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Abstract 
In this paper, we theoretically analyze, and empirically test for, the importance of 
relational adaptation in outsourcing relationships using the airline industry as case study. 
In the airline industry, adaptation of flight schedules is necessary in the presence of bad 
weather conditions. When major carriers outsource to independent regionals, conflicts 
over these adaptation decisions typically arise. Moreover, the urgency of needed 
adjustments requires that adaptation be informal and hence enforced relationally. Our 
model shows that for relational adaptation to be self-enforcing, the long-term value of the 
relationship between a major and a regional airline must be at least as large as the 
regional airline’s cost of adapting flight schedules across joint routes. Thus, when facing 
a negative economic shock, the major is more likely to preserve routes outsourced to 
regional airlines that have higher adaptation costs, and hence higher relationship value. 
We analyze the evolution of U.S. airline networks around the 2008 financial crisis, and 
we find that consistent with our predictions, routes outsourced to regional networks with 
worse average weather, and hence higher adaptation costs, were more likely to survive 
the shock.  
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1. Introduction 

Adaptation to change is paramount to the success of organizations and markets. As 

Hayek (1945: 523) states, “economic problems arise always and only in consequence of 

change”. Reinforcing Hayek’s point, Williamson (1991: 278) argues that “adaptability is 

the central problem of economic organization,” and warns that coordinated responses to 

change, which may require the cooperation of multiple parties with diverging interests 

and an urgent implementation, can rarely be achieved in spot markets. 

While agreeing on the importance of this fundamental adaptation problem and on the 

difficulty to address it through spot market exchange, economic theory has emphasized at 

least three different approaches to finding a solution. The first one is allocating decision 

authority to a “boss”, as in firms (e.g., Simon 1951; Williamson 1991; Hart and 

Holmstrom 2010). The second proposed solution is agreeing ex ante on formal 

procedures that facilitate the renegotiation of key decisions, as in procurement and 

construction contracts (Bajari and Tadelis 2001; Chakravarty and MacLeod 2009). The 

third solution is using relational contracts—that is, informal agreements where 

coordinated adaptation is ensured by the parties’ desire to maintain a long-term 

collaborative relationship (Baker, Gibbons and Murphy 2011).    

This paper sheds light onto the incidence and relevance of the third solution, 

relational adaptation, by empirically assessing the importance of relational contracts as a 

solution to the adaptation problem in outsourcing relationships. We exploit a setting that 

is particularly well suited to study relational adaptation—namely, the networks of major 

and regional airlines in the US. To begin with, as shown in previous empirical work by 
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Forbes and Lederman (2009), adaptation is key in this industry: when major carriers rely 

on outsourcing agreements with independent regional carriers to serve local routes, 

important coordination challenges arise, as adverse weather conditions and other 

unexpected contingencies require adapting flight schedules in ways that may collide with 

the regionals’ profit-maximization objectives. In addition, outsourcing regional 

transportation offers significant labor cost advantages to major airlines, as regional 

airlines are scarcely unionized. Thus, while allocating decision authority to major airlines 

through integration is a potential solution to the adaptation problem (see Forbes and 

Lederman, 2009, 2010, for convincing evidence), it is not always a feasible or desirable 

one. At the same time, formal contracts between major and regional airlines are 

inherently incomplete, both ex ante and ex post, when it comes to adaptation. On one 

hand, it is difficult to foresee ex ante under what circumstances flights on a specific route 

should be rescheduled, and on the other hand, rescheduling decisions must be 

implemented quickly, and full cooperation by the regional airlines may be hard to verify. 

Finally, U.S. major airlines and independent regional airlines are typically engaged in 

long-term business relationships, and hence are likely to secure the more informal aspects 

of their collaboration, such as the adaptation of flight schedules, through relational 

contracts.  

1.1. Overview of the results 

We begin by providing a detailed account of how major airlines secure slot exchanges 

when facing landing slot rationing—our definition of adaptation. We supplement this 

largely anecdotal evidence with precise dissection of patterns of slot exchanges among 

airlines. Consistent with the difficulty of securing adaptation via formal contracts, and 
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with the importance of informal relationships, we find that regional airlines supply slots 

in a non-random fashion, and almost exclusively to their major partners or to the majors’ 

other partners.   

Motivated by this evidence on relational exchanges of landing slots, we develop a 

simple theoretical model adapted from Baker et al. (2011), where a major airline 

promises quasi-rents to an independent regional partner in exchange for supplying slots 

under bad weather conditions. Following Levin (2002), we assume that deviations from 

this relational contract on one route trigger termination of the relationship between the 

major and the regional on all routes, as that is the worst credible punishment. A key point 

is that given the lack of court-enforcement, relational adaptation is achieved if, and only 

if the long-term value of the relationship between the major and the regional is at least as 

large as the regional’s present adaptation costs across all the routes in their joint network. 

Thus, if the relational enforcement constraint is binding, the relationship’s value must be 

larger the larger the network-wide adaptation cost. A testable implication of this fact is 

that facing a negative economic shock that reduces the value of flying a route (and 

consequently the overall value of the major-regional relationship), the major will choose 

to preserve those routes that belong to networks with high aggregate adaptation costs, and 

hence high long-term value, all else equal. 

We test our prediction on a comprehensive dataset of relationships between U.S. 

major and regional airlines. As an exogenous industry-wide shock that induces major 

airlines to cut routes, we exploit the economic crisis that unraveled after the collapse of 

Lehman Brothers in 2008. Following Forbes and Lederman (2009), we proxy adaptation 

costs within a major-regional network by the extent of bad weather conditions 
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(precipitation, snow, and the lack of clear skies as inversely measured by the number of 

freezing months) across the routes in the network—the rationale being that in the 

presence of adverse weather, major airlines need the regional airlines to exchange more 

slots, which in turn increases the regionals’ adaptation costs. Because a given regional 

typically operates different sets of routes for different majors and a major may use 

different regionals to operate the same route, we can include major airline, regional 

airline, and route fixed effects, as well as major-route and regional-route fixed effects, in 

our regressions, thus controlling for the possibly endogenous assignment of routes to 

major and regional carriers. 

Our empirical results support the hypothesis that the major and regional airlines use 

the value of their long-term relationships to informally enforce the efficient adaptation of 

flight schedules. First, we find that outsourced routes in networks characterized by high 

snow and precipitation—and hence higher relationship value—are more likely to survive, 

and less likely to see their number of daily flights reduced, following the Lehman 

Brothers shock in 2008, regardless of the weather characteristics in the focal outsourced 

route. In contrast, routes in networks characterized by frequent freezing weather—which 

Forbes and Lederman (2009) suggest to be a proxy for clear skies—are less likely to 

survive and more likely to experience flight reductions. Our results are robust to the 

inclusion of route-level weather, route fixed effects, and route-major and route-regional 

fixed effects. 

Second, we find that when majors reallocated routes to other partners, they 

exclusively relied on existing partners—that is, regional airlines that were operating other 

routes for the same major airline before the shock. That indicates that following the 2008 
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shock, major airlines cut some partnerships while intensifying their relationships with 

more valuable existing partners. 

We also find that outsourced routes in networks characterized by worse weather 

conditions were less likely to be vertically integrated—that is, operated by the major 

through its own planes or through a wholly owned regional company—after the Lehman 

Brothers shock. 

Finally, as a placebo test, we study route survival in the 2003-2006 period, and we 

find that absent a negative shock that pushes the major airlines to reduce route portfolios 

in the less valuable networks, routes in bad weather major-regional networks are as likely 

to be cut or downsized as routes in good weather major-regional networks.  

1.2. Contribution to the literature 

1.2.1. Adaptation 

Early empirical works have focused on how formal price adjustment provisions 

facilitate adaptation and reduce its costs in procurement contracts. In particular, Masten 

and Crocker (1985) show that gas supply contracts stipulate lower penalties against 

breach when the supplier can more easily store the unsold gas or sell it to alternative 

clients—that is, when breach by the buyer in the face of unforeseen market conditions is 

more likely to be efficient. Crocker and Reynolds (1993) show that aircraft engine 

procurement contracts contain more complete pricing provisions when intertemporal and 

technological uncertainties are low (reduced need for ex post adaptation) and when the 

supplier has a history of legal disputes with clients (high cost of negotiated adaptation). 
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More recent studies have focused on the allocation of authority as a means to 

facilitate adaptation. Arruñada et al. (2001), and Zanarone (2009, 2013), show that 

automobile distribution agreements assign to car manufacturers the right to adapt the 

dealers’ performance and service standards ex post in networks where dealers are more 

likely to freeride on the brand. Forbes and Lederman (2009, 2010) show that U.S. major 

airlines vertically integrate into regional transportation in bad weather routes, where there 

is more need for adapting flight schedules, and that vertical integration reduces the flight 

delays and cancellations that would arise in the absence of coordinated adaptation.  

Unlike our paper, none of the empirical studies discussed above focuses on relational 

contracts—in the sense of informal, self-enforcing agreements—as mechanisms to 

facilitate adaptation. The only other empirical papers that we are aware of that explore 

the link between relational contracts and adaptation are Barron et al. (2016), and 

Macchiavello and Miquel-Florensa (2016). On the one hand, Barron et al. (2016) study 

contracts between a movie exhibitor and multiple distributors, and show that for any 

given movie, the exhibitor’s revenue share is adjusted upwards if the exhibitor continues 

showing the movie. They also show that price adjustments are more generous when the 

exhibitor’s opportunity cost of showing the movie is high. Since price adjustments are not 

prescribed by the formal contracts signed by the parties at the beginning of their 

relationship, these findings suggest that the adjustments may serve as implicit bonuses to 

reward the exhibitor for adapting movie schedules. On the other hand, Macchiavello and 

Miquel-Florensa (2016) study adaptation between coffee mills and buyers in Costa Rica 

showing that a coffee mill’s overproduction due to unexpected good weather conditions 

is more likely to be absorbed by long-term clients as opposed to spot market clients. 
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Our empirical evidence on relational adaptation differs from, and complements that in 

Barron et al. (2016), and Macchiavello and Miquel-Florensa (2016). While they look in 

great detail at how a given relational contract is adapted over time holding the set and 

depth of relationships constant, we provide evidence on the economic significance of 

relational adaptation contracts by showing that those with higher long-term value are 

more likely to survive market shocks.  

1.2.2. Relational contracts 

Economic theory has extensively investigated relational contracts—that is, contracts 

that are too rooted in the parties’ relationship to be verifiable by courts, and hence must 

be self-enforcing (see MacLeod 2007, and Malcomson 2013, for up-to-date reviews of 

the theoretical literature). The predictions of relational contracting theories have been 

confirmed empirically by both case studies (e.g., Macauley 1963; Fast and Berg 1975; 

Foss 2003; Helper and Henderson 2014) and econometric evidence (Ryall and Sampson, 

2009, and Gil and Zanarone, 2015, 2016, and 2017, offer an up-to-date review and 

critical assessment of the empirical literature). As mentioned above, none of the existing 

empirical works, with the exception of Barron et al. (2016) and Macchiavello and 

Miquel-Florensa (2016), studies relational contracts as a means to achieve adaptation to 

unforeseen contingencies.  

Methodologically, the empirical paper on relational contracting that is perhaps most 

closely related to ours is Macchiavello and Morjaria (2015). In their study of flower 

export agreements, they propose the idea, which we exploit in this paper, that the long-

term value of a relational contract may be estimated by measuring the largest reneging 

temptation, conditional on the parties being in a relationship. Macchiavello and Morjaria 
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(2015) use the idea to show that informal contracts between Kenyan flower exporters and 

their clients reduce the volume of stipulated flower deliveries following unexpected 

increases in the spot market price, so that the exporters’ reneging temptation, given by the 

product of spot price and relational quantity, remains constant, and hence equal to the 

relationship’s long-term value. In contrast, our empirical exercise shows that positive 

cross-sectional variations in the long-term value of relationships, as measured by the 

present reneging temptation, increase the parties’ willingness to preserve those 

relationships in the face of a shock. A second, important difference between our study 

and Macchiavello and Morjaria (2015) is the type of relational contract under study. 

While they focus on simple quantity-price agreements in an institutional environment 

characterized by weak court enforcement, we focus on complex outsourcing agreements 

in a strong institutional environment, and show that despite the presence of efficient 

courts, because of the complexity of these agreements, major and regional airlines rely on 

relational contracts to adapt them to unforeseen events. 

The rest of the paper is organized as follows. While section 2 describes the US airline 

industry and provides evidence of real-time adaptation through slot exchanges among 

airlines, section 3 presents an illustrative model with testable implications that we take to 

the data. In section 4 we describe our data. Section 5 presents our empirical methodology 

and the main results of our empirical analysis. Section 6 examines several robustness 

checks, and presents alternative margins of network adjustment—vertical integration —

employed by major airlines in response to the 2008 shock, as well as our analysis of the 

9/11 shock. Section 7 concludes. 
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2. Adaptation in the U.S. airline industry 

Major airlines fly routes using either their own fleets or those of regional airlines. 

Regional airlines may be owned by the major airlines or independently owned. When 

major airlines rely on independent regional partners, they “rent” regional planes in 

exchange for a fixed fee. Regionals supply their own crews and planes, while major 

airlines set schedules, sell tickets and buy the fuel. Outsourcing to independent regionals 

allows major airlines to save on labor costs because the regionals are not unionized and 

their pilots and crew earn significantly lower wages than those at the major airlines. As a 

result, outsourcing is widespread in the industry. For instance, in a recent Wall Street 

Journal article, Carey (2016) reports that regional carriers operated 44% of passenger 

flights in 2015, and were the sole providers of commercial flights with scheduled service 

to 65% of US airports. 

Major airlines invest considerable planning efforts into designing optimal schedules 

of flights and landing times for their regional networks, so that passengers can reach their 

destinations in a timely manner. While in regular and good weather adjustments to the 

landing schedule are not necessary, they do become necessary under bad weather 

conditions. Because landing in bad weather takes longer and requires more caution, the 

number of landing slots available is reduced. Specifically, airport authorities unilaterally 

decrease the number of slots through Ground Delay Programs (GDPs hereafter), and they 

do so proportionally given each airline’s original schedule. Major airlines then rearrange 

their schedule using the slots available to them and their integrated regionals, but they do 
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not have control (in the sense of real authority) over slots assigned to independently 

owned regionals that they outsource to.  

During GDPs, airlines are able to exchange slots with their independent regionals 

through a mechanism called SCS (Slot Credit Substitution). SCS is a centralized system 

where the major airline asks for an immediate time slot from any airline (including its 

independent regional partners), in exchange for a later time slot (Schummer and Vohray, 

2013; Vossen and Ball, 2006). If a regional partner accepts the exchange request, it 

foregoes a landing slot and thus it has to delay or even cancel one of its flights. Three 

important features of this process, which are captured by our theoretical model in the next 

section, should be stressed. First, there is a potential conflict of interest between majors 

and regionals concerning slot exchanges. While majors are residual claimants of flight 

revenues and pay a fixed fee per flight to the regionals, delaying flights requires the 

regional to distort their employees’ schedules, which may result in higher labor and 

logistics costs (Forbes and Lederman 2009).  

Second, conflicts between major and regional airlines do not appear to be resolved via 

formal contracts. The SCS mechanism described above is purely voluntary—that is, it 

does not involve monetary compensation from major airlines to the regional airlines 

supplying slots. From a theoretical viewpoint, the absence of formal contracts on 

rescheduling decisions is not surprising. On the one hand, maximization of network-wide 

profits requires that flights be rescheduled quickly in the presence of bad weather, so 

“haggling” between the major and the regional may be costly (e.g., Hart and Moore 

2008). On the other hand, allocating decision rights ex ante may also fail to elicit efficient 

adaptation. While contracts often assign to majors the formal right to reschedule their 
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regionals’ flights, as owners of their slots the regionals have an option to refuse, perhaps 

in the hope to bargain harder with the major, or just to save on labor costs. The major 

would then have to sue the regional for contract breach, and given the environmental 

changes due to bad weather conditions, a court may well “complete” the contract in favor 

of the regional by applying flexible legal doctrines (e.g., Schwartz 1992). Anticipating 

that, the major may have an incentive to breach.1  

Finally, it appears that despite the conflict of interests and contractual frictions 

discussed above, independent regionals do routinely accept their major partners’ schedule 

adjustment decisions. This suggests that informal, relational agreements between major 

airlines and their independent regional partners are used to secure cooperative slot 

exchanges. Below we provide evidence of informal rescheduling.  

