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Abstract

We propose an adaptively weighted group Lasso procedure for simultaneous

variable selection and structure identification for varying coefficient quantile re-

gression models and additive quantile regression models with ultra-high dimen-

sional covariates. Under a strong sparsity condition, we establish selection con-

sistency of the proposed Lasso procedure when the weights therein satisfy a set

of general conditions. This consistency result, however, is reliant on a suitable

choice of the tuning parameter for the Lasso penalty, which can be hard to make in

practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we call

high-dimensional information criterion (HDIC), and show that the proposed Lasso

procedure with the tuning parameter determined by HDIC still achieves selection

consistency. Our simulation studies support strongly our theoretical findings.
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1 Introduction

We propose adaptively weighted group Lasso (AWG-Lasso) procedures for simultaneous

variable selection and structure identification for varying coefficient quantile regression

models and additive quantile regression models with ultra-high dimension covariates.

Let the number of covariates be denoted by p. Throughout this paper, we assume

p = O(exp(nι)), where n is the sample size and ι is a positive constant specified later in

Assumption A4 and A4’ of Section 5. Under a strong sparsity condition, we establish

selection consistency of AWG-Lasso when its weights, determined by some initial esti-

mates, e.g., Lasso and group Lasso, obey a set of general conditions. This consistency

result, however, is reliant on a suitable choice for the tuning parameter for the Lasso

penalty, which can be hard to make in practice. To alleviate this difficulty, we sug-

gest a BIC-type criterion, which we call high-dimensional information criterion (HDIC),

and show that AWG-Lasso with the penalty determined by HDIC (denoted by AWG-

Lasso+HDIC hereafter) still achieves selection consistency. This latter result improves

previous ones in [20] and the BIC results in [36] since the former does not deal with

semiparametric models and the latter concentrates on linear models. See also [4] and

[18] for recent developments in BIC-type model selection criteria. With the selected

model, one can conduct final statistical inference by appealing to the results in [32] or

[26]. Moreover, our approach can be implemented at several different quantiles, thereby

leading to a deeper understanding of the data in hand.

High dimensional covariate issues have been important and intractable ones. How-

ever, some useful procedures have been proposed, for example, the SCAD in [9], the

Lasso in [28], and the group Lasso in [34] and [24]. The properties of the Lasso were

studied in [37] and [2]. The adaptive Lasso was proposed by [37] and it has the selec-

tion consistency property. The SCAD cannot deal with too many covariates and needs

some screening procedures such as the SIS procedure in [11]. [14] proposed a quantile

based screening procedure. There are some papers on screening procedures for varying

coefficient and additive models, for example, [8], [10], and [19]. Forward type selection

procedures are considered in [31], [16], and [6]. We name [3], [13], and [30] as general

references on high-dimensional issues.

Because parsimonious modelling is crucial for statistical analysis, simultaneous vari-

able selection and structure identification in semiparametric regression models has been

studied by many authors, see, among others, [35], [21], [33], [5], [22], and [15]. Another

important reason to attain this purpose is that in some high-dimensional situations, there
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may be a lack of priori knowledge on how to decide which covariates to be included in

the parametric part and which covariates to be included in the nonparametric part. On

the other hand, to the best of our knowledge, no theoretical sound procedure has been

proposed to achieve the aforementioned goal in the high-dimensional quantile regression

setups. Note that [21] and [22] proposed using the estimated derivatives of coefficient

functions to identify the structures of additive models. These estimated derivatives,

however, usually have slow convergence rates. Moreover, as shown in Section S.2 of the

supplementary document, the conditions imposed on the B-spline basis functions in [21]

and [22] seem too stringent to be satisfied in practice. Instead of relying on the esti-

mated derivatives of coefficient functions, we appeal to the orthogonal decomposition

method through introducing an orthonormal spline basis with desirable properties as in

[15], which is devoted to the study of Cox regression models. Our approach not only

can be justified theoretically under a set of reasonable assumptions, but also enables a

unified analysis of varying coefficient models and additive models.

The Lasso for quantile linear regression is considered in [1] and the adaptively

weighted Lasso for quantile linear regression are considered in [7] and [36]. Some authors

such as [17] and [27] deal with group Lasso procedures for additive models and varying

coefficient models, respectively. [23] applied a reproducing kernel Hilbert space approach

to additive models. [26] deals with SCAD type variable selection for parametric part.

In [26], the authors applied the adaptively weighted Lasso iteratively to obtain their

SCAD estimate starting from the Lasso estimate. However, in the quantile regression

setup, there doesn’t seem to exist any theoretical or numerical result for simultaneous

variable selection and structure identification based on the adaptively weighted group

Lasso, in particular when its penalty is determined by a data-driven fashion. To fill

this gap, we establish selection consistency of AWG-Lasso and AWG-Lasso+HDIC in

Section 3, and illustrate the finite sample performance of AWG-Lasso+HDIC through

a simulation study in Section 4. Our simulation study reveals that AWG-Lasso+HDIC

performs satisfactorily in terms of true positive and true negative rates.

This paper is organized as follows: We describe our procedures in Section 2. We

present our theoretical results in Section 3. The results of numerical studies are given in

Section 4. We state assumptions and prove our main results in Section 5 and describe

some important properties of B-spline bases in Section S.2 of the supplement. Technical

lemmas and the proofs are also given in the supplement.

We end this section with some notation used throughout the paper. A and |A| stand

3



for the complement and the number of the elements of a set A, respectively. For a vector

a, |a| and aT are the Euclidean norm and the transpose, respectively. For a function g

on the unit interval, ∥g∥ and ∥g∥∞ stand for the L2 and sup norms, respectively. We

denote the maximum and minimum eigenvalues of a matrix A by λmax(A) and λmin(A),

respectively. Besides, C, C1, C2, . . ., are generic positive constants and their values may

change from line to line. Note that an ∼ bn means C1 < an/bn < C2 and that a ∨ b and

a∧ b stand for the maximum and the minimum of a and b, respectively. Convergence in

probability is denoted by
p→.

2 Simultaneous variable selection and structure iden-

tification

2.1 Varying coefficient models

Suppose that we have n i.i.d. observations {(Yi,Xi, Zi)}ni=1, whereXi = (Xi1, Xi2, . . . , Xip)
T

is a p-dimensional covariate vector and Zi is a scalar index covariate. Then we assume a

quantile varying coefficient model holds for these observations. First we define the τ -th

quantile check function ρτ (u) and its derivative ρ′τ (u) by

ρτ (u) = u(τ − I{u ≤ 0}) and ρ′τ (u) = τ − I{u ≤ 0}.

Then our model in this subsection is

Yi =

p∑
j=1

Xijgj(Zi) + ϵi, (1)

where Zi ∈ [0, 1] and E{ρ′τ (ϵi) |Xi, Zi} = 0. Usually we take Xi1 ≡ 1 for varying

coefficient models.

To deal with partially linear varying coefficient models, we decompose gj(z) as gj(z) =

gcj + gvj(z), where

gcj =

∫ 1

0

gj(z)dz and gvj(z) = gj(z)− gcj.

We define the index set, S0 = (S0
c ,S0

v ), for the true model, where

S0
c = {j | gcj ̸= 0} and S0

v = {j | gcj(z) ̸≡ 0}.
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The index set for a candidate model can be similarly given by S = (Sc,Sv). In

the following, we refer to S0 and S as the true model and the candidate model, re-

spectively whenever confusion is unlikely. When some j’s satisfy both j ∈ S0
c and

j ̸∈ S0
v simultaneously, our true model is a partially linear varying coefficient model,

for example, S0 = ({1, 2, 3}, {1, 2}) with S0
c = {1, 2, 3} and S0

v = {1, 2}. Moreover,

S1 ⊃ S2 means Sc1 ⊃ Sc2 and Sv1 ⊃ Sv2, where Sj = (Scj,Svj), j = 1, 2. In addition,

S1 ∪ S2 = (Sc1 ∪ Sc2,Sv1 ∪ Sv2).

We use the regression spline method to estimate coefficient functions and the covari-

ates for regression spline are defined by

Wi = Xi ⊗B(Zi), (2)

where B(z) = (B1(z), B2(z), . . . , BL(z))
T is an orthonormal basis constructed from the

equispaced B-spline basis B0(z) = (B01(z), . . . , B0L(z))
T on [0, 1] and ⊗ is the Kroneker

product. We can represent B(z) as B(z) = A0B0(z) and we calculate the L×L matrix

A0 numerically. As in [15], let B(z) satisfy B1(z) = 1/
√
L, B2(z) =

√
12/L(z − 1/2),

and ∫ 1

0

B(z)(B(z))Tdz = L−1IL. (3)

We denote the L × L identity matrix by IL. Note that B1(z) is for gcj (the j-th con-

stant component) and B−1(z) = (B2(z), . . . , BL(z))
T is for gvj(z) (the j-th non-constant

component). More details are given in Section S.2 of the supplement.

