma A3. Under Assumptions 1�5, the following hold.

(a) T�1=2
PT

t=1(f̂t �Hft) = Op(�
�1);

(b) T�1
PT

t=1(f̂t �Hft)2 = Op(�
�2);

(c) T�1
PT

t=1(f̂t �Hft)uit = Op(�
�2);

(d) T�1
PT

t=1(f̂t �Hft)ft = Op(�
�2);

(e) T�1
PT

t=1(f̂t �Hft)f̂t = Op(�
�2);

(f) �̂i �H�1�i = Op

�
1

minfN;T 1=2g

�
:
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Proof of Lemma A3. Part (a) is a direct consequence from Theorem 1 of Bai (2003).
For part (b), the proof is straightforward by following Theorem 1 of Bai and Ng (2002) and
replacing their assumptions with our Lemma A2. For parts (c), (d), and (e), the proof is
obtained by following Lemmas B1, B2, and B3 of Bai (2003), respectively, by replacing their
assumptions with our Lemma A2. For part (f), we have

�̂i � �iH�1 = T�1H
PT

t=1 ftuit

+T�1
PT

t=1(f̂t �Hft)f̂t�i + T�1
PT

t=1(f̂t �Hft)uit;
= T�1H

PT
t=1 ftuit +Op(�

�2);

by using Lemma A3 (e) and (c). Now

T�1
PT

t=1 ftuit = T�1
PT

t=1

� c
T
Ft�1 + et

��ci
T
Ui;t�1 + zit

�
= cciT

�3PT
t=1 Ft�1Ui;t�1 + cT

�2PT
t=1 Ft�1zit

+ciT
�2PT

t=1 Ui;t�1et + T
�1PT

t=1 etzit;

= I + II + III + IV:

However, if we use Cauchy�Schwarz inequality, Lemma A1 (d) and (h), Assumptions 1 and
3 (a), we obtain

I � cciT
�1
�
T�2

PT
t=1 F

2
t�1

�1=2 �
T�2

PT
t=1 U

2
i;t�1

�1=2
= Op(T

�1);

II � cT�1=2
�
T�2

PT
t=1 F

2
t�1

�1=2 �
T�1

PT
t=1 z

2
i;t�1

�1=2
= Op(T

�1=2);

III � ciT
�1=2

�
T�2

PT
t=1 U

2
i;t�1

�1=2 �
T�1

PT
t=1 e

2
t�1

�1=2
= Op(T

�1=2):

For IV , Assumptions 1, 3 (a), and 4 imply that fetzitgTt=2 is a white noise sequence so that
IV = Op(T

�1=2). Therefore,

�̂i �H�1�i = Op(T
�1=2) +Op(�

�2) = Op

�
1

min fN; T 1=2g

�
: (A.1)

Lemma A4. Under Assumptions 1�5, the following hold.

(a) T�1
PT

t=1 f̂
2
t = T

�1H2
PT

t=1 f
2
t +Op(�

�2);

(b) T�2
PT

t=1 F̂
2
t�1 = T

�2H2
PT

t=1 F
2
t�1 +Op(�

�1);

(c) T�1
PT

t=1 F̂t�1f̂t = T
�1H2

PT
t=1 Ft�1ft +Op(�

�1);

(d) T�1
PT

t=1 û
2
it = T

�1PT
t=1 u

2
it +Op(�

�2);

(e) T�2
PT

t=1 Û
2
i;t�1 = T

�2PT
t=1 U

2
i;t�1 +Op(�

�1);

(f) T�1
PT

t=1 Ûi;t�1ûit = T
�1PT

t=1 Ui;t�1uit +Op(�
�1):

Proof of Lemma A4. Note that F̂0 = 0 and Ûi0 = 0 for all i by de�nition. (a) We
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start with the identity

T�1
PT

t=1 f̂
2
t = T�1

PT
t=1

h
Hft + (f̂t �Hft)

i2
;

= T�1H2
PT

t=1 f
2
t + T

�1PT
t=1(f̂t �Hft)2;

+2T�1H
PT

t=1 ft(f̂t �Hft)
= T�1H2

PT
t=1 f

2
t + I + II;

However, I = Op(�
�2) by using Lemma A3 (b) and II = Op(�

�2) by using Lemma A3 (d).
Hence, the result follows.
(b) This part closely follows Bai and Ng�s (2004) Lemma B2. Since