As a first step, Table 1 reports a series of examples in which airlines exchanged slots 

during a GDP that took place on February 26th, 2016, at the NYC airport of La Guardia 

(LGA). The first example (top of the table) shows how American Airlines (AAL) and its 

regional partner Trans States Airlines (LOF) delayed a number of slots so that AAL flight 

AAL1164 would depart (late) from Dallas Fort-Worth airport (FDW) for LGA. The 

second example shows a case in which Delta (DAL) reshuffled seven of its flights so that 

its independent regional partner ExpressJet (ASQ) would be able to initiate its flight 

ASQ5645 from Atlanta (ATL) to LGA. The third example shows an exchange of slots 

between two non-partner airlines: Canadian West Jet (WJA) yielded a slot so that 

American Airlines flight LOF4139, operated by Trans States Airlines, would be able to 

                                                 
1 Based on these considerations, and following the theoretical approach in Baker et al. (2011) and 

Barron et al. (2015), we assume in our model that rescheduling decisions—and more specifically, slot 
exchanges—are non-contractible.  
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fly from Saint Louis airport (in Missouri) to LGA. The last example (bottom of Table 1) 

shows the case of adaptation via vertical integration analyzed by Forbes and Lederman 

(2009): a major airline, United, reshuffled and reorganized the schedule of its own planes 

so that one of them could fly from O’Hare International airport (ORD) to LGA.  

Having described these slot exchange examples, it is important to note that the major 

airlines’ requests for adaptation do not always find an immediate response. This is shown 

in the fourth example from Table 1, which announces unassigned slots due to 

unavailability of slots from other airlines.  

<<Place Table 1 here>> 

While we do not have direct evidence of informal ex-post monetary compensation 

being paid by the majors in exchange for the slot exchanges, conversations with FAA 

officials and industry practitioners suggest that such informal compensation does take 

place. In particular, majors informally count the flights cancelled by their regional 

partners as a consequence of requested slot exchanges as valid for the yearly minimum 

number of flights that based on the outsourcing agreements, the regionals have to reach in 

order to receive the fixed operation fee. In other words, the major’s selective choice not 

to enforce the minimum clause in the contract ex-post serves as an informal performance 

“bonus”.  

To provide more systematic evidence that slots are exchanged via relational 

agreements rather than via formal contracts or randomly (as perhaps the choice of 

examples in Table 1 may suggest), we examine in Table 2 the population of slot 

exchanges under a GDP within an airport in a given day. We cross-tabulate the set of 
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airlines receiving slots (top horizontal axis) against the set of airlines supplying slots (left 

vertical axis) during a GDP on February 24th, 2016, in the three NYC airports (La 

Guardia, Newark and JFK). On one hand, and consistent with the indirect evidence in 

Forbes and Lederman (2009, 2010), we observe that vertical integration facilitates 

adaptation, as slot exchanges within a major airline are more common than between 

majors or between majors and independent regional partners (see the bold cells and dark 

grey areas for all seven airlines in the horizontal axis). On the other hand, and in contrast 

with Forbes’ and Lederman’s (2010) view that “reputations for cooperation in this setting 

may be difficult to establish”, Table 2 suggests that relationships with outsourcing 

partners are also an important source of adaptation under adverse weather. In particular, 

slot exchanges among major airlines and non-outsourcing independent regional airlines 

rarely occur as most exchanges seem to be located in the large-box diagonal composed by 

the American Airlines network, Delta network, United network, Southwest, Jet Blue, 

Spirit and Virgin America (from upper-left corner down to bottom-right corner). In other 

words, most of the slots supplied by regional airlines go to their major partners or to other 

regional partners of those majors. 

<<Place Table 2 here>> 

Considering the institutional features and facts documented above, we formally 

model in the next section relational contracting as a solution to the adaptation problem in 

this industry. We use the model to develop a test for the importance of relational 

adaptation, which we then take to the data in the remaining sections of the paper. 
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3. A simple model of relational adaptation in the airline 

industry 

In this section we present a simple model of relational adaptation that captures the 

key features of the U.S. airline industry as described above, and allows us to generate 

empirically testable predictions. 

3.1. Model setup 

There are a major airline, M, and an independent regional airline, R, which may 

operate up to ܰ routes on M’s behalf. Both M and R are risk-neutral, live forever, and 

discount next-period payoffs by the factor ߜ א ሾͲǡͳሿ. Time evolves in discrete periods. 

We begin by describing the stage game in the first period, ݐ ൌ ͳ.  

Outsourcing. M decides which of the ܰ routes to outsource to R. We write ݄ଵ ൌ ͳ if 

route ݅ is outsourced to R, and ݄ଵ ൌ Ͳ otherwise. If ݄ଵ ൌ ͳ, M offers to pay to R a fixed 

fee, ݎଵ א Թ, in exchange for operating the route. If R accepts M’s offer, M pays the fee, 

and the game moves to stage two. If ݄ଵ ൌ Ͳ, or if R rejects M’s offer, M receives payoff 

݉
, R receives payoff zero, and the game moves to the next period. We may interpret ݉

 

as the maximum between M’s payoff from not serving the route and M’s payoff from 

operating the route with its own planes or by using a vertically integrated regional 

company.   

Route state. After the outsourcing decisions have been made, M and R observe the 

weather state ݓଵ א ሼͲǡͳሽ, where ݓଵ ൌ ͳ denotes bad weather affecting flights on route ݅, 

ଵݓ ൌ Ͳ  denotes good weather, the probability of bad weather is  א ሾͲǡͳሿ , the 
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probability of good weather is ͳ െ  , and we assume for simplicity that weather states

are independent across routes and time periods.  

Adaptation. After observing ݓଵ, R chooses the adaptation decision, ݀ଵ א ሼͲǡͳሽ, at 

cost ݀ଵܿ. Consistent with the features of the US airline industry described in section 2, 

we say that adaptation occurs, that is, ݀ଵ ൌ ͳ, if R gives up one of its slots on route ݅ to 

M, thereby rescheduling and potentially delaying its own flights on that route. Conversely, 

݀ଵ ൌ Ͳ if R does not give slots to M, and hence R does not need to reschedule its flights 

on route ݅ . The adaptation cost, ܿ  Ͳ , may include the workers’ extra hours and 

additional maintenance costs that R must incur if its flights on route ݅ are delayed as a 

consequence of giving a slot to M. If ݀ଵ ൌ ͳ , M may pay a bonus, ܾଵ א Թ , to 

compensate R’s adaptation cost.  

Payoffs. Finally, M receives gross profit ݉ሺ݀ଵǡ ଵሻݓ  from any given outsourced 

route ݅, given the realized weather and R’s adaptation decision. 

At the beginning of the subsequent period, ݐ ൌ ʹ, M and R may observe a negative 

economic shock, ݖ א ሼͲǡͳሽ, where ݖ ൌ ͳ denotes the shock, and ݖ ൌ Ͳ its absence. If ݖ ൌ

Ͳ, the stage game from period 1 is repeated identically forever after. If ݖ ൌ ͳ, the game is 

also repeated, but now M’s gross profit on route ݅  decreases forever after to ሺͳ െ

ሻ݉ሺ݀௧ǡߙ ݐ ,௧ሻݓ  ʹ. To facilitate derivation of testable predictions from the model, we 

assume the size of the shock, ߙ א ሺͲǡͳሻ, is a random variable with pdf ݂ሺήሻ and cdf ܨሺήሻ 

that M and R observe right after the shock occurs. 
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Consistently with the unexpected nature of the 2008 crisis we analyze in the empirical 

section, we assume the shock ݖ is unlikely, in the sense that ܲݎሺݖ ൌ Ͳሻ ൎ ͳ, and ܲݎሺݖ ൌ

ͳሻ ൎ Ͳ. Accordingly, we refer to the no-shock scenario, ݖ ൌ Ͳ, as “normal times”. 

We maintain the following assumptions throughout the model: 

A1: ሺͳ െ ሻ݉ሺͳǡͳሻݖߙ െ ܿ  ሺͳ െ ሻ݉ሺͲǡͳሻݖߙ and ሺͳ െ ሻ݉ሺͲǡͲሻݖߙ  ሺͳ െ

ሻ݉ሺͳǡͲሻݖߙ െ ܿ, for all ݅ǡ  .ݖ

A2: ݉ሺͲǡͳሻ  ሺͳ െ ሻ݉ሺͲǡͲሻ ൏ ݉
, for all ݅. 

A3: ݓ௧ǡ݉ሺ݀௧ǡ ௧ሻǡݓ ܿ are observable but non-verifiable, for all ݅ and ݐ. 

A4: ݀௧ is observable but non-verifiable, for all ݅ and ݐ. 

 Assumption A1 implies that both in normal times and after a shock, it is efficient to 

reschedule flights on a route if, and only if weather on that route is bad. This creates a 

potential conflict of interest between M and R, as adaptation benefits M but is costly for 

R.  

Assumption A2 implies that in the absence of efficient adaptation, it is optimal for M 

not to outsource a route. We interpret this assumption as the joint result of the intense 

competition M may face from other airlines, and to the well documented fact that major 

airlines vertically integrate into poorly performing routes (Forbes and Lederman 2009). 

Assumption A3 is standard in the incomplete contracting literature, and it implies that 

efficient flight adaptation is ex ante non-contractible (e.g., Grossman and Hart 1986; Hart 

and Moore 1988).  
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Finally, assumption A4 implies that efficient flight adaptation decisions are formally 

non-contractible even ex post, after weather is observed (e.g., Baker et al. 2011). This 

assumption is consistent with the institutional features of the airline industry and the 

evidence on slot exchanges discussed above, according to which rescheduling decisions 

are too urgent, fast, and state-contingent to be formally contracted at a reasonable cost, 

either ex ante or ex post. The assumption is also consistent with the work of Forbes and 

Lederman (2009, 2010). 

Before proceeding with the analysis, it is useful to write M’s and R’s expected 

payoffs on a given route ݅ at the beginning of period ݐ, gross of any monetary payments, 

and conditional on no shock having occurred, and on efficient adaptation decisions being 

taken if the route is outsourced in period ݐ: 

ெሺ݄௧ሻߨ ؠ ݄௧ሾ݉ሺͳǡͳሻ  ሺͳ െ ሻ݉ሺͲǡͲሻሿ  ሺͳ െ ݄ሻ݉
,   (1) 

ோሺ݄௧ሻߨ ؠ െ݄௧ܿ.        (2) 

Accordingly, the contribution of route ݅ to total expected surplus in period ݐ is given 

by: 

ሺ݄௧ሻݏ ؠ ெሺ݄௧ሻߨ   ோሺ݄௧ሻ.       (3)ߨ

3.2. Spot market contracts 

Suppose M and R rely on formal, spot market contracts to govern their outsourcing 

agreement. Since adaptation decisions and contingent bonuses are non-contractible, M 

will pay no bonus to R irrespective of R’s adaptation decisions: ܾ௧ ൌ Ͳ for all ݅ and ݐ. 

Anticipating that, R will never adapt flight schedules, irrespective of the realized weather 

state: ݀௧ ൌ Ͳ  for all ݅  and ݐ . But then, our assumption A2 implies that R will not 
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outsource any routes to R, irrespective of whether a shock has occurred or not: ݄௧ ൌ Ͳ 

for all ݅  and ݐ . As a result, M’s profit from route ݅  will be ݉
  in period ݐ ൌ ͳ  and 

ሺͳ െ ሻ݉ݖߙ
 in subsequent periods, while R’s profit will be zero in all routes and periods. 

3.3. Relational adaptation contracts 

While slot exchange decisions are formally non-contractible, M and R may still 

improve on the spot market by entering a relational adaptation contract, whereby R 

promises to execute the efficient state-contingent decision schedule, ݀௧כ ሺݓ௧ሻ ؠ  ௧, onݓ

all the outsourced routes and in all periods, in exchange for the quasi-rents from 

continuing the relationship with M. 

Formally, a relational adaptation contract is a complete plan for the relationship 

between M and R, which specifies, for any realized history of play up to any given 

period: (i) M’s outsourcing decisions and upfront operation fees as a function of whether 

a shock has occurred, (ii) R’s adaptation decisions as a function of weather, and (iii) the 

discretionary bonuses M has to pay R conditional on R’s adaptation decisions. We say 

that a relational adaptation contract is self-enforcing if it describes a subgame perfect 

equilibrium of the repeated game between M and R. Following Levin (2002), we assume 

that if M and R enter a relational adaptation contract, deviations on one route (that is, an 

unexpected outsourcing decision or upfront payment, R’s failure to reschedule flights in 

the presence of bad weather, or M’s failure to pay the bonus after R reschedules) are 

punished through reversion to spot market contracting on all the outsourced routes, as 

that is the worst credible punishment.  



   

20 
 

Given perfect public monitoring and the absence of liquidity constraints, the optimal 

relational contract is stationary, in the sense that conditional on the weather state, 

outsourcing and adaptation decisions and payments on any given route ݅ are the same in 

every period (MacLeod and Malcomson 1989; Levin 2003). Accordingly, we hereafter 

drop the time subscripts from all equations. 

3.3.1. Normal times (ࢠ ൌ ) 

Consider M’s outsourcing decision at time ݐ ൌ ͳ , or in any subsequent period 

provided that no shock has occurred at time ݐ ൌ ʹ . Given assumption A2 (that is, 

outsourcing of a route is optimal only if efficient adaptation is expected), M’s optimal 

relational contract can be characterized as a vector of stationary outsourcing decisions, 

൫݄ଵכሺݖ ൌ Ͳሻǡ ǥ ǡ ݄כ ሺݖ ൌ Ͳሻ൯, which solves the following problem: 

ǡǡሼσݔܽ݉ ெሺ݄ሻߨ െ σ ݄ሺܾ  ሻݎ ሽ,  

subject to the following participation and incentive constraints: 

σ ሾߨெሺ݄ሻ െ ݄ሺܾ  ሻሿݎ  σ ݉


 ,      (4) 

σ ሾߨோሺ݄ሻ  ݄ሺݎ  ܾሻሿ  Ͳ,       (5) 

σ ݄ሺܾ െ ܿሻ  ఋ
ଵିఋ σ ሾߨோሺ݄ሻ  ݄ሺݎ  ܾሻሿ  Ͳ, and   (6) 

െσ ݄ܾ  ఋ
ଵିఋ σ ሾߨெሺ݄ሻ െ ݄ሺܾ  ሻሿݎ  ఋ

ଵିఋ ݉
.    (7) 

Conditions (4) and (5) are M’s and R’s participation constraints, respectively. 

Conditions (6) and (7) are R’s and M’s incentive constraints, which ensure, respectively, 

that R be willing to supply slots to M under bad weather (condition 6), and M be willing 
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to pay the promised contingent bonuses (condition 7), in the highest-temptation state—

that is, in case of bad weather on all the outsourced routes.2  

Summing up (6) and (7), we obtain a necessary condition for the relational adaptation 

contract to be self-enforcing:  

σ ݄ܿ  ఋ
ଵିఋ σ ሾݏሺ݄ሻ െ ݉

ሿ .       (SE) 

In fact, it is easy to check that condition SE is also sufficient, in the sense that there 

are operation fees and bonuses such that if SE holds, (4) through (7) hold as well, and M 

extracts the whole surplus. 

If SE is not satisfied—either because R’s adaptation cost, on the left-hand side, is too 

large, or because the present expected value of the relationship, on the right-hand side, is 

too small—efficient adaptation on the agreed routes cannot occur, so M will need to 

outsource fewer routes to R in order to keep the relational adaptation contract within its 

“self-enforcing range”. 

Before turning to analyze adaptation under a shock, we make a useful assumption on 

the distribution of routes. 

A5: If outsourcing route ݅ is more profitable than outsourcing route ݆ (ݏሺͳሻ െ ݉
 

ሺͳሻݏ െ ݉
 ), then outsourcing route ݅  also relaxes more (tightens less) the self-

enforcement constraint SE than outsourcing route ݆  ( ఋ
ଵିఋ ሾݏሺͳሻ െ ݉

ሿ െ ܿ 

ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

൧ െ ܿ). 

                                                 
2 We omit the constraint that R be willing to accept the contingent bonus if negative because this constraint 
is looser than (6), and hence redundant. 
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Assumption A5 ensures that the distribution of routes is “non-degenerate,” in the 

sense that there are no extreme inconsistencies between expected and actual adaptation 

costs. As we shall see shortly, this assumption implies that as SE becomes slack, M wants 

to expand the set of outsourced routes. This will be useful when deriving testable 

predictions from the model. 

3.3.2. A negative shock (ࢠ ൌ ) 

Suppose that a negative shock occurs at time ݖ ൌ ʹ, so that the value of routes drops 

permanently, and consider M’s post-shock outsourcing decision. Denote the post-shock 

reduction in the net expected profits from outsourcing route ݅ as: 

݇ሺߙሻ ؠ ݉ሺͳǡͳሻሾߙ  ሺͳ െ ሻ݉ሺͲǡͲሻ െ ݉
ሿ. 