To carry out simultaneous variable selection and structure identification, we apply

AWG-Lasso to

Yi = W T
i γ + ϵ′i, (4)

where γ = (γT
1 , . . . ,γ

T
p )

T . For a given λ > 0, the corresponding objective function is

given by

QV (γ;λ) =
1

n

n∑
i=1

ρτ (Yi −W T
i γ) + λ

p∑
j=1

(w1j|γ1j|+ w−1j|γ−1j|), (5)

where {(w1j, w−1j)}pj=1 is obtained from some initial estimates such as Lasso and group

Lasso, and (γ1j,γ
T
−1j)

T = γj, noting that γ1j is for B1(z) and γ−1j is for B−1(z). Mini-

mizing QV (γ;λ) w.r.t. γ, one gets

γ̂λ = argmin
γ∈RpL

QV (γ;λ).
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Denote γ̂λ by (γ̂λ
11, γ̂

λT
−11, . . . , γ̂

λ
1p, γ̂

λT
−1p)

T . Then, the model selected by AWG-Lasso is

Ŝλ = (Ŝλ
c , Ŝλ

v ), where Ŝλ
c = {j | γ̂λ

1j ̸= 0} and Ŝλ
v = {j | γ̂λ

−1j ̸= 0}, and this enables us to

identify variables and structures simultaneously.

Theorem 1 in Section 3 establishes the selection consistency of Ŝλ under a set of

general conditions on {(w1j, w−1j)}pj=1 and a strong sparsity condition on the regression

coefficients that |S0
c | and |S0

v | are bounded. Theorem 1, however, also requires that λ

falls into a suitable interval, which can sometimes be hard to decide in practice. We

therefore introduce a BIC-type criterion, HDIC, to choose a λ in a data-driven fashion.

Express Wi as (v11i,v
T
−11i, · · · , v1pi,vT

−1pi)
T , where (v1ji,v

T
−1ji)

T is the regressor vector

corresponding to γj. For a given model S = (Sc,Sv), define RV (γS) and γ̃S by

RV (γS) =
1

n

n∑
i=1

ρτ (Yi −W T
iSγS) and γ̃S = argmin

γS∈R|Sc|+(L−1)|Sv |
RV (γS), (6)

where WiS ∈ R|Sc|+(L−1)|Sv | consists of {v1ji | j ∈ Sc} and {v−1ji | j ∈ Sv}. The corre-

sponding coefficient vector γS consists of {γ1ji | j ∈ Sc} and {γ−1ji | j ∈ Sv} as well. The

elements of these vectors are suitably arranged. In this paper, we sometimes take two

index sets S1 and S2 satisfying S1 ⊂ S2 and compare γS1 and γS2 by enlarging γS1 with 0

elements or something, for example, (γT
S1
,0T )T . Then (γT

S1
,0T )T and γS2 have the same

dimension and the elements of these vectors are assumed to be conformably rearranged.

The HDIC value for model S is stipulated by

HDIC(S) = logRV (γ̃S) + (|Sc|+ (L− 1)|Sv|)
qn log pn

2n
, (7)

where pn = p ∨ n and qn → ∞ at a slow rate described in Section 5. We consider a set

of models {Ŝλ} chosen by AWG-Lasso, where λ ∈ Λ with Λ being a prescribed set of

positive numbers, and select Ŝ λ̂ among {Ŝλ}, where

λ̂ = argmin
λ∈Λ,|Ŝλ

c |≤Mc,|Ŝλ
v |≤Mv

HDIC(Ŝλ),

with Mc and Mv being known upper bounds for |S0
c | and |S0

v |, respectively. Under some

regularity conditions, the consistency of Ŝ λ̂ is established in Corollary 1.

Note that in the case of high-dimensional sparse linear models, it is shown in [16]

that (7) with ρτ (·) replaced by the squared loss (·)2 can be used in conjunction with the

orthogonal greedy algorithm (OGA) to yield selection consistency. The major difference

between (7) and the BIC-type criteria considered in [20] is that we deal with semipara-

metric models in this paper. It seems difficult to derive the consistency of Ŝ λ̂ in any

high-dimensional regression setups without the additional penalty term qn in (7).
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2.2 Additive models

Next we deal with additive models. Recall we assume some initial estimates are available

here, too. We have no index variable and assume the additivity and Xij ∈ [0, 1] for

j = 1, . . . , p. Hence our model is

Yi = µ+

p∑
j=1

gj(Xij) + ϵi, (8)

where Xij ∈ [0, 1],
∫ 1

0
gj(x)dx = 0, and E{ρ′τ (ϵi) |Xi} = 0. To deal with partially

linear additive coefficient models, we decompose gj(x) as gj(x) = glj(x) + gaj(x), where

glj(x) = cljB2(x) (the j-th linear component) and gaj(x) (the j-th nonlinear component)

satisfies ∫ 1

0

glj(x)gaj(x)dx = 0.

Our regression spline model is given by

Yi = µ+W T
i γ−1 + ϵ′i, (9)

where γ−1 = (γT
−11, . . . ,γ

T
−1p)

T and Wi = (BT
−1(Xi1), . . . ,B

T
−1(Xip))

T , with γ−1j and

B−1(z) defined as in Subsection 2.1. Denote the true model by S0 = (S0
l ,S0

a), where

S0
l = {j | glj ̸= 0} and S0

a = {j | gaj(x) ̸≡ 0}.

When some j’s satisfy both j ∈ S0
l and j ̸∈ S0

a simultaneously, our true model is a

partially linear additive model.

We describe the details of our simultaneous variable selection and structure identifica-

tion procedure for additive models. First express γ−1j as γ−1j = (γ2j,γ
T
−2j)

T , noting that

γ2j is forB2(Xij) =
√

12/L(Xij−1/2) and γ−2j is forB−2(Xij) = (B3(Xij), . . . , BL(Xij))
T .

For a given λ, the AWG-Lasso objective function is

QA(γ−1;λ) =
1

n

n∑
i=1

ρτ (Yi − µ−W T
i γ−1) + λ

p∑
j=1

(w2j|γ2j|+ w−2j|γ−2j|), (10)

where {(w2j, w−2j)}pj=1 are obtained from some initial estimates. Minimizing QA(γ−1;λ)

w.r.t. γ−1, one gets

γ̂λ
−1 = argmin

γ−1∈Rp(L−1)

QA(γ−1;λ),

where γ̂λ
−1 = (γ̂λ

21, γ̂
λT
−21, . . . , γ̂

λ
2p, γ̂

λT
−2p)

T . Then, the model selected by AWG-Lasso is

Ŝλ = (Ŝλ
l , Ŝλ

a ), where Ŝλ
l = {j | γ̂λ

2j ̸= 0} and Ŝλ
a = {j | γ̂λ

−2j ̸= 0}. Like Subsection
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2.1, this subsection also considers using HDIC to choose a suitable λ from a prescribed

set Λ of positive numbers. Denote Wi in (9) by (v21i,v
T
−21i, . . . , v2pi,v

T
−2pi)

T , where

(v2ji,v
T
−2ji)

T is the regressor vector corresponds to γ−1j. For a given model S = (Sl,Sa),

define

RA(γS) =
1

n

n∑
i=1

ρτ (Yi − µ−W T
iSγS) and γ̃S = argmin

γS∈R|Sl|+(L−2)|Sa|
RA(γS), (11)

where WiS ∈ R|Sl|+(L−2)|Sa| consists of {v2ji | j ∈ Sl} and {v−2ji | j ∈ Sa} and the corre-

sponding coefficient γS ∈ R|Sl|+(L−2)|Sa| is conformably defined as in (6).

The HDIC value for model S is stipulated by

HDIC(S) = logRA(γ̃S) + (|Sl|+ (L− 2)|Sa|)
qn log pn

2n
, (12)

where pn and qn are defined as in Subsection 2.1. Let Ml and Ma be some known upper

bounds for |S0
l | and |S0

a |, respectively. We suggest choosing model Ŝ λ̂, where

λ̂ = argmin
λ∈Λ,|Ŝλ

l |≤Ml,|Ŝλ
a |≤Ma

HDIC(Ŝλ).

3 Consistency results

We prove the consistency of AWG-Lasso and AWG-Lasso+HDIC separately in Subsec-

tion 3.1 and 3.2. It is worth pointing out that due to the similarity between (4)-(7)

and (9)-(12), the theoretical treatment is almost the same for the two types of models

considered in this paper. Therefore, this section concentrates only on the varying coef-

ficient model. On the other hand, our numerical studies are conducted for both types

of models, see Section 4.

3.1 Adaptively weighted group Lasso

The consistency of AWG-Lasso for suitably chosen λ and weights is stated in Theorem

1. The proof of Theorem 1 is reliant on the methods of [7], [36], and [26] subject to non-

trivial modifications. The details are deferred to Section 5. For clarity of presentation,

all the technical assumptions of Theorem 1 are also given in Section 5. Roughly speaking,

we assume that the coefficient functions have second order derivatives and we put L =

cLn
1/5. More smoothness is necessary for Theorem 2. If Xij is uniformly bounded, the

Hölder continuity of the second order derivatives with exponent α = 1/2 is sufficient for

Theorem 2.
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Define dV (S) = |Sc| + (L − 1)|Sv| and let wS0 denote a weight vector consisting of

{w1j | j ∈ S0
c } and {w−1j | j ∈ S0

v}. For an index set S, we define γ̂λ
S by

γ̂λ
S = argmin

γS∈RdV (S)

QV (γS ;λ).

Then γ̂λ
S0 is an oracle estimator on RdV (S0) with the knowledge of S0. Assumption A2

assumes that the relevant coefficients and the coefficient functions are large enough to

be detected.

