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Abstract

We characterize the optimal bidding strategies of local and global bidders for two
heterogeneous licenses in a multi-unit simultaneous ascending auction (SAA) like
the one used in the 2008 Canadian Advanced Wireless Spectrum license auction. The
global bidder wants to win both licenses to enjoy synergies; therefore, she bids more
than her stand-alone valuation of a license. This exposes her to the risk of losing money
even when she wins all licenses. We determine the optimal bidding strategies in the
presence of an exposure problem. By using simulation methods, first, we show that
the probability of ine�cient allocations in the simultaneous ascending auction can be
up to 9 per cent. Second, we show that the global bidder can end up with a loss with
6 per cent probability depending on the distribution. We also investigate the relation
between ine�cient allocation and the revenue of SAA and VCG auctions.
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1 Introduction

In the recent Canadian Advanced Wireless Spectrum (AWS) license auction, hundreds of

(heterogenous) licenses were sold to firms simultaneously. Each of these licences gave the

spectrum usage right of a geographical area to the winning firm. Rogers spent almost $

CAD 1 billion to buy spectrum rights in each province and territory. However, Manitoba

Telecom Services only bought licenses for Manitoba, and SaskTel only bought licenses for

Saskatchewan.1 Firms such as Manitoba Telecom Services, and SaskTel are called ‘local’ firms

since they are interested in winning only specific licenses in order to serve local markets while

firms such as Rogers are called ‘global’ firms since they are interested in winning licenses

across the nation.2 The global firms enjoy synergies if they win all the licenses; this gives

them an incentive to bid more than their stand-alone valuations for some licenses. As a

result, this bidding has the risk of incurring losses. Therefore, global bidders may lower their

bids. This is known as the exposure problem.

In a model simplifying the recent Canadian Advanced Wireless Spectrum license auc-

tions,3 we derive the optimal bidding strategies of local and global firms in a simultaneous

ascending auction (SAA) of two “heterogeneous” licenses when there is the possibility of

ex-post loss. Although one of the main concerns of the policy makers is the e�ciency of

the spectrum auction (Cramton and Schwartz, 2000), we are not aware of any paper in the

literature that calculates the probability of the auction resulting in an ine�cient outcome.

We show that this probability is up to 9 per cent for some distributions in our main model.

In order to study the e↵ect of the ine�cient outcomes on revenue, we divide the ine�cient

allocations into two groups. In the first group, the global bidder wins one license or all licenses

with an (ex-post) loss. We show that the SAA auction has a higher revenue than the e�cient

VCG auction for these kind of ine�cient outcomes (ex-post); the seller has a higher revenue

1Information on Canadian AWS auction is mainly taken from Industry Canada Website.
2Firms must deposit money before the auction. The amount of money shows their intention whether

they will bid for all licenses or only select ones. Also, given the firms previous serving areas, one can expect
whether a firm is local or global.

3Some recent US license auctions also follow a similar format.
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at the expense of the global bidder. Our simulations showed that the global bidder might

end up with a loss 6 per cent of the time for some distribution functions. In the second

group, the global bidder does not bid high enough from the e�ciency point of view, and

loses all licenses or wins one license with a profit (where as the e�cient outcome requires

the global bidder to win both). Since the VCG auction corrects this ine�ciency problem, it

results in a higher revenue than the SAA auction (ex-post). We believe that this is a support

for the existence of exposure problem since the global bidder does not bid high enough.

The current literature on multi-unit auctions generally assumes that global bidders have

either equal valuations (Englmaier et. al (2009), Kagel and Levin (2005), Katok and Roth

(2004), Albano et. al. (2001), Rosenthal and Wang (1996), and Krishna and Rosenthal

(1996)), very large synergies (Albano et al. (2006)), or that the marginal value of an addi-

tional license depends only on the number of licenses already held (Goerre and Lien (2014)).

The spectrum licenses for di↵erent geographic areas are not homogenous objects; hence, the

equal valuation assumption or equal marginal valuation of licenses assumption does not fit

the Canadian AWS (and US) spectrum license auction. Specifically, we model situations in

which one spectrum license for, say, Toronto is more valuable than the spectrum license for

Manitoba.4 We do this by drawing two valuations from a distribution function and assign

the maximum value for one license (say for Toronto license) and the minimum value for the

other license. This modelling assumption ensures that the auction for the weak location

concludes before the strong location. This simplifies finding the equilibrium. Since there

may be other auctions that this assumption might not hold, we also study a revised model

where the valuations of the local bidders are independently drawn. In the revised model,

there is a positive probability that auctions in any location might end first. Our main con-

tribution to the literature is the result of our simulations, and characterizing the equilibrium

for heterogenous licenses when synergies are moderate. By using the equilibrium and sim-

ulations, we calculate the probability of ine�cient allocations, expected average revenue for

SAA and VCG auctions, and expected welfare loss from the SAA auction by using ex-post

4The winning bids on the Industry Canada website show that Toronto licenses are more valuable than
the Manitoba licenses.
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valuations, and show the link between ine�cient allocations and revenue.

2 The Model

Suppose there are 2 licenses for sale: license A and B.5 There is one global bidder who

demands both licenses and m local bidders who demand only license A, and another di↵erent

m local bidders who demand only license B. To determine the valuations of global bidder,

we draw two private valuations, X
0

and Y
0

from the commonly known distribution function

F (.). The global bidder’s stand alone valuation for license A is v
0A = Max{X

0

, Y
0

}, and his

stand alone valuation for license B is v
0B = Min{X

0

, Y
0

}. We want to model heterogeneous

licenses, so with this modeling we make sure that license A is more valuable (since it is a

license for a big city like Toronto) than license B (since it is a license for a medium size

city like Winnipeg) for the global bidder. The global bidder’s total valuation, given that

it wins two licenses is, V
0

= v
0A + v

0B + ✓, where the synergy term ✓ > 0 is assumed to

be private knowledge, and it has a continuous density function on [0, a) where a 2 (0,1].6

To determine the valuations for local bidders, we draw two private valuations Xi and Yi for

i = 1, 2, ...,m, from the same distribution function F (.). The valuation of local bidder iA

for license A is viA = Max{Xi, Yi}, and the valuation of local bidder iB for license B is

viB = Min{Xi, Yi}. The distribution function F (.) has a support on [0, 1] and probability

density function f(.) which is positive everywhere with the only exception that f(0) � 0 is

allowed. The bidders’ type, global or local, is publicly known. The valuations of global and

local bidders are private information. These valuations result inMax{viA : i = 1, 2, ...,m} �

Max{viB : i = 1, 2, ...,m}.7 Later, we add a model where the local bidders’ valuations are

drawn independently, and hence, the license B might be more valuable than license A.

5We use two licenses like Albano et. al. (2001 and 2006), Brusco and Lopomo (2002), and Menucicci
(2003).

6It will be clear later that the distribution of ✓ does not matter as long as we have one global bidder.
7With this formulation, it is possible that a few local bidders B may have a high valuation than some

other local bidder A due to them being very cost e↵ective. Also, note that we may assume di↵erent number
of local bidders on each license and qualitative results will not change, as long as the number of local bidders
A is higher than the local bidders B. This will guarantee that max value for license A is greater than max
value for license B. We relax this assumption later.
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We consider a setting where the licenses are auctioned o↵ simultaneously through an

ascending multi-unit auction. Each license is auctioned o↵ at a di↵erent auction (like Krishna

and Rosenthal (1996) but unlike Kagel and Levin (2005)) at the same time. Prices start

from zero for both licenses and increase simultaneously and continuously at the same rate.

Bidders choose when to drop out. When only one bidder is left on a given license, the clock

stops for that license, and the sole remaining bidder wins the license at the price at which

the last bidder drops out. If there is more than one bidder remaining on the other license,

its price will continue to increase. If m bidders drop out at the same price and nobody is

left in the auction, then each one of them will win the license with probability 1

m
. This is a

zero measure event given the valuations are drawn from a continuous distribution function.

The drop-out decision is irreversible. Once a bidder drops out of bidding for a given

license, he cannot bid for this license at a later time.8 The number of active bidders and the

drop-out prices are publicly known. We also assume that there is no budget constraints for

the bidders.

Local bidders have a weakly dominant strategy to stay in the auction until the price

reaches their valuation. We assume all bidders will use their weakly dominant strategy in

equilibrium. We derive a symmetric Bayesian-Nash equilibrium in what follows.

To understand the global bidder’s strategy, consider a subgame in which every local

bidder drops out of license B auction, and hence, the global bidder wins license B at the

price pB = max{v
1B, ..., vmB} since local bidders use their weakly dominant strategy and bid

up to their valuation. The global bidder knows that, at a given clock price pc < 1, it will win

license A at the price pA = max{v
1A, ..., vmA}. The distribution of each viA is [F (viA|pc)]2

given the clock price pc.9 Then the conditional distribution of pA is the highest order statistic

which we will denote as G where G(pA|pc,mA) = [F (pA|pc,mA)]2mA = (
R pA
pc

fA(v)dv
R 1
pc

fA(v)dv
)2mA , where

8In the real-world auctions, there is an activity rule: if the bidders do not have enough highest standing
bids, then the number of licenses they may bid on is decreased (in the next rounds). Hence, when there are
two licenses, this translates into an irreversible drop-out.

9If the local bidder’s valuations were independent, the conditional distribution of viA given the clock
price pc would be F (viA|pc). Since the valuations comes from a max distribution, each viA is distributed as
[F (viA|pc)]2.
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mA is the number of active local A bidders. Then to determine its optimal drop out price

p⇤A for license A, the global bidder will maximize its continuation payo↵.10 The payo↵ is

max
p⇤A

v
0B � pB +

Z p⇤A

pc

(v
0A + ✓ � pA)dG(pA|pc,mA)

The first order condition is

(v
0A + ✓ � p⇤A)dG(pA|pc,mA) = 0 ) p⇤A = v

0A + ✓

It is easy to check the second order condition which shows that this is a unique maxi-

mizer.11 The result is intuitive, the global bidder bids until the price reaches its marginal

value of license A. The number of active local bidders does not a↵ect the decision of the

global bidder. We would also like to note that the optimal drop out price can be found by

comparing payo↵s from two cases. CASE 1 is the payo↵ from dropping out of license A

auction at the clock price pc (without winning license A), and this payo↵ is v
0B � pB. CASE

2 is the payo↵ from continuing on license A auction and winning at price pc (with probability

1). This payo↵ is v
0A + v

0B + ✓ � pB � pc which is monotonically decreasing in the price pc.