Then, replicating the previous analysis, M’s outsourcing decision problem can be 

written as:  

ሼσݔܽ݉ ሾݏሺ݄ሻ െ ݉
 െ ݇ሺߙሻሿ ሽ, 

subject to a tighter self-enforcement constraint than prior to the shock: 

σ ݄ܿ  ఋ
ଵିఋ σ ሾݏሺ݄ሻ െ ݉

 െ ݇ሺߙሻሿ .      (SE’)  

We denote the solution as ൫݄ଵכሺݖ ൌ ͳሻǡ ǥ ǡ ݄כ ሺݖ ൌ ͳሻ൯. Notice that after the shock, the 

relational adaptation contract between M and R is potentially affected in two ways. First, 

M may have to stop outsourcing those routes that are no longer profitable. Second, M 

may have to stop outsourcing some of the routes that are still profitable because relational 

adaptation is no longer self-enforcing for those routes (that is, because the post-shock 

self-enforcement constraint, SE’, is tighter than the pre-shock constraint, SE).  
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Below we analyze M’s optimal decision on whether to continue outsourcing routes 

after the shock. 

3.3.3. Route survival after a shock  

Given assumption A5, we establish the following result. 

Lemma 1: For any route outsourced to R in normal times, ݄כሺݖ ൌ Ͳሻ ൌ ͳ, there is 

critical shock intensity ߙכሺߜሻ, non-decreasing in ߜ, such that the route survives the 

shock, ݄כሺݖ ൌ ͳሻ ൌ ͳ, if, and only if ߙ   .ሻߜሺכߙ

Proof: in appendix. 

An immediate implication of Lemma 1 is that the more valuable the relationship 

between M and R, the more likely that an outsourced route will survive the shock. 

Lemma 2: The probability that a given outsourced route ݅  survives the shock, 

ሻ݈ܽݒ݅ݒݎݑሺܵݎܲ ؠ ݖሺכሺ݄ݎܲ ൌ ͳሻ ൌ ͳȁ݄כሺݖ ൌ Ͳሻ ൌ ͳሻ ൌ  ሻ൯, is non-decreasingߜሺכߙ൫ܨ

in ߜ.  

Testing this prediction empirically is difficult because ߜ  cannot be observed. 

However, SE implies that if M and R have entered a relational adaptation contract, there 

is a close link between the value of the relationship, ߜ, and R’s aggregate adaptation cost 

before the shock, which is potentially observable. To see this point, denote the value of 

the relationship between M and R before the shock—that is, the right-hand side of SE 

under optimal outsourcing decisions—as: 

ሻߜሺכܸ ؠ ఋ
ଵିఋ σ ሾݏሺ݄כሻ െ ݉

ሿ . 
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Also, denote the pre-shock total maximum adaptation cost—that is, the left-hand side 

of SE—as: 

כܥ ؠ σ ݄ܿכ . 

It follows directly from SE that כܥ is a lower bound for ܸכሺߜሻ:  

ሻߜሺכܸ   (8)         .כܥ

If (8) is slack, M’s pre-shock outsourcing decisions are first best, so כܥ is constant in 

 increases by a ߜ and can only increase if ,ߜ is non-decreasing in כܥ ,If (8) is binding .ߜ

sufficient amount. Empirically, this implies that observed variations in כܥ  must be 

accompanied by variations in the persistent component of the value of the outsourcing 

relationship, ߜ. Given Lemma 2, this implies, in turn, that the larger כܥ, the larger the 

probability that outsourced routes survive the shock. 

Proposition: If M and R have entered a relational adaptation contract and M 

outsources route ݅  to R in normal times, the probability that the outsourcing 

relationship between M and R in route ݅ survives a negative shock, ܲݎሺ݈ܵܽݒ݅ݒݎݑሻ, 

increases in כܥ, for every ݅. 

In the next sections, we take this testable prediction to the data. 

4. Data Description 

4.1. Data  

The data we use in this paper results from the combination of several data sets. We 

obtained airline ticket and flight information from the DB1B data, and ticket, market, and 
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coupon data from RITA, both data sets from the Bureau of Transportation Statistics. 

These data contain not only information on the ticketing carriers, but also on the 

operating carriers and reporting carriers of each flight.3 We complement these data with 

information on aircraft type, operators, flight frequency and other route and flight 

characteristics (seats, number of flights,  group of aircraft, distance flown, number of 

total passengers, and dummy for freighter flights), which we obtained from the T100-B41 

and T100-B43 airline-aircraft data from the U.S. Department of Transportation. To merge 

the T100 and DB1B databases, we checked the identity of the ticketing, operating and 

reporting carrier of each flight. 

We drop the freighter flights and the flights that have zero passengers from our data. 

We take the ticketing carrier identifier from DB1B market data because of the following 

two reasons: first, to identify and match with the operator from other data sets like DB1B 

ticket, coupon, and T100-B43, and second, in order to avoid overlooking code-sharing 

between airlines. In order to correctly identify contracts between major and regional 

airlines, we combine the merged DB1B and T100 datasets described above with the data 

from the Regional Airline Association (RAA), which provides the ownership type of 

each regional airline as well as the list of regional airlines, distinguished from charter 

airlines. We then merge this information with weather data on rainfall, snowfall and the 

number of freezing months per year-quarter (aggregated to the year-quarter level) from 

the National Oceanic & Atmospheric Administration.  

By combining all these data sources, we obtain a rich data set that contains 

information at the major/regional/quarter and at the major/regional/route/quarter level, 
                                                 
3 A ticketing carrier is the airline that sells airtickets to customers, whereas operating and reporting carriers 
are those operating the flight and reporting flight characteristics to the BTS. 
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respectively. Following Forbes and Lederman (2009), we define a route as a set of one or 

more nonstop flights connecting the same two airports, irrespective of the flights’ 

direction. We describe our two data sets below, and discuss our choice and use of 

variables in section 4.2.  

The first data set, at the major/regional/quarter level, contains information on the 

number of joint routes, the number of flights, the number of seats, and network-wide 

weather conditions (average precipitation, snow, and number of freezing months across 

routes served by the dyad). All variables are computed for each quarter and year, and for 

each major/regional airline dyad.  

The second data set contains information at the major/regional/route/quarter level. 

For each route, we create the following variables: a dummy for whether either airport in 

the route is a hub for the major airline in the dyad, a dummy for weather either airport in 

the route is slot-controlled, the number of flights served in the route by the regional 

airline, the average value of a flight on the route (number of seats times the average 

price), the number of flights at the larger and smaller endpoints in the route, and weather 

conditions in the route—namely, the 1971-95 average snowfall, rain precipitation and 

number of freezing months from the National Oceanic and Atmospheric Administration 

(NOAA) evaluated at the endpoint airport in the route where they are highest (Forbes and 

Lederman 2009). We compute all of these variables for each quarter/year and for each 

major/regional/route triad. 
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4.2. Measures 

The purpose of our empirical analysis is to assess whether following a negative 

economic shock, U.S. major airlines were more likely to drop or downsize routes 

outsourced to regional airlines whose aggregate adaptation costs in the networks they 

operated for the major before the shock were higher, as predicted by our relational 

adaptation model. As explained in the introduction, we focus on the exogenous shock 

represented by the financial crisis following the collapse of Lehman Brothers in 

September 2008. Accordingly, we define as our main dependent variable a dummy 

named “Survival 8/2008” that takes value 1 if a given route operated by a regional airline 

on behalf of a major airline in 2006 (two years before the shock) was still operated by the 

same regional, on behalf of the same major, in 2010 (two years after the shock), and it 

takes value zero otherwise. Note that if a regional did not operate a given route in 2006, 

our survival variable excludes that route from the data. 

Similarly, for robustness purposes, we create a second dummy variable, “Termination 

8/2008,” that takes value 1 if the number of flights operated by a regional airline on 

behalf of a major airline in a route has decreased between 2006 and 2010; and zero if the 

number of flights in the route has not decreased (that is, if it has stayed the same or 

increased). Again, routes that the regional airline did not fly in 2006 are left out of the 

sample. While the survival variable above measures an extensive margin of adjustment in 

the major-regional relationships, the termination variable measures an intensive margin 

of adjustment.4 

                                                 
4 See the Data Appendix for details on our treatment of airline mergers and exits during the 2006-2010 
period.  
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We provide graphical evidence on how the industry adjusted to the shock in Figure 

1A and 1B below.  

<<Place Figure 1A here>> 

<<Place Figure 1B here>> 

Figure 1A shows that after the shock in 2008, the number of major-regional 

outsourcing relationships in the U.S. decreased sharply, while the number of routes and 

flights directly operated by majors decreased slightly. Figure 1B focuses on the number 

of routes and flights outsourced to regionals and shows that even though the number of 

major-regional relationships in the U.S. decreased after the 2008 shock, the total number 

of routes and flights outsourced by major airlines to regional airlines increased (although 

at a slower pace than before). Altogether, the evidence in these two figures suggests that 

while the 2008 shock did not stop the trend towards outsourcing, as opposed to vertical 

integration, as the preferred mode for organizing regional air transportation, it did push 

the majors to restructure their outsourced regional networks—that is, to concentrate 

outsourced routes and flights into fewer regional partners. 

<<Place Table 3 here>> 

Table 3 provides summary statistics for both the dependent and independent variables 

used in our study. Our definition of the dependent variables, survival and termination, 

constrains the analysis to sample sizes of 6516 route-level observations. The probability 

that a route that was outsourced to a regional in 2006 was still outsourced the same 
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regional in 2010 is 59.3%, whereas the probability that a route that was outsourced in 

2006 had some of its flights terminated in 2010 is 62.2%. The change in the number of 

flights outsourced from a major to a regional between 2006 and 2010 is +12 on average, 

and ranges from a 703 flights reduction to a 1363 flights increase.  

To construct our key explanatory variables (pre-shock adaptation costs in a regional 

network), we proceed in two steps. First, we construct measures of adaptation costs on a 

route. Following Forbes and Lederman (2009), we use the historical average of adverse 

weather conditions on a route—namely, inches of snow (MAXsnowfall_r), inches of 

precipitation (MAXprecipitation_r), and low number of freezing months 

(NFreezingmonths_r) as a proxy for the lack of clear skies, all computed at the route’s 

airport for which they are maximum — as exogenous proxies for the adaptation costs 

faced by the regional when bad weather hits that route.5 The underlying idea is that in 

routes characterized by more severe weather conditions, the major airline will more often 

require the regional to exchange slots, thus inflating the regional’s delays and 

cancellations and hence its personnel and maintenance costs.  

As a second step, we compute the average of our three weather variables 

(precipitation, snowfall, and the number of freezing months) across all routes flown by a 

regional for a major airline in 2006 (AVEweatherSnow_ij, AVEweatherRain_ij, and 

AVEweatherFreez_ij, respectively). As network-level control variables we include 

measures for the depth of major-regional relationships—namely, the number of routes 

outsourced by a major to a regional in 2006 (Nroute_ij) and the average dollar value of 

each route outsourced (avevalue_route_ij). 
                                                 
5 Following Forbes and Lederman (2009), we take the historical average of precipitation and the number of 
freezing months between 1971 and 1995, and the historical average of snowfall between 1971 and 2000.  
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As further control variables, we use a number of route characteristics and major-

regional network characteristics. In particular, we include variables that may drive 

outsourcing decisions regardless of network-level adaptation costs. Following Forbes and 

Lederman (2009), we include as route-level controls a dummy for whether either of the 

endpoints in a route is a hub for the major airline (Dhubinroute_ir), a dummy for whether 

either airport is slot-controlled (slot_r), and the total number of flights at the largest and 

smallest endpoints of the route (flight_largeendpoint_ijr and flight_smallendpoint_ijr). 

These variables may capture the extent to which a given route is embedded in the major’s 

network. In turn, a route’s embeddedness increases its strategic importance and the need 

for adaptation on the route, both of which may affect outsourcing for any given level of 

network-level adaptation costs. As additional route-level controls, we include the total 

number of flights operated by regional j in route r for major i (NFlight_ijr), the average 

value of those flights (AVEValue_ijr), and the total number of flights at the largest and 

smallest endpoints of the route (flight_largeendpoint_ijr and flight_smallendpoint_ijr). 

<<Place Table 4 here>> 

<<Place Table 5 here>> 

We complement Table 3 by providing information on the thickness and spread of the 

outsourced regional networks of major airlines (Table 4), and on differences in average 

weather across networks (Table 5). Table 4 tabulates the number of routes outsourced by 

each of the major airlines to each of the regional airlines in our data set. Note that the 

number of regional partners, as well as the number of outsourced routes, varies across 

major airlines. The same pattern appears to be true from the regional perspective. While 

most regionals work for all majors, some regionals tend to concentrate their operations on 
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one or two major airlines. Take for example the case of American Airlines (AA), which 

outsources routes to 19 different regionals but uses most intensively American Eagle 

(Envoy Air).  Similarly, Envoy Air works mostly for American Airlines but also operates 

some routes for the other five major airlines in our data. Similar patterns characterize 

United Airlines (UA) and SkyWest Airlines (OO). See Figure 2 for an illustration of the 

networks of outsourced routes recently operated by SkyWest for several major airlines in 

2016.  

<<Place Figure 2 here>> 

Given the large variation in network size across major airlines, we present in Table 5 

summary statistics for the average network weather variables in our base year, 2006, for 

each major airline. Table 5 also reports the number of regional airlines with whom each 

major airline had a relationship during that year. The number of relationships in 2006 

ranged between 16 (US Airways) and 19 (AA, Delta and United Airlines). Table 5 shows 

that there is a lot of variation in network weather variables (snow, rain, and number of 

freezing months) even within a major airline across its different regional networks. We 

exploit this variation later in our empirical analysis. 
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5. Empirical Methodology and Main Results 

5.1 Empirical Methodology 

Given our theoretical model from section 3, our hypothesis is that if a major and a 

regional airline have entered a relational adaptation contract, the long-term value of their 

relationship must be higher the worse the weather conditions in all the regional routes 

they chose to operate together, and therefore, the larger the cost of honoring the relational 

adaptation contract. Hence, we would expect major airlines to be more reluctant to drop 

or downsize routes belonging to a regional network with worse average weather, and 

hence higher relationship value, following the 2008 shock. 

Our main empirical specification is a linear probability model, estimated by OLS,6 

such that: 

݈ܽݒ݅ݒݎݑܵ ൌ ߙ  ݐݏܥ݊݅ݐܽݐܽ݀ܣߚ  ߛ ܺ  ߜ  ߤ  ߠ   ,ߝ

where ݐݏܥ݊݅ݐܽݐܽ݀ܣ  is the aggregate cost of adapting schedules across all routes 

jointly operated by major i and regional j in 2006, before the shock, and ߝ is a normally 

distributed and iid error term. Xijr is a vector of observable characteristics of the ij 

relationship in route r in 2006, which includes relationship-level characteristics and 

route-level adaptation cost. Finally, ߜ ,ߤ and ߠ are major airline, regional airline, and 

route fixed effects, respectively, which are included in the regression to control for 

unobservable components that are common across routes and common across airlines 

within a route. These fixed effects are crucial to our empirical design, because they allow 

                                                 
6 We choose to test our prediction with linear probability model and OLS because the number of fixed 
effects increases rapidly and so we want to avoid changes in methodology throughout the empirical results. 
Using probit for those specifications with no or few fixed effects does not qualitatively change our results. 
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us to compare the probability of continuation of two outsourced routes belonging to 

regional networks with different continuation values for the same major or regional 

airline. 

Under the relational adaptation hypothesis, we expect ߚ  Ͳ . Routes belonging to 

networks with higher average adaptation costs are more likely to survive the 2008 

financial crisis shock because prior to the shock, those routes were allocated by major 

airlines to regionals whose relationship with the majors had a higher continuation value. 

Notice that under a “spot adaptation” hypothesis, we would expect instead ߚ ൌ Ͳ , 

because absent relational contracts, outsourcing of a route should only depend on 

adaptation costs at the route level, as in Forbes and Lederman (2009), and not on 

network-level adaptation costs. 

Because we do not directly observeݐݏܥ݊݅ݐܽݐܽ݀ܣ� , we use our measures of bad 

weather within network ij as a proxy for ݐݏܥ݊݅ݐܽݐܽ݀ܣ in the above equation. We 

rely on Forbes and Lederman (2009) to argue that there is a positive correlation between 

adaptation costs on a route and the incidence of bad weather on that route, so that bad 

weather aggregated at the network level is indeed a good proxy for network-level 

adaptation costs. 