F̂t�1 = HFt�1 +
Pt�1

s=1(f̂s �Hfs); (A.2)

squaring both sides, summing over t, and multiplying by T�2 would yield

T�2
PT

t=1 F̂
2
t�1 = T�2H2

PT
t=1 F

2
t�1 + T

�1PT
t=1

h
T�1=2

Pt�1
s=1(f̂s �Hfs)

i2
+2T�1H

PT
t=1 Ft�1

h
T�1=2

Pt�1
s=1(f̂s �Hfs)

i
;

= T�2H2
PT

t=1 F
2
t�1 + I + II:

However, I = Op(�
�1) by using Lemma A3 (a). For term II, we use Cauchy�Schwarz

inequality to get

II � 2
�
T�2

PT
t=1 F

2
t�1

�1=2 �
T�1

PT
t=1

�
T�1=2

Pt�1
s=1(f̂s �Hfs)

�2�1=2
;

= Op(1)�Op(��1);

by using Lemma A1 (d) for the �rst term and Lemma A3 (a) for the second term. Hence,
the result follows.
(c) Since F 2t = (Ft�1 + ft)

2 = F 2t�1 + f
2
t + 2Ft�1ft by construction, we obtain

Ft�1ft =
1

2
(F 2t � F 2t�1 � f 2t ):

Summing over t and multiplying by T�1 would yield

T�1
PT

t=1 Ft�1ft =
1

2
(T�1F 2T � T�1F 20 � T�1

PT
t=1 f

2
t ): (A.3)

We also have by construction

F̂t�1f̂t =
1

2
(F̂ 2t � F̂ 2t�1 � f̂ 2t );

so that
T�1

PT
t=1 F̂t�1f̂t =

1

2
(T�1F̂ 2T � T�1F̂ 20 � T�1

PT
t=1 f̂

2
t ): (A.4)
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Subtracting (A.3) multiplied by H2 from (A.4) would yield

T�1
PT

t=1 F̂t�1f̂t = T�1H2
PT

t=1 Ft�1ft +
1

2T
(F̂ 2T �H2F 2T )�

1

2T
(F̂ 20 �H2F 20 )

�
�
T�1

PT
t=1 f̂

2
t � T�1H2

PT
t=1 f

2
t

�
;

= T�1H2
PT

t=1 Ft�1ft + I + II + III:

For I, updating (A.2) to the period T , squaring both sides, and multiplying by T�1 would
yield

T�1F̂ 2T = T�1H2F 2T +
h
T�1=2

PT
s=1(f̂s �Hfs)

i2
| {z }

=Op(�
�2) by Lemma A3(a)

+2 T�1=2FT| {z }
=Op(1) by Lemma A1(a)

h
T�1=2

PT
s=1(f̂s �Hfs)

i
| {z }
=Op(�

�1) by Lemma A3(a)

;

so that I = Op(�
�1). For II,

F̂ 20 �H2F 20 = �H2(�2F 20 + e
2
1 + 2�F0e1);

is bounded as T !1 so that II = Op(T�1). Term III is Op(�
�2) by using Lemma A4 (a).

Hence, the result follows.
(d) Since ûit = xit � �̂if̂t and xit = uit + �iH�1Hft,

ûit = uit + �iH
�1Hft � �̂if̂t;

= uit � �iH�1(f̂t �Hft)� (�̂i � �iH�1)f̂t: (A.5)

Squaring both sides, summing over t, and multiplying by T�1 would yield

T�1
PT

t=1 û
2
it = T�1

PT
t=1 u

2
it + �

2
iH

�2T�1
PT

t=1(f̂t �Hft)2 + (�̂i � �iH�1)2T�1
PT

t=1 f̂
2
t ;

�2�iH�1T�1
PT

t=1(f̂t �Hft)uit � 2(�̂i � �iH�1)T�1
PT

t=1 f̂tuit;

+2�i(�̂i � �iH�1)T�1
PT

t=1(f̂t �Hft)f̂t;
= T�1

PT
t=1 u

2
it + I + II + III + IV + V:

However, I = Op(�
�2) by Lemma A3 (b), II = Op(

1
minfT;N2g) by Lemma A3 (f) and

T�1
PT

t=2 f̂t = 1, and III = Op(�
�2) by Lemma A3 (c). We also have

IV = �2(�̂i � �iH�1)T�1
PT

t=1 f̂tuit;