Theorem 1 Assume that Assumptions A1, A3-5 and B1–4 in Section 5 hold. Moreover,

assume

max
j∈S0

c

w1j ∨max
j∈S0

v

w−1j = Op(1), (13)

and for some 0 < a1, a2 < ∞,

min
j ̸∈S0

c

w1j ≥ (a1|wS0|) ∨ 1 and min
j ̸∈S0

v

w−1j ≥ (a2|wS0|) ∨ 1, (14)

with probability tending to 1. We enlarge γ̂S0 by adding 0 elements for the S0c part so

that (γ̂λT
S0 ,0T )T ∈ RpL and define Ŝλ from this (γ̂λT

S0 ,0T )T . Then for any λ satisfying

a3
(log pn)

1/2

n1/2
≤ λ ≤ (log n)κ

(log pn)
1/2

n1/2
(15)

asymptotically, where a3 is a sufficiently large constant and κ is any positive constant,

(γ̂λT
S0 ,0T )T is actually an optimal solution to minimizing QV (γ;λ) w.r.t. γ ∈ RpL with

probability tending to 1. If Assumption A2 also holds, we have for Ŝλ defined here that

lim
n→∞

P(Ŝλ = S0) = 1.

The order of L1/2λ in (15) is the standard one in the literature since (log pn)
1/2 is

from the large number of covariates and (L/n)1/2 is the standard rate for regression

spline estimation. Recall that our normalization factor of the orthonormal basis is 1/L.

The upper bound of λ in Theorem 1 is a technical one since we approximate RV (γ) by

a quadratic function in γ on a suitable bounded region.

We need an initial estimate γ = (γ11,γ
T
−11, . . . , γ1p,γ

T
−1p)

T from the group Lasso as in

[27] and [17] to construct weights for AWG-Lasso. Note that L−1/2|γ1j| and L−1/2|γ−1j|
are estimates of |gcj| and ∥gvj∥, respectively. They have the convergence rates smaller

than CL1/2λ for some sufficiently large C and λ in Theorem 1. Hence

w1j = (L−1/2|γ1j|)−η and w−1j = (L−1/2|γ−1j|)−η (16)

9



satisfy the conditions (13) and (14) for any positive η when the norms of the relevant co-

efficients and the relevant functions are larger than a fixed non-zero constant. Otherwise

we should adjust the range of λ by multiplying λ by a suitable constant and dividing

the weights in (16) by the suitable constant, respectively so that the assumption on λ,

(13), and (14) can hold for these adjusted ones. However, we usually have no knowledge

of |gcj| and ∥gvj∥ in advance and this kind of adjustment is infeasible. Then we should

carry out search for an optimal λ on a larger interval than specified by Theorem 1 in

practical situations.

When Assumption A2 holds and we use the wights based on the local linear approx-

imation (LLA) to the SCAD penalty as in Section 4, the weights in (19) and (20) satisfy

(13) and (14) due to the properties of the SCAD penalty. Some authors as [26] applied

this kind of AGW-Lasso iteratively to calculate their SCAD estimates.

3.2 Consistency of AWG-Lasso+HDIC

To state the main result of this subsection, we need to introduce Assumption A1, which

assumes that |S0
c | ≤ Cc and |S0

v | ≤ Cv for some fixed Cc and Cv. Let Mc and Mv be

known positive integers fixed with n such that Cc < Mc and Cv < Mv. Define

Ŝ = argmin
|Sc|≤Mc and |Sv |≤Mv

HDIC(S).

Under certain regularity conditions, the next theorem and corollary show that both Ŝ
and Ŝ λ̂ are consistent estimates of S0. We need to replace Assumptions A2–5 and B1–4

with Assumptions A2’–A5’ and B1’–B4’ to carry out subtle evaluations of RV (γS) in

the proof since we deal with high-dimensional semiparametric models. All the technical

assumptions of Theorem 2 are also given in Section 5.

Theorem 2 Assume that Assumptions A1,A2’–A5’, B1’–B4’ and B5 in Section 5 hold.

Then,

lim
n→∞

P (Ŝ = S0) = 1.

Theorem 1 gives a suitable set of λ, Λ, as in Corollary 1 for which {Ŝλ |λ ∈ Λ}
includes S0 with probability tending to 1. Thus the consistency of the proposed AWG-

Lass+HDIC procedure immediately follows from Theorems 1 and 2.
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Corollary 1 We assume the same assumptions as in Theorem 2 and that (13) and (14)

hold true. Then for Λ satisfying Λ ⊂ [c−1
n

√
log pn/n, cn

√
log pn/n] and {cn

√
log pn/n} ∈

Λ, where cn → ∞ and cn/(log n)
κ → 0 for some κ > 0, we have

lim
n→∞

P (Ŝ λ̂ = S0) = 1.

Some comments are in order. While Ŝ can achieve selection consistency without

the help of AWG-Lasso, it seems difficult to obtain Ŝ directly when p is large and Mc

and Mv are not very small. On the other hand, Ŝ λ̂ is applicable in most practical

situations. We also note that Theorem 2 extends the result in [20] and can be viewed

as a generalization of the BIC result in [36] to the semiparametric setup, which is of

fundamental interest from both theoretical and practical perspectives. Like [36], [18]

also confines its attention to linear quantile models. Moreover, it seems difficult to

extend the proof in [18] to situations where the dimension of the true model tends to

infinity. Finally, we mention that there is another version of HDIC,

HDICII(S) = RV (γ̃S) + (|Sc|+ (L− 1)|Sv|)
qn log pn

2n
, (17)

which becomes

HDICII(S) = RV (γ̃S) + (|Sl|+ (L− 2)|Sa|)
qn log pn

2n
(18)

in the case of additive models. It can be shown that HDICII and HDIC share the same

asymptotic properties and their finite sample performance will be compared in the next

section.

4 Numerical studies

In this section, we evaluate the performance of AWG-Lasso+HDIC and AWG-Lasso+HDICII

using one varying coefficient model and two additive models in the case of pL > n. We

set qn = 1 in these numerical studies since the optimal choice of qn in finite sample

remains unsettled and is worth further investigation.

We start by assigning {(w1j, w−1j)} and {(w2j, w−2j)} used for (5) and (10), respec-

tively. We only focus on {(w1j, w−1j)} because {(w2j, w−2j)} can be assigned in a similar

fashion. With the initial estimates (γ1j,γ−1j) obtained from the quantile regression with

the Lasso penalty, we apply one-step LLA (see [12]) based on the SCAD penalty as in

[26] to obtain {(w1j, w−1j)}. More specifically, we set

λw1j|γ1j| = p′λL1/2(L
−1/2|γ1j|)(L−1/2|γ1j|), (19)

11



and

λw−1j|γ−1j| = p′λL1/2(L
−1/2|γ−1j|)(L−1/2|γ−1j|), (20)

where pλ(·) is the SCAD penalty function. Recall the definition of the spline basis in (3),

whose normalization factor is L−1, and see a comment after Theorem 1 and Assumption

A2 to get a better understanding of the role played by L1/2 in (19) and (20). Note that a

standard theory for the group Lasso as in [17] and [27] ensures that the weights imposed

in (19) and (20) obey (13) and (14).

In our simulation study, (n, p) is set to (500, 400) or (1500, 2000), L = 6, τ = 0.5,

Mc = Mv = Ml = Ma = 20 and

Λ =
{
c−1
n

√
log p/n+ kdn, k = 1, . . . , 50

}
,

where cn = 2 log n and

dn =
(cn − c−1

n )
√

log p/n

50
.

Based on a λ ∈ Λ and the weights described above, we employ the alternating direction

method of multipliers (ADMM) to minimize (5) ((10)) over γ (γ−1), and then choose

the λ minimizing HDIC(Ŝλ) defined in (7) ((12)) over λ ∈ Λ, and the λ minimizing

HDICII (Ŝλ) defined in (17) ((18)) over the same set. For each of the following three

examples, we conduct 50 simulations and record the performance of AWG-Lasso+HDIC

and AWG-Lasso+HDICII in Tables 1–3.

Example 1. We generate the output variables Y1, . . . , Yn using the varying coefficient

model,

Yi =

p∑
j=1

Xijgj(Zi) + ϵi,

where ϵi, Zi and {Xij}pj=1 are independently generated from N(0, 0.52), U(0, 1) and

U(0, 100) distributions, respectively. Following [15], the coefficient functions gj(z) are

set to

g1(z) = g2(z) = 1, g3(z) = 4z, g4(z) = 4z2, gj(z) = 0, 5 ≤ j ≤ p.

Therefore, Xi1 and Xi2 are relevant covariates with constant coefficients, Xi3 and Xi4 are

relevant covariates with non-constant coefficients, whereas Xi,5, . . . , Xi,p, are irrelevant

12



variables. Note that our goal is to identify not only relevant variables, but also the

structures of relevant coefficients. To this aim, we first define

Csj = I{gj(·) is identified as a constant function at the sth replication},

NCsj = I{gj(·) is identified as a non-constant function at the sth replication},

NSsj = I{gj(·) is identified as a zero function at the sth replication}.

It is clear that Csj + NCsj + NSsj = 1 for each 1 ≤ j ≤ p. We further define the true

negative rate (TNR) and the strictly true positive rate (STPR),

TNRs =

∑p
j=5 I{NSsj=1}

p− 4
,

STPRs =

∑2
j=1 I{Csj=1} +

∑4
j=3 I{NCsj=1}

4
,

noting that STPRs = 1 if at the sth replication, Xi1 and Xi2 are identified as relevant

variables with constant coefficients and Xi3 and Xi4 are identified as relevant variables

with non-constant coefficients. Therefore, STPRs can be viewed as a stringent version of

the conventional true positive rate, which treats constant and non-constant coefficient

functions indifferently. Now, the performance measures of the proposed methods are

specified as follows:

Cj =
1

50

50∑
s=1

Csj, NCj =
1

50

50∑
s=1

NCsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs.