Clearly as long as the payo↵ from CASE 2 is higher than the payo↵ from CASE 1, the global

bidder will continue to stay in license A auction. The updated optimal drop-out price, p⇤A,

is found by equating these two equations:

v
0A + v

0B + ✓ � pB � p⇤A = v
0B � pB ) p⇤A = v

0A + ✓ (1)

Similarly, if the global bidder wins license A, then it stays in license B auction until the

price reaches v
0B + ✓, but this cannot happen in equilibrium since pA > pB and local bidders

use weakly dominant strategy.12

10With a slight abuse of notation, we treat p⇤A as a variable and the point of optimal drop out price.
11The second order condition is [(v0A+✓�pA)dG(pA|pc,mA)]�dG(pA|pc,mA) but the first term in closed

brackets is zero at pA = p⇤A from the first order condition, and �dG(pA|pc,mA) < 0 for all pc < 1. The
function is strictly concave at its unique critical point.

12In the revised model, this can be an equilibrium.
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If the global bidder’s average valuation, v0A+v0B+✓
2

, exceeds 1, its equilibrium strategy is

bidding anything from 1 up to his average valuation. As a result, the global bidder outbids

his rivals. If ✓ is large enough, this condition is always satisfied.

To calculate the optimal drop-out price for the global bidder for license B when his

average valuation is less than 1, one should maximize the global bidder’s expected payo↵.

The expected payo↵ for the global bidder, in which p denotes the drop out price for license

B, is:

max
p

"Z p

pc

h Z min{v0A+✓,1}

pB

(v
0A + ✓ � pA + v

0B � pB)dG(pA|pB,mA) (2)

+

Z
1

min{v0A+✓,1}
(v

0B � pB)dG(pA|pB,mA)
i
dH(pB) (3)

+

Z
max{p, v0A}

p

⇥ Z v0A

pB

(v
0A � pA)dG(pA|pB,mA)

⇤
dH(pB)

#
(4)

In this equation H(pB) = [1 � (1 � F (.)2]mB since each valuation of local bidder B has

a cdf of [1 � (1 � F (.)2)], and the maximum of these when there are mB local bidders B

is H(pB).13 Readers will see that, in the proofs, H(pB) has no direct role in calculating

the optimal drop out price but it has a role in calculating the second order condition. We

explain this in footnote 16.

The explanation for the expected payo↵ equation, given the sequential rationality of the

global bidder, is as follows. The first line calculates the expected payo↵ for the global bidder

from winning both license B and (then) license A. The outer integral has an upper limit

p since pB must be distributed between pc and p for the global bidder to win license B.

After winning license B, global bidder will stay in license A auction until v
0A + ✓ by the

sequential rationality (or will win license A as long as it stays until the price reaches 1.).

The second line shows the expected payo↵ from winning license B but losing A. In order

to lose license A after winning license B, the condition pA > v
0A + ✓ must hold given the

13Recall that each local bidder B’s valuation is a minimum random variable; hence, the cdf of minimum
of two independently drawn random variables from F is [1� (1� F (.)2)].
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sequential rationality of the global bidder. The third line shows the expected payo↵ from

winning license A only. For this to happen, pB > p must hold (to lose license B) and then

since p < pB < pA, we have the lower limit of the integral as pB. The upper limit of the

integral shows the sequential rationality of the global bidder. The global bidder who loses

license B becomes just like a local bidder and will bid until v
0A.

When v
0A + ✓ < 1, the first derivative of this maximization problem is:

FOC =
⇥ Z v0A+✓

p

(v
0A + v

0B + ✓ � p� pA)g(pA|p,mA)dpA +

Z
1

v0A+✓

(v
0B � p)g(pA|p,mA)dpA (5)

�
[p<v0A]

Z v0A

p

(v
0A � pA)g(pA|p,mA)dpA

⇤
h(p) (6)

We can write this as FOC = J(p,mA)h(p), where J(.) is the term in the closed brackets.

First, note that the FOC is continuous at p = v
0A.14 Second, any p⇤

0

that solves J(p,mA) = 0

also solves FOC = 0. In the proofs, we will show that, this p⇤
0

is indeed the unique solution

to the FOC problem. Third, note that when FOC(p⇤
0

) = 0, h(p) is cancelled out from FOC.

Let us discuss the first order condition of this maximization problem after cancelling h(p).

The global bidder must compare the payo↵s for two cases at each potential drop out price

p as the clock is running: Case 1 is the payo↵ from dropping out from license B auction

at price p (without winning) and optimally continuing to bid on the license A auction (or

optimally drop out from license A auction at the same p, if p > v
0A). The payo↵ is:

E⇧1

0

(p,mA) = [p<v0A]

Z v0A

p

(v
0A � pA)g(pA|p,mA)dpA (7)

This is equation 6 above when v
0A + ✓ < 1 after cancelling h(p). Case 2 is the payo↵ from

winning license B at price p (with probability 1 so this is the highest price the global bidder

would pay) and optimally continuing on the license A auction.

E⇧2

0

(p,mA) =

Z Min{v0A+✓,1}

p

(v
0A + v

0B + ✓ � p� pA)g(pA|p,mA)dpA

+

Z
1

Min{v0A+✓,1}
(v

0B � p)g(pA|p,mA)dpA (8)

14As p approaches v0A from the right, the value of Equation 6 is always zero. As it approaches from the
left, the value of Equation 6 approaches to zero.
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This is equation 5 above (when v
0A + ✓ < 1) after cancelling h(p). Hence, as long as the

payo↵ of Case 2 is higher, the global bidder will stay in license B auction. In the proofs,

we show that J(p,mA) is decreasing in p. Then, we will show that J(p = v
0B,mA) > 0

and J(p = v
0A + ✓,mA) < 0. Hence, if J(v

0A,mA) < 0, there is a unique root (solution)

p⇤
0

2 (v
0B, v0A). If not, we will have a unique root (solution) p⇤

0

2 [v
0A,min{v

0A + ✓, 1}).

We show that this is the optimal drop-out price, p⇤
0

, which is the solution to the first order

condition of the global bidder’s expected payo↵ maximization problem.15

In Proposition 1 below, we characterize the global bidder’s equilibrium bids. Note that

these payo↵s are changing as local bidders bidding for A are dropping out; that is, mA is

changing. Therefore, the lemma below gives the global bidder’s (updated) equilibrium drop-

out price as the local bidders drop out. In the proof of Proposition 1, we show that this

updated price increases as local bidders drop out of license A auction.16

Proposition 1 Suppose that the average valuation of the global bidder is less than 1 and

there are mA local bidders bidding on license A where mA � 1 and there is at least one active

local bidder B.

The global bidder will maximize its payo↵ by dropping out of the license B auction at the

unique optimal drop-out price p⇤
0

(mA) that satisfies J(p,mA) = 0. Moreover,

a) If v
0A + ✓ < 1, and J(v

0A,mA) =
R v0A+✓

v0A
G(pA|v0A,mA)dpA + (v

0B � v
0A) < 0, then

p⇤
0

(mA) < v
0A and the global bidder will stay in the license A auction until v

0A (after dropping

out from the license B auction).

b) If v
0A + ✓ < 1, and J(v

0A,mA) =
R v0A+✓

v0A
G(pA|v0A,mA)dpA + (v

0B � v
0A) � 0, then

p⇤
0

(mA) � v
0A and the global bidder will also drop out of the license A auction at p⇤

0

(mA).

c) If v
0A + ✓ � 1, and J(v

0A,mA) =
R

1

v0A
G(pA|v0A,mA)dpA + (v

0B + ✓ � 1) < 0, then

p⇤
0

(mA) < v
0A and the global bidder will stay in the license A auction until v

0A (after dropping

15The comparing payo↵s method is used by Albano et. al. (2001) for identical licenses.
16Note that when v0B < v0A, local bidders B dropping out of auction do not a↵ect the global bidder’s

drop out price. This seemingly surprising result arises because the global bidder’s equilibrium incentives are
conditioned on obtaining license B at current price p so that the remaining number of local bidders B is
irrelevant. The number of local bidders A is important since it a↵ects the price at which the global bidder
can obtain that license. We are grateful to a referee for making this point.
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out from the license B auction).17

d) If v
0A + ✓ � 1, and J(v

0A,mA) =
R

1

v0A
G(pA|v0A,mA)dpA + (v

0B + ✓ � 1) � 0, then

p⇤
0

(mA) � v
0A and the global bidder will also drop out of the license A auction at p⇤

0

(mA).

e) As mA decreases, p⇤
0

increases.

Proof. See Appendix.

The inequality conditions on
R

1

v0A
G(pA|v0A,mA)dpA + (v

0B + ✓ � 1) in part c and d just

make the first order condition at p = v
0A less than or greater than zero for the v

0A + ✓ > 1

case. We also note that J(p,mA) = 0 is equivalent to E⇧1

0

(p,mA) = E⇧2

0

(p,mA) for all cases

from part a to d.

We are ready to summarize our Bayesian-Nash equilibrium.

Proposition 2 (Bayesian-Nash Equilibrium)

a) A local bidder of each license will stay in the auction j until the price reaches her

valuation vij where j = {A,B}, i = {1, 2, 3, ..m}.

b) A global bidder active only on license j will bid v
0j + ✓, if he won the other license.

He will bid v
0j if he dropped out of the other license.

c) When the average valuation is less than one, the global bidder who is active on both

licenses and facing mA active local bidders on license A will behave as described in proposition

1.

d) If the average valuation is greater than one, the global bidder will stay in both auctions

until price reaches his average valuation.

3 Simulations; Ine�cient Allocations And The Rev-
enue Comparison of SAA and VCG Auctions

Policy makers want an e�cient auction outcome (see Cramton and Schwartz, 2000). If the

outcome is ine�cient, the winning firms may choose not to use the scarce spectrum after

17While J(p,mA) takes di↵erent forms for di↵erent cases depending on v0A + ✓ < 1 or not, we keep using
the same notation since it is clear which case we are referring to.
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the auction, and hence, the society cannot benefit from the auction fully.18 Despite this

clear policy objective, the probability of ine�cient SAA outcome has not been calculated

in the literature, to our best knowledge. We believe that the reason was that an analytic

calculation is not possible, and one has to use simulations for this.19

Our simulation code is written in MATLAB. It starts with drawing two independent

valuations for the global firm from the same distribution function.20 The global bidder’s

valuations for license A and B become the maximum and the minimum of these two valu-

ations, respectively. Then, we draw two independent valuations from the same distribution

function. We use one local bidder for each license. The local bidder A’s and B’s valuations

take the maximum and the minimum of these valuations, respectively. One set of valuations

corresponds to one auction. Knowing these valuations, by using our theoretical model, we

calculate the optimal drop-out price(s) for the global bidder for all possible di↵erent cases.