In this setting, we are consistently estimating ߚ if the impact of the 2008 financial crisis 

on the survival probability of different routes in our sample is uncorrelated to route 

characteristics that determined the formation of major-regional networks prior to the 
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shock, in 2006. Formally, under the relational adaptation hypothesis and our specification 

above, our identification assumption is that ܿݒ൫ߝǡܹ݁ܽݎ݄݁ݐ൯ ൌ Ͳ.7  

While there is no apparent reason to believe that routes in regional networks with worse 

weather were less likely to be affected by the financial crisis relative to routes in 

networks with better weather, we can think of two potential reasons why it may be that 

൯ݎ݄݁ݐǡܹ݁ܽߝ൫ݒܿ ് Ͳ. The first reason is selection: a major may prefer to assign bad 

weather networks to regionals that do not renege on adaptation decisions, and a regional 

may prefer to operate a bad weather network for majors that do not renege on the 

relational adaptation bonus. The fact that networks are endogenously formed before the 

shock is not a problem per se—indeed, it is precisely this endogenous selection that 

enables us to use adaptation costs, proxied by bad weather, as a measure of the 

continuation value of major-regional relationships. However, selection may be a problem 

if it occurs in anticipation of the 2008 financial crisis shock. Our specification deals with 

this potential problem by focusing on outsourcing relationships two years prior to the 

shock, so observed regional networks are unlikely to be formed in the anticipation of the 

2008 financial crisis. A second source of selection is the fact that our sample is only 

composed by outsourcing relationships in 2006, and therefore leaves out all those routes 

where the majors chose not to outsource flights because of strategic market-specific 

characteristics or because of the lack of valuable partners in the route. We use major and 

regional airline fixed effects, as well as combinations of major/route and regional/route 

fixed effects, to deal with such concerns in our robustness checks specifications. 

                                                 
 . is defined as average weather in the major-regional network i and jݎ݄݁ݐܹܽ݁ 7
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The second potential reason why it may be that ܿݒ൫ߝǡܹ݁ܽݎ݄݁ݐ൯ ് Ͳ is that our 

measures of network-level weather may be correlated with route-level weather (a route 

from a network with average bad weather is more likely to be itself a bad-weather route). 

In turn, a route with worse weather may be more likely to be cut after the shock because 

it has higher adaptation costs and hence it is less profitable. To control for this second 

source of endogeneity, we include route-level weather, as well as route fixed effects, in 

our baseline regressions. 

Thus, our identification assumption is that conditional on route and network 

characteristics in 2006, in the absence of a shock the profitability of routes should be 

rather unrelated to differences in adaptation costs across the networks to which those 

routes belong. After the 2008 negative shock, and if relational adaptation matters, we 

should find that major airlines are more likely to preserve outsourced routes that belong 

to regional networks with higher average adaptation costs, because those are the major-

regional relationships with higher continuation value, so the major does not want to 

jeopardize them by reducing their size.  

In section 5.2, we present our main results, which provide evidence on how pre-shock 

average weather conditions across a major-regional network affected the survival of 

routes in that network following the 2008 financial crisis shock.  

5.2. Main Results 

Table 6 below reports the effect of pre-shock network weather conditions on the 

survival of routes following the 2008 shock. Our independent variables are all divided by 

their own standard deviation in order to provide easier-to-interpret coefficients. We 
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provide results without fixed effects in columns 1 and 4, with major airline fixed effects 

in columns 2 and 5, and with regional airline fixed effects in columns 3 and 6. In all 

specifications, standard errors are clustered at the major-regional dyad and route level.   

<<Place Table 6 here>> 

 The results are consistent with our relational adaptation hypothesis. Routes in 

networks characterized on average by higher precipitation and more abundant snow, and 

by a lower number of freezing months and hence less clear skies, are more likely to 

survive after the 2008 financial crisis. These results indicate that major airlines are more 

reluctant to restructure routes when their overall relationship with the regional airline 

serving those routes is valuable. 

Notice that the results are consistent regardless of the type of fixed effects included in 

the specification, indicating that our hypothesis is supported across major and regional 

airlines, within major airlines across their outsourced regional networks, and within 

regional airlines across the major airlines that contract with them.  

Because our independent variables are divided by their individual standard deviation, 

the interpretation of our empirical results is straightforward. Take, for example, column 2 

in Table 6, which includes major airline fixed effects. Our results show that a one 

standard deviation increase in the pre-shock average snow or rain across the outsourced 

networks of a given major airline increases the probability of post-shock survival of a 

route by 15 and 14 percentage points, respectively. Similarly, a one standard deviation 

decrease in the number of freezing months increases the probability of survival by 7 

percentage points. We also find that a one standard deviation increase in the number of 
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outsourced routes in a network increases the probability of survival of a route in that 

network by 14 percentage points, and an increase in one standard deviation in the average 

ticket value per route outsourced increases the probability of survival by 3.4 percentage 

points. 

When looking at the other independent variables included in the analysis to control 

for potential confounders, we find additional interesting results. On the one hand, we find 

that the number of flights in a route, and whether an airport in the route is slot controlled, 

have a statistically significant positive effect on route survival. On the other hand, our 

results show that an outsourced route’s average value and the distance between its 

endpoints decrease its likelihood of survival. These results may be due to the fact that 

routes with higher average value may be more likely to be vertically integrated after the 

shock (more below), and that airline passengers may dislike longer flights in regional 

airlines due to the smaller aircrafts used. Finally, if anything, routes with a hub at an 

endpoint are less likely to survive or more likely to experience a reduction in the number 

of flights. This can be explained by the fact that, as shown by Forbes and Lederman 

(2009), routes with a hub at an endpoint may be more important in order for major 

carriers to achieve coordination with other flights and therefore, they may be more likely 

to be integrated after the 2008 shock. 

<<Place Table 7 here>> 

Table 7 reproduces the analysis in Table 6, introducing route-level weather variables 

as independent variables, in addition to the network-level weather variables used 

previously. Our results show that route-level weather variables are statistically 
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insignificant. In contrast, the network-level weather variables are still statistically 

significant and their signs are fully consistent with our relational adaptation hypothesis. 

Therefore we can conclude that our original results in Table 6 are not due to correlations 

between route-level weather and network-level weather.8 

5.3. Unobserved Heterogeneity and Selection 

A potential concern about the results in section 5.2 is that they may be partially 

driven by an omitted variable bias and more broadly, by the presence of an underlying 

unobserved heterogeneity in the error term that may be correlated with both the major’s 

post-shock outsourcing decision and the average weather in the major regional network. 

A simple and yet compelling story could be that different geographical areas of the US 

were affected differently by the 2008 financial crisis. Then, one may argue that routes 

belonging to outsourced regional networks with worse average weather have been 

differently affected by the 2008 financial crisis than the routes in better weather networks. 

This explanation could be captured in our regression model in section 5.1, 

݈ܽݒ݅ݒݎݑܵ ൌ ߙ  ݐݏܥ݊݅ݐܽݐܽ݀ܣߚ  ߛ ܺ  ߜ  ߤ  ߠ   ,ߝ

by decomposing the error term ߝ  such that ߝ ൌ � ߛ  ݑ , with 

ǡݐݏܥ݊݅ݐܽݐܽ݀ܣሺܸܱܥ ሻߛ ് Ͳ, and ܸܱܥ൫ݐݏܥ݊݅ݐܽݐܽ݀ܣǡ ൯ݑ ൌ ͲǤ We deal with 

this potential problem by adding route specific fixed effects to our regressions in Tables 6 

and 7 (note that route fixed effects will absorb the route weather controls used in Table 7). 

By doing so, we completely rely on within route variation in the survival of outsourcing 

relationships across majors and regionals. 
                                                 
8 Tables A1 and A2 in the Appendix repeat the analysis in Tables 6 and 7 using probit and reporting 
marginal effects of all variables. Results are qualitatively the same. We are unable to reproduce in probit 
the analyses in Tables 8 and 9 because of the intensive use of fixed effects in those tables.  
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<<Place Table 8 here>> 

Table 8 adds route fixed effects to our specifications in Tables 6 and 7. Route fixed 

effects do not only allow us to rule out differences in weather across routes as a potential 

explanation for our findings (as in Tables 6 and 7), but also to control for any other cross-

route differences that may affect the routes’ post-shock survival. The regressions reported 

in Table 8 hold the route constant, and exploit variation in survival and network-level 

weather across pairs of major and regional airlines that simultaneously operate a given 

route. The results are entirely consistent with those in Tables 6 and 7. Therefore, it seems 

fair to conclude that the error term in our regressions (that is, route-specific random 

effects of the financial crisis) is uncorrelated with our main explanatory variables, that is, 

network-level average weather before the crisis. 

Finally, our results may be affected by sample selection bias because our sample 

conditions on the existence of an outsourcing relationship in 2006. To explore the impact 

of sample selection, we need to model a major airline’s choice to outsource a route to an 

independent regional airline in 2006 instead of flying the route itself. As explained in 

section 2, majors take care of all the marketing and ticketing, so saving on labor costs is 

the major reason to outsource to an independent regional. Then, a major airline i will 

choose to outsource flights on a given route r to one of its potential outsourcing partners 

available in that route, as long as the lowest cost achievable through outsourcing is lower 

than the cost under vertical integration. Formally, let ܪ be the set of regional partners of 

major ݅ that are potentially available to operate route ݎ. Also, let ݂
  be the cost of major 

݅ if it outsources the route to regional ݆, let ݂
ூ  be the major’s cost if the route is integrated, 
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and let ߟ be a normally iid shock to the major’s cost under integration. Then, the major 

outsources the route if, and only if:  

���אுೝ൛ ݂
 ൟ ൏ ݂

ூ   .ߟ

Then the probability that the major outsources flights in a given route will be 

݊݅ܿݎݑݏݐݑሺܱܾݎܲ ݃ሻ ൌ ͳ െ ுೝ൛אሺ���ߔ ݂
 ൟ െ ݂

ூ ሻ. 

When going back to our regression specification above, 

݈ܽݒ݅ݒݎݑܵ ൌ ߙ  ݐݏܥ݊݅ݐܽݐܽ݀ܣߚ  ߛ ܺ  ߜ  ߤ  ߠ   ,ߝ

sample selection does not bias of our estimation of ߚ as long as the distributions of ߟ 

and ߝ  are independent. If their distributions are not independent, then the expected 

survival rate of an outsourcing relationship between major i and regional j in route r 

becomes   

ሿ݈ܽݒ݅ݒݎݑሾܵܧ ൌ ߙ  ݐݏܥ݊݅ݐܽݐܽ݀ܣߚ  ߛ ܺ  ߜ  ߤ  ߠ 

�ሾߝȁ ߟ  ሺ���אுೝ൛ ݂
 ൟ െ ݂

ூ ሻሿ. 

and our estimation of ߚ will be biased if ݐݏܥ݊݅ݐܽݐܽ݀ܣ  is correlated with 

�ሾߝȁ ߟ  ሺ���אுೝ൛ ݂
 ൟ െ ݂

ூ ሻሿ . Once we take into account the correlation ߩ 

between ߟ  and ߝ , and calculate the Mills ratio, ߣ ൌ
థሺ୫୧୬ೕݎ݅ܪאቄ݂݆݅ݎ ቅି݂݅ܫݎ ሻ

ଵିఃሺ୫୧୬ೕݎ݅ܪאቄ݂݆݅ݎ ቅି݂݅ܫݎ ሻ
, we can 

modify the original regression specification such that: 

݈ܽݒ݅ݒݎݑܵ ൌ ߙ  ݐݏܥ݊݅ݐܽݐܽ݀ܣߚ  ߛ ܺ  ɏߪఌߣ  ߜ  ߤ  ߠ   ,ݑ
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where ݑ  is a zero mean, normally iid error term uncorrelated with all independent 

variables of interest in our regression equation. Note that because ߣ varies at the major 

airline and route level, our next specifications include major-route fixed effects to 

account for potential biases in our sample that are due to selection.    

<<Place Table 9 here>> 

Table 9 uses the same specifications in our original Tables 6, 7 and 8, with the 

difference that we now introduce major-route fixed effects (columns 1 and 3) and 

regional-route fixed effects (columns 2 and 4). These specifications exploit variation 

within an airline-route dyad—that is, variation coming from majors that use more than 

one regional in a given route or regionals that operate the same route for more than one 

major.  

 The rationale behind the use of these new sets of fixed effects is twofold. First, as 

discussed above, we perfectly control for variation across major-route and major-regional 

dyads that may explain selection patterns of major airline entry and outsourcing decisions, 

and therefore selection into our sample. Second, by introducing these new fixed effects 

we control for the possibility that the 2008 shock may have differently affected different 

airlines in different routes, and that some routes may be strategically more important for 

some airlines than others.  

The results in Table 9 are largely consistent with our findings in Tables 6 through 8. 

Coefficients in column (1) show that the probability that a given major airline keeps 

outsourcing a given route after the shock increases by 19 (13) percentage points when the 

average snow (rain) in the network of the regional operating that route increases by a one 
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standard deviation. Similarly, the route’s survival probability increases by 8.4 percentage 

points when the average number of freezing months in the regional’s network decreases 

by one standard deviation. We obtain qualitatively similar results in column (2) when 

introducing route-regional fixed effects. 

While the coefficients on the network-level average precipitation and number of 

freezing months are rather similar to those in Table 8, the coefficients on the network-

level average snow are significantly larger (19, as opposed to 14 percentage points) in 

Table 9. This change in coefficients, and the change in R-squared, are evidence that 

sample selection is a valid concern (Oster, 2016), and that the major-route and regional-

route fixed effects attenuate the bias it generates. 

In summary, our main finding is robust across all specifications. Routes outsourced to 

regional airlines are more likely to survive after the 2008 shock if they belong to 

networks that had worse weather (that is, higher precipitation and snow, and fewer 

freezing months per year), and hence higher adaptation cost and relationship value, prior 

to the shock. 

5.4. Reallocation of Terminated Routes 

While outsourcing relationships do not survive the shock in 40% of the routes, Figure 

1B shows that the total number of routes and flights outsourced to independent regionals 

has been steadily increasing since the late 1990s and did not stop through the 2008 

financial crisis. We explore here whether major airlines reallocated the discontinued 

outsourced routes to other regional partners and whether these are new partners (not used 

in other routes prior to the shock) or “relational” partners (already used before the shock). 
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For this purpose, we classify routes per major airline by the number of regional 

partners to which the major outsourced those routes in 2006, and we compute: (1) a 

route’s probability of survival—that is, the probability that the major outsources the route 

to the same airline that was operating it before the shock, as in our previous tables; (2) the 

probability that the major outsources the route to a regional partner that was not operating 

that route before the shock, conditional on survival = 0; and (3) the probability that the 

major outsources the route to a new partner (that is, a regional airline that was not 

operating any route for the major prior to the shock), conditional again on  survival = 0. 

We provide the results of this exercise in Table 10. 

<<Place Table 10 here>> 

We find that in routes where major airlines only used one regional airline before the 

shock, the likelihood of continuing operation of the route with another existing regional 

partner, conditional on termination of the previous partner on that route, is high. Even 

more importantly, the probability of using a new partner (that is, a partner not previously 

used in other routes) is zero across all regionals in our sample. When we look at the 

subsample of routes where major airlines used two regional airlines before the shock, we 

find again that the probability of continuing operations on a route with an existing 

regional partner after severing an outsourcing relationship on that route, is high, and that 

the probability of using a completely new regional partner is zero in all cases except for 

Continental, where it is positive but small (2.22%). Finally, in the cases where major 

airlines used more than two regionals before the shock, we find that the likelihood of 

continued operation of a route is very high (close to 100% for all major airlines except for 
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Northwest9) but again, continuation under a new outsourcing partner (not used before on 

any route) is zero for all major airlines except for US Airways. 

Besides documenting the majors’ preference for reallocating routes to “relational” 

regional partners, there is an additional reason to present the evidence in Table 10. 

Specifically, an alternative explanation for our results is that because of the financial 

crisis, major airlines may have refocused their product market strategy by changing their 

route and network differentiation. This change in strategy may have triggered a wave of 

termination of routes and outsourcing relationships driven by unobserved expectations of 

future product market profitability that are somehow correlated with major-regional 

networks, but have little to do with the value of the outsourcing relationships.  

Our evidence in Table 10 suggests that major airlines did not refocus their product 

market strategy following the shock. Most outsourced routes where the pre-shock 

outsourcing relationship was terminated were still operated after the shock, and they were 

reallocated to existing partners rather than new partners with possibly different product 

market specialization.  