The performance of AWG-Lasso+HDIC and AWG-Lasso+HDICII on (Cj, NCj, NSj), j =

1, . . . , 4, STPR and TNR is demonstrated in Table 1. Table 1 shows that AWG-

Lasso+HDIC and AWG-Lasso+HDICII have high capability in identifying the true vari-

ables and true structures in the sense that C1=C2=NC3=NC4=STPR=1 hold for every

method and every (n, p) pair. Table 1 also reveals that AWG-Lasso+HDICII performs

quite satisfactorily in identifying irrelevant variables since all of its TNR values are equal

to 1. On the other hand, AWG-Lasso+HDIC tends to erroneously choose some irrele-

vant variables in the case of (n, p) = (500, 400). This situation, however, is somewhat

alleviated when (n, p) becomes (1500, 2000).

Example 2. We generate Y1, . . . , Yn from the following additive model,

Yi = µ+

p∑
j=1

gj(Xij) + ϵi, (21)

13



where µ = 0, ϵi and {Xij}pj=1 follow N(0, 0.52) and U(0, 1), respectively. Following [15]

again, we set

g1(x) = g2(x) = 21/2(x− 1/2), g3(x) = 2−1/2 cos(2πx) + (x− 1/2),

g4(x) = sin(2πx), gi(x) = 0, 5 ≤ i ≤ p,
(22)

noting that Xi1 and Xi2 are relevant through the linear functions g1(·) and g2(·), whereas
Xi3 and Xi4 are relevant through the nonlinear functions g3(·) and g4(·). Let NSsj and

TNRs be defined as in Example 1, and define

Lsj = I{gj(·) is identified as a linear function at the sth replication},

NLsj = I{gj(·) is identified as a non-linear function at the sth replication},

STPRs =

∑2
j=1 I{Lsj=1} +

∑4
j=3 I{NLsj=1}

4
.

Then, the performance measures of the proposed methods in this example are given by

Lj =
1

50

50∑
s=1

Lsj, NLj =
1

50

50∑
s=1

NLsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs,

and summarized in Tables 2. Table 2 shows that L1 = L2 = 1 hold for every method

and every (n, p) pair, implying that AWG-Lasso+HDIC and AWG-Lasso+HDICII can

easily identify relevant linear functions. On the other hand, when (n, p) = (500, 400),

AWG-Lasso+HDICII tends to be more conservative in choosing nonlinear structures

than AWG-Lasso+HDIC because while the NL3 and NL4 of the latter still achieve the

highest possible value of 1, the NL3 and NL4 of the former are slightly less than 1.

However, as (n, p) becomes (1500, 2000), NL3 =NL4 = 1 are attained by both methods.

These results also coincide with the corresponding results for STPR. The TNR values

of AWG-Lasso+HDICII (AWG-Lasso+HDIC) increase (decrease) from 0.994 to 0.998

(0.989) when (n, p) changes from (500, 400) to (1500, 2000), revealing that both methods

tend to include a few irrelevant functions. Moreover, the false positive problem of AWG-

Lasso+HDIC appears to have slightly worsened when p grows faster than n.

Example 3. Suppose that Y1, . . . , Yn are still generated from model (21), but with

(22) replaced by

g1(x) =
3 sin(2πx)

(2− sin(2πx))
− 0.4641016, g2(x) = 6x(1− x)− 1, g3(x) = 2x− 1,

g4(x) = x− 0.5, g5(x) = −x+ 0.5, gi(x) = 0, 6 ≤ i ≤ p,

(23)
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Table 1: (Ci,NCi,NSi), i = 1, . . . , 4, STPR, and TNR in Example 1

(n, p) = (500, 400)

(C1,NC1,NS1 ) (C2,NC2,NS2) (C3,NC3,NS3 ) (C4,NC4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.948

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 1.0

(n, p) = (1500, 2000)

(C1,NC1,NS1 ) (C2,NC2,NS2) (C3,NC3,NS3 ) (C4,NC4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.999

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 1.0

which are suggested in [21]. As observed in (23), Xi1 and Xi2 are relevant through

the nonlinear functions g1(·) and g2(·), and Xi3 ∼ Xi5 are relevant through the linear

functions g3(·) ∼ g5(·). With

TNRs =

∑p
j=6 I{NSsj=1}

p− 5
,

STPRs =

∑2
j=1 I{NLsj=1} +

∑5
j=3 I{Lsj=1}

5
,

the performance measures of the proposed methods in this example are given by

Lj =
1

50

50∑
s=1

Lsj, NLj =
1

50

50∑
s=1

NLsj,NSj =
1

50

50∑
s=1

NSsj,

TNR =
1

50

50∑
s=1

TNRs, STPR =
1

50

50∑
s=1

STPRs,

and summarized in Table 3. As observed in Table 3, NL1 = NL2 = L3 = L4 = L5 = 1

hold for every method and every (n, p) pair, suggesting that AWG-Lasso+HDIC and

AWG-Lasso+HDICII perform perfectly in identifying the relevant variables as well as

the corresponding functional structures. The performance of the two methods on TNR

in this example is similar to that in example 2.

In conclusion, we note that the results of this section, together with those obtained

in the previous sections, demonstrate that AWG-Lasso+HDIC and AWG-Lasso+HDICII

have a strong ability to simultaneously identify the relevant variables and their corre-

sponding structures in the high-dimensional quantile regression setup, a feature rarely

reported in the literature. Moreover, while AWG-Lasso+HDIC seems to have a better

STPR than AWG-Lasso+HDICII, the latter tends to outperform the former in terms of

TNR.
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Table 2: (Li,NLi,NSi), i = 1, . . . , 4, STPR, and TNR in Example 2

(n, p) = (500, 400)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) 1.0 0.994

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 0.94, 0.06) (0.06, 0.94, 0.0) 0.97 0.994

(n, p) = (1500, 2000)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) STPR TNR

AWG-Lasso+HDIC (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 1.0) (0.0, 1.0, 1.0) 1.0 0.989

AWG-Lasso+HDICII (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (0.0, 1.0, 1.0) (0.0, 1.0, 1.0) 1.0 0.998

Table 3: (Li,NLi,NSi), i = 1, . . . , 5, STPR, and TNR in Example 3

(n, p) = (500, 400)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) STPR TNR

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.993

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.993

(n, p) = (1500, 2000)

(L1,NL1,NS1 ) (L2,NL2,NS2) (L3,NL3,NS3 ) (L4,NL4,NS4 ) (L5,NL5,NS5 ) STPR TNR

AWG-Lasso+HDIC (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.991

AWG-Lasso+HDICII (0.0, 1.0, 0.0) (0.0, 1.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) (1.0, 0.0, 0.0) 1.0 0.997

5 Proofs of the main theorems

First we introduce notation and assumptions. Then we prove Theorems 1 and 2. All

the technical proofs are given in the supplement.

We denote the conditional probability and expectation on {(Xi, Zi)}ni=1 by Pϵ(·) and
Eϵ(·), respectively.

Assumption A1 is about |S0
c | and |S0

v |.
Assumption A1: There are bounded constants Cc, Cv, Mc, and Mv such that

|S0
c | ≤ Cc < Mc and |S0

v | ≤ Cv < Mv.

We know Mc and Mv in advance.

This assumption looks restrictive and we may be able to relax this assumption

slightly. However, there are still many assumptions and parameters and we decided

not to introduce more complications to relax Assumption A1. Note that we can easily

relax the conditions on Cc only for Theorem 1 if∑
j∈S0

c

w2
1j = Op(1).
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Assumptions A2 and A2’ are about the relevant non-zero coefficients and coefficient

functions. We need to assume that they are large enough to be detected for our con-

sistency results. Recall that L is the dimension of the spline basis and referred to in

Assumption A3 and that qn appeared in (7).

Assumption A2: We have in probability

minj∈S0
c
|gcj| ∧minj∈S0

v
∥gvj∥

L1/2{(n−1 log pn)1/2 + λ|wS0|}
→ ∞.

Assumption A2’: We have

minj∈S0
c
|gcj| ∧minj∈S0

v
∥gvj∥

q
1/2
n (n−1L log pn)1/2

→ ∞.

Next we consider the smoothness of relevant non-zero coefficient functions and spline

approximation.

Assumption A3: We take L = cLn
1/5 and use linear or smoother splines. Besides, we

have for some positive Cg,∑
j∈S0

c∪S0
v

(∥gj∥∞ + ∥g′j∥∞ + ∥g′′j ∥∞) ≤ Cg.

When Assumption A3 holds, there exists γ∗
j = (γ∗

1j,γ
∗T
−1j)

T ∈ RL for every j ∈ S0
c ∪S0

v

such that ∑
j∈S0

c∪S0
v

∥gj − γ∗T
j B∥∞ ≤ C1L

−2,

γ∗
1j = L1/2gcj, and

∑
j∈S0

v

∥gvj − γ∗T
−1jB−1∥∞ ≤ C2L

−2,

where C1 and C2 depend only on Cg and the order of the spline basis. Let γ∗
S0 consist

of γ∗
1j, j ∈ S0

c , and γ∗
−1j, j ∈ S0

v . For S including the true S0, γ∗
S means a vector

of coefficients for our spline basis to approximate gj up to the order of L−2. When

j ∈ Sc ∩S0
c or j ∈ Sv ∩S0

v , the corresponding elements are put to 0. The other elements

are γ∗
1j, j ∈ S0

c , and γ∗
−1j, j ∈ S0

v . See section S.2 in the supplement for more details on

the above approximations.