We count how many times, ex-post, the outcome will be ine�cient, and what the revenue

would be for four di↵erent synergy values of 0.2, 0.4, 0.6, 0.8. Since our results converge

when we run for 10000 auctions, we divide the number of ine�cient outcomes with 10000,

and derive the probability of an ine�cient outcome.

3.1 Ine�cient Outcome

In order to classify an outcome as e�cient or ine�cient, we use the following lemma and

discussions which are summarized in Table 1.

Lemma 3 If the global bidder has an (ex-post) loss, then p⇤
0

> pB > v
0B must hold and the

outcome is always ine�cient.

This lemma shows that a necessary condition for the global bidder to make a loss is that

it must win license B with an (initial) loss. This initial loss may turn into a profit if the

18One can give an example of ine�cient allocation of AWS auction. Quebecor won 10 Mhz of spectrum
for Toronto area but had not used it until 2012. According to The Globe and Mail article published on
September 19, 2012, “Mr. Pruneau, chief financial o�cer of Quebecor, confirmed Wednesday that Quebecor
has no plans to build a mobile network in Toronto with that 10 MHz of spectrum.”

19Calculating ex-ante probability might only be possible with numerical methods but this will be more
di�cult than the method of using ex-post valuations that we use in this paper.

20This code is more than 300 pages long as a word document. Codes can be requested from the authors.
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global bidder wins license A but it may also end up in an ex-post loss. The latter will be an

ine�cient outcome. The (ex-post) revenue with SAA auction will be higher for such cases

as we will prove later.

This lemma does not give a su�cient condition. We have cases where the global bidder

makes a profit but the outcome may be e�cient or ine�cient (line 3 and 4 of Table 1). Also,

note that a case where the global bidder wins only license A and makes a loss is not possible

(line 5 of Table 1). The reason is that when global bidder loses license B, it behaves just

like a local bidder and will bid up to v
0A.

We summarize all possible outcomes in Table 1.

License A won by License B won by Global bidder makes Allocation is Revenue SAA
1. Global Bidder Global Bidder Profit E�cient pA + pB
2. Global Bidder Global Bidder Loss Ine�cient pA + pB
3. Global Bidder Local Bidder B Profit E�cient pA + p⇤

0

4. Global Bidder Local Bidder B Profit Ine�cient pA + p⇤
0

5. Global Bidder Local Bidder B Loss (not possible) N/A N/A
6. Local Bidder A Global Bidder Loss Ine�cient v

0A + ✓ + pB
7. Local Bidder A Global Bidder Profit E�cient v

0A + ✓ + pB
8. Local Bidder A Local Bidder B Zero Profit E�cient p⇤

0

+ v
0A

9. Local Bidder A Local Bidder B Zero Profit Ine�cient p⇤
0

+ v
0A

10. Local Bidder A Local Bidder B Zero Profit E�cient 2p⇤
0

11. Local Bidder A Local Bidder B Zero Profit Ine�cient 2p⇤
0

Table 1: All e�cient and ine�cient outcomes.

As written in Table 1, there are cases in which the local bidder may win both licenses

and the outcome may be e�cient or ine�cient. For such ine�cient cases, the global bidder

may drop from both licenses at p⇤
0

(line 10 and 11) or may drop from license B at p⇤
0

and

from license A at v
0A (line 8 and 9). The global bidder does not bid high enough due to the

risk of ex-post loss. As we will show later, VCG mechanism corrects this ine�ciency, and

also increases the revenue (ex-post). These cases are the basis of the exposure problem.

By using Table 1, we can count the number of e�cient and ine�cient outcomes in our

simulations for each of our 10000 auctions. Our simulation results are summarized in Figure

1 and 2. The Ex-post Loss Probability is the summation of cases/auctions that fall under

row 2 and 6 in Table 1. Probability of Ine�ciency is the summation of cases/auctions that

12



Figure 1: Beta Distribution ↵ = 1, � = 3.
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Figure 2: Top: Uniform Distribution. Bottom: Beta Distribution with ↵ = 5, � = 5
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fall under row 2, 4, 6, 9, and 11.

When the synergy level is 0 (no externality) or when it is greater than 2, the outcome is

always e�cient with the SAA auction. However, for in between values, there are ine�cient

allocations according to the figures; hence, there is not a monotonic relation between synergy

levels and the probability of ine�cient allocations. This is what we observe in the uniform

distribution figure.21

Our main result is that the ine�cient outcomes can be as high as 9 per cent. The cases

where the global bidder makes a loss accounts for approximately 6 per cent of the total

outcome in some simulations (see Figure 1). There are cases where local bidders winning

ine�ciently. This implies that the global bidder is not bidding as high as it should from an

e�ciency point of view since it is well aware of the possibility of making a loss.

In Table 2, we report the optimal drop out prices for a sample of global bidder’s valuations.

The table shows that the global bidder exposes herself to more risk by bidding well-over her

stand alone valuation of license B when her synergy level is higher and/or when she expects

local bidder A’s valuation to be lower. However, as the synergy increases by 0.2 unit, the

optimal drop out price increases less than 0.2 unit.

The implication of these on the revenue of the SAA and the VCG auction is an interesting

one. When the local bidders win one or both licenses ine�ciently, the revenue of the VCG

auction is always greater than the revenue of the SAA auction ex-post. When the global

bidder wins licenses ine�ciently (with an ex-post loss), the revenue of SAA auction is always

greater than the revenue of the VCG auction ex-post. This is not surprising since the global

bidder bids over its stand alone valuation, it ends up with an ex-post loss but this increases

the seller’s revenue.

We summarize the discussion above with the following propositions which explain the

impact of ine�cient allocations on revenue.

Proposition 4 If the global bidder wins licenses with an ex-post loss then the revenue of the

21In the other figures, the peak of the graph must be below 0.2. The figures (x-axis) start from 0.2 and
hence show only a decreasing part.
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Table 2: Global bidder’s optimal drop-out price for a sample of valuations under
various distributions and synergy levels

Global Global Uniform Beta Beta

Bidder’s Bidder’s Distr. Distr. Distr.

Valuation Valuation with ↵ = 5 with ↵ = 1
for License A for License B and � = 5 and � = 3

v
0A v

0B p⇤
0

p⇤
0

p⇤
0

Synergy=0.2

0.25 0.2 0.2310 0.2312 0.2610
0.4 0.2 0.2641 0.2904 0.3180
0.6 0.2 0.3127 0.3712 0.3754
0.8 0.2 0.3683 0.3990 0.3982
0.81 0.4 0.5591 0.5979 0.5951

Synergy=0.4

0.25 0.2 0.2909 0.3270 0.3507
0.4 0.2 0.3528 0.4218 0.4298
0.6 0.2 0.4536 0.5412 0.5360
0.8 0.2 0.5551 0.5973 0.5940
0.81 0.4 0.7325 0.7807 0.7724

Synergy=0.6

0.25 0.2 0.3787 0.4539 0.4576
0.4 0.2 0.4667 0.5472 0.5429
0.6 0.2 0.6000 0.6653 0.6571
0.8 0.2 0.7268 0.7765 0.7680
0.81 0.4 0.8733 0.8958 0.8914

Synergy=0.8

0.25 0.2 0.5000 0.5773 0.5714
0.4 0.2 0.6000 0.6653 0.6571
0.6 0.2 0.7333 0.7791 0.7714
0.8 0.2 0.8667 0.8903 0.8857
0.81 0.4 1 1 1
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VCG auction is lower than that of the simultaneous ascending auction (SAA).

Proposition 5 a) If the local bidder wins both licenses and the allocation is ine�cient, then

the revenue of the VCG auction is greater than the revenue of the SAA.

b) If a local bidder wins one license and the global bidder wins the other license without

loss, and the allocation is ine�cient, then the revenue of the VCG auction is greater than

the revenue of the SAA auction.22

Unfortunately, the revenue comparison is unclear when the allocation is e�cient with the

SAA auction. There are cases in which the SAA auction gives higher or lower revenue than

the VCG auction in e�cient allocations.

Finally, we calculate the expected welfare loss that is created by the SAA auction. We

calculated the welfare with the SAA and VCG auction with our code (for 10000 draws).

Then, we find the percentage di↵erence between the two auctions’ welfare. The results are

summarized in Table 3. The expected welfare loss is less than one per cent in all distributions

we have used. While this may seem low, the revenue of the 2008 Canadian AWS auction was

more than 4 billion Canadian dollars. Even a small percentage decrease in revenue (say 0.5

per cent) might have a relatively big magnitude e↵ect (more than 20 million dollars). The

same logic would apply for the welfare.

Table 3: The percentage shortfall in welfare in the SAA relative to the VCG
auction under various distributions

Synergy Uniform Distr. Beta Distr.with ↵ = 5 Beta Distr.with ↵ = 1
and � = 5 and � = 3

0.2 0.1849 % 0.2167 % 0.4643 %
0.4 0.3103 % 0.1489 % 0.5287 %
0.6 0.2255 % 0.0375 % 0.2171 %
0.8 0.1156 % 0.0056 % 0.0771 %

22We skip the proof of part b since it is similar to part a.
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4 Revised Model

In the main model, auction for license B always ends first in equilibrium. We have also studied

a revised model in which either auction might end first with a positive probability.23 In this

model, we assume one local bidder bidding on each license.24 To determine the valuations for

local bidders A and B, we draw two private valuations v
1A and v

1B independently from the

distribution function F (.). As in the main model, the global bidder’s valuations are drawn

in pairs from F . The maximum and the minimum of these draws become the global bidder’s

license A and license B valuations, respectively.25 Everything else in the main model also

applies to the revised model. Since local bidder’s valuations are independently drawn, local

bidder B’s valuation can be the highest among all bidders. This might happen if local bidder

B is extremely cost e�cient in the region it operates (after winning the license).

The main di↵erence between the main model and the revised model is as follows. Since,

the local bidder A has a maximum valuation in the main model, the global bidder is more

likely to lose license A after winning license B. As a result, in the revised model, the global

bidder faces less ex-post loss despite using a higher optimal drop out prices. Hence, the

welfare shortfall in the SAA relative to the VCG auction in the revised model is less than

the welfare loss in the SAA relative to the VCG auction in the main model.