5.5. Placebo Test: Survival of Outsourced Routes between 2003 and 2006.  

Because the 2008 financial crisis shock does not seem to have differentially affected 

different groups of routes, we cannot use a traditional differences-in-differences 

estimation approach in our study. To test for whether the effects of network-level 

adaptation costs on route survival documented in Tables 6 to 9 are really driven by the 

2008 financial crisis shock, we construct an equivalent survival variable taking as the 
                                                 
9 This is mainly driven by the merger of Delta and Northwest, and how Delta may have used their own 
partner to continue operations. See in the Data Appendix how we treat in our data the Delta-Northwest 
merger for clarification. 
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initial and final years 2003 and 2006 — respectively, two years after the September 11 

terrorist attacks and two years prior to Lehman Brothers September 2008 shock. Because 

no shock occurred between 2003 and 2006, we would expect our network-level weather 

variables, and hence the value of relational adaptation contracts, not to affect the 

probability of routes’ survival around those dates. Table 11 below presents our placebo 

test. 

<< Place Table 11 here >>  

Table 11 provides evidence on the probability of route survival between 2003 and 

2006. On the one hand, a route is more likely to survive when the route is operated by a 

larger (in terms of total number of routes) major-regional network, and when one of the 

airports in the route is a hub to the major airline. On the other hand, we find no 

significant relationship between average weather conditions in the major-regional 

network and the probability of route survival. If anything, we find a mild negative 

(positive) relationship between rain precipitation levels and survival in columns 2 and 5 

(3 and 6), as well as a mild positive correlation between freezing months and route 

survival (columns 3 and 6). 

Therefore, our placebo test suggests that absent an exogenous shock, there is no 

statistical correlation between the average weather conditions of a major-regional 

network and the survival probabilities of a route within that same network. This evidence 

corroborates our hypothesis that the 2008 financial crisis unexpectedly forced major 

airlines to restructure their portfolios of regional routes, and is therefore an appropriate 

“stress test” for assessing the existence and significance of relational adaptation contracts. 
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In addition to the placebo test, we produce a different type of evidence that aims to 

get our exercise closer to the traditional diff-in-diff structure. We run the specification in 

columns (1) of Table 6 (post-2008-shock survival) and Table 11 (post-2006-placebo 

survival) without the network-specific variables (number of routes, average route value, 

average network snow and rain precipitation, and average number of freezing months), 

we compute the average residual for each major-regional network, and we plot these 

residuals against the average network weather variables (average snow and rain 

precipitation, and the average number of freezing months). We show the results of this 

exercise in Figure 3.  

<<Place Figure 3 here>> 

On the one hand, Figure 3A plots the network-level average residuals of post-shock 

survival (crosses) and placebo-survival (green dots) against the network-level average 

snow. We fit a polynomial through the dots and show that while the network residual 

appears to be unrelated to network snow in the placebo (red solid line), there is a positive 

relationship between network residual and network snow in the treated sample (transition 

between 2006 and 2010). This finding is consistent with our main result that outsourcing 

contracts in routes that belonged to major-regional networks with higher adaptation costs 

were more likely to survive to the 2008 financial crisis.     

On the other hand, Figures 3B and 3C plot network residuals against network rain and 

number of freezing months, respectively. While we see that (aside outliers) network 

residuals are positively correlated with network rain in Figure 3B, and negatively 

correlated with network freezing months in Figure 3C, we do not observe significant 
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differences in these relationships between the treatment and placebo samples. Altogether, 

Figure 3 then seems to suggest that the effect is mainly driven by the allocation of 

valuable regional partners to routes and networks with higher snow precipitation and not 

so much with heavier rain precipitation or lower number of freezing months.     

6. Robustness Checks and Other Margins of Adjustment  

6.1. Robustness Checks 

As discussed in section 4, another way to measure the impact of the 2008 financial 

crisis on the survival of outsourcing relationships is through the dummy variable 

“Termination 8/2008,” which takes value 1 if the number of flights outsourced by a major 

airline to a regional airline in a route has decreased between 2006 and 2010; and zero if 

the number of outsourced flights in the route has not decreased (that is, if it has stayed the 

same or increased). Again, routes that were not operated by a regional airline in 2006 are 

left out of the sample. “Termination 8/2008” differs from “Survival 8/2008” in that the 

former measures an intensive margin of termination and the latter measures a discrete and 

extensive margin of adjustment within each major-regional relationship.10 

In Tables 12 and 13 we run the same specifications as in Tables 6 and 7 with 

“Termination 8/2008” as the dependent variable, and we obtain qualitatively the same 

results. Table 12 shows that routes in networks characterized by higher average rain and 

snow, and by a lower number of freezing months, are less likely to see their flights 

                                                 
10 Tables A5 and A6 in the Appendix repeat the analysis in Tables 12 and 13 using as dependent variable 
the change between 2006 and 2010 in the number of outsourced flights between major i and regional j in 
route r. The results are consistent in that network average snow precipitation (network average number of 
freezing months) is positively (negatively) correlated with the change in the number of outsourced flights, 
but yet the results are overall statistically weaker. 
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reduced, following the 2008 financial crisis shock. These findings are robust to the 

introduction of major and regional airline fixed effects.11  

<<Place Tables 12 and 13 here>> 

Table 13 replicates the analysis in Table 12, controlling for route-level weather. 

Consistent with Table 7 above, Table 13 shows that flight termination on a route remains 

strongly correlated with network average weather, while being fairly insensitive to route-

level weather.  

These results overall confirm our baseline survival regressions, and support our 

theoretical prediction that major airlines are more reluctant to restructure routes when 

their overall relationship with the regional airline serving those routes is valuable.  

6.2. Alternative Margins of Adjustment: Vertical Integration 

Our empirical analysis so far sheds light on the relationship between network-level 

adaptation costs and the termination or downsizing of outsourced routes in response to 

the 2008 financial crisis. Our analysis in Table 10 also sheds some light on the 

reallocation of routes among alternative regional partners. In this section we investigate a 

third margin of post-shock network adjustment—namely, the possibility that the major 

airline may operate a previously outsourced route with its own planes or through a 

vertically integrated regional company, as documented by Forbes and Lederman (2009).  

It is important to emphasize that the implications of our relational adaptation model 

for vertical integration are not as clear-cut as those for route survival and termination, 

                                                 
11 Tables A3 and A4 in the Appendix repeat the analysis in Table 12 using route fixed effects, and 
airline*route fixed effects, respectively. 
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because a major airline’s potential cost savings from integration are dubious. On the one 

hand, labor costs tend to increase after integration because of the unionization of major 

airlines (Forbes and Lederman, 2009). On the other hand, the shock decreases the 

enforceability of relational adaptation under outsourcing but does not affect adaptation 

under vertical integration. Moreover, major airlines may be forced to integrate some 

previously outsourced routes that were downsized after the shock, because no other 

independent regional could profitably operate those routes below a minimum number of 

flights. Thus, the net effect of the pre-shock value of major-regional relationships, as 

proxied by our network weather variables, on post-shock vertical integration, appears to 

be an open empirical question. 

To conduct this analysis, we use the same specifications used until now with two new 

dependent variables. First, we create a dummy variable, called Integration, that takes 

value 1 if, conditional on a route being fully outsourced to a regional airline in 2006, at 

least a flight in the route is operated by the major airline itself in 2010. We also create a 

second dependent variable, named Integration2, which results from conditioning 

Integration to at least one flight in the route being terminated after the shock 

(Termination =1). While the former variable checks whether any flight has been 

integrated, the latter restricts the analysis to those routes that experienced restructuring—

that is, that saw the number of outsourced flights go down. Tables 14 and 15 below report 

the effect of network-level weather conditions on a route’s probability of being integrated 

after the 2008 shock.  

<<Place Tables 14 and 15 here>> 
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The results indicate that routes that were fully outsourced in 2006 to regionals with 

worse network weather conditions are less likely to become integrated after 2008. This is 

true within major airlines across outsourced regional airlines (columns 2 and 5 in both 

Tables 14 and 15), and within regional airlines across upstream major airlines (although 

more weakly so due to conflicting signs of the snowfall and number of freezing months 

coefficients). According to column (2) in Table 14, a one-standard-deviation increase in 

network average snow decreases the probability of route integration by 9.2 percentage 

points, and a one-standard-deviation increase in network average rain decreases the 

probability of route integration by 5.7 percentage points. Results in Table 15, which rely 

on Integration2 as the dependent variable, are largely consistent with those in Table 14. It 

is interesting to note that in contrast with Forbes and Lederman (2009), route level 

weather does not play a role in determining whether a route became vertically integrated 

after the 2008 financial crisis shock. 

In conclusion, the beginning of the financial crisis in 2008, marked by the 

disappearance of Lehman Brothers, induced US airlines to redesign their networks of 

outsourcing relationships in the three following ways. First, major airlines terminated 

their existing outsourcing agreements on routes that were outsourced to regionals with 

low continuation value, proxied in our analysis by the network-level average 

weather/adaptation cost. This result indicates that the value of outsourcing relationships is 

used as a bond to ensure that relational adaptation agreements between major and 

regional airlines are self-enforcing. Second, major airlines integrated routes that were 

previously outsourced to regionals with low continuation value. Third and last, the majors 

reallocated most of the terminated routes to pre-existing partners. All these three margins 
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of adjustment confirm the importance of the value of relational contracting for efficient 

adaptation in the US airline industry between major and regional airlines. 

 

7. Conclusion 

In this paper we have studied the value of relational adaptation in outsourcing 

relationships, using data from the US airline industry. Our theoretical model shows that 

for relational adaptation contracts between major and regional airlines to be self-

enforcing, the long-term value of the relationship must be at least as large as the 

regional’s cost of adapting flight schedules across joint routes. Thus, when facing a shock 

that forces them to terminate some routes, the majors are more likely to preserve routes 

outsourced to regional airlines that have higher adaptation costs, as the value of the 

majors’ relationship with those regionals is larger.   

In our empirical analysis, we analyze the evolution of major-regional airlines’ 

networks in the U.S. around the 2008 financial crisis, and we find that consistent with our 

theoretical predictions, regional routes belonging to networks with worse average 

weather, and hence higher adaptation costs and relationship value, were more likely to 

survive after the shock. This finding is robust to the inclusion of route-level weather 

variables as well as route and airline fixed effects. 

While it is often argued that both adaptation to unforeseen contingencies and informal, 

self-enforcing agreements are of fundamental importance to the success of inter-firm 

collaborations, there is still little evidence supporting these claims. Our hope is that the 

evidence and methodology provided by this study will contribute to shed light on these 
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important phenomena. We also hope that our work will inspire future research that may 

further expand our understanding of how relational contracts help solving adaptation 

problems that spot and formal contracts fail to address.  
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Appendix: Proof of Lemma 1 

Consider a route ݅ that M outsources to R in normal times: ݄כሺݖ ൌ Ͳሻ ൌ ͳ.  

Proof of part 1: ߙכሺߜሻ exists.  

At ߙ ൌ Ͳ, M’s post-shock and pre-shock optimization problems coincide, so it must 

be that ݄כሺݖ ൌ ͳሻ ൌ ͳ. At ߙ ൌ ͳ, it is optimal for M not to outsource any routes, so 

݄כሺݖ ൌ ͳሻ ൌ Ͳ. As ߙ grows from zero towards one, the route’s post-shock profitability 

decreases and the self-enforcement constraint SE’ becomes tighter. Thus, by continuity 

there must be ߙכሺߜሻ such that ݄כሺݖ ൌ ͳሻ ൌ ͳ if ߙ  ݖሺכሻ, and ݄ߜሺכߙ ൌ ͳሻ ൌ Ͳ if ߙ 

 .ሻߜሺכߙ

Proof of part 2: ߙכሺߜሻ is non-decreasing in ߜ.  

As a first step, we prove the following claim. 

Claim: Fix ߜ ൌ ߙ and suppose that ߜ   ݅ ൯, so that M keeps outsourcing routeߜ൫כߙ

after the shock: ݄כሺݖ ൌ ͳሻ ൌ ͳ. Then, M keeps outsourcing the route as ߜ grows: ߙ ൏

ߜ ൯ for allߜ൫כߙ   .ߜ

Proof: Suppose to the contrary that ߙ   ൯. Denote the set of routes outsourcedߜ൫כߙ

under ߜ but not under ߜ (including route ݅) as ܪ; the set of routes outsourced under 

 .כܪ as ߜ and ߜ ଵ; and the set of routes outsourced under bothܪ as  ߜ but not under ߜ

Since ߜ   is still self-enforcing ߜ the optimal relational contract under discount ,ߜ
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under ߜ. Thus, for the contract under ߜ to be optimal, the routes in ܪଵ must be more 

profitable than those in ܪ:  

σ ሺͳሻݏൣ െ ݉
 െ ݇ሺߙሻ൧אுభ  σ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧אுబ .   (A1) 

Moreover, optimality requires that the contract under ߜ be self-enforcing:  

σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுబ  σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுכ  Ͳ.

           (A2) 

Finally, for the contract under ߜ to be optimal, a contract replacing the set of routes 

 :ଵ must not be self-enforcingܪ  with the more profitable setܪ

σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுభ  σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுכ  Ͳ.

           (A3) 

Conditions (A2) and (A3) imply that: 

σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுబ  σ ൜ ఋ
ଵିఋ ሺͳሻݏൣ െ ݉

 െ ݇ሺߙሻ൧ െ ܿൠאுభ . 

           (A4) 

However, conditions (A1) and (A4) contradict our assumption 5. Thus, it must be that 

route ݅ is still outsourced under ߙ :ߜ   ൯. Ŷߜ൫כߙ

To complete the proof of Lemma 1, notice that since the above Claim holds at ߙ ൌ

൯ߜ൫כߙ ൯, it must be thatߜ൫כߙ    .൯ߜ൫כߙ
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Data Appendix 

 
We made a few assumptions in order to assemble our data when facing instances of 
missing information and the various mergers and exits that occurred in the US airline 
industry between 1999 and 2010. 
 
To create our main dependent variables, Survival and Termination between 2006 and 
2010, as well as the dependent variables in our placebo test (Survival and Termination 
between 2003 and 2006), we utilize the information available in the DB1B data set to the 
best of our ability. In particular, we code our major-regional airline interaction based on 
the ticketing carrier code (major airline) and the operating carrier/reporting carrier code 
(actual operator). Because some (about 20%) observations in the DB1B data matched 
with T100 do not have an operating carrier number (code "99") but do have a reporting 
carrier number, we replace the operating carrier with the reporting carrier for the 
observations with a missing operating carrier. According to BTS,12 the reporting carrier is 
usually the operating carrier of the first segment of an itinerary. Because we only use 
nonstop flights and the segment for a nonstop flight is from the origin airport where you 
take off to the destination airport, this assumption should not suppose a problem. 
 
So far as our main analysis (2008 Lehman Brothers shock) is concerned, these are the 
mergers and exits that we encountered: 
  

(1) Delta (DL) and Northwest (NW) merged in 2008 and were operating only under 
DL in 2010. We assume that a route outsourced by NW to a given regional in 
2006 survived to 2010 if we observe DL outsourcing that route to the same 
regional in 2010.   

 

(2) Republic AL (RW) and Midwest AL (YX) merged. Even though Republic AL 
survived, it changed its airline code to Midwest AL (YX). We apply same 
assumption as for DL and NW merger. 

 

(3) United (UA) and Continental (CO) announced their merger in 2010 but they were 
not able to close it until 2012. Hence, this merger does not affect our data and 
empirical analysis. 

 
(4) Pinnacle AL and Colgan AL merged in 2008 but operated separately through 

2010.  
 

                                                 
12 
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/airline_information/accounting_and_r
eporting_directives/number_224.html 
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(5) Pinnacle AL and Mesaba AL merged in 2008 but operated separately through 
2010. 

 

(6) Skywest, AS AL and ExpressJet AL merged in 2008 but operated separately 
through 2010. 

 

(7) A number of regional airlines declared bankruptcy but continued operating 
afterwards. These are Sky Airlines in 2008, Mesa Airline in 2010, Skybus Airline 
in 2008, Arrow Air in 2010, Sun country Air in 2008, AirMidwest in 2008, and 
Big sky in 2008. 

 

(8) Two regional airlines ceased operations and exited in 2008: AirMidwest (used by 
US Airways), and Big Sky (used by Delta). Their relationships with major US 
Airways and Delta appeared as not surviving in our sample.  

 
So far as our placebo test is concerned (period between 2003 and 2006), here are the 
operations we have identified and the corresponding assumptions we have made in 
assembling our our data: 
 

(1) Two regionals named Republic AL (RW) and Shuttle America (S5) merged in 
2005 into Republic AL. S5 appeared only once in 2003. We classified a route that 
was outsourced by a given major to S5 in 2003 and to RW in 2006 as a route 
outsourced to S5 in 2006. 

 
(2) Skywest and Atlantic Southeast Airline merged in 2005. Despite that, both 

operated separately in 2006. 
 