We define some notation related to spline approximation, δi, δij, ϵ
′
i, and τi, by δij =

gj(Zj)− γ∗T
j B(Zi),

δi =
∑

j∈S0
c∪S0

v

Xij(gj(Zi)− γ∗T
j B(Zi)) =

∑
j∈S0

c∪S0
v

Xijδij,

ϵ′i = ϵi + δi, and τi = Pϵ(ϵ
′
i ≤ 0). (24)
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Under Assumptions A3 and A4 below, we have uniformly in i and j,

|δij| = O(L−2) and |δi| ≤ C1XML−2 → 0

for some positive C1, where let XM be a constant satisfying

max
i,j

|Xij| ≤ XM .

We allow XM to diverge as in Assumptions A4 and A4’. Note that

1

n

n∑
i=1

δ2i ≤
{
n−1

n∑
i=1

( ∑
j∈S0

c∪S0
v

X2
ij

)2}1/2{
n−1

n∑
i=1

( ∑
j∈S0

c∪S0
v

δ2ij

)2}1/2

. (25)

When we examine the properties of our BIC type criteria, we need more smoothness

of the coefficient functions to evaluate the approximation bias. We replace Assumption

A3 with Assumption A3’ for simplicity of presentation. In fact, the Hölder continuity

of g′′j with exponent α ≥ 1/2 is sufficient if X4
ML−2α = O(L−1). If XM is bounced, the

proof of Theorem 2 will work if α = 1/2. See Lemma 3 at the end of this section. When

we assume Assumption A3’, we can replace L−2 with L−3 in the above approximations.

Assumption A3’: We take L = cLn
1/5 and use quadratic or smoother splines. Besides,

we have for some positive Cg,∑
j∈S0

c∪S0
v

(∥gj∥∞ + ∥g′j∥∞ + ∥g′′j ∥∞ + ∥g(3)j ∥∞) ≤ Cg.

Next we state assumptions on XM , p, and qn. When we consider additive models,

we can take XM = 1. Assumptions A4 and A4’ imply that ι in p = O(exp(nι)) is less

than 1/5.

Assumption A4: For any positive k,

XM(log pn)
1/2n−1/10(log n)k → 0. (26)

Besides, E{B2
0l(Z1)X

2
1j} = O(L−1) and E{B0l(Z1)|X1j} = O(L−1) uniformly in l and j.

Recall that B0l(z) is the l-th element of the B-spline basis.

Assumption A4’: In Assumption A4, (26) is replaced with

XM(log pn)
1/2q3/2n n−1/10(log n)k → 0.

Next we state assumptions on the conditional distribution of ϵi on (Xi, Zi). We

denote the conditional distribution function by Fi(ϵ) and the conditional density function

by fi(ϵ).
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Assumption A5: There exist positive Cf1, Cf2, and Cf3 such that uniformly in i,

|Fi(u+ δ)− Fi(δ)− ufi(δ)| ≤ Cf1u
2 and fi(δ) ≤ Cf2

when |δ|+ |u| ≤ Cf3.

Assumption A5’: In addition to Assumption A5, E{|ϵi|} < ∞ and when |a| → 0, we

have uniformly in i,

Eϵ[(a− ϵi − δi)I{0 < ϵi + δi ≤ a}] = a2

2
fi(−δi) +O(|a|3) for a > 0,

and

Eϵ[(ϵi + δi − a)I{a < ϵi + δi ≤ 0}] = a2

2
fi(−δi) +O(|a|3) for a < 0.

Actually, when a > 0 and a → 0, we have under some regularity conditions that∫ a−δi

−δi

(a− ϵi − δi)fi(ϵ)dϵ =
a2

2
fi(−δi) +O(a3).

We introduce some more notation and another kind of assumptions to describe prop-

erties of the adaptively weighted Lasso estimators.

We define two index sets SM and SC+M . These index sets are defined for Theorem

2 and they are related to Assumption A1.

SM = {S | S0 ⊂ S, |Sc| ≤ Mc, and |Sv| ≤ Mv} (27)

and

SC+M = {S | S0 ⊂ S, |Sc| ≤ Cc +Mc, and |Sv| ≤ Cv +Mv} (28)

We define some random variables related to WiS and describe assumptions on those

random variables. The assumptions on those random variables follow from similar as-

sumptions on their population versions and standard technical arguments. We omit the

assumptions on the population versions and standard technical arguments here since

they are just standard ones in the literature.

We define Θ1(S) by

Θ1(S) =
1

n

n∑
i=1

|WiS |2 =
1

n

n∑
i=1

L−1
∑
j∈Sc

|Xij|2 +
1

n

n∑
i=1

|B−1(Zi)|2
∑
j∈Sv

|Xij|2.
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For technical and notational convenience, we redefine Θ1(S) by Θ1(S) ∨ 1.

Assumption B1: For some positive CB1, we have Θ1(S0) ≤ CB1 with probability

tending to 1,

Assumption B1 follows from some mild moment conditions under Assumption A1.

We define Θ2(S) and Θ3(S) by

Θ2(S) = Lλmin(Σ̂S) and Θ3(S) = Lλmax(Σ̂S),

where Σ̂S = n−1
∑n

i=1 fi(−δi)WiSW
T
iS . The following assumptions are about their eigen-

values. Recall that our normalization factor of the basis is L−1.

Assumption B2: For some positive CB2, we have Θ2(S0) ≥ CB2 with probability

tending to 1.

Assumption B2’: For some positive C ′
B2, we have Θ2(S) ≥ C ′

B2 uniformly in S ∈ SC+M

with probability tending to 1.

Assumption B3: For some positive CB3, we have with probability tending to 1

Θ3(S0 ∪ ({j}, ϕ)) ≤ CB3 uniformly in j ∈ S0
c and

Θ3(S0 ∪ (ϕ, {j})) ≤ CB3 uniformly in j ∈ S0
v .

Assumption B3’: For some positive C ′
B3, we have with probability tending to 1

Θ3(S) ≤ C ′
B3 uniformly in S ∈ SC+M .

We define Θ4 by

Θ4 =
1

n

n∑
i=1

∑
j∈S0

v

X2
ij.

Assumption B4: For some positive CB4, we have Θ4 ≤ CB4 with probability tending

to 1.

Assumption B4’: In addition to Assumption B4, we have for some positive C ′
B4,

n−1

n∑
i=1

( ∑
j∈S0

c∪S0
v

X2
ij

)2
≤ C ′

B4 with probability tending to 1.

Assumption B4’ is used to control (25). Assumptions B4 and B4’ follow from mild

moment conditions under Assumption A1.
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We define Θ5(S) by Θ5(S) = max1≤i≤n |WiS |2. Notice that there are positive con-

stants C1 and C2 such that

|WiS |2 = L−1
∑
j∈Sc

X2
ij + |B−1(Zi)|2

∑
j∈Sv

X2
ij (29)

≤ C1X
2
M(L−1|Sc|+ |Sv|) ≤ C2X

2
M

for any S ∈ SC+M under Assumption A1.

We define Ω̂S by Ω̂S = n−1
∑n

i=1 τi(1− τi)WiSW
T
iS . The last assumption is about its

eigenvalues. Recall that τi is defined in (24).

Assumption B5: There is a positive constant CB5 such that uniformly in S ∈ SC+M ,

1

CB5

≤ Lλmin(Ω̂S) ≤ Lλmax(Ω̂S) ≤ CB5 with probability tending to 1.

We state Proposition 1 before we prove Theorem 1. The proposition gives the con-

vergence rate of the AWG-Lasso estimator. We prove this proposition by following that

of Theorem 1 in [7] in the supplement.

We use the proposition with S = S0 or with S ∈ SC+M and λ = 0. Let wS be a

vector consisting of {w1j | j ∈ Sc} and {w−1j | j ∈ Sv}. Then we define |wS | and Kn by

|wS |2 =
∑
j∈Sc

w2
1j +

∑
j∈Sv

w2
−1j and Kn(S) =

√
n−1Θ1(S) log pn + λ|wS |.

Tentatively we assume the weights are constants, not random variables.

Proposition 1 Suppose that S0 ⊂ S and Assumptions A1 and A3-5 hold. Besides we

assume (Θ5(S)
Θ2(S)

)1/2
(Θ

−1/2
2 (S) ∨Θ

1/2
4 )Kn(S)L → 0 (30)

and we define ηn by ηn = CMLKn(S), where CM satisfies

CM ≥ b1

{ 1

Θ2(S)
∨
( Θ4

Θ2(S)

)1/2}
(31)

for sufficiently large b1 depending on b2 in (32). Then we have for any fixed positive b2

that

Pϵ(|γ̂λ
S − γ∗

S | ≥ ηn) ≤ exp(−b2 log pn). (32)

Later we use Assumptions B1-4 to control random variables in (30) and (31) in

Proposition 1. Here some remarks on Proposition 1 are in order.
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Remark 1 When wS is a random vector and λ > 0, “→ 0” in (30) should be replaced

with “
p→ 0.” Besides, when for some positive C1, C2, and C3,

P(C1 ≤ Θ2(S), Θ1(S) ≤ C2, Θ4 ≤ C3) → 1,

the RHS of (31) is bounded from above in probability and Θ1(S) in Kn(S) can be

replaced with a constant. Thus we have

P(|γ̂λ
S − γ∗

S | ≥ ηn) → 0

under (30) in probability with a fixed CM . Especially when S = S0,

ηn ∼ L{(n−1 log pn)
1/2 + λ|wS0|}.