5 Conclusion and Discussion

In this paper, we showed the optimal bidding strategies of global bidders when there are

moderate synergies and the licenses are heterogeneous. We also extensively analyzed the

ine�cient allocation, exposure problem and their e↵ects on revenue.

One natural question to ask is whether there is an optimal mechanism for these types of

auctions. Unfortunately, this is a di�cult and open problem in the economics and computer

23The revised model is a technical extension of the main model; hence, we admit that we cannot provide
much intuition. The revised model can be requested from the authors.

24When we used more than one local bidder, we could not prove that the optimal drop out price of the
global bidder will increase as the local bidders drop out. Hence, we could not extend the proof for more than
one local bidder case.

25This makes the global bidder’s license valuations heterogeneous.
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science literature since the standard optimal mechanism design techniques cannot be applied

when the valuations are multi-dimensional. In our model, the global bidder’s valuation is

three-dimensional; one valuation for license A, one for license B and one for the private

synergy parameter. Ulku (2013) tackles multi-dimensional valuations but he essentially

reduces the multi-dimensionality into single-dimension, and his techniques are not applicable

in our framework. The computer science literature made some progress to find the “almost”

optimal mechanism with algorithms (Cai et. al 2011).

We can generalize our main model where there are more A local bidders than B local

bidders. For example, if there are more A local bidders, we can draw two valuations for

each one of the additional A local bidders from the distribution function F and assign the

maximum of the two values as their valuation. This formulation guarantees that pA > pB

and our results hold. If there are more B local bidders, with a model where one draws two

values and assigns the minimum to the additional B local bidders, pA < pB is possible,26 then

the global bidder has to deal with cases in which it wins license A first, and our results may

not hold. We do not believe that assuming more B local bidders will bring new insights, and

we have already analyzed a model where any auction might end with a positive probability.

Our main contribution was our simulations that calculates the probability of ine�cient

allocations in the SAA auction by using ex-post valuations. We showed that the probability

of ine�cient allocation can be up to 9 per cent for some distribution functions. To our best

knowledge, our paper is the first one calculating these probabilities. We believe that this is

a relevant information for Industry Canada, and other policy makers.27

Our other contribution is comparing the revenue of the simultaneous ascending auction

(SAA) with those of the VCG auction. We find the following relation between the ine�cient

allocations and the revenue of the auctions. If the valuations are such that the global bidder

wins the licenses with an ex-post loss (which is an ine�cient outcome), then the revenue of

26The minimum of two values can be approximately 1 or even exactly 1, the highest possible value so
pA < pB is possible with a positive probability.

27Needless to say, more research has to be done to determine the percentage of ine�cient allocation since
we do not know the exact distribution of valuations. Bajari and Fox (2013) estimate the synergy value to
be around 73 per cent of the valuations for one of the US spectrum auctions.
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the SAA auction for these valuations would be higher than the revenue of the VCG auction.

When local bidders win the license(s) ine�ciently (in the SAA auction), the VCG mechanism

gives a higher revenue.

In our simulations, there are many cases where the local bidders win ine�ciently. We

interpret this as a supporting evidence of the exposure problem. The global bidder does

not bid high enough from an e�ciency point of view, and hence, the local bidders win the

licenses ine�ciently.

Our simulation code is a complex one so increasing the number of local bidders even to

2 would be a problem for calculating ine�cient allocations. However, calculating revenue

for the SAA and VCG auction with simulations for more than one local bidder seems more

feasible. We are not sure whether such a code will bring new insights.

We use only one global bidder. Albano et. al (2006) writes “In fact, for intermediate

values of ↵ 2 (0, 1) and if v
1

and v
2

are di↵erent...; showing the existence of a PBE is

already problematic in this case.” In their paper, ↵ is used to denote synergy and their v
1

and v
2

are v
0A and v

0B in our paper, respectively. We use low/moderate synergy at the

expense of giving up using more than one global bidder. We also note that Goeree and Lien

(2014) uses one global bidder when they assume substitutability of items for local bidders in

subsection 4.1 of their paper. Kagel and Levin (2005) is another example where one global

bidder is used in the literature. When there are two global bidders, one must write each

global bidder’s first order conditions separately and solve it simultaneously. The di�culty

arises from the fact that while solving these equations, one needs the distribution of the

other global bidder’s optimal drop out price since E⇧1

0

(and E⇧2

0

) will be functions of the

other global bidder’s optimal drop out price.

6 Appendix

Proof of Proposition 1.

We will prove that there is a unique optimal drop-out price with lemma 6 and lemma 7

below. First we will show that there exists a unique p⇤
0

2 (v
0B,min{v

0A + ✓, 1}) that solves
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J(p⇤
0

) = 0. Then, we will prove that only 0, p⇤
0

, and 1 satisfy FOC = J(p)h(p) = 0. Then,

we will show that p⇤
0

satisfies the second order condition so it is a local maximum. Then, we

will show that 0 and 1 cannot be the maximizer, and, p⇤
0

is the unique maximizer.

Lemma 6 There exists a unique p⇤
0

such that J(p⇤
0

) = 0 given the conditions a) to d) in

Proposition 3.

Proof of Lemma 6 a). In this case, we have the assumptions of v
0A + ✓ < 1 and

R v0A+✓

v0A
G(pA|v0A,mA)dpA + (v

0B � v
0A) < 0. We will show that this implies p⇤

0

< v
0A (which

in turn implies E⇧1

0

> 0).

We have already shown in the text that J(p,mA) = E⇧2

0

� E⇧1

0

, where E⇧2

0

(p,mA) =
R v0A+✓

p
(v

0A+v
0B+✓�p�pA)g(pA|p,mA)dpA+

R
1

v0A+✓
(v

0B�p)g(pA|p,mA)dpA and E⇧1

0

(p,mA) =
R v0A
p

(v
0A � pA)g(pA|p,mA)dpA.

To prove uniqueness, we will show that J(p,mA) is monotonically decreasing from 0 to

v
0A, and it is positive when p = v

0B and is negative when p = v
0A. Hence, there must be a

unique root in the interval v
0B < p < v

0A.

J(p,mA) =
R v0A+✓

p
(v

0A + v
0B + ✓ � p� pA)g(pA|p,mA)dpA

+
R

1

v0A+✓
(v

0B � p)g(pA|p,mA)dpA �
R v0A
p

(v
0A � pA)g(pA|p,mA)dpA

By using
R

1

p
g(pA|p,mA)dpA = 1 since g(pA|p,mA) is a probability density function on the

support [p, 1], we have (v
0B � p)

R
1

p
g(pA|p,mA)dpA = v

0B � p, we can re-write it as

J(p,mA) = �
R v0A
p

(v
0A � pA)g(pA|p,mA)dpA +

R v0A+✓

p
(v

0A + ✓ � pA)g(pA|p,mA)dpA +

(v
0B � p)

We will use integration by parts,
R
udv = uv�

R
vdu, twice in what follows to re-write J(.).

First we assume that u = v
0A� pA and v = G(pA|p,mA); then assume that u = v

0A+ ✓� pA

and v = G(pA|p,mA), we have

J(p,mA) = �(v
0A � pA)G(pA|p,mA) |v0Ap +

R v0A
p

G(pA|p,mA)d(v0A + pA)

+ (v
0A � ✓ � pA)G(pA|p,mA) |v0A+✓

p �
R v0A+✓

p
G(pA|p,mA)d(v0A + ✓ � pA) + (v

0B � p)

= �
R v0A
p

G(pA|p,mA)dpA +
R v0A+✓

p
G(pA|p,mA)dpA + (v

0B � p)

=
R v0A+✓

v0A
G(pA|p,mA)dpA + (v

0B � p)
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We take partial derivative of J(p,mA) with respect to p:

@J(p,mA)

@p
= @

@p
[
R v0A+✓

v0A
G(pA|p,mA)dpA] � 1. We will prove that this is negative since the

term @
@p
[
R v0A+✓

v0A
G(pA|p,mA)dpA] is negative. The term inside is non-negative since it is a

cumulative distribution function. We must show that @G(pA|p,mA)

@p
 0 to prove this. While

one can easily see that this is correct (as p increases the cumulative distribution conditional

on p decreases), we will give a formal proof by using Leibniz’s rule.

, @G(pA|p,mA)

@p
=

@[(

R pA
p f(v)dv
R 1
p f(v)dv

)

mA
]

@p

= �(mA)f(p)
(

R pA
p f(v)dv)mA�1

(

R 1
p f(v)dv)mA

+ (mA)f(p)
(

R pA
p f(v)dv)mA

(

R 1
p f(v)dv)mA+1

=
(mA)f(p)(

R pA
p f(v)dv)mA�1

(

R 1
p f(v)dv)mA

[�1 +
R pA
p f(v)dv
R 1
p f(v)dv

]

=
(mA)f(p)(

R pA
p f(v)dv)mA�1

(

R 1
p f(v)dv)mA

[�1 + F (pA|p,mA)] < 0 ( 0 only if pA = 1).

Thus, J(p,mA) is a monotonically decreasing function of p 2 (0, v
0A).

If p = v
0B, then J(p = v

0B,mA) = �
R v0A
v0B

G(pA|v0B,mA)dpA +
R v0A+✓

v0B
G(pA|v0B,mA)dpA

=
R v0A+✓

v0A
G(pA|v0B,mA)dpA > 0.

If p = v
0A, J(p = v

0A,mA) = 0 +
R v0A+✓

v0A
G(pA|v0A,mA)dpA + (v

0B � v
0A) < 0 by our

assumption.

Hence, there is a unique root, p⇤
0

, such that v
0B < p⇤

0

< v
0A.

b) In this case, we have the assumptions of v
0A + ✓ < 1 and

R v0A+✓

v0A
G(pA|v0A,mA)dpA +

(v
0B � v

0A) � 0 which we will show that this implies p⇤
0

� v
0A. And this condition in turn

implies that E⇧1

0

= 0, since the global bidder drops from both licenses. E⇧2

0

(p,mA) =

J(p,mA) =
R v0A+✓

p
(v

0A+v
0B + ✓�p�pA)g(pA|p,mA)dpA+

R
1

v0A+✓
(v

0B �p)g(pA|p,mA)dpA =
R v0A+✓

p
G(pA|p,mA)dpA + (v

0B � p).