= �2(�̂i � �iH�1)T�1
PT

t=1(f̂t �Hft)uit � 2(�̂i � �iH�1)T�1H
PT

t=1 ftuit;

= Op

�
1

min fT;N2g

�
�Op(��2) +Op

�
1

min fT;N2g

�
�Op(T�1=2);
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by using Lemma A3 (f) and Lemma A3 (c) for the �rst term and by using Lemma A3 (f)

for the second term, V = Op
�

1
minfT;N2g

�
�Op(��2) by using Lemma A3 (f) and Lemma A3

(e). Hence, the result follows.
(e) We have

Ûit =
Pt

s=1 ûis;

=
Pt

s=1 uis � �iH�1Pt
s=1(f̂s �Hfs)� (�̂i � �iH�1)

Pt
s=1 f̂s;

= Uit � Ui0 � �iH�1Pt
s=1(f̂s �Hfs)� (�̂i � �iH�1)

Pt
s=1 f̂s;

by using (A.5). Multiplying both sides by T�1=2 would yield

T�1=2Ûit = T�1=2Uit � T�1=2Ui0 � �iH�1
h
T�1=2

Pt
s=1(f̂s �Hfs)

i
� (�̂i �H�1�i)T

�1=2Pt
s=1 f̂s;

= T�1=2Uit + I + II + III:

but I = Op(T
�1=2) by Assumption 3(a), II = Op(�

�1) by using Lemma A3 (a), III =

Op

�
1

minfN;T 1=2g

�
by using Lemma A3 (f) and

T�1=2
Pt

s=1 f̂s = T�1=2F̂t = T
�1=2Ft + T

�1=2Pt
s=1(f̂s �Hfs);

= Op(1) +Op(�
�1);

by using Lemma A1 (b) and Lemma A3 (a). This results in T�1=2Ûit = T�1=2Uit + Op(�
�1)

so that squaring both sides would yield

T�1Û2it = T�1U2it +Op(�
�2) +Op(�

�1)� T�1=2Uit;
= T�1U2it +Op(�

�1); (A.6)

by using Lemma A1 (e). Furthermore, summing over t would yield

T�1
PT

t=1 Û
2
it = T

�1PT
t=1 U

2
it +Op(�

�1)T�1=2
PT

t=1 Uit:

Multiplying both sides by T�1 would yield

T�2
PT

t=1 Û
2
it = T�2

PT
t=1 U

2
it +Op(�

�1) T�3=2
PT

t=1 Uit| {z }
=Op(1) by Lemma A1(g)

;

= T�2
PT

t=1 U
2
it +Op(�

�1):

Hence, the result follows.
(f) We use a similar identity as (A.4) for Ûit

T�1
PT

t=1 Ûi;t�1ûit =
Û2iT
2T

� Û
2
i0

2T
� 1

2T

PT
t=1 û

2
it; (A.7)
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and a similar identity as (A.3) for Uit

T�1
PT

t=1 Ui;t�1uit =
U2iT
2T

� U
2
i0

2T
� 1

2T

PT
t=1 u

2
it: (A.8)

Subtracting (A.8) from (A.7) would yield

T�1
PT

t=1 Ûi;t�1ûit � T�1
PT

t=1 Ui;t�1uit;

=
1

2T
(Û2iT � U2iT )�

1

2T
(Û2i0 � U2i0)�

1

2T

�PT
t=1 û

2
it �

PT
t=1 u

2
it

�
;

= I + II + III:

However, I and II are Op(�
�1) by (A.6) and III is Op(�

�2) by using Lemma A4 (d). Hence,
the result follows.