(3) US Airways' acquired America West Airlines (HP) in 2005. HP ceased operations 
in 2005, but HP still appears as HP (not US Airways) in 2006.  

 

 



Figure 1A: Major/Regional Relationships between 1993 and 2013

Figure 1B: Major/Regional Relationships between 1993 and 2013





Figure 3A: Plotting Residuals of Main Specification & Placebo against Average Network Weather

Figure 3B: Plotting Residuals of Main Specification & Placebo against Average Network Weather

Figure 3C: Plotting Residuals of Main Specification & Placebo against Average Network Weather



Table 1. Excerpt of Adaptative Slot Exchanges on February 26th 2016  in La Guardia Airport NYC

…
SS PACKET PROCESSED FROM AAL37 (10.182.183.215)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
AAL364 LGA.270028A ORD LGA 262250 270028 SUB - - - 262259 262103
LOF4096 LGA.270040A CLE LGA 262325 270040 SUB - - - 262240 262109
AAL352 LGA.270240A ORD LGA 270102 270240 SUB - - - 270132 262336
AAL2240 LGA.270315A MIA LGA 270047 270315 SUB - - - 270054 262205
AAL2285 LGA.270320A MCO LGA 270114 270320 SUB - - - 270154 262330
LOF4131 LGA.270335A STL LGA 270136 270335 SUB - - - 270120 262301
AAL2415 LGA.270338A MIA LGA 270110 270338 SUB - - - 270153 262305
AAL348 LGA.270408A ORD LGA 270230 270408 SUB - - - 270240 270041
AAL1164 LGA.270426A DFW LGA 270136 270426 SUB - - - 270220 262310
2016/02/26.13:11
***************************************************************************
SS PACKET PROCESSED FROM DAL (10.182.182.246)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
DAL2679 LGA.261957A BOS LGA 261913 261957 SUB - - - - 261800
DAL1488 LGA.262030A MIA LGA 261812 262030 SUB - - - - 261617
DAL2840 LGA.262033A DFW LGA 261755 262033 SUB - - - - 261605
DAL1713 LGA.262035A TPA LGA 261835 262035 SUB - - - - 261645
DAL1486 LGA.262039A ATL LGA 261907 262039 SUB - - - - 261745
DAL2808 LGA.262130A FLL LGA 261915 262130 SUB - - - - 261710
DAL2673 LGA.262139A BOS LGA 262055 262139 SUB - - - - 261900
ASQ5645 LGA.262149A ATL LGA 262016 262149 SUB - Y Y - 261400
2016/02/26.08:27
***************************************************************************
SS PACKET PROCESSED FROM AAL37 (10.182.183.215)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
WJA1202 LGA.261633A CYYZ LGA 261534 261633 SBRG - - - 261616 261435
LOF4139 LGA.261643A STL LGA 261444 261643 SCS - - - 261640 261326
2016/02/26.14:28
***************************************************************************
AC FOR LGA
AC ERROR: NO UNASSIGNED SLOTS FOR ADAPTIVE COMPRESSION. 
TOTAL UNASSIGNED SLOTS EVALUATED: 15
2016/02/26.14:28
***************************************************************************
SS PACKET PROCESSED FROM UAL1 (10.182.183.214)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
UAL556 LGA.262336A DEN LGA 262017 262336 SUB - - - - 261828
UAL509 LGA.262358A ORD LGA 262223 262358 SUB - - - - 261959
UAL533 LGA.270113A ORD LGA 262337 270113 SUB - - - - 262204
UAL406 LGA.270423A DEN LGA 270115 270423 SUB - - - - 262259
UAL2049 LGA.270453A ORD LGA 270318 270453 SUB - - - - 270222
2016/02/26.14:29
…

Note: This table aims to show real-time landing slot exchanges between airlines on Feb 26th 2016 at La Guardia
airport in New York City. In the top example, American Airlines (AAL) and Trans States Airliens (LOF) 
coordinate to offer a spot to an AAL flight. In the second example, Delta (DAL) yields a slot to Atlantic 
Southeast Airlines (ASQ). In the third example, West Jet Airlines (WJA) yields a slot for LOF flying for AAL. 
The fourth example shows an unmatched demand for a slot, and the fifth example United Airlines (UAL) 
reshuffles its own slots to offer a slot to one of its own planes.



Table�2.�Exchange�of�Slots�on�February�24�2016�in�the�3�NYC�Airports�(LGA,�EWR,�JFK)�during�Ground�Delay�Program

AIRLINE�RECEIVING�SLOTS

SWA� JBU� NKS VRD� TOTAL
AAL ENY JIA PDT AWI LOF RPA DAL FLG ASQ CPZ GJS LOF SKW TCF UAL ASH ASQ GJS RPA SKW TCF UCA SWA JBU NKS VRD
120 3 13 14 34 31 68 137 93 43 1 72 1 1 121 18 3 20 1 3 1 4 4 57 45 2 4 914

AAL 84 2 6 7 18 25 37 1 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 9 1 0 0 195
ENY 7 1 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 16
JIA 8 0 2 3 7 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30
PDT 2 0 0 10 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20
AWI 23 0 5 6 10 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 61
LOF 10 0 0 0 0 9 4 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 0 0 0 28
RPA 32 0 6 6 15 11 36 0 0 0 0 1 1 0 0 4 0 13 0 2 0 2 3 5 0 0 0 137
SKV 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3
DAL 3 0 0 0 0 2 0 90 71 32 1 54 0 1 86 0 0 0 0 0 0 0 0 5 0 0 0 345
FLG 0 0 0 0 1 0 0 41 34 9 1 24 0 1 39 0 0 0 0 0 0 0 0 1 0 0 0 151
DPJ 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4
ASQ 4 1 0 1 0 0 1 21 21 13 0 15 0 1 22 12 1 15 0 3 0 2 2 8 1 0 0 144
GJS 1 0 0 0 0 1 1 31 32 13 0 22 0 0 33 0 0 1 0 0 0 0 0 5 0 0 0 140
SKW 1 0 0 0 0 0 0 1 0 3 1 0 0 0 0 4 1 0 0 0 0 0 0 0 1 0 0 12
TCF 3 0 0 1 0 0 2 53 48 17 0 38 0 1 59 10 2 15 1 3 0 1 4 5 0 0 0 263
UAL 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 18 2 16 1 3 1 4 4 6 0 0 0 60
ASH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 2 0 0 0 0 0 1 0 0 0 9
UCA 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 7 0 2 0 2 3 2 0 0 0 21
SWA 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 53
JBU 1 0 0 1 0 2 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 45 0 0 56
NKS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
VRD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

183 4 19 37 58 53 110 242 208 88 5 157 3 4 244 55 7 70 2 13 1 11 16 108 49 2 4 1753

Note:�This�table�shows�the�total�number�of�slots�received�by�American�(AAL),�Delta�(DAL),�United�(UAL),�Southwest�(SWA),�Jet�Blue�(JBU),�Spirit�(NKS)�and�Virgin�America�(VRD),�top�
horizontal�line,�on�2/24/2016�under�GDP�in�the�three�airports�of�NYC�metropolitan�area�(LGA,�EWR,�JFK).�These�seven�airlines�received�landing�slots�from�other�airlines�for
flights�operated�by�themselves,�subsidiary�regional�airlines,�or�independent�outsourcing�regional�partners�airlines.�While�the�second�horizontal�line�from�the�top�accounts�
for�the�airline�receiving�the�slot�and�the�number�of�slots�received�on�2/24/2016,�the�vertical�dimension�depicts�the�procedence�of�those�slots�by�airline.�Note�that�in�many
instances�several�airlines�must�accommodate�several�flights�in�order�to�create�one�landing�slot�for�a�flight.�For�this�reason,�while�914�slots�were�received�(demand),
�1753�suppliers�were�involved�in�these�exchanges.�
Finally,�the�data�is�organized�so�that�airlines�are�ordered�by�whether�slot�was�received�for�a�flight�on�behalf�of�AAL,�DAL�and�UAL.�Within�these�classification,�airlines�are�
ordered�by�whether�they�are�owned�subsidiaries�of�a�major�(in�slight�grey�shade�color)�or�independent�partner�regionals.�
Envoy�(ENY),�PSA,�and�Piedmont�(PDT)�are�owned�by�American;�PinnacleͲEndeavor�(FLG)�and�Delta�Private�Jets�(DPJ)�are�owned�by�Delta;�United�did�not�exchange�slots�with�any
�subsidiary.�Air�Wisconsin�(AWI),�Trans�States�(LOF),�Republic�(RPA),�Sky�Regional�(SKV),�ExpressJet�(ASQ),�GoJet�(GJS),�SkyWest�(SKW),�Shuttle�America�(TCF),�Mesa�(ASH),�and�
�CommutAir�(UCA)�are�all�independently�owned�regionals.�This�sample�does�not�include�exchanges�with�foreign�airlines�or�Cargo/Shipping�carriers.

UALDALAALAIRLINE�
SUPPLYING�
SLOTS



Table 3: Summary statistics

Variable Mean Std. Dev. Min. Max. N

Survival 0.593 0.491 0 1 6516
AVEweatherSnow ij 20.683 14.145 0 88.963 6516
AVEweatherRain ij 809.102 123.293 353.659 1423.167 6516
AVEweatherFreez ij 2.434 0.531 0.700 6 6516
Nroute ij 155.542 116.819 1 409 6516
avevalue route ij 23770.8 145407.1 0 5661580 6516
MAXsnowfall r 38.82 79.838 0 343.167 6516
MAXprecipitation r 1047.723 372.526 75.333 1994.444 6516
NFreezingmonths r 2.434 1.577 0 8 6516
Dhubinroute ir 0.738 0.44 0 1 6516
NFlight ijr 35.307 99.319 1 920 6516
AVEValue ijr 499079.306 1374571.232 0 29520468 6516
Distance r 1137.495 746.233 36 4962 6516
slot r 0.225 0.418 0 1 6516
flight largeendpoint ijr* 501.775 935.199 0.5 4848.5 6516
flight smallendpoint ijr* 41.829 118.915 0.5 3486 6516
�Nflights ijr 11.728 101.523 -703 1363 6516
Termination 0.622 0.485 0 1 6516

Based on the data set used in the 2006-2010 analysis.
Variables with“ * ” is defined at the airport level.



Table 4: The Number of Routes Outsourced

AA CO DL NW UA US
PSA Airlines 24 42 64 11 59 178
Aloha Airlines 3 4 21
Trans States Airlines 61 19 31 25 35 3
Continental Micronesia 2
Pinnacle Airlines 31 46 336 50 30 30
GoJet Airline 21 4 5 5 103 12
Ohana Airline 10 1 7 6
America West Express 72 58 79 26 83 60
American Eagle 409 53 76 35 77 37
Comair 73 69 321 96 57 72
SkyWest Airline 72 48 159 39 259 22
Executive Airline 42 1 3 1 3
Horizon Air 26 8 15 21 25
Republic Airline 29 13 24 13 23 159
Shuttle America 41 29 149 29 172 33
Express Jet 76 273 128 75 49 77
Mesaba Airline 4 19 27 193 8 1
Mesa Airline 79 65 98 26 224 188
Midwest Airline 14 10 15 14 18 4
Air Wisconsin 22 30 45 23 18 203

Based on 4th quarter in 2006.



Table 5: Summary statistics for Major-Regional dyad

Year 2006

AL Var. Mean Std. Dev. Min. Max.

Snow 200.536 139.637 0 343.167
AA Rain 701.658 185.322 410.5 906.667

Freez 6.158 2.089 1 8
Obs. 19
Snow 181.393 132.313 0 284.872

CO Rain 715.444 133.29 575.667 906.667
Freez 6 2.029 3 8
Obs. 18
Snow 189.795 119.87 0 299

DL Rain 736.623 192.347 349.667 906.667
Freez 5.737 2.469 1 8
Obs. 19
Snow 178.888 118.985 0 284.872

NW Rain 638.021 180.453 374.389 906.667
Freez 6.412 0.939 5 8
Obs. 17
Snow 258.039 85.63 0 299

UA Rain 709.916 203.686 349.667 906.667
Freez 6.684 2.212 1 8
Obs. 19
Snow 204.782 121.419 0 284.872

US Rain 715.115 219.57 393.333 906.667
Freez 6.75 2.017 3 8
Obs. 16



Table 6: The Impact of Average Major-Regional Network Weather on Route Survival with double-
clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES survival 808 survival 808 survival 808 survival 808 survival 808 survival 808

sd AVEweatherSnow ij 0.111*** 0.154*** 0.047** 0.110*** 0.152*** 0.047**

(0.026) (0.043) (0.022) (0.025) (0.042) (0.022)

sd AVEweatherRain ij 0.148*** 0.141*** 0.068*** 0.145*** 0.141*** 0.065***

(0.025) (0.041) (0.019) (0.025) (0.040) (0.019)

sd AVEweatherFreez ij -0.112*** -0.068** -0.144*** -0.111*** -0.063** -0.144***

(0.014) (0.031) (0.015) (0.013) (0.030) (0.014)

sd Nroute ij 0.152*** 0.143*** 0.152*** 0.130*** 0.118*** 0.132***

(0.014) (0.016) (0.015) (0.015) (0.016) (0.017)

sd avevalue route ij 0.034*** 0.034*** 0.036*** 0.033*** 0.033*** 0.035***

(0.007) (0.009) (0.007) (0.007) (0.009) (0.007)

Dhubinroute ir 0.043** 0.056*** 0.056*** 0.017 0.028* 0.034**

(0.018) (0.016) (0.015) (0.018) (0.016) (0.016)

sd NFlight ijr 0.038*** 0.038*** 0.034***

(0.009) (0.008) (0.007)

sd AVEValue ijr -0.016** -0.018** -0.027*** -0.015* -0.017** -0.026***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.007)

sd Distance r -0.025** -0.017* -0.015 -0.027** -0.019** -0.017*

(0.011) (0.009) (0.009) (0.011) (0.009) (0.009)

slot r 0.057** 0.060*** 0.039* 0.059** 0.059*** 0.039*

(0.025) (0.022) (0.023) (0.025) (0.022) (0.023)

sd flight largeendpt ijr 0.046*** 0.050*** 0.040***

(0.014) (0.012) (0.010)

sd flight smallendpt ijr 0.023*** 0.023*** 0.020***

(0.008) (0.008) (0.006)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.292 0.309 0.349 0.295 0.313 0.351

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 7: The Impact of Average Major-Regional Network Weather on Route Survival including
Route-level Weather Variables with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES survival 808 survival 808 survival 808 survival 808 survival 808 survival 808

sd AVEweatherSnow ij 0.115*** 0.157*** 0.051** 0.114*** 0.155*** 0.052**

(0.024) (0.043) (0.022) (0.024) (0.042) (0.022)

sd AVEweatherRain ij 0.145*** 0.137*** 0.061*** 0.142*** 0.137*** 0.059***

(0.026) (0.041) (0.019) (0.026) (0.041) (0.019)

sd AVEweatherFreez ij -0.115*** -0.070** -0.147*** -0.114*** -0.065** -0.148***

(0.014) (0.030) (0.015) (0.013) (0.030) (0.014)

sd Nroute ij 0.152*** 0.143*** 0.152*** 0.131*** 0.118*** 0.131***

(0.014) (0.016) (0.015) (0.015) (0.016) (0.017)

sd avevalue route ij 0.034*** 0.034*** 0.036*** 0.033*** 0.033*** 0.035***

(0.007) (0.009) (0.007) (0.007) (0.009) (0.007)

sd MAXsnowfall r -0.013 -0.012 -0.012 -0.012 -0.012 -0.012

(0.010) (0.009) (0.010) (0.009) (0.008) (0.009)

sd MAXprecipitation r 0.010 0.012 0.015 0.008 0.011 0.014

(0.011) (0.010) (0.010) (0.011) (0.011) (0.011)

sd NFreezingmonths r 0.006 0.006 0.007 0.009 0.009 0.009

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Dhubinroute ir 0.043** 0.056*** 0.056*** 0.017 0.028* 0.034**

(0.018) (0.016) (0.016) (0.019) (0.016) (0.016)

sd NFlight ijr 0.038*** 0.037*** 0.034***

(0.009) (0.008) (0.007)

sd AVEValue ijr -0.016** -0.017** -0.027*** -0.014* -0.016** -0.025***

(0.008) (0.008) (0.008) (0.008) (0.007) (0.007)

sd Distance r -0.027** -0.020** -0.018* -0.029*** -0.020** -0.019**

(0.011) (0.009) (0.010) (0.011) (0.009) (0.010)

slot r 0.049** 0.051** 0.029 0.050** 0.049** 0.029

(0.024) (0.021) (0.022) (0.024) (0.021) (0.022)

sd flight largeendpt ijr 0.046*** 0.050*** 0.040***

(0.015) (0.013) (0.011)

sd flight smallendpt ijr 0.022*** 0.023*** 0.020***

(0.008) (0.008) (0.006)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.293 0.310 0.351 0.297 0.315 0.353

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 8: The Impact of Average Major-Regional Network Weather on Route Survival with Route
fixed e↵ects and double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES survival 808 survival 808 survival 808 survival 808 survival 808 survival 808

sd AVEweatherSnow ij 0.140*** 0.186*** 0.055*** 0.139*** 0.184*** 0.056***

(0.009) (0.014) (0.011) (0.009) (0.013) (0.011)

sd AVEweatherRain ij 0.136*** 0.126*** 0.046*** 0.136*** 0.128*** 0.049***

(0.009) (0.012) (0.015) (0.009) (0.012) (0.015)

sd AVEweatherFreez ij -0.107*** -0.081*** -0.119*** -0.106*** -0.077*** -0.120***

(0.009) (0.014) (0.011) (0.009) (0.014) (0.011)

sd Nroute ij 0.160*** 0.154*** 0.170*** 0.130*** 0.122*** 0.145***

(0.006) (0.007) (0.008) (0.008) (0.008) (0.009)

sd avevalue route ij 0.035*** 0.034*** 0.030*** 0.033*** 0.032*** 0.029***

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Dhubinroute ir 0.088*** 0.130*** 0.113*** 0.059** 0.098*** 0.089***

(0.027) (0.027) (0.026) (0.027) (0.027) (0.026)

sd NFlight ijr 0.033*** 0.031*** 0.025***

(0.005) (0.005) (0.005)

sd AVEValue ijr -0.017** -0.017** -0.024*** -0.012 -0.013 -0.020***

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

sd flight largeendpt ijr 0.062*** 0.061*** 0.048***

(0.006) (0.006) (0.006)

sd flight smallendpt ijr 0.013** 0.013** 0.010*

(0.006) (0.006) (0.005)

Observations 6,178 6,178 6,178 6,178 6,178 6,178

R-squared 0.460 0.469 0.512 0.466 0.475 0.515

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Route FE y y y y y y

Clustered s.e. at

major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 9: The Impact of Average Major-Regional Network Weather on Route Survival with double
F.E. & double-clustered s.e.