When p � v
0A, we take partial derivative of J(p,mA) with respect to p, we have,

@J(p,mA)

@p
= @

@p
[
R v0A+✓

p
G(pA|p,mA)dpA]�1 = �G(pA|p,mA)+

R v0A+✓

p
@G(pA|p,mA)

@p
dpA�1 < 0,

since @G(pA|p,mA)

@p
< 0.

Thus, J(p,mA) is a monotonically decreasing function of p in (v
0A, 1).

Our assumption
R v0A+✓

v0A
G(pA|v0A,mA)dpA+(v

0B�v
0A) � 0 implies that J(p = v

0A,mA) �

0. If p = v
0A + ✓, then J(p = v

0A + ✓,mA) = (v
0B � v

0A � ✓) < 0. Thus, there is a unique

solution, p⇤
0

, in the interval [v
0A, v0A + ✓).
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c) In this case, we have the assumptions of v
0A+✓ � 1 and

R
1

v0A
G(pA|v0A,mA)dpA+(v

0B+

✓ � 1) < 0 which implies v
0A < p⇤

0

. And this condition in turn implies that E⇧1

0

> 0. That

is, E⇧2

0

(p,mA) =
R

1

p
(v

0A + v
0B + ✓ � p� pA)g(pA|p,mA)dpA and E⇧1

0

(p,mA) =
R v0A
p

(v
0A �

pA)g(pA|p,mA)dpA.

J(p,mA) = E⇧2

0

(p,mA) � E⇧1

0

(p,mA) =
R

1

p
(v

0A + v
0B + ✓ � p � pA)g(pA|p,mA)dpA �

R v0A
p

(v
0A � pA)g(pA|p,mA)dpA

Similar to part a, we use integration by parts twice. First, we assume that u = v
0A � pA

and v = G(pA|p,mA) for the first integral; then assume that u = v
0A + v

0B + ✓� p� pA and

v = G(pA|p,mA) for the second integral. As a result,

J(p,mA|v0A + ✓ > 1) = �(v
0A � pA)G(pA|p,mA) |v0Ap �

R v0A
p

G(pA|p,mA)dpA + (v
0A +

v
0B + ✓ � p� pA)G(pA|p,mA) |1p +

R
1

p
G(pA|p,mA)dpA

= �
R v0A
p

G(pA|p,mA)dpA + (v
0A + v

0B + ✓ � p� 1) +
R

1

p
G(pA|p,mA)dpA

= (v
0A + v

0B + ✓ � p� 1) +
R

1

v0A
G(pA|p,mA)dpA

We take partial derivative of J(p,mA) with respect to p, we have,

@J(p,mA)

@p
= @

@p
[
R

1

v0A
G(pA|p,mA)]� 1 < 0

It is negative since the term @
@p
[
R

1

v0A
G(pA|p,mA)] is negative. And we have already shown

that @G(pA|p,mA)

@p
 0. Thus, J(p,mA) is monotonically decreasing function of p in (0, v

0A).

If p = v
0B, then J(p = v

0B,mA) =
R

1

v0A
G(pA|v0B,mA)dpA + (v

0A + ✓ � 1) > 0 since

v
0A + ✓ > 1.

If p = v
0A, J(p = v

0A,mA) = 0 +
R

1

v0A
G(pA|v0A,mA)dpA + (v

0B + ✓ � 1) < 0 by our

assumption.

Hence, there is a unique root in the interval v
0B < p⇤

0

< v
0A.

d) In this case, we have the assumptions of v
0A + ✓ � 1 and

R
1

v0A
G(pA|v0A,mA)dpA +

(v
0B + ✓� 1) � 0 which implies p⇤

0

� v
0A. And this condition in turn implies that E⇧1

0

= 0,

and E⇧2

0

(p,mA) = J(p,mA) =
R

1

p
(v

0A + v
0B + ✓ � p� pA)g(pA|p,mA)dpA

=
R

1

p
G(pA|p,mA)dpA + (v

0A + v
0B + ✓ � p� 1).

When p > v
0A, we take partial derivative of J(p,mA) with respect to p, we have,

@J(p,mA)

@p
= @

@p
[
R

1

p
G(pA|p,mA)dpA]� 1 < 0, since @G(pA|p,mA)

@p
< 0.
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Thus, J(p,mA) is monotonically decreasing function of p in (v
0A, 1).

Our assumption
R

1

v0A
G(pA|v0A,mA)dpA+(v

0B+✓�1) � 0 implies that J(p = v
0A,mA) �

0. If p = 1, then J(p = 1,mA) = (v
0B + v

0A + ✓ � 2) < 0. Since v
0B + v

0A + ✓ < 2 by

our average valuation is less than 1 assumption in the proposition. Thus, there is a unique

solution, p⇤
0

, in the interval [v
0A, 1).

Lemma 7 a) Only 0,1, and p⇤
0

solves the FOC.

b) p⇤
0

satisfies the second order condition.

c) 0 and 1 cannot maximize the expected payo↵.

d) dp⇤0
dmA

< 0. That is, when the number of active firms in license A auction decreases, the

optimal drop-out price will increase.

Proof a) From lemma 6, we can write the FOC = J(p,mA)h(p) with the abuse of

notation since J(p,mA) takes di↵erent forms in part a to d. It is easy to see that FOC is

equal to zero only if J(p,mA) = 0 or h(p) = 0. In lemma 6, we showed that there is a unique

p⇤
0

2 (v
0B,min{v

0A + ✓, 1}) that makes J(p,mA) = 0. Hence, FOC(p⇤
0

) = 0. This proves p⇤
0

solves FOC.

Now, we will show that only p = 0 or p = 1 solves h(p) = 0. Since H(p) = [1 � (1 �

F (p))2]mB , we have h(p) = 2mB(1 � F (p))f(p)[1 � (1 � F (p))2]mB�1. Then h(p) = 0 only

if 1 � F (p) = 0 which implies p = 1, or 1 � (1 � F (p))2 = 0 which implies p = 0. There

is no p 2 (0, 1) that makes h(p) = 0 since by our assumption f(p) > 0 when p 2 (0, 1] and

mB � 1.

b) FOC = J(p,mA)h(p), hence SOC = J 0(p,mA)h(p) + J(p,mA)h0(p). When p = p⇤
0

,

J(p⇤
0

) = 0 as shown in lemma 6, hence, SOC = J 0(p⇤
0

,mA)h(p⇤
0

). This is negative since

we have showed in lemma 6 that J(p,mA) is a decreasing function and h(p) > 0 for any

p 2 (0, 1).

c) While it is straightforward to see that dropping out at p = 0 cannot be optimal, we

will provide the proof. When we consider p = 0, the expected payo↵ function is written as in
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part a and c of Proposition 1 since the optimal drop out price is assumed to be p = 0 < v
0A.

We have shown that J(p) is a decreasing function in (0, v
0A) and J(p⇤

0

) = 0. These two

facts imply that that J(p) > 0 for any p 2 (0, p⇤
0

). Since h(p) > 0 for p 2 (0, 1), we have

FOC = J(p)h(p) > 0 for any p 2 (0, p⇤
0

). Since J(p) and h(p) are continuous, FOC > 0

implies that the global bidder can increase its payo↵ by bidding higher than 0. Hence, 0

cannot be the maximizer. One can similarly prove that p = 1 cannot be the maximizer by

using part b and d of Proposition 1. Therefore p⇤
0

is the only price that satisfies the FOC

and SOC and it is unique.

d) Next, we show that as the number of active firms in license A auction decreases, the

optimal drop-out price will increase. We will use the implicit function theorem for this:28

, dp⇤0
dmA

= �
@FOC(p⇤0,mA)

@mA
@FOC(p⇤0,mA)

@p⇤0

< 0.

We have @FOC(p⇤0,mA)

@p⇤0
= J 0(p⇤

0

)h(p⇤
0

) + J(p⇤
0

)h0(p⇤
0

) = J 0(p⇤
0

)h(p⇤
0

) < 0. The equality holds

since J(p⇤
0

) = 0, and the inequality holds since we have proved in lemma 6 that J 0(p⇤
0

) < 0.

By using Leibniz’s rule for di↵erentiation under the integral sign, we take partial deriva-

tive of FOC(p⇤
0

,mA) =
⇥ R v0A+✓

v0A
G(pA|p⇤

0

,mA)dpA + (v
0B � p⇤

0

)
⇤
h(p⇤

0

) with respect to mA,

since h(p⇤
0

) > 0 and @h(p⇤0,mB)

@mA
= 0, then we have,

@FOC(p⇤0,mA)

@mA
=

⇥ R v0A+✓

v0A

@G(pA|p⇤0,mA)

@mA
dpA

⇤
h(p⇤

0

) =
⇥ R v0A+✓

v0A
ln(F (pA|p,mA))G(pA|p⇤

0

,mA)dpA
⇤
h(p⇤

0

) <

0, since @G(pA|p⇤0,mA)

@mA
= ln(F (pA|p⇤

0

,mA))G(pA|p,mA) < 0. Hence, we show that @FOC(p⇤0,mA)

@mA
<

0 holds.

Since @FOC(p⇤0,mA)

@p⇤0
< 0 and @FOC(p⇤0,mA)

@mA
< 0, we have, dp⇤0

dmA
= �

@FOC(p⇤0,mA)

@mA
@FOC(p⇤0,mA)

@p⇤0

< 0

By the implicit function theorem, we show that the optimal drop-out price increases as

the number of local firms, mA, decreases.

Proof of Lemma 3. If the global bidder wins only one license and has an ex-post

loss, then clearly p⇤
0

> pB > v
0B must hold since the global bidder will wait until the price

reaches p⇤
0

.29 To prove the ine�ciency for this case, we will use the inequalities v
0B < pB

28We treat mA as a continuous variable here although it is discrete. We do not see any harm in doing this
since the function is continuous in mA and the result will be valid even when mA is discrete.

29Note that the global bidder cannot win license A first since local bidders’ minimum valuations are
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and v
0A + ✓ < pA. The latter one holds since the global bidder does not win license A. This

immediately shows that we have v
0A + v

0B + ✓ < pA + pB; the e�cient outcome is that the

local bidders must have won both licenses. Hence, the outcome is ine�cient.

If the global bidder wins two licenses, winning license B implies p⇤
0

> pB and winning

license A implies pA < v
0A + ✓. The global bidder makes a loss by our assumption, that

is v
0A + v

0B + ✓ � pA � pB < 0 which implies v
0B � pB < pA � v

0A � ✓ < 0. Hence,

we have v
0B < pB. Hence, we showed that p⇤

0

< v
0B < pB. The loss condition implies

v
0A+ v

0B + ✓ < pA+pB which proves that the outcome of global bidder winning two licenses

is ine�cient since local bidders must have won the licenses.