Proof of Theorem 1. The common test is

tF̂ =
T �̂

�̂
�
T�2

PT
t=2 F̂

2
t�1

��1=2 : (A.9)

Under Assumptions 1�5, we can use Lemma A4 (b) and (c) so that the numerator becomes

T �̂ =
T�1

PT
t=1 F̂t�1f̂t

T�2
PT

t=1 F̂
2
t�1

;

=
T�1H2

PT
t=1 Ft�1ft +Op(�

�1)

T�2H2
PT

t=1 F
2
t�1 +Op(�

�1)
: (A.10)

The denominator has two components. One is

T�2
PT

t=1 F̂
2
t�1 = T

�2H2
PT

t=1 F
2
t�1 +Op(�

�1); (A.11)

by Lemma A4 (b) and the other is

�̂2 = T�1
PT

t=1

�
f̂t � �̂F̂t�1

�2
;

= T�1
PT

t=1 f̂
2
t � 2T�1�̂

PT
t=1 f̂tF̂t�1 + (T �̂)

2T�3
PT

t=1 F̂
2
t�1;

= T�1H2
PT

t=1 f
2
t � 2(T �̂)T�2H2

PT
t=1 ftFt�1 + (T �̂)

2T�3H2
PT

t=1 F
2
t�1 +Op(�

�1);

= T�1H2
PT

t=1 f
2
t �Op(T�1) +Op(T�1) +Op(��1);

by Lemma A4 (a), (b), and (c). Therefore, the variance estimate satis�es �̂2
p! Q�2�2 for

any �xed c.
(i-a) If c = 0; then (A.10))

R 1
0
W (r)dW (r)=

R 1
0
W (r)2dr and (A.11)) �2Q�2

R 1
0
W (r)2dr

so that

tF̂ )
R 1
0
W (r)dW (r)hR 1
0
W (r)2dr

i1=2 ;
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as N; T !1.
(i-b) If c > 0, then Lemma A1 (c) and (d) imply that (A.10)) c+

R 1
0
Wc(r)dW (r)=

R 1
0
Wc(r)

2dr.
The result follows.
For parts (ii-a) and (ii-b), we follow the same steps as above by replacing f̂t and F̂t�1

with ûit and Ûi;t�1 and using Lemma A4 (d)�(f) to show the results. Hence, the proof is
suppressed.

Lemma A5. Under Assumptions 1 and 6, the following hold.
(a) k�1=2

PT
t=1 �

�tet ) N(0; �2=2c);

(b)
PT

t=1 Ft = Op(kT
1=2) +Op(�

Tk3=2);

(c) ��2T+1k�1
PT

t=1 Ft�1et = op(1);

(d) ��2Tk�2
PT

t=1 F
2
t ) 1

2c
�2, where � = N(0; �2=2c);

(e) T�1
PT

t=1 f
2
t = Op(�

2TT�1) +Op(1):

Under Assumptions 3 (a) and 6, the following hold for all i:

(f) k�1=2
PT

t=1 �
�t
i zit ) N(0; �2i =2ci);

(g)
PT

t=1 Uit = Op(kT
1=2) +Op(�

T
i k

3=2);

(h) �i
�2T+1k�1

PT
t=1 Ui;t�1zit = op(1);

(i) �i
�2Tk�2

PT
t=1 U

2
it ) 1

2ci
�2i , where �i = N(0; �

2
i =2ci);

(j) T�1
PT

t=1 u
2
it = Op(�

2T
i T

�1) +Op(1):

Proof of Lemma A5. Here, we present the proof of only parts (a) to (e). Proof of parts
(f) to (j) is shown in the same way but using Uit instead of Ft and replacing Assumption 1
with Assumption 3 (a). Thus, it is suppressed to conserve space.

(a) See Lemma 4.2 of Phillips and Magdalinos (2007).

(b) We start with the expressionPT
t=1 Ft =

PT
t=0 �

te0 +
PT�1

t=0 �
te1 +

PT�2
t=0 �

te2 + � � �+ eT ;

=
1

1� �
�
(�� �T+1)F0 + (1� �T )e1 + (1� �T�1)e2 + � � �+ (1� �)eT

�
;

=
k

c

hPT
t=1 et �

PT
t=1 �

T+1�tet + (�� �T+1)F0
i
;

=
k

c

PT
t=1 et �

�T+1k

c

PT
t=1 �

�tet +
k

c
(�� �T+1)F0;

= I + II + III:

However, I = Op(kT 1=2) by Assumption 1, II = Op(�Tk3=2) by using Lemma A5 (a), and
III = Op(�

Tk) by Assumption 1. Hence, the result follows.
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(c) We start with the expression for Ft�1

Ft�1 = et�1 + �et�2 + :::+ �
t�1e1 + �

tF0 = �
t�1Pt�1

s=1 �
�ses + �

t�1F0:

Multiplying both sides by ��2T+1k�1et and summing over t would yield

��2T+1k�1
PT

t=1 Ft�1et = ��2T+1k�1
PT

t=1

�Pt�1
s=1 �

t�s�1es
�
et + �

�2T+1k�1F0
PT

t=1 �
t�1et;

= I + II:

The expected value of this is zero because of Assumption 1. In order to show that this is
op(1), we show that the second moment of both terms diminishes as T !1. For I, by using
Assumption 1, we can simplify the second moment as follows.