Remark 2 Since Θ5(S0) ≤ C4X
2
M for some positive C4 under Assumption A1, (30)

reduces to XML{(n−1 log pn)
1/2 + λ|wS0|} p→ 0 in the setup of Remark 1 with S = S0

and this is not a restrictive condition.

Remark 3 When λ = 0 and the assumptions in Theorem 2 hold, we have for γ̂λ
S = γ̃S

that

|γ̂λ
S − γ∗

S | = |γ̃S − γ∗
S | ≤ C5L(n

−1 log pn)
1/2

uniformly in S ∈ SC+M with probability tending to 1 for some positive C5. We use this

result in the proof of Theorem 2.

We provide the proof of Theorem 1. We define ΓS(M) by

ΓS(M) = {γS ∈ RdV (S) | |γS − γ∗
S | ≤ M} (33)

Proof of Theorem 1) First we prove (γ̂λ
S0 ,0T )T ∈ RpL is an global minimizer of (5)

by checking the following conditions (34) and (35). These conditions follow from the

standard optimization theory as in [36] and [26]. In addition to (34) as in [36] and [26],

we should deal with (35) since we are employing group penalties. Hereafter in this proof,

we omit the superscript λ and write γ̂S0 for γ̂λ
S0

With probability tending to 1, we have∣∣∣ 1
n

n∑
i=1

L−1/2Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw1j for any j ∈ S0

c (34)
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and ∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw−1j for any j ∈ S0

v . (35)

We verify only (35) since (34) is easier.

Proposition 1, Remark 1, and the conditions of the theorem imply that

|γ̂S0 − γ∗
S0 | ≤ C1L{(n−1 log pn)

1/2 + λ|wS0|) ≤ C2L(n
−1 log pn)

1/2(log n)kλ (36)

with probability tending to 1 for some positive C1 and C2. We define Vj(γS0) by

Vj(γS0) = n−1

n∑
i=1

B−1(Zi)Xij

{
ρ′τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ∗

S0)
}

− Eϵ

[
n−1

n∑
i=1

B−1(Zi)Xij

{
ρ′τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ∗

S0)
}]

By considering the upper bounds given in (36), we can take a positive constant Cξ

for any small positive ξ such that with probability larger than 1− ξ,∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ (37)

≤
∣∣∣Eϵ

[ 1
n

n∑
i=1

B−1(Zi)Xij{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ∗
S0)}

]
γS0=γ̂S0

∣∣∣
+

∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ∗
S0)
∣∣∣+ max

γS0∈ΓS0 (CξL(n−1 log pn)1/2(logn)kλ )
|Vj(γS0)|.

We use the following two lemmas to evaluate (37). These lemmas are to be proved

in the supplement.

Lemma 1 For some positive C1, we have∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ∗
S0)
∣∣∣ ≤ C1(n

−1 log pn)
1/2

uniformly in j ∈ S0
v with probability tending to 1

Lemma 2 Take any fixed positive C and k and fix them. Then we have

max
γS0∈ΓS0 (CL(n−1 log pn)1/2(logn)k)

|Vj(γS0)| = op(λ)

uniformly in j ∈ S0
v .
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Finally we evaluate

Eϵ

[ 1
n

n∑
i=1

B−1(Zi)Xij{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ∗
S0)}

]
γS0=γ̂S0

(38)

=
1

n

n∑
i=1

B−1(Zi)Xij{Fi(−δi)− Fi(−δi +W T
iS0(γ̂S0 − γ∗

S0))}.

Setting ∆̂0 = γ̂S0 − γ∗
S0 and recalling Assumption A5, we find that (38) is rewritten as

− 1

n

n∑
i=1

B−1(Zi)Xijfi(−δi)W
T
iS0∆̂0 + op((n

−1 log pn)
1/2) = −Dj∆̂

0 + op((n
−1 log pn)

1/2)

(39)

uniformly in j ∈ S0
v , where Dj is clearly defined in the above equation.

Assumption B3 implies that for some positive C1,

λmax(D
T
j Dj) ≤ C1L

−2 (40)

uniformly in j ∈ S0
v with probability tending to 1. This is because Dj is part of

Σ̂S0∪(ϕ,{j}). Thus (36) and (40) yield that for some positive C2,

|Dj∆̂
0| ≤ C2{(n−1 log pn)

1/2 + λ|wS0|} (41)

uniformly in j ∈ S0
v with probability tending to 1.

By combining (37), Lemmas 1 and 2, (39), and (41), we obtain∣∣∣ 1
n

n∑
i=1

B−1(Zi)Xijρ
′
τ (Yi −W T

iS0γ̂S0)
∣∣∣ ≤ λw−1j

uniformly in j ∈ S0
v with probability tending to 1. Hence (35) is established.

As for the latter part of the theorem, Assumption A2 implies that γ∗
1j, j ∈ S0

c , and

γ∗
−1j, j ∈ S0

v , are large enough to be detected due to Proposition 1 with S = S0.

Hence the proof of the theorem is complete.

Now we state the proof of Theorem 2

Proof of Theorem 2) First we deal with the overfitting case. Then let S satisfy

S ∈ SM and S ̸= S0. See (27) for the definition of SM . “Uniformly in S” means

“uniformly in S satisfying S ∈ SM and S ̸= S0”. We have replaced Assumption A3

with Assumption A3’. We use Assumption A3’ only once in the proof (Lemma 3) and

we use Assumption A3 in the other part. Assumption A3’ can be relaxed in some cases.

See Lemma 3 at the end of this section for more details.
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If we verify

RV (γ
∗
S0) =

1

n

n∑
i=1

ρτ (ϵi) +O(XML−2) =
1

n

n∑
i=1

E{ρτ (ϵi)}+ op(1), (42)

RV (γ̃S0) = RV (γ
∗
S0) + op(1), and (43)

RV (γ̃S0)−RV (γ̃S) = (dV (S)− dV (S0))Op(n
−1{(log pn) ∨ (qn log pn)

1/2}) uniformly in S,
(44)

then we have for some positive C1,

0 ≤ logRV (γ̃S0)− logRV (γ̃S) = − log
{
1 +

RV (γ̃S)−RV (γ̃S0)

RV (γ̃S0)

}
(45)

≤ 1

C1

{RV (γ̃S0)−RV (γ̃S)}

uniformly in S with probability tending to 1. By (44) and (45), we obtain

logRV (γ̃S0)− logRV (γ̃S) = (dV (S)− dV (S0))Op(n
−1{log pn ∨ (qn log pn)

1/2})

< (dV (S)− dV (S0))
log pn
2n

qn

uniformly in S with probability tending to 1. Hence the proof for the overfitting case is

complete.

Thus we have only to prove (42)-(44). We prove only (44) since (42) and (43) are

easy to deal with.

(63), (64), and (67) are important when we prove (44). To verify (63), we take a

positive M1 and consider

RV (γS)−RV (γ
∗
S) (46)

+
1

n

n∑
i=1

W T
iS(γS − γ∗

S)(τ − I{ϵ′i ≤ 0})− Eϵ{RV (γS)−RV (γ
∗
S)}

− 1

n

n∑
i=1

W T
iS(γS − γ∗

S)(τ − τi)

=
1

n

n∑
i=1

Di(γS),

where Di(γS) is clearly defined in the above equation, τi = Pϵ(ϵ
′
i ≤ 0), and |γS − γ∗

S | ≤
M1L(qnn

−1 log pn)
1/2.

We show that
1

n

n∑
i=1

Di(γS) = Op

( log pn
n(log n)2

)
(47)
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uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S for any fixed M1. To verify (47), we

should note that

Di(γS) = Di(γS)− Eϵ{Di(γS)}, (48)

where

Di(γS) = ρτ (Yi −W T
iSγS)− ρτ (W

T
iSγ

∗
S) +W T

iS(γS − γ∗
S)(τ − I{ϵ′i ≤ 0})

and that

ρτ (ϵ
′
i − ai)− ρτ (ϵ

′
i) = −ai(τ − I{ϵ′i ≤ 0})− (ϵ′i − ai)[I{ϵ′i ≤ ai} − I{ϵ′i ≤ 0}], (49)

where ai = W T
iS(γS − γ∗

S).

By using (49), we can obtain the following three facts (50)-(52) uniformly in γS ∈
ΓS(M1L(qnn

−1 log pn)
1/2) and S. Note that C2, . . . , C7 are some positive constants.

max
1≤i≤n

|WiS | ≤C2XM(M1/2
c L−1/2 +M1/2

v ) ≤ C3XM (50)

max
1≤i≤n

|Di(γS)| ≤ max
1≤i≤n

|WiS |M1L(qnn
−1 log pn)

1/2 ≤ C4XMM1L(qnn
−1 log pn)

1/2

(51)

1

n2

n∑
i=1

Eϵ[{Di(γS)}2] ≤
C5

n2

n∑
i=1

|W T
iS(γS − γ∗

S)|3 (52)

≤ C6

n
max
1≤i≤n

|WiS |{M1L(qnn
−1 log pn)

1/2}3λmax

(
n−1

n∑
i=1

WiSW
T
iS

)
≤ C7M

3
1M2

n
L2XM(qnn

−1 log pn)
3/2

if

λmax

(
n−1

n∑
i=1

WiSW
T
iS

)
≤ M2

L
. (53)

By using (50)-(52) and Bernstein’s inequality, we have

Pϵ

(∣∣∣n−1

n∑
i=1

Di(γS)
∣∣∣ ≥ log pn

n(log n)2

)
≤ C8 exp

{
− C9n

1/10(log pn)
1/2

M3
1M2q

3/2
n XM(log n)4

}
(54)

for any fixed γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S if (53) holds. Note that C8 and C9

are some positive constants.