Proof of Proposition 4. When the global bidder wins the license(s) with an ex-post

loss, then the revenue of VCG auction, RV CG, is lower than the revenue of SAA, RSAA. We

know that pB > v
0B by lemma 3. There are two cases that we must consider, (i) global

bidder wins both licenses with an ex-post loss and (ii) global bidder wins only license B with

an ex-post loss. We have already explained that global bidder cannot win license A only and

makes a loss since it will bid like a local bidder after losing license B.

i) The revenue of SAA auction is RSAA = pA+ pB, and since the global bidder wins both

licenses and makes a loss, we have pA + pB > v
0A + v

0B + ✓. We know that v
0A + ✓ > pA

since global bidder wins license A and B in the SAA auction. In a VCG auction, the local

bidders will win the licenses if v
0A < pA. The payment of local bidder B can be calculated

as follows. If local bidder B does not participate in the auction, the welfare of others (in

the e�cient allocation) is pA + v
0B since local bidder A will win license A and global bidder

will win license B. If local bidder B participates in the auction, the welfare of others (in the

e�cient allocation) will be pA. The di↵erence is the payment of local bidder B which is v
0B.

A symmetric calculation will show that the local bidder A’s payment will be v
0A. Hence,

RV CG = v
0A + v

0B < RSAA = pA + pB by the global bidder’s loss condition and that ✓ > 0.

If v
0A > pA, then the e�cient allocation is that global bidder wins license A and local

bidder B wins license B. The global bidder’s payment will be pA since if the global bidder

assigned to B and maximum valuations are assigned to A.
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does not participate in the auction, the welfare of others in the e�cient allocation is pA+ pB

but if it participates, it is only pB. The di↵erence is pA. The payment of local bidder B is

v
0B + ✓ since if local bidder B does not participate in the auction, the welfare of others in

the e�cient allocation is v
0A + v

0B + ✓, and if it participates, the welfare of others is v
0A.

The di↵erence is the payment of local bidder B. RV CG = pA + v
0B + ✓ < RSAA = pA + pB.

The inequality follows since the global bidder’s loss condition v
0A+v

0B +✓ < pA+pB can be

re-written as v
0A�pA < pB� (v

0B+✓) but this is positive since v
0A > pA by our assumption.

This implies v
0B + ✓ < pB and RV CG = pA + v

0B + ✓ < RSAA = pA + pB.

(ii) Since the global bidder will pay pB for license B, and local bidder A will pay v
0A + ✓

for license A, the revenue of the SAA auction, RSAA = v
0A + ✓ + pB in the case when

pA � pB. The VCG auction will result in an e�cient auction; hence, local bidders will

win each license. The payment of local bidder B is calculated as follows. If local bidder B

does not participate in the auction, the welfare of others is pA + v
0B since we know that

pA > v
0A + ✓ by the fact that global bidder lost license A in the SAA auction. When local

bidder B participates in the auction, the welfare of the others is pA. Hence, the payment of

local bidder B is v
0B. The payment of local bidder A is calculated as follows. If local bidder

A does not participate in the auction, the welfare of others is v
0A + v

0B + ✓ if v
0B + ✓ > pB.

If v
0B + ✓ < pB, then it is, v

0A + pB. If local bidder A participates in the auction, then

the welfare of others is pB. Therefore RV CG = v
0A + v

0B + ✓ � pB + v
0B if v

0B + ✓ > pB.

RV CG = v
0A + v

0B + ✓ + (v
0B � pB) < RSAA = v

0A + ✓ + pB since v
0B < pB by Lemma 3.

If v
0B + ✓ < pB, then local bidder A’s payment is v

0A. Since ✓ > 0 and pB > v
0B by

Lemma 3, RV CG = v
0A + v

0B < RSAA = v
0A + ✓ + pB.

Symmetrically, when the global bidder will pay pA for license B, and local bidder B will

pay v
0B + ✓ for license B, the revenue of the SAA auction, RSAA = v

0B + ✓ + pA in the case

when pA < pB. The VCG auction will result in an e�cient auction; hence, local bidders

will win each license. The payment of local bidder A is calculated as follows. If local bidder

A does not participate in the auction, the welfare of others is pB + v
0A since we know that

pB > v
0B + ✓ by the fact that global bidder lost license B in the SAA auction. When local
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bidder A participates in the auction, the welfare of the others is pA. Hence, the payment of

local bidder B is v
0B. The payment of local bidder A is calculated as follows. If local bidder

A does not participate in the auction, the welfare of others is v
0A + v

0B + ✓ if v
0A + ✓ > pA.

If v
0A + ✓ < pA, then it is, v

0B + pA. If local bidder B participates in the auction, then

the welfare of others is pA. Therefore RV CG = v
0A + v

0B + ✓ � pA + v
0A if v

0A + ✓ > pA.

RV CG = v
0A + v

0B + ✓ + (v
0A � pA) < RSAA = v

0B + ✓ + pA since v
0A < pA.

If v
0A + ✓ < pA, then local bidder B’s payment is v

0B. Since ✓ > 0 and pA > v
0A,

RV CG = v
0A + v

0B < RSAA = v
0B + ✓ + pA.

This completes the proof of Proposition 4.

Proof of Proposition 5. a) Each local bidder wins a license in the SAA auction; hence,

we know that v
0A < pA and v

0B < p⇤
0

< pB. We also know that the allocation is not e�cient

by assumption; hence, we must have pA + pB < v
0A + v

0B + ✓.30 RSAA = v
0A + p⇤

0

.

If the global bidder obtains both licenses in the VCG auction, it is easy to calculate that

the auction revenue is RV CG = pA + pB > RSAA = v
0A + p⇤

0

.

b) The global bidder wins only license A and local bidder wins license B and the global

bidder makes no loss.31 Then RSAA = p⇤
0

+ pA. We also know that v
0A > pA and pB >

p⇤
0

> v
0B from the result of the SAA auction. Hence, in an e�cient outcome the global

bidder must obtain license A so the only e�cient outcome must be global bidder winning

both licenses which implies v
0A + v

0B + ✓ > v
0A + pB given that SAA outcome is ine�cient.

But then since the global bidder will win both licenses, RV CG = pA + pB > RSAA = p⇤
0

+ pA

since pB > p⇤
0

.

This completes the proof of Proposition 5.

30Local bidder A winning the license A and the global bidder winning license B cannot be an e�cient
allocation given the inequalities

31If the global bidder wins license B with no loss and local bidder wins license A, then the outcome cannot
be ine�cient since pB < v0B must be satisfied by the no-loss condition, and pA > v0A + ✓ condition must be
satisfied by the fact that global bidder does not win license A but this is an e�cient outcome.
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7 Online Appendix: Auction A Ending First with a
Positive Probability

In this section, we revise the model so that either auction might end first with a positive

probability. We assume one local bidder bidding on each license. To determine the valuations
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for local bidders A and B, we draw two private valuations v
1A and v

1B independently from

the distribution function F (.). As in the main model, the global bidder’s valuations are

drawn in pairs from F . The maximum and the minimum of these draws become the global

bidder’s license A and license B valuations, respectively.32 Everything else in the main model

also applies to the current model. Since local bidder’s valuations are independently drawn,

local bidder B’s valuation can be the highest among all bidders; as a result, either auction

can end with a positive probability.

It is straightforward to see that the local bidder’s equilibrium strategy, and the global

bidder’s equilibrium strategy after winning the first license are the same as in the original

model. The only change is the optimal drop out price for the global bidder since the global

bidder might win license A or B first.

To calculate the optimal drop-out price for the global bidder when his average valuation

is less than 1, one should maximize the global bidder’s expected payo↵. The expected payo↵

for the global bidder is:

max
p

Pr(v
1A � v

1B)

"Z p

pc

h Z min{v0A+✓,1}

v1B

(v
0A + ✓ � v

1A + v
0B � v

1B)dF (v
1A|v1B) (9)

+

Z
1

min{v0A+✓,1}
(v

0B � v
1B)dF (v

1A|v1B)
i
dF (v

1B) (10)

+

Z
max{p, v0A}

p

⇥ Z v0A

v1B

(v
0A � v

1A)dF (v
1A|v1B)

⇤
dF (v

1B)

#
(11)

+Pr(v
1B � v

1A)

"Z p

pc

h Z min{v0B+✓,1}

v1A

(v
0B + ✓ � v

1B + v
0A � v

1A)dF (v
1B|v1A) (12)

+

Z
1

min{v0B+✓,1}
(v

0A � v
1A)dF (v

1B|v1A)
i
dF (v

1A) (13)

+

Z
max{p, v0A}

p

⇥ Z 1

v1A

(v
0A � v

1A)dF (v
1B|v1A)

⇤
dF (v

1A)

#
(14)

The main di↵erence from the main model is that the expected payo↵ function has two

parts since the global bidder might win license B first when v
1A � v

1B, and might win

32This makes the global bidder’s license valuations heterogeneous.
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license A first when v
1B � v

1A. Conditional on v
1B � v

1A, equation 12 describes when the

global bidder wins both licenses, equation 13 describes when the global bidder wins license

A first but loses license B, and equation 14 describes when the global bidder drops out from

license B but wins license A after.33 Note that equation 14 is not the symmetric equivalent

of equation 11.

When v
0A + ✓ < 1, the first derivative of this maximization problem is:

FOC(p) = Pr(v
1A � v

1B)
h Z v0A+✓

p

(V
0

� p� v
1A)f(v1A|p)dv1A (15)

+

Z
1

v0A+✓

(v
0B � p)f(v

1A|p)dv1A �
[p<v0A]

Z v0A

p

(v
0A � v

1A)f(v1A|p)dv1A
i
f(p) (16)

+Pr(v
1B � v

1A)
h Z v0B+✓

p

(V
0

� p� v
1B)f(v1B|p)dv1B (17)

+

Z
1

v0B+✓

(v
0A � p)f(v

1B|p)dv1B �
[p<v0A]

(v
0A � p)

i
f(p) (18)

We can write FOC(p) = J(p)f(p). By using the independence of v
1A and v

1B, we

calculate Pr(v
1A � v

1B) = 0.5.34

The first order condition is slightly di↵erent than the main model since equation 11 and

14 are not symmetric.35 Regardless, the optimal drop out price is unique. In the proofs,

similar to the main model, we show that J(p) is decreasing in p. Then, we will show that

J(p = v
0B) > 0. The optimal drop out price p will be less than or greater than v

0A depending

on whether J(p = v
0A) < 0 or J(p = v

0A) > 0. The optimal drop out price p⇤
0

is the solution

to the first order condition of the global bidder’s expected payo↵ maximization problem.