(1) (2) (3) (4)

VARIABLES survival 808 survival 808 survival 808 survival 808

sd AVEweatherSnow ij 0.193*** 0.072*** 0.191*** 0.072***

(0.014) (0.015) (0.014) (0.015)

sd AVEweatherRain ij 0.132*** 0.117*** 0.134*** 0.118***

(0.012) (0.024) (0.012) (0.024)

sd AVEweatherFreez ij -0.084*** -0.119*** -0.079*** -0.117***

(0.014) (0.017) (0.014) (0.017)

sd Nroute ij 0.155*** 0.180*** 0.121*** 0.179***

(0.007) (0.015) (0.008) (0.019)

sd avevalue route ij 0.037*** 0.040*** 0.035*** 0.040***

(0.007) (0.006) (0.007) (0.006)

Dhubinroute ir 0.090*** 0.083**

(0.031) (0.033)

sd NFlight ijr 0.031*** -0.020**

(0.005) (0.009)

sd AVEValue ijr -0.016* -0.022* -0.012 -0.022*

(0.009) (0.012) (0.009) (0.012)

sd flight largeendpt ijr 0.063*** 0.005

(0.007) (0.018)

sd flight smallendpt ijr 0.012** -0.026**

(0.006) (0.012)

Observations 6,013 1,499 6,013 1,499

R-squared 0.503 0.740 0.509 0.740

Major-Route FE y n y n

Regional-Route FE n y n y

Major FE n n n n

Regional FE n n n n

Clustered s.e. major regional route y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 10: Route Reallocation after the 2008 Shock

Number of
Pre-Existing

Regional Partners AA CO DL NW UA US
per Route

1 RA # routes 305 168 170 175 128 61
P(survival) 71.5% 54.8% 70.6% 9.1% 57.0% 62.3%

P(continue | survival=0) 74.7% 82.9% 78.0% 6.9% 67.3% 78.3%
P(new ptnr | survival=0) 0% 0% 0% 0% 0% 0%

2 RAs # routes 264 236 452 184 270 206
P(survival) 68.2% 60.2% 65.0% 10.3% 61.5% 70.0%

P(continue | survival=0) 84.5% 81.9% 93.0% 7.8% 92.3% 96.7%
P(new ptnr | survival=0) 0% 2.22% 0% 0% 0% 0%

More than 2 # routes 12 12 159 30 175 262
P(survival) 58.3% 66.7% 73.0% 16.7% 68.0% 80.5%

P(continue | survival=0) 100% 75.0% 100% 8.0% 96.4% 98.0%
P(new ptnr | survival=0) 0% 0% 0% 0% 0% 1.33%

Based on 4th quarter in 2006.
Based on data after dropping the unknown carriers.



Table 11: Placebo Test 2003-2006 - The Impact of Average Major-Regional Network Weather on
Route Survival with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES survival plcb survival plcb survival plcb survival plcb survival plcb survival plcb

sd AVEweatherSnow ij -0.021 -0.030 -0.011 -0.019 -0.030 -0.010

(0.050) (0.036) (0.014) (0.049) (0.036) (0.014)

sd AVEweatherRain ij -0.053 -0.073* 0.056** -0.048 -0.074* 0.056**

(0.062) (0.044) (0.027) (0.057) (0.044) (0.026)

sd AVEweatherFreez ij -0.060 -0.069 0.027** -0.059 -0.068 0.027**

(0.059) (0.066) (0.013) (0.059) (0.066) (0.013)

sd Nroute ij 0.189*** 0.129*** 0.169*** 0.206*** 0.136*** 0.167***

(0.044) (0.047) (0.022) (0.044) (0.049) (0.026)

sd avevalue route ij 0.004 0.003 -0.014 0.005 0.003 -0.014*

(0.007) (0.007) (0.009) (0.007) (0.006) (0.009)

Dhubinroute ir 0.106** 0.136*** 0.092*** 0.139** 0.150*** 0.093***

(0.046) (0.035) (0.035) (0.058) (0.044) (0.035)

sd NFlight ijr -0.001 0.013 0.013

(0.033) (0.018) (0.015)

sd AVEValue ijr -0.014 -0.035*** -0.005 -0.016 -0.035*** -0.005

(0.017) (0.013) (0.010) (0.016) (0.013) (0.010)

sd Distance r 0.009 0.019 -0.028* 0.008 0.018 -0.029**

(0.027) (0.022) (0.015) (0.026) (0.022) (0.015)

slot r 0.041 0.051 0.058** 0.030 0.045 0.057**

(0.060) (0.036) (0.028) (0.055) (0.036) (0.028)

sd flight largeendpt ijr -0.051 -0.023 -0.002

(0.057) (0.034) (0.023)

sd flight smallendpt ijr 0.024 0.029** 0.018

(0.020) (0.014) (0.011)

Observations 3,247 3,247 3,247 3,247 3,247 3,247

R-squared 0.157 0.229 0.498 0.163 0.231 0.498

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 12: The Impact of Average Major-Regional Network Weather on Route Termination

(1) (2) (3) (4) (5) (6)

VARIABLES Termi 808 Termi 808 Termi 808 Termi 808 Termi 808 Termi 808

sd AVEweatherSnow ij -0.087*** -0.118*** -0.039* -0.086*** -0.117*** -0.039*

(0.032) (0.044) (0.022) (0.032) (0.044) (0.022)

sd AVEweatherRain ij -0.092*** -0.074** -0.053*** -0.091*** -0.076** -0.053***

(0.024) (0.036) (0.018) (0.024) (0.036) (0.018)

sd AVEweatherFreez ij 0.078*** 0.042 0.099*** 0.077*** 0.039 0.098***

(0.011) (0.028) (0.015) (0.011) (0.028) (0.015)

sd Nroute ij -0.070*** -0.064*** -0.066*** -0.064*** -0.057*** -0.066***

(0.016) (0.017) (0.014) (0.018) (0.020) (0.015)

sd avevalue route ij -0.014* -0.014* -0.013 -0.013* -0.013* -0.013

(0.008) (0.007) (0.009) (0.008) (0.007) (0.009)

Dhubinroute ir 0.042** 0.034* 0.030 0.054** 0.047** 0.032*

(0.020) (0.020) (0.019) (0.021) (0.020) (0.019)

sd NFlight ijr 0.062* 0.067* 0.084**

(0.036) (0.035) (0.035)

sd AVEValue ijr -0.025*** -0.025*** -0.018** -0.027*** -0.027*** -0.019**

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

sd Distance r 0.024** 0.022** 0.017 0.022* 0.019* 0.014

(0.012) (0.011) (0.012) (0.011) (0.011) (0.011)

slot r -0.033 -0.042 -0.022 -0.036 -0.042 -0.023

(0.029) (0.029) (0.029) (0.029) (0.029) (0.028)

sd flight largeendpt ijr -0.044 -0.042 0.022

(0.061) (0.055) (0.052)

sd flight smallendpt ijr 0.057 0.059 0.072

(0.044) (0.046) (0.045)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.095 0.103 0.161 0.094 0.102 0.159

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major-regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 13: The Impact of Average Major-Regional Network Weather on Route Termination includ-
ing Route-level Weather Variables

(1) (2) (3) (4) (5) (6)

VARIABLES Termi 808 Termi 808 Termi 808 Termi 808 Termi 808 Termi 808

sd AVEweatherSnow ij -0.088*** -0.119*** -0.039* -0.087*** -0.117*** -0.039*

(0.031) (0.044) (0.022) (0.031) (0.043) (0.022)

sd AVEweatherRain ij -0.095*** -0.077** -0.054*** -0.095*** -0.079** -0.054***

(0.024) (0.036) (0.018) (0.024) (0.036) (0.018)

sd AVEweatherFreez ij 0.083*** 0.046* 0.104*** 0.082*** 0.043 0.103***

(0.011) (0.028) (0.016) (0.011) (0.027) (0.015)

sd Nroute ij -0.070*** -0.064*** -0.065*** -0.063*** -0.056*** -0.065***

(0.016) (0.017) (0.014) (0.018) (0.020) (0.015)

sd avevalue route ij -0.014* -0.014* -0.014 -0.013* -0.013* -0.013

(0.008) (0.007) (0.009) (0.008) (0.007) (0.009)

sd MAXsnowfall r 0.001 0.000 0.000 0.000 -0.000 0.000

(0.009) (0.009) (0.010) (0.009) (0.009) (0.010)

sd MAXprecipitation r 0.008 0.008 0.004 0.009 0.009 0.004

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

sd NFreezingmonths r -0.015** -0.014** -0.015** -0.015** -0.015** -0.015**

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Dhubinroute ir 0.043** 0.036* 0.031* 0.056*** 0.049** 0.034*

(0.019) (0.019) (0.018) (0.021) (0.019) (0.018)

sd NFlight ijr 0.062* 0.067* 0.084**

(0.037) (0.035) (0.036)

sd AVEValue ijr -0.025*** -0.025*** -0.019** -0.027*** -0.027*** -0.019**

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

sd Distance r 0.023* 0.021* 0.016 0.020 0.017 0.012

(0.013) (0.012) (0.013) (0.012) (0.012) (0.013)

slot r -0.029 -0.038 -0.017 -0.032 -0.039 -0.018

(0.030) (0.030) (0.029) (0.029) (0.029) (0.029)

sd flight largeendpt ijr -0.049 -0.048 0.017

(0.062) (0.056) (0.052)

sd flight smallendpt ijr 0.059 0.060 0.073*

(0.044) (0.046) (0.044)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.096 0.103 0.161 0.095 0.103 0.160

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major-regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 14: The Impact of Average Major-Regional Network Weather on Route Integration with
double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Integration Integration Integration Integration Integration Integration

sd AVEweatherSnow ij -0.070*** -0.092*** -0.051** -0.069*** -0.091*** -0.051**

(0.019) (0.022) (0.020) (0.019) (0.021) (0.020)

sd AVEweatherRain ij -0.020 -0.060*** 0.016 -0.019 -0.061*** 0.018

(0.021) (0.019) (0.023) (0.021) (0.020) (0.023)

sd AVEweatherFreez ij -0.067*** 0.036** -0.069*** -0.068*** 0.033** -0.070***

(0.016) (0.017) (0.015) (0.016) (0.016) (0.015)

sd Nroute ij -0.018 -0.038*** -0.017 -0.010 -0.031*** -0.009

(0.012) (0.009) (0.011) (0.013) (0.011) (0.012)

sd avevalue route ij -0.010 -0.014** -0.000 -0.009 -0.013** 0.000

(0.008) (0.006) (0.005) (0.008) (0.006) (0.005)

sd MAXsnowfall r -0.002 -0.002 -0.002 -0.002 -0.003 -0.003

(0.010) (0.009) (0.010) (0.010) (0.009) (0.010)

sd MAXprecipitation r 0.014 0.011 0.011 0.015 0.011 0.011

(0.010) (0.010) (0.010) (0.010) (0.010) (0.011)

sd NFreezingmonths r -0.013 -0.011 -0.012 -0.013 -0.012 -0.012

(0.011) (0.010) (0.011) (0.011) (0.010) (0.011)

Dhubinroute ir 0.095*** 0.081*** 0.089*** 0.109*** 0.094*** 0.101***

(0.026) (0.024) (0.025) (0.027) (0.024) (0.026)

sd NFlight ijr 0.002 0.006 0.004

(0.008) (0.007) (0.007)

sd AVEValue ijr 0.016** 0.015* 0.018** 0.015* 0.014* 0.017**

(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

sd Distance r -0.005 -0.008 -0.007 -0.006 -0.010 -0.009

(0.011) (0.010) (0.011) (0.011) (0.010) (0.010)

slot r -0.083*** -0.080*** -0.079*** -0.084*** -0.080*** -0.080***

(0.027) (0.025) (0.027) (0.026) (0.025) (0.027)

sd flight largeendpt ijr -0.013 -0.012 -0.011

(0.013) (0.009) (0.010)

sd flight smallendpt ijr -0.001 0.005 0.001

(0.008) (0.006) (0.006)

Observations 6,398 6,398 6,398 6,398 6,398 6,398

R-squared 0.053 0.119 0.076 0.054 0.120 0.077

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major-regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 15: The Impact of Average Major-Regional Network Weather on Route Integration2 with
double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Integration2 Integration2 Integration2 Integration2 Integration2 Integration2

sd AVEweatherSnow ij -0.076*** -0.091*** -0.058*** -0.075*** -0.090*** -0.058***

(0.020) (0.022) (0.020) (0.020) (0.022) (0.020)

sd AVEweatherRain ij -0.027 -0.064*** 0.009 -0.026 -0.065*** 0.011

(0.021) (0.020) (0.023) (0.021) (0.020) (0.023)

sd AVEweatherFreez ij -0.070*** 0.031* -0.070*** -0.072*** 0.028* -0.070***

(0.016) (0.017) (0.015) (0.016) (0.016) (0.015)

sd Nroute ij -0.006 -0.028*** -0.006 0.006 -0.018 0.007

(0.012) (0.010) (0.011) (0.012) (0.013) (0.012)

sd avevalue route ij -0.007 -0.012* 0.003 -0.006 -0.011* 0.004

(0.008) (0.006) (0.006) (0.008) (0.007) (0.006)

sd MAXsnowfall r -0.001 -0.001 -0.001 -0.001 -0.001 -0.002

(0.010) (0.010) (0.011) (0.010) (0.010) (0.010)

sd MAXprecipitation r 0.017 0.013 0.012 0.018 0.014 0.013

(0.011) (0.010) (0.011) (0.011) (0.011) (0.011)

sd NFreezingmonths r -0.013 -0.010 -0.011 -0.014 -0.011 -0.012

(0.012) (0.011) (0.011) (0.012) (0.011) (0.012)

Dhubinroute ir 0.071** 0.058** 0.066** 0.089*** 0.075*** 0.082***

(0.031) (0.029) (0.030) (0.031) (0.028) (0.030)

sd NFlight ijr 0.001 0.005 0.002

(0.009) (0.008) (0.008)

sd AVEValue ijr 0.016* 0.014* 0.018** 0.014* 0.013 0.016*

(0.008) (0.008) (0.008) (0.009) (0.009) (0.008)

sd Distance r -0.004 -0.008 -0.007 -0.006 -0.010 -0.009

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

slot r -0.078*** -0.076*** -0.075*** -0.080*** -0.076*** -0.076***

(0.028) (0.028) (0.029) (0.028) (0.028) (0.029)

sd flight largeendpt ijr -0.019 -0.018* -0.018

(0.015) (0.010) (0.012)

sd flight smallendpt ijr -0.003 0.004 -0.001

(0.008) (0.006) (0.006)