By appealing to the standard argument based on the Lipschitz continuity and (54)

and using Assumptions A4’ and B5, we obtain (47) uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2)

and S for any fixed M1.
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We evaluate Eϵ{RV (γS)−RV (γ
∗
S)} in (46) by using (49) and Assumption A5’. Since

Eϵ{ρτ (ϵ′i − ai)− ρτ (ϵ
′
i)} =

1

2
fi(−δi)a

2
i + ai(τi − τ) +O(|ai|3),

where ai = W T
iS(γS − γ∗

S), we have

Eϵ{RV (γS)−RV (γ
∗
S)} =

1

2n

n∑
i=1

fi(−δi)a
2
i +

1

n

n∑
i=1

ai(τi − τ) +O
( 1
n

n∑
i=1

|ai|3
)

(55)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S. Assumption A4’ implies that uni-

formly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S for any fixed M1,

1

n

n∑
i=1

|ai|3 ≤
maxni=1 |ai|

n

n∑
i=1

|ai|2 = Op

( log pn
n(log n)2

)
. (56)

By (55) and (56), we obtain

Eϵ{RV (γS)−RV (γ
∗
S)} =

1

2
(γS − γ∗

S)
T Σ̂S(γS − γ∗

S) (57)

+
1

n

n∑
i=1

ai(τi − τ) +Op

( log pn
n(log n)2

)
uniformly in γS ∈ ΓS(M1L(qnn

−1 log pn)
1/2) and S for any fixed M1.

By combining (46), (47), and (57), we obtain

RV (γS)−RV (γ
∗
S) = −(γS − γ∗

S)
T 1

n

n∑
i=1

WiS(τi − I{ϵ′i ≤ 0}) + 1

2
(γS − γ∗

S)
T Σ̂S(γS − γ∗

S)

(58)

+ (γS − γ∗
S)

T 1

n

n∑
i=1

WiS(τi − τ) +Op

( log pn
n(log n)2

)
uniformly in γS ∈ ΓS(M1L(qnn

−1 log pn)
1/2) and S for any fixed M1.

We use (58) to derive a useful expression of RV (γ̃S). Put

aS =
1

n

n∑
i=1

WiS(τi − I{ϵ′i ≤ 0}), bS =
1

n

n∑
i=1

WiS(τi − τ), and γS − γ∗
S = Σ̂−1

S aS . (59)

According to (87) in Lemma 3 at the end of this section,

(γS − γ∗
S)

T 1

n

n∑
i=1

WiS(τi − τ) = (γS − γ∗
S)

TbS = Op

((qn log pn)1/2
n

)
(60)

and this term in (58) is negligible uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S for

any fixed M1.
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By applying Bernstein’s inequality conditionally on {(Xi, Zi)}ni=1 first and using As-

sumption B5, we have

|aS |2 = Op

( log pn
n

)
(61)

uniformly in S. Thus we have from Assumption Assumption B2’

γS − γ∗
S = Op(L(n

−1 log pn)
1/2) (62)

uniformly in S.
We take some δS ∈ RdV (S). If γS + δS ∈ ΓS(M1L(qnn

−1 log pn)
1/2), we have from

(58) and (60) that

RV (γS+δS)−RV (γ
∗
S) = −1

2
aT
S Σ̂

−1
S aS+

1

2
δT
S Σ̂SδS+Op

((qn log pn)1/2
n

)
+Op

( log pn
n(log n)2

)
(63)

uniformly in δS and S.
Because of the optimality of RV (γ̃S) and (63), we should have

RV (γ̃S)−RV (γ
∗
S) = −1

2
aT
S Σ̂

−1
S aS +Op

((qn log pn)1/2
n

)
+Op

( log pn
n(log n)2

)
(64)

uniformly in S. This expression also holds for S0. By combining (63) and (64) and

setting δS = γ̃S − γS , we also obtain

|γ̃S − γS |2 = Op

(L(qn log pn)1/2
n

)
+Op

( L log pn
n(log n)2

)
(65)

uniformly in S. Note that these expressions also hold for S0. This equation is used later

in the underfitting case.

We evaluate the difference between RV (γ̃S) and RV (γ̃S0). Now write

Σ̂S =

(
Σ̂S0 Σ̂S12

Σ̂S21 Σ̂S22

)
and aS =

(
aS0

aS2

)
(66)

and note that RV (γ
∗
S) = RV (γ

∗
S0). Thus due to (64), we have only to consider the

difference

aT
S Σ̂

−1
S aS − aT

S0Σ̂−1
S0aS0 = aT

S0Σ̂−1
S0 Σ̂S12F̂S2Σ̂S21Σ̂

−1
S0aS0 (67)

− 2aT
S0Σ̂−1

S0 Σ̂S12F̂S2aS2 + aT
S2F̂S2aS2,

where

F̂S2 = (Σ̂S22 − Σ̂S21Σ̂
−1
S0 Σ̂S12)

−1.

28



We will demonstrate that the RHS of (67) has the stochastic order of (dV (S) −
dV (S0))Op(n

−1 log pn) uniformly in S.
From Assumptions B2’ and B3’, we have for some positive C1, C2, and C3,

C1L ≤ λmax(F̂S2) ≤ λmax(F̂S2) ≤ C2L and λmax(Σ̂S21Σ̂S12) ≤ C3L
−2 (68)

uniformly in S with probability tending to 1.

By applying Bernstein’s inequality conditionally on {(Xi, Zi)}ni=1 first and using As-

sumption B5, we have

|aS2|2 = (dV (S)− dV (S0))Op

( log pn
nL

)
(69)

uniformly in S. Hence (68) and (69) imply that the third term on the RHS of (67)

satisfies

aT
S2F̂S2aS2 = (dV (S)− dV (S0))Op(n

−1 log pn) (70)

uniformly in S.
To evaluate the first and second terms on the RHS of (67),

(aT
S0Σ̂−1

S0 Σ̂S12)F̂S2(Σ̂S21Σ̂
−1
S0aS0) and (aT

S0Σ̂−1
S0 Σ̂S12)F̂S2aS2, (71)

we evaluate

Σ̂S21Σ̂
−1
S0aS0 = Σ̂S21Σ̂

−1
S0

1

n

n∑
i=1

WiS0(τi − I{ϵ′i ≤ 0}) (72)

to obtain (76) as well as (69).

Write

Σ̂S12 = (s1, . . . , sdV (S)−dV (S0))

and note that (68) implies

sTj sj = Op(L
−2) and λmax(Σ̂S21Σ̂

−1
S0 Ω̂S0Σ̂−1

S0 Σ̂S12) = Op(L
−1) (73)

uniformly in j and S with probability tending to 1. Besides, we have for some positive

C4 and C5,

max
j

|sTj Σ̂−1
S0WiS0| ≤ C4L|sj||WiS0| ≤ C5L|sj|XM = Op(XM) (74)

uniformly in i and S with probability tending to 1.

Hence by applying Bernstein’s inequality conditionally together with (73) and (74),

we obtain
1

n

n∑
i=1

sTj Σ̂
−1
S0WiS0(τi − I{ϵ′i ≤ 0}) = Op({(nL)−1 log pn}1/2) (75)
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uniformly in j and S. Therefore (75) yields

|Σ̂S21Σ̂
−1
S0aS0|2 = (dV (S)− dV (S0))Op((nL)

−1 log pn) (76)

uniformly in S.
Thus (68), (69), (71), and (76) imply that the first and second terms on the RHS of

(67) have the stochastic order of (dV (S) − dV (S0))Op(n
−1 log pn) uniformly in S as in

(70). We have demonstrated that the RHS of (67) has the stochastic order of (dV (S)−
dV (S0))Op(n

−1 log pn) uniformly in S.
Hence (44) follows from (64) and this evaluation of (67) and the proof of the overfit-

ting case is complete.

Next we consider the underfitting case. For S = (Sc,Sv) that does not include S0

and satisfies

|Sc| ≤ Mc and |Sv| ≤ Mv,

we put

S+ = S ∪ S0. (77)

Then S+ ∈ SC+M in (28). Note that uniform results proved in the overfitting case still

hold for S+ in (77).

Since

logRV (γ̃S)− logRV (γ̃S0) = log
{
1 +

RV (γ̃S)−RV (γ̃S0)

RV (γ̃S0)

}
and

RV (γ̃S0) =
1

n

n∑
i=1

ρτ (ϵi) + op(1) = E{ρτ (ϵi)}+ op(1), (78)

we have only to demonstrate

RV (γ̃S)−RV (γ̃S0) > C1Lζ
2
n

log pn
2n

(79)

uniformly in S with probability tending to 1 for some C1 and ζn such that ζn/q
1/2
n = Cζ .

Note that we should be able to take and fix any sufficiently large Cζ and that C1 has

to be independent of Cζ when Cζ is large. Then Assumption A1 and (78) assure (79)

dominates the penalty terms. Since (78) follows from the argument for the overfitting

case and Assumption A5’, we consider only (79).

From Assumption A2’, we have uniformly in S,

|γ∗
S0−S |

L(n−1qn log pn)1/2
→ ∞,
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where γ∗
S0−S is obtained by removing all the j-th elements satisfying j ∈ S ∩ S0 from

γ∗
S0 .