In Lemma 8 below, we characterize the global bidder’s equilibrium bids.36

33Global bidder values A more than B so it will still drop out from license B first. However, it might win
license A first.

34Pr(v1A � v1B) =
R 1
0

R v1A
0 f(v1A, v1B)dv1Bdv1A =

R 1
0

R v1A
0 f(v1A)f(v1B)dv1A

=
R 1
0 [
R v1A
0 f(v1B)dv1B ]f(v1A)dv1A =

R 1
0 F (v1A)f(v1A)dv1A. Let u = F (v1A), and du = f(v1A)dv1A, we can

write the last equation as
R 1
0 udu = 0.5. Similarly, Pr(v1B � v1A) = 0.5.

35As a result, we do not have an intuitive Case I payo↵ since Case I payo↵ is based on the idea that the
global bidder will win B first. Here, it might win A first.

36We could not generalize the result for cases in which there are more than one local bidder. If there
are more than one local bidder, the global bidder has to update its optimal drop out price as some local
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Proposition 8 Suppose that the average valuation of the global bidder is less than 1 and

there is one local bidder actively bidding on each license. The global bidder maximizes its

payo↵ by dropping out of the license B auction at the unique optimal drop-out price p⇤
0

that

solves J(p) (and hence FOC), of the expected payo↵ function. Moreover,

a) If v
0A+✓ < 1, and J(v

0A) =
R v0A+✓

v0A
F (v

1A|v0A)dv1A+(v
0B�v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B <

0, then p⇤
0

< v
0A. The global bidder will stay in the license A auction until v

0A (after dropping

out from the license B auction).

b) If v
0A+✓ < 1 and J(v

0A) =
R v0A+✓

v0A
F (v

1A|v0A)dv1A+(v
0B�v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B �

0, then p⇤
0

� v
0A and the global bidder will also drop out of the license A auction at p⇤

0

.

c) If v
0A + ✓ � 1, v

0B + ✓ < 1, and J(v
0A) =

R
1

v0A
F (v

1A|v0A)dv1A + (v
0B + ✓ � 1) +

R v0B+✓

v0A
F (v

1B|v0A)dv1B < 0, then p⇤
0

< v
0A. The global bidder will stay in the license A

auction until v
0A (after dropping out from the license B auction).

d) Assume that v
0A + ✓ � 1,

i) If v
0B+✓ < 1, and J(v

0A) =
R

1

v0A
F (v

1A|v0A)dv1A+(v
0B+✓�1)+

R v0B+✓

v0A
F (v

1B|v0A)dv1B �

0,

Or

ii) If v
0B + ✓ � 1,

then v
0A  p⇤

0

 1 and the global bidder will also drop out of the license A auction at p⇤
0

.

We are ready to summarize our Bayesian-Nash equilibrium.

Proposition 9 (Bayesian-Nash Equilibrium)

a) A local bidder of each license will stay in the auction j until the price reaches her

valuation vij where j = {A,B}, i = {1, 2, ...m}.

b) A global bidder active only on license j will bid v
0j + ✓, if he won the other license.

He will bid v
0j if he dropped out of the other license.

c) When the average valuation is less than one, the global bidder who is active on both

licenses will drop out from license B and/or A as described in Proposition 8.

bidders drop out from the auction. We could not show that this updated price increases with the exit of
local bidders. Given the possibility that the updated price might decrease makes this a complex problem.
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License A won by License B won by Global bidder makes Allocation is Revenue SAA
1. Global Bidder Global Bidder Profit E�cient pA + pB
2. Global Bidder Global Bidder Loss Ine�cient pA + pB
3. Global Bidder Local Bidder B Profit E�cient pA + v

0B + ✓
4. Global Bidder Local Bidder B Loss Ine�cient pA + v

0B + ✓
5. Global Bidder Local Bidder B Profit E�cient pA + p⇤

0

6. Global Bidder Local Bidder B Profit Ine�cient pA + p⇤
0

7. Local Bidder A Global Bidder (not possible) N/A N/A
8. Local Bidder A Local Bidder B Zero Profit E�cient p⇤

0

+ v
0A

9. Local Bidder A Local Bidder B Zero Profit Ine�cient p⇤
0

+ v
0A

10. Local Bidder A Local Bidder B Zero Profit E�cient 2p⇤
0

11. Local Bidder A Local Bidder B Zero Profit Ine�cient 2p⇤
0

Table 4: All e�cient and ine�cient outcomes for v
1A < v

1B case.

d) If the average valuation is greater than one, the global bidder will stay in both auctions

until price reaches his average valuation.37

We summarize all possible e�cient and ine�cient outcomes for v
1A < v

1B case in Table

4. By using Table 1 and Table 4, we can count the e�cient and ine�cient outcomes in our

simulation code. The results are summarized in figures 3 and 4 at the end of the paper.

The Ex-Post Loss Probability are the probability of cases in which the global bidder makes

a loss. The Probability of Ine�ciency are the cases of all ine�cient allocations including the

ex-post loss probability cases.

One di↵erence between the original model and this model is the optimal drop out prices

(see Table 2 and 6 for a comparison). In the current model, local bidder A’s valuation is

drawn independently so it is expected to be lower compared to main model which assigns

the maximum valuation to license A. This makes the global bidder use a slightly higher

optimal drop out price, and decreases the probability of local bidders winning ine�ciently.

The ex-post loss probability of global bidder is also lower since global bidder is more likely

to win license A after winning license B, and at a lower price. As a result, it decreases the

probability of ine�cient allocations.

We also report the percentage decrease in total welfare with the SAA auction compared

37Price does not have to stop increasing at 1. In the equilibrium outcome, the game will end before the
price exceeds 1.
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Table 5: Percentage Shortfall in Welfare in the SAA
Relative to the VCG Auction

Synergy Uniform Distr. Beta Distr.with ↵ = 5 Beta Distr.with ↵ = 1
and � = 5 and � = 3

0.2 0.1002 % 0.1271 % 0.3025 %
0.4 0.1925 % 0.1060 % 0.3860 %
0.6 0.1577 % 0.0370 % 0.1898 %
0.8 0.1045 % 0.0055 % 0.0616 %

to the VCG auction in Table 5.38 The revised model is the model where any auction might

end with a positive probability, and the main model is the model discussed in Section 4.

The expected welfare loss is less than one per cent in all distributions we have used. While

this may seem low, the revenue of the 2008 Canadian AWS auction was more than 4 billion

dollars. Even a small percentage decrease (say 0.5 per cent) might have a relatively big

magnitude e↵ect (more than 20 million dollars).

Finally, we note that the results of Propositon 6 and 7 are valid for the current model.

Lemma 5 has to be revised since the global bidder might win license A first. In this case,

if the global bidder has an ex-post loss, then p⇤
0

> pA = v
1A > v

0A or p⇤
0

> pB = v
1B > v

0B

(depending on which license is won first) has to hold, and the outcome is ine�cient. We do

not provide the proofs since they are similar to the proof of Lemma 5, Proposition 6 and 7.

Proof of Proposition 8.

Similar to Proposition 1, we will prove that there is a unique optimal drop-out price with

a series of lemmas. First we will show that there exists a unique p⇤
0

2 (0, 1) that solves

J(p⇤
0

) = 0. Then, we will prove that only 0 and p⇤
0

satisfy FOC = J(p)f(p) = 0. Then, we

will show that p⇤
0

satisfies the second order condition so it is a local maximum. Then, we

will show that 0 cannot be the maximizer, and that, p⇤
0

is the unique maximizer.

38We thank a referee for asking us to calculate the welfare decrease.
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Table 6: GLOBAL BIDDER’S OPTIMAL DROP-OUT PRICE FOR THE
REVISED MODEL FOR VARIOUS DISTRIBUTIONS AND SYNERGY

LEVELS

Global Global Uniform Beta Beta

Bidder’s Bidder’s Distr. Distr. Distr.

Valuation Valuation with ↵ = 5 with ↵ = 1
for License A for License B and � = 5 and � = 3

v
0A v

0B pU
1

p�=5

1

p�=3

1

Synergy=0.2

0.25 0.2 0.2441 0.2447 0.2690
0.4 0.2 0.2734 0.2981 0.3262
0.6 0.2 0.3172 0.3721 0.3765
0.8 0.2 0.3691 0.3990 0.3982
0.81 0.4 0.5607 0.5980 0.5952

Synergy=0.4

0.25 0.2 0.3007 0.3317 0.3536
0.4 0.2 0.3806 0.4332 0.4396
0.6 0.2 0.4667 0.5472 0.5429
0.8 0.2 0.5569 0.5973 0.5941
0.81 0.4 0.7383 0.7826 0.7752

Synergy=0.6

0.25 0.2 0.3836 0.4542 0.4581
0.4 0.2 0.4795 0.5478 0.5441
0.6 0.2 0.6174 0.6668 0.6601
0.8 0.2 0.7333 0.7791 0.7714
0.81 0.4 0.8733 0.8958 0.8914

Synergy=0.8

0.25 0.2 0.5000 0.5773 0.5714
0.4 0.2 0.6000 0.6653 0.6571
0.6 0.2 0.7333 0.7791 0.7714
0.8 0.2 0.8667 0.8903 0.8857
0.81 0.4 1 1 1
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Figure 3: Beta Distribution ↵ = 1, � = 3.
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Lemma 10 There exists a unique p⇤
0

such that J(p⇤
0

) = 0 given the conditions a) to d) in

Proposition 8.

Proof of Lemma 10 a). In this case, we have the assumptions of v
0A + ✓ < 1 and

h R v0A+✓

v0A
F (v

1A|v0A)dv1A + (v
0B � v

0A) +
R v0B+✓

v0A
F (v

1B|v0A)dv1B
i
< 0, we will show that this

implies v
0B < p⇤

0

< v
0A.

We show that there exists a unique solution that solves J(p). To prove uniqueness, we

will show that this function is monotonically decreasing in (0, v
0A), and it is positive when

p = v
0B and is negative when p = v

0A. Hence, there must be a unique root in the interval

v
0B < p < v

0A.