E
h
��2T+1k�1

PT
t=1

�Pt�1
s=0 �

t�s�1es
�
et

i2
;

= ��4T+2k�2�4
PT

t=1

Pt�1
s=0 �

2(t�s�1);

= ��4T
�4�4

k(�2 � 1)

�
�2T � 1
k(�2 � 1) � k

�1T

�
:

However, since k(�2 � 1)! 2c, �4 ! 1, and k�1T = o(1), this is O(��2T ). This is o(kT�1)
by using Proposition A.1 (b) of Phillips and Magdalinos (2007). Further, by Assumption 6,
it is o(1). For II,

E
h
��2T+1k�1F0

PT
t=1 �

t�1et

i2
;

= ��4Tk�1
F 20 �

2

k(�2 � 1)(�
2T+2 � �2) = O(��2Tk�1);

so that the second moment of both I and II diminishes. Therefore, the result follows.

(d) See the derivation of equation (9) of Phillips and Magdalinos (2007).

(e) We start with

ft =
c

k
Ft�1 + et:

Squaring both sides, summing over t, and multiplying by (T � 1)�1 would yield
1

T � 1
PT

t=2 f
2
t =

c2

(T � 1)k2
PT

t=2 F
2
t�1 +

2c

(T � 1)k
PT

t=2 Ft�1et +
1

T � 1
PT

t=2 e
2
t ;

= I + II + III:

However, I = Op(�
2TT�1) by using Lemma A5 (d), II = op(�

TT�1) by using Lemma A5
(c), and III = Op(1) by Assumption 1. Hence, the result follows.

Proof of Theorem 2. We start with equation (A.1) of Bai and Ng (2004). Let ut = [u1t
u2t � � � uNt] be an 1�N vector of �rst di¤erences of the idiosyncratic errors at time t.

f̂t = Hft + V
�1N�1T�1f̂ 0u�ft + V

�1N�1T�1f̂ 0f�0u0t

+V �1N�1T�1f̂ 0uu0t;
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or
V f̂t = Aft +Bft +N

�1PN
i=1 aiuit +N

�1PN
i=1 biuit;

where A = N�1T�1f̂ 0f�0� by de�nition of H matrix. We also have B = N�1T�1f̂ 0u�,
ai = T

�1f̂ 0f�0i, and bi = T
�1f̂ 0ui.

(i) If c > 0 and ci = 0 for all i, and the stated condition is satis�ed, then

A �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 f

2
s

���1=2| {z }
=Op(�TT�1=2) by Lemma A5(e)

���N�1PN
i=1 �

2
i

���| {z }
=Op(1) by Assumption 2

= Op(�
TT�1=2);

B �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���N�1PN
i=1 T

�1PT
s=1 u

2
is

���1=2| {z }
=Op(1)

���N�1PN
i=1 �

2
i

���| {z }
=Op(1)

= Op(1);

ai �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 f

2
s

���1=2| {z } j�ij
=Op(�TT�1=2)

= Op(�
TT�1=2);

bi �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 u

2
is

���1=2| {z }
=Op(1)

= Op(1):

(ii) If c = 0 and ci > 0 for all i, then

A �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 f

2
s

���1=2| {z }
=Op(1)

���N�1PN
i=1 �

2
i

���| {z }
=Op(1)

= Op(1);

B �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���N�1PN
i=1 T

�1PT
s=1 u

2
is

���1=2| {z }
=Op(�Ti T

�1=2) by Lemma A5 (j)

���N�1PN
i=1 �

2
i

���| {z }
=Op(1)

= Op(�
T
i T

�1=2);

ai �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 f

2
s

���1=2| {z } j�ij
=Op(1)

= Op(1);

bi �
���T�1PT

s=1 f̂
2
s

���1=2| {z }
=1

���T�1PT
s=1 u

2
is

���1=2| {z }
=Op(�Ti T

�1=2)