Observations 5,721 5,721 5,721 5,721 5,721 5,721

R-squared 0.052 0.115 0.075 0.053 0.116 0.076

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major-regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A1: Probit: The Impact of Average Major-Regional Network Weather on Route Survival with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects

sd AVEweatherSnow ij 0.124*** 0.174*** 0.0543*** 0.119*** 0.168*** 0.0526***

(0.00868) (0.0155) (0.00922) (0.00861) (0.0153) (0.00904)

sd AVEweatherRain ij 0.179*** 0.165*** 0.0963*** 0.172*** 0.166*** 0.0888***

(0.00869) (0.0135) (0.0123) (0.00862) (0.0133) (0.0120)

sd AVEweatherFreez ij -0.150*** -0.0619*** -0.194*** -0.143*** -0.0561*** -0.187***

(0.00837) (0.0181) (0.0107) (0.00830) (0.0176) (0.0104)

sd Nroute ij 0.183*** 0.173*** 0.173*** 0.137*** 0.124*** 0.125***

(0.00811) (0.00841) (0.00956) (0.00935) (0.00977) (0.0107)

sd avevalue route ij 0.0402*** 0.0448*** 0.0421*** 0.0373*** 0.0421*** 0.0399***

(0.0104) (0.0130) (0.00970) (0.00992) (0.0127) (0.00930)

Dhubinroute ir 0.0591*** 0.0787*** 0.0776*** 0.0202 0.0366** 0.0448***

(0.0165) (0.0168) (0.0166) (0.0169) (0.0173) (0.0168)

sd NFlight ijr 0.101*** 0.0963*** 0.116***

(0.0172) (0.0167) (0.0268)

sd AVEValue ijr -0.0168** -0.0224*** -0.0311*** -0.0130* -0.0197** -0.0280***

(0.00788) (0.00860) (0.00799) (0.00771) (0.00847) (0.00771)

sd Distance r -0.0278*** -0.0200*** -0.0158** -0.0302*** -0.0215*** -0.0173**

(0.00731) (0.00757) (0.00780) (0.00734) (0.00758) (0.00774)

slot r 0.0776*** 0.0776*** 0.0544*** 0.0766*** 0.0719*** 0.0503***

(0.0169) (0.0177) (0.0171) (0.0169) (0.0176) (0.0170)

sd flight largeendpt ijr 0.0857*** 0.0864*** 0.0665***

(0.0137) (0.0131) (0.0120)

sd flight smallendpt ijr 0.126*** 0.122*** 0.161***

(0.0213) (0.0211) (0.0299)

Observations 6,516 6,516 6,111 6,516 6,516 6,111

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. at

major regional route y y y y y y

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A2: Probit: The Impact of Average Major-Regional Network Weather on Route Survival including Route-level Weather
Variables with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects Marginal e↵ects

sd AVEweatherSnow ij 0.130*** 0.179*** 0.0597*** 0.125*** 0.174*** 0.0578***

(0.00902) (0.0156) (0.00951) (0.00895) (0.0154) (0.00933)

sd AVEweatherRain ij 0.173*** 0.160*** 0.0862*** 0.167*** 0.161*** 0.0794***

(0.00907) (0.0137) (0.0127) (0.00895) (0.0135) (0.0124)

sd AVEweatherFreez ij -0.154*** -0.0651*** -0.199*** -0.148*** -0.0604*** -0.192***

(0.00889) (0.0184) (0.0112) (0.00881) (0.0178) (0.0109)

sd Nroute ij 0.184*** 0.174*** 0.174*** 0.138*** 0.124*** 0.125***

(0.00811) (0.00841) (0.00957) (0.00937) (0.00979) (0.0108)

sd avevalue route ij 0.0399*** 0.0446*** 0.0418*** 0.0370*** 0.0417*** 0.0396***

(0.0104) (0.0131) (0.00968) (0.00993) (0.0128) (0.00930)

sd MAXsnowfall r -0.0169** -0.0173** -0.0149** -0.0171** -0.0176** -0.0147**

(0.00728) (0.00731) (0.00721) (0.00725) (0.00729) (0.00717)

sd MAXprecipitation r 0.0161** 0.0181** 0.0220*** 0.0148** 0.0170** 0.0206***

(0.00775) (0.00789) (0.00794) (0.00754) (0.00769) (0.00766)

sd NFreezingmonths r 0.00871 0.00943 0.00873 0.0116 0.0127 0.0110

(0.00798) (0.00796) (0.00770) (0.00781) (0.00782) (0.00751)

Dhubinroute ir 0.0614*** 0.0813*** 0.0803*** 0.0219 0.0386** 0.0473***

(0.0166) (0.0169) (0.0167) (0.0170) (0.0174) (0.0170)

sd NFlight ijr 0.101*** 0.0964*** 0.116***

(0.0171) (0.0166) (0.0266)

sd AVEValue ijr -0.0159** -0.0216** -0.0303*** -0.0120 -0.0188** -0.0271***

(0.00786) (0.00860) (0.00797) (0.00770) (0.00846) (0.00769)

sd Distance r -0.0314*** -0.0237*** -0.0188** -0.0336*** -0.0250*** -0.0200**

(0.00741) (0.00766) (0.00785) (0.00745) (0.00768) (0.00779)

slot r 0.0659*** 0.0637*** 0.0418** 0.0639*** 0.0567*** 0.0370**

(0.0172) (0.0181) (0.0175) (0.0173) (0.0180) (0.0174)

sd flight largeendpt ijr 0.0866*** 0.0873*** 0.0664***

(0.0138) (0.0133) (0.0121)

sd flight smallendpt ijr 0.126*** 0.123*** 0.162***

(0.0213) (0.0212) (0.0298)

Observations 6,516 6,516 6,111 6,516 6,516 6,111

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major regional route y y y y y y

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A3: The Impact of Average Major-Regional Network Weather on Route Termination with
Route fixed e↵ects & double clustering s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Termi 808 Termi 808 Termi 808 Termi 808 Termi 808 Termi 808

sd AVEweatherSnow ij -0.110*** -0.133*** -0.042*** -0.110*** -0.132*** -0.044***

(0.010) (0.014) (0.011) (0.010) (0.014) (0.011)

sd AVEweatherRain ij -0.094*** -0.074*** -0.043*** -0.096*** -0.077*** -0.046***

(0.010) (0.012) (0.016) (0.010) (0.012) (0.016)

sd AVEweatherFreez ij 0.095*** 0.062*** 0.098*** 0.093*** 0.059*** 0.097***

(0.009) (0.014) (0.011) (0.009) (0.014) (0.011)

sd Nroute ij -0.063*** -0.060*** -0.066*** -0.047*** -0.042*** -0.058***

(0.008) (0.008) (0.009) (0.009) (0.009) (0.010)

sd avevalue route ij -0.016* -0.013* -0.013 -0.014 -0.012 -0.012

(0.009) (0.007) (0.010) (0.009) (0.008) (0.010)

Dhubinroute ir 0.030 -0.004 0.007 0.053* 0.021 0.019

(0.030) (0.030) (0.029) (0.031) (0.031) (0.030)

sd NFlight ijr 0.081*** 0.089*** 0.112***

(0.026) (0.026) (0.025)

sd AVEValue ijr -0.033*** -0.034*** -0.028*** -0.035*** -0.036*** -0.029***

(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

sd flight largeendpt ijr -0.115*** -0.113*** -0.025

(0.039) (0.039) (0.039)

sd flight smallendpt ijr 0.106*** 0.108*** 0.126***

(0.041) (0.042) (0.042)

Observations 6,178 6,178 6,178 6,178 6,178 6,178

R-squared 0.277 0.283 0.339 0.277 0.283 0.338

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Route FE y y y y y y

Clustered s.e. major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A4: The Impact of Average Major-Regional Network Weather on Route Termination with
double fixed e↵ects & double clustering s.e.

(1) (2) (3) (4)

VARIABLES Termi 808 Termi 808 Termi 808 Termi 808

sd AVEweatherSnow ij -0.139*** -0.064*** -0.138*** -0.065***

(0.015) (0.017) (0.015) (0.017)

sd AVEweatherRain ij -0.078*** -0.119*** -0.081*** -0.122***

(0.012) (0.027) (0.012) (0.028)

sd AVEweatherFreez ij 0.061*** 0.098*** 0.057*** 0.094***

(0.014) (0.019) (0.014) (0.019)

sd Nroute ij -0.057*** -0.072*** -0.034*** -0.073***

(0.008) (0.017) (0.010) (0.023)

sd avevalue route ij -0.016** -0.016 -0.014* -0.016

(0.008) (0.011) (0.008) (0.010)

Dhubinroute ir 0.042 0.053

(0.036) (0.039)

sd NFlight ijr 0.079*** 0.145***

(0.027) (0.044)

sd AVEValue ijr -0.039*** -0.027* -0.041*** -0.026

(0.010) (0.016) (0.010) (0.016)

sd flight largeendpt ijr -0.143*** 0.001

(0.041) (0.103)

sd flight smallendpt ijr 0.103** 0.246***

(0.043) (0.073)

Observations 6,013 1,499 6,013 1,499

R-squared 0.329 0.653 0.330 0.652

Major-Route FE y n y n

Regional-Route FE n y n y

Major FE n n n n

Regional FE n n n n

Clustered s.e. major regional route y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A5: The Impact of Average Major-Regional Network Weather on “change-in-flights network-
route” with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES �Nflights �Nflights �Nflights �Nflights �Nflights �Nflights

sd AVEweatherSnow ij 5.737 9.351** 3.447 5.311 8.566** 3.483

(4.584) (4.580) (3.634) (4.508) (4.307) (3.617)

sd AVEweatherRain ij -0.810 -3.850 0.070 -1.242 -3.086 -0.714

(3.138) (3.738) (2.109) (2.982) (3.552) (1.978)

sd AVEweatherFreez ij -2.784* -3.314 0.035 -1.773 -1.627 0.276

(1.644) (3.852) (2.185) (1.570) (3.644) (2.038)

sd Nroute ij 10.620*** 12.025*** 13.973*** 6.480** 7.814*** 9.423***

(2.495) (2.025) (2.176) (2.911) (2.632) (2.766)

sd avevalue route ij 1.603*** 1.531*** 0.631* 1.031** 1.019** 0.291

(0.458) (0.479) (0.333) (0.422) (0.457) (0.327)

Dhubinroute ir 8.935** 9.885** 11.075** 1.588 2.698 4.362

(4.302) (4.516) (4.605) (3.733) (3.755) (3.974)

sd NFlight ijr -11.672** -12.493** -13.355**

(5.844) (5.696) (5.814)

sd AVEValue ijr -2.173*** -1.657** -1.657*** -1.104 -0.861 -0.796

(0.749) (0.673) (0.611) (0.766) (0.693) (0.640)

sd Distance r -7.245*** -7.833*** -8.180*** -5.526*** -5.885*** -6.099***

(1.890) (1.761) (1.893) (1.964) (1.752) (1.903)

slot r 13.865 15.644 13.882 15.404 16.169 14.838

(10.200) (10.414) (10.198) (10.110) (10.270) (10.043)

sd flight largeendpt ijr 5.898 5.474 4.565

(4.646) (4.287) (4.208)

sd flight smallendpt ijr -6.195** -6.782** -7.480***

(2.580) (2.684) (2.829)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.030 0.035 0.054 0.023 0.026 0.044

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A6: The Impact of Average Major-Regional Network Weather on “change-in-flights network-
route” including Route-level Weather Variables with double-clustered s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES �Nflights �Nflights �Nflights �Nflights �Nflights �Nflights

sd AVEweatherSnow ij 5.331 8.913* 3.080 4.820 8.048* 3.030

(4.619) (4.587) (3.714) (4.615) (4.343) (3.707)

sd AVEweatherRain ij -0.713 -3.661 0.115 -1.003 -2.800 -0.566

(3.188) (3.783) (2.174) (3.077) (3.621) (2.075)

sd AVEweatherFreez ij -3.387* -3.857 -0.572 -2.441 -2.227 -0.388

(1.916) (4.017) (2.281) (1.889) (3.809) (2.157)

sd Nroute ij 10.606*** 12.003*** 13.930*** 6.361** 7.683*** 9.268***

(2.511) (2.039) (2.166) (2.951) (2.684) (2.793)

sd avevalue route ij 1.615*** 1.544*** 0.662* 1.043** 1.031** 0.327

(0.464) (0.486) (0.345) (0.426) (0.458) (0.334)

sd MAXsnowfall r 1.399 1.413 1.264 1.667 1.665 1.541

(1.862) (1.837) (1.902) (1.709) (1.681) (1.751)

sd MAXprecipitation r -0.181 -0.442 -0.160 -0.578 -0.708 -0.428

(1.309) (1.332) (1.330) (1.323) (1.348) (1.344)

sd NFreezingmonths r 1.868 1.756 1.768 2.108 2.024 1.967

(1.563) (1.530) (1.556) (1.742) (1.690) (1.684)

Dhubinroute ir 8.565** 9.519** 10.728** 1.023 2.130 3.822

(4.202) (4.415) (4.507) (3.680) (3.661) (3.874)

sd NFlight ijr -11.662** -12.474** -13.340**

(5.835) (5.695) (5.814)

sd AVEValue ijr -2.151*** -1.647** -1.646*** -1.082 -0.848 -0.782

(0.736) (0.672) (0.610) (0.746) (0.681) (0.632)

sd Distance r -7.086*** -7.636*** -8.017*** -5.279*** -5.621*** -5.869***

(1.876) (1.760) (1.880) (1.947) (1.743) (1.883)

slot r 13.714 15.569 13.699 15.348 16.145 14.742

(10.397) (10.627) (10.424) (10.290) (10.461) (10.243)

sd flight largeendpt ijr 6.098 5.681 4.766

(4.773) (4.418) (4.326)

sd flight smallendpt ijr -6.223** -6.807** -7.501***

(2.570) (2.675) (2.822)

Observations 6,516 6,516 6,516 6,516 6,516 6,516

R-squared 0.030 0.035 0.054 0.023 0.027 0.044

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table A7: Placebo Test 2003-2006 - The Impact of Average Major-Regional Network Weather on
Route Termination with double clustering s.e.

(1) (2) (3) (4) (5) (6)

VARIABLES Termi plcb Termi plcb Termi plcb Termi plcb Termi plcb Termi plcb

sd AVEweatherSnow ij 0.022 0.021 0.016 0.021 0.021 0.016

(0.044) (0.033) (0.019) (0.044) (0.033) (0.019)

sd AVEweatherRain ij 0.024 0.075** -0.069*** 0.023 0.074** -0.067***

(0.045) (0.034) (0.023) (0.043) (0.033) (0.024)

sd AVEweatherFreez ij 0.066 0.054 -0.003 0.064 0.053 -0.004

(0.051) (0.049) (0.012) (0.050) (0.049) (0.012)

sd Nroute ij -0.088* -0.046 -0.095*** -0.094** -0.050 -0.088***

(0.047) (0.043) (0.025) (0.046) (0.043) (0.025)

sd avevalue route ij 0.001 0.002 0.020*** 0.002 0.003 0.021***

(0.005) (0.006) (0.006) (0.005) (0.006) (0.006)

Dhubinroute ir -0.068** -0.099*** -0.070** -0.082** -0.108*** -0.065**

(0.031) (0.029) (0.028) (0.037) (0.034) (0.026)

sd NFlight ijr 0.051*** 0.048*** 0.047***

(0.013) (0.016) (0.015)

sd AVEValue ijr -0.006 0.014 -0.016 -0.007 0.012 -0.017*

(0.015) (0.011) (0.010) (0.015) (0.011) (0.010)

sd Distance r -0.020 -0.019 0.022** -0.026 -0.025 0.014

(0.019) (0.017) (0.010) (0.018) (0.016) (0.009)

slot r -0.052 -0.036 -0.047 -0.046 -0.032 -0.045

(0.063) (0.044) (0.039) (0.059) (0.042) (0.037)

sd flight largeendpt ijr 0.031 0.024 0.003

(0.037) (0.026) (0.017)

sd flight smallendpt ijr 0.012 0.012 0.021

(0.020) (0.016) (0.014)

Observations 3,247 3,247 3,247 3,247 3,247 3,247

R-squared 0.061 0.108 0.307 0.055 0.102 0.300

Major-AL FE n y n n y n

Regional-AL FE n n y n n y

Clustered s.e. major regional route y y y y y y

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1