By taking the derivative of the expected payo↵ function, we get J(p) = Pr(pA �

pB)
h R v0A+✓

p
(v

0A + ✓ � v
1A + v

0B � p)dF (v
1A|p) +

R
1

v0A+✓
(v

0B � p)dF (v
1A|p) �

R v0A
p

(v
0A �

v
1A)dF (v

1A|p)
i
+ Pr(v

1B � v
1A)

h R v0B+✓

p
(v

0B + ✓ � v
1B + v

0A � p)dF (v
1B|p) +

R
1

v0B+✓
(v

0A �

p)dF (v
1B|p)�

R
1

p
(v

0A � p)dF (v
1B|p)

i

Very similar to the proof of Proposition 1, we use integration by parts twice and use

37



Figure 4: Top: Uniform Distribution. Bottom: Beta Distribution with ↵ = � = 5
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Pr(v
1A � v

1B) = 0.5, we can re-write

J(p) = 0.5
h
�
R v0A
p

(v
0A�pA)f(v1A|p)dpA+

R v0A+✓

p
(v

0A+✓�v
1A)f(v1A|p)dv1A+(v

0B�p)+
R v0B+✓

p
(v

0B+✓�v
1B)f(v1B|p)dv1B

i
= 0.5

h R v0A+✓

v0A
F (v

1A|p)dv1A+(v
0B�p)+

R v0B+✓

p
F (v

1B|p)dv1B
i

We take partial derivative of J(p) with respect to p, we have,

@J(p)
@p

= 0.5

"
@
@p
[
R v0A+✓

v0A
F (v

1A|p)dv1A]� 1+ @
@p
[
R v0B+✓

p
F (v

1B|p)dv1B]
#
< 0. This is negative

since we have shown that a similar integral is negative in Proposition 1. While that integral

has G(./p) in it, F (./p) is a special case of G with one local bidder. Thus, J(p) is a

monotonically decreasing function of p in (0, v
0A).

If p = v
0B, then J(p = v

0B) = 0.5
⇥ R v0A+✓

v0A
F (v

1A|v0B)dv1A +
R v0B+✓

v0B
F (v

1B|v0B)dv1B
⇤
> 0.

If p = v
0A, then J(p = v

0A) = 0.5
⇥ R v0A+✓

v0A
F (v

1A|v0A)dv1A+(v
0B�v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B
⇤
<

0 by our assumption that
R v0A+✓

v0A
F (v

1A|v0A)dv1A + (v
0B � v

0A) +
R v0B+✓

v0A
F (v

1B|v0A)dv1B < 0.

Hence, there is a unique root, p⇤
0

in the such that v
0B < p⇤

0

< v
0A. When the global

bidder drops out from license B auction, it is straightforward to see that it is profitable for

him/her to continue on license A until price reaches v
0A.

b) In this case, we have the assumptions of v
0A + ✓ < 1 and

h R v0A+✓

v0A
F (v

1A|v0A)dv1A +

(v
0B � v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B
i
� 0, we will show that this implies v

0A  p⇤
0

< v
0B + ✓.

J(p) = 0.5
h R v0A+✓

p
(v

0A + ✓ � v
1A + v

0B � p)dF (v
1A|p) +

R
1

v0A+✓
(v

0B � p)dF (v
1A|p)

i
+

0.5
h R v0B+✓

p
(v

0B+✓�v
1B+v

0A�p)dF (v
1B|p)+

R
1

v0B+✓
(v

0A�p)dF (v
1B|p)

i
= 0.5

⇥ R v0A+✓

p
F (v

1A|p)dv1A+

(v
0B � p) +

R v0B+✓

p
F (v

1B|p)dv1B
⇤
. It can be shown that J is monotonically decreasing in

p 2 (v
0A, 1)

If p = v
0A, J(p = v

0A) = 0.5
⇥ R v0A+✓

v0A
F (v

1A|v0A)dv1A+(v
0B�v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B
⇤
�

0 by our assumption that
h R v0A+✓

v0A
F (v

1A|v0A)dv1A+(v
0B�v

0A)+
R v0B+✓

v0A
F (v

1B|v0A)dv1B
i
� 0.

If p = v
0B+✓, then J(p = v

0B+✓) = 0.5
⇥ R v0A+✓

v0B+✓
F (v

1A|v0A)dv1A�✓ <
R v0A+✓

v0B+✓
1dv

1A�✓
⇤
=

v
0A � v

0B � ✓  0.

Hence, there is a unique root, p⇤
0

in the such that v
0A  p⇤

1

< v
0B + ✓.

c) In this case, we have the assumptions of v
0A+✓ � 1, v

0B+✓ < 1, and
h R

1

v0A
F (v

1A|v0A)dv1A+

(v
0B + ✓ � 1) +

R v0B+✓

v0A
F (v

1B|v0A)dv1B
i
< 0, We will show that this implies v

0B < p⇤
0

< v
0A.

With some calculation similar to the proof of Proposition 1, we can show that J(p) =
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0.5
h R

1

p
(v

0A+✓�v
1A+v

0B�p)dF (v
1A|p)�

R v0A
p

(v
0A�v

1A)dF (v
1A|p)

i
+0.5

h R v0B+✓

p
(v

0B+✓�

v
1B+v

0A�p)dF (v
1B|p)+

R
1

v0B+✓
(v

0A�p)dF (v
1B|p)�

R
1

p
(v

0A�p)dF (v
1B|p)

i
= 0.5

⇥ R
1

v0A
F (v

1A|p)dv1A+

(v
0A + v

0B + ✓ � p� 1) +
R v0B+✓

p
F (v

1B|p)dv1B
⇤
and that J(p) is decreasing in (0, v

0A).

If p = v
0B, then J(p = v

0B) = 0.5
⇥ R

1

v0A
F (v

1A|v0B)dv1A+v
0A+✓�1+

R v0B+✓

v0B
F (v

1B|v0B)dv1B
⇤
>

0, since v
0A + ✓ � 1 and F (.)  1.

If p = v
0A, J(p = v

0A) = 0.5
⇥ R

1

v0A
F (v

1A|v0A)dv1A+(v
0B+✓�1)+

R v0B+✓

v0A
F (v

1B|v0A)dv1B
⇤
<

0 by our assumption that
R

1

v0A
F (v

1A|v0A)dv1A + (v
0B + ✓ � 1) +

R v0B+✓

v0A
F (v

1B|v0A)dv1B < 0.

Hence, there is a unique root, p⇤
0

in the such that v
0B < p⇤

1

< v
0A.

d) i) In this case, J(p) = 0.5
R

1

p
(v

0A + ✓ � v
1A + v

0B � p)dF (v
1A|p) + 0.5

h R v0B+✓

p
(v

0B +

✓ � v
1B + v

0A � p)dF (v
1B|p) +

R
1

v0B+✓
(v

0A � p)dF (v
1B|p)

i
= 0.5

⇥ R
1

p
F (v

1A|p)dv1A + (v
0A +

v
0B + ✓ � p� 1) +

R v0B+✓

p
F (v

1B|p)dv1B + (v
0A � p)

⇤
. Similar to part b), we can easily show

that J(p) is decreasing in (v
0A, 1).

If p = v
0A, J(p = v

0A) = 0.5
⇥ R

1

v0A
F (v

1A|v0A)dv1A+(v
0B+✓�1)+

R v0B+✓

v0A
F (v

1B|v0A)dv1B
⇤
�

0 by our assumption that
R

1

v0A
F (v

1A|v0A)dv1A + (v
0B + ✓ � 1) +

R v0B+✓

v0A
F (v

1B|v0A)dv1B � 0.

If p = 1, then J(p = 1) = (v
0A + v

0B + ✓ � 2) + v
0A � 1 < 0 since the average valuation is

less than one by our assumption.

Hence, there is a unique root, p⇤
0

in the such that v
0A  p⇤

1

< 1.

ii) In this case, J(p) = 0.5
h R

1

p
(v

0A+✓�v
1A+v

0B�p)dF (v
1A|p)

i
+0.5

h R
1

p
(v

0B+✓�v
1B+

v
0A � p)dF (v

1B|p)
i
= 0.5

⇥ R
1

p
F (v

1A|p)dv1A + 2(v
0A + v

0B + ✓ � p � 1) +
R

1

p
F (v

1B|p)dv1B
⇤
.

Similar to part a), the first order condition is decreasing.

If p = v
0A, J(p = v

0A) = 0.5
⇥ R

1

v0A
F (v

1A|v0A)dv1A+2(v
0B+✓�1)+

R
1

v0A
F (v

1B|v0A)dv1B
⇤
�

0 by our assumption that v
0B + ✓ � 1. If p = 1, then J(p = 1) = (v

0A + v
0B + ✓� 2) < 0 by

our assumption that the average valuation is less than 1.

Hence, there is a unique root, p⇤
0

in the such that v
0A  p⇤

0

< 1. In this case p⇤
0

cannot be

less than v
0A, since

h R
1

v0A
F (v

1A|v0A)dv1A + 2(v
0B + ✓ � 1) +

R
1

v0A
F (v

1B|v0A)dv1B
i
is always

positive.

Lemma 11 a) Only 0 and p⇤
0

solves the FOC.
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b) p⇤
0

satisfies the second order condition.

c) 0 cannot maximize the expected payo↵.

Proof a) From lemma 10, we can write the FOC = J(p)f(p) with the abuse of notation

since J(p) takes di↵erent forms in part a to d. It is easy to see that FOC is equal to zero

only if J(p) = 0 or f(p) = 0.39 In lemma 10, we showed that there is a unique p⇤
0

that makes

J(p) = 0. Hence, FOC(p⇤
0

) = 0. This proves p⇤
0

solves FOC.

By our assumption f(p) = 0 only if p = 0. Hence, only 0, and p⇤
0

solves the FOC.

b) FOC = J(p)f(p), hence SOC = J 0(p)f(p) + J(p)f 0(p). When p = p⇤
0

, J(p⇤
0

) = 0 as

shown in lemma 10, hence, SOC = J 0(p⇤
0

)f(p⇤
0

). This is negative since we have showed in

lemma 10 that J(p) is a decreasing function and f(p⇤
0

) > 0 for any p 2 (0, 1). Note that

p⇤
0

2 (0, 1).

c) It is straightforward to see that it cannot be optimal to drop out from license B at

p = 0. The proof is similar to the one in lemma 11 part c so we skip it.

39One di↵erence from the proof of Proposition 1 is that mA = 1 in this model; hence, 1 does not solve h(.)
and hence, FOC.
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