= Op(�
T
i T

�1=2):

The result follows. Note that the largest eigenvalue V of N�1T�1xx0 satis�es V 1=2 =

N�1=2T�1=2x


, where k�k denotes the Euclidean norm, so that

V = N�1T�1 kxk2 ;
= N�1T�1

PN
i=1

PT
t=1 x

2
it;

=

8<: Op(�
TT�1=2); for case (i)

Op(�
T
i T

�1=2); for case (ii)
: (A.12)
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Proof of Theorem 3. Without loss of generality, we con�ne the case of r = 1. We �rst
show the common test results in parts (i), (ii), and (iii). We have

eFt = PN
i=1 �̂

�
iXitPN

i=1 �̂
�2
i

=
N�1PN

i=1 �̂
�
i�i

N�1PN
i=1 �̂

�2
i

Ft +
N�1PN

i=1 �̂
�
iUit

N�1PN
i=1 �̂

�2
i

= I + II:

For I, by using Lemma 1 (c) of Bai and Ng (2004), we know that p limN;T!1 �̂
�
i = Q

�1�i
for any i, where Q = p limN;T!1H. Hence, I ! QFt for any t = T + 1; :::; T + h as N; T !
1. For II, the numerator converges in probability to �2� and the numerator converges in
probability to zero because E(Uit) = 0 and Uit is independent of �i. Therefore, after N;
T !1, we obtain eFt p! QFt for any t = T + 1; :::; T + h. The common test is

t�eF = �̂
�

�̂Q�1(
PT+h

t=T+1 F
2
t�1)

�1=2
; (A.13)

where

�̂
�
=

PT+h
t=T+1 Ft�1ftPT+h
t=T+1 F

2
t�1

=
c

kh
+

PT+h
t=T+1 Ft�1etPT+h
t=T+1 F

2
t�1

; (A.14)

�̂2 = h�1Q2
PT+h

t=T+1(ft � �̂
�
Ft�1)

2;

or (A.13) can be written as

t�eF = c

�̂kh
Q
�PT+h

t=T+1 F
2
t�1

�1=2
+

PT+h
t=T+1 Ft�1et

�̂Q�1
�PT+h

t=T+1 F
2
t�1

�1=2 : (A.15)

We also have

�̂2 = h�1Q2
PT+h

t=T+1(ft � �̂
�
Ft�1)

2;

= h�1Q2
PT+h

t=T+1

 
ft �

c

kh
Ft�1 �

PT+h
t=T+1 Ft�1etPT+h
t=T+1 F

2
t�1

Ft�1

!2
;

= h�1Q2
PT+h

t=T+1

 
et � ��hk�1h

��hk�1h
PT+h

t=T+1 Ft�1et

��2hk�2h
PT+h

t=T+1 F
2
t�1

Ft�1

!2
;

= h�1Q2
PT+h

t=T+1 e
2
t � 2h�1Q2Dh�

�hk�1h
PT+h

t=T+1 Ft�1et| {z }
=op(1) by Lemma A5 (c)

+ h�1Q2D2
h�

�2hk�2h
PT+h

t=T+1 F
2
t�1| {z }

=Op(1) by Lemma A5 (d)

:

However, since Dh =
��hk�1h

PT+h

t=T+1
Ft�1et

��2hk�2h

PT+h

t=T+1
F 2t�1

= op(1) by Lemma A5 (c) and (d), we obtain

�̂2 = h�1Q2
PT+h

t=T+1 e
2
t + op(1)

p! Q2�2: (A.16)
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(i) We consider the case of � = 1 or c = 0. In this case, the �rst term of (A.15) disappears.
The t test becomes

t�eF =
h�1

PT+h
t=T+1 Ft�1et

�̂Q�1
�
h�2

PT+h
t=T+1 F

2
t�1

�1=2 ;
)

R 1
0
W (r)drhR 1

0
W (r)2dr

i1=2 ;
as h!1, by using (A.16).
(ii) We now consider the case of c 6= 0 and Assumption 5 holds with kh = h. The

coe¢ cient estimate (A.14) becomes

h�̂
�
= c+

h�1
PT+h

t=T+1 Ft�1et

h�2
PT+h

t=T+1 F
2
t�1

;

) c+

R 1
0
Wc(r)drR 1

0
Wc(r)2dr

;

as h!1.
(iii) We �nally consider the case of c > 0 but (1 + c

kh
)h = �h ! 1 as h ! 1. If we

consider the t test statistic (A.15) scaled by ��h,

��ht�eF =
c

�̂
Q
�
��2hk�2h

PT+h
t=T+1 F

2
t�1

�1=2
+ ��h

��hk�1h
PT+h

t=T+1 Ft�1et

�̂Q�1
�
��2hk�2h

PT+h
t=T+1 F

2
t�1

�1=2
| {z }

=op(1) by Lemma A5 (c) and (d)

;

)
r

c

2�2
j�j > 0;

by using Lemma A5 (d). Therefore, the result follows. This proves the result for the common
test.
We can follow the same steps to derive the results for the idiosyncratic test of parts (1),

(ii), and (iii). This is because

eUit = Uit � �iH�1( eFt �HFt)| {z }
=op(1)

� (�̂�i � �iH�1)| {z }
=Op(

1

minfpT;Ng )

eFt p! Uit;

as N; T ! 1 by using Lemma 1 (b) and (c) of Bai and Ng (2004). The rest of the proof
follows that of the common test (Q becomes identity in this case).
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Figure 1: Size of the PANIC common test as a function of �i
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Figure 2: Size of the PANIC idiosyncratic test as a function of �
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Figure 3: Power of the PANIC common test as a function of �
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Figure 4: Power of the PANIC idiosyncratic test as a function of �i
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Figure 5. Size and power of the PANIC explosive tests when not all idiosyncratic
components are explosive

Size of the common test as a function of �1

Size of the idiosyncratic test as a function of �1

Power of the idiosyncratic test as a function of �1
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Figure 6-1. Correlation coe¢ cients of the estimated common component
(with the true common factor and with the true idiosyncratic errors)

Figure 6-2. Correlation coe¢ cients of the estimated individual component
(with the true common factor and with the true idiosyncratic errors)
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Figure 7. Size of the CS tests
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Figure 8. Power of the CS tests
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Figure 9. Exchange rates against the USD (in logarithm)
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Figure 9. Exchange rates against the USD (in logarithm; continued)
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Table 1. Common and idiosyncratic explosive tests in the exchange-rate system
individual PANIC CS

Common tests
factor 1 ­ 0.38** 0.28**
factor 2 ­ ­1.68 ­0.76

Idiosyncratic  tests
AUD Australian Dollar ­0.16* ­1.80 ­1.16
BRL Brazilian Real ­0.48 ­1.57 ­2.66
CAD Canadian Dollar ­0.23* ­1.39 ­1.06
CZK Czech Republic Koruna ­0.67 ­2.27 ­2.12
DKK Danish Krone ­0.55 ­1.06 ­0.02**
EUR Euro ­0.51 ­1.19 ­0.33*
HKD Hong Kong Dollar ­2.48 ­2.55 ­1.83
HUF Hungrian Forint 0.04** ­1.95 ­1.78
INR Indian Rupee ­0.03** ­0.71 ­0.30*
IDR Indonesian Rupiah 0.11** 0.06** ­0.27*
JPY Japanese Yen ­0.81 ­2.16 0.20**
MXN Mexican Peso 0.20** ­2.24 ­0.46
NZD New Zealand Dollar 0.39** ­2.37 ­1.47
NOK Norwegian Krone ­0.22* ­1.06 ­0.77
PHP Philippines Peso ­1.00 ­1.38 ­1.19
PLN Polish Zloty 0.42** ­1.14 ­1.50
SGD Singaporean Dollar ­1.32 ­1.97 ­2.25
ZAR South African Rand ­0.48 ­1.30 ­0.35*
KRW South Korean Won ­0.18* ­1.03 ­0.38*
SEK Swedish Krona 0.08** ­1.13 ­0.91
CHF Swiss Franc ­1.80*** ­1.60 ­0.02**
TWD Taiwan Dollar ­0.31* ­1.08 ­1.35
THB Thai Baht ­1.63 ­1.92 ­2.18
GBP UK Pound 0.50** ­0.54 ­0.68

Notes: 1. The sample period is from August 1, 2007 to January 31, 2009. The CS sets the training period
               from January 1, 2004 to July 31,2007.
             2. ***, **, and * denote significance at the 1%, the 5%, and the 10% level, respectively.
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