Since S+ includes S0 and S does not include S0, Proposition 1 with no penalty

implies that

|(γ̃T
S ,0

T )T − γ̃S+ | > Lζn(n
−1 log pn)

1/2 (80)

uniformly in S with probability tending to 1 for ζn = Cζq
1/2
n . Note that we can take and

fix any large Cζ here. This also holds with γ̃S+ replaced by γS+ due to (65).

Let us follow the standard arguments for general underfitting cases. There is an

0 < α < 1 such that

|α((γ̃T
S ,0

T )T − γS+)| = Lζn(n
−1 log pn)

1/2

and set

∆S = α((γ̃T
S ,0

T )T − γS+).

The arguments from (58) to (64) imply that

RV (γS+ +∆S) ≥ RV (γS+) + C2ζ
2
n

L log pn
2n

+Op

((qn log pn)1/2
n

)
+Op

( log pn
n(log n)2

)
(81)

≥ RV (γS+) + C2ζ
2
n

L log pn
4n

≥ RV (γ̃S+) + C2ζ
2
n

L log pn
4n

uniformly in S with probability tending to 1 for some positive C2 independent of Cζ .

We used the optimality of γ̃S+ and Assumption B5 here.

Because of (81), the convexity of RV (γS+), and the definition of ∆S , we have

RV (γ̃S) ≥ RV (γS+ +∆S) ≥ RV (γS+) ≥ RV (γ̃S+) (82)

uniformly in S with probability tending to 1. From (81) and (82), we obtain

RV (γ̃S) ≥ RV (γ̃S+) + C2ζ
2
n

L log pn
4n

(83)

uniformly in S with probability tending to 1. Recalling the results for the overfitting

case such as (64) and the evaluation of (67), we have

RV (γ̃S+) ≥ RV (γ̃S0) + (dV (S0)− d(S+))
qn log pn

2n
(84)

uniformly in S with probability tending to 1.
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By combining (83) and (84), we get

RV (γ̃S) ≥ RV (γ̃S0) + C2ζ
2
n

L log pn
4n

+ (dV (S0)− d(S+))
qn log pn

2n
(85)

uniformly in S with probability tending to 1. Since dV (S0) − d(S+) = O(L) from

Assumption A1 and ζn = Cζq
1/2
n , we have from (85) that

RV (γ̃S) > RV (γ̃S0) + C3ζ
2
n

L log pn
2n

(86)

for any sufficiently large fixed Cζ uniformly in S with probability tending to 1. Note that

C3 is independent of Cζ when Cζ is larger than some value depending on the assumptions.

Hence we have established (79) and the proof for the case is complete.

We state Lemma 3, which is used to evaluate the bias from (τi − τ) in the proof of

Theorem 2. The proof is given in the supplement. Note that the Hölder continuity of

g′′j with exponent α is almost sufficient for τi − τ = Op(XML−(2+α)).

By using the properties of bS and bS2 in this lemma and replacing aS with aS + bS

in (59), we can prove Theorem 2 in the same way if X4
ML−2α = O(L−1). Recall that

L = cLn
1/5 in this paper. Both of |bS |2 and |bS2|2 have Op

(
X4

M logn

L5+2α

)
and these are not

typos.

Lemma 3 In the setup of Theorem 2, we have

(γS − γ∗
S)

TbS = Op

((qn log pn)1/2
n

)
(87)

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S for any fixed M1. Let Assumption

A3’ be replaced with Assumption A3. If τi−τ = Op(XML−(2+α)) uniformly in i for some

nonnegative α, we have

|bS |2 = Op

(X4
M log n

L5+2α

)
and |bS2|2 = (dV (S)− dV (S0))Op

(X4
M log n

L5+2α

)
uniformly in γS , where bS2 is defined as aS2 in (66) .
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Supplement to “Adaptively weighted group Lasso for

semiparametric quantile regression model”

by Toshio Honda, Ching-Kang Ing, and Wei-Ying Wu

S.1 Technical results for Theorems 1 and 2

We provide the proofs of Proposition 1 and Lemmas 1-3 here. We omit λ of γ̂λ
S for

notational simplicity.

First we state Lemma 4 for Proposition 1 and the notation for the lemma. Then we

prove Proposition 1 by following Lemma 1 and Theorem 1 in [7]. Next we present the

proofs of Lemmas 4, 1, 2, and 3.

Before we state Lemma 4, we define

GS(M) = sup
γS∈ΓS(M)

|{RV (γS)−RV (γ
∗
S)} − Eϵ{RV (γS)−RV (γ

∗
S)}|

where ΓS(M) is defined in (33).

Lemma 4 Assume that Assumption A3 holds. For any fixed M , t, and S, we have

Pϵ

(
GS(M) ≥ 4M

√
Θ1(S)

n
+ t
)
≤ exp

{
− nt2

8Θ1(S)M2

}
.

When t = K0M{n−1Θ1(S) log pn}1/2, we have from Lemma 4 that

Pϵ

(
GS(M) ≥ (4 +K0)M

√
Θ1(S) log pn

n

)
≤ exp(−K2

0 log pn/8).

Proof of Proposition 1) We follow that of Theorem 1 in [7]. The following arguments

do not depend on S.
Taking M = CMLKn(S), we evaluate the following expression on ΓS(M).

Eϵ{RV (γS)−RV (γ
∗
S)} = Eϵ

[ 1
n

n∑
i=1

{ρτ (ϵ′i − ai)− ρτ (ϵ
′
i)}
]
, (S.1)

where we use the notation defined in (24) after Assumption A3 such as ϵ′i = ϵi + δi and

ai = W T
iS(γS − γ∗

S). Note that

|ai| ≤ |WiS |M ≤ Θ
1/2
5 (S)M → 0

1



due to the assumption of this proposition.

If ai > 0, we have from the definition of ρτ (·) that

ρτ (ϵ
′
i − ai)− ρτ (ϵ

′
i) =

∫ ai

0

I{0 < ϵ′i ≤ s}ds+ ai(I{ϵ′i ≤ 0} − τ).

Then from Assumption A5, we obtain

Eϵ

[ ∫ ai

0

I{0 < ϵ′i ≤ s}ds+ ai(I{ϵ′i ≤ 0} − τ)
]

=

∫ ai

0

(Fi(s− δi)− Fi(−δi))ds+ ai(τi − τ)

=
1

2
fi(−δi)a

2
i + o(a2i ) +O(a2i (log n)

−1) +O(|τ − τi|2 log n).

uniformly in i. Note that |τ − τi|2 ≤ C1|δi|2 for some positive C1 and that we can deal

with the case of ai < 0.

Hence the expression in (S.1) can be represented as

1

2n

n∑
i=1

fi(−δi)a
2
i + o

(
n−1

n∑
i=1

a2i

)
+O

(
n−1 log n

n∑
i=1

δ2i

)
. (S.2)

The first term of (S.2) is written as

1

2n

n∑
i=1

fi(−δi)a
2
i =

1

2
(γS − γ∗

S)
T 1

n

n∑
i=1

fi(−δi)WiSW
T
iS(γS − γ∗

S) (S.3)

≥ Θ2(S)
2L

|γS − γ∗
S |2.

As for the third term of (S.2), we have from Assumption A3 that

log n

n

n∑
i=1

δ2i =
log n

n

n∑
i=1

(∑
j∈S0

v

Xijδij

)2
≤ log n

n

n∑
i=1

(∑
j∈S0

v

X2
ij

)(∑
j∈S0

v

δ2ij

)
(S.4)

≤ C1 log n

nL4

n∑
i=1

∑
j∈S0

v

X2
ij ≤

C1 log n

L4
Θ4 (S.5)

for some positive C1. We defined Θ4 just before Assumption B4.

By combining (S.2), (S.3), and (S.4), we have

Eϵ{RV (γS)−RV (γ
∗
S)} ≥ Θ2(S)

2L
(1 + o(1))|γS − γ∗

S |2 +O
(Θ4 log n

L4

)
. (S.6)

We define γα
S by

γα
S = αγ̂S + (1− α)γ∗

S (S.7)

2



for

0 ≤ α =
M

M + |γ̂S − γ∗
S |

≤ 1.

Then

γα
S ∈ ΓS(M).

Since the convexity of QV (γS) implies that

QV (γ
α
S ) ≤ αQV (γ̂S) + (1− α)QV (γ

∗
S) ≤ QV (γ

∗
S),

we have with probability larger than or equal to 1− exp(−K2
0 log pn/8) that

Eϵ[RV (γS)−RV (γ
∗
S)]γS=γα

S
(S.8)

≤ 1

n

n∑
i=1

ρτ (γ
∗
S)− Eϵ

{ 1
n

n∑
i=1

ρτ (γ
∗
S)
}
− 1

n

n∑
i=1

ρτ (γ
α
S ) + Eϵ

[ 1
n

n∑
i=1

ρτ (γS)
]
γS=γα

S

+QV (γ
α
S )−QV (γ

∗
S)

−λ
∑
j∈Sc

w1j|γα
1j| − λ

∑
j∈Sv

w−1j|γα
−1j|+ λ

∑
j∈Sc

w1j|γ∗
1j|+ λ

∑
j∈Sv

w−1j|γ∗
−1j|

≤ GS(M) + λ|wS ||γα
S − γ∗

S |

≤ (4 +K0)M
{√Θ1(S) log pn

n
+ λ|wS |

}
= (4 +K0)MKn(S).

By (S.6) and (S.8), we have

|γα
S − γ∗

S |2 ≤
2(4 +K0)L

Θ2(S)
{MKn(S) +O(Θ4L

−4 log n)}

≤ 2(4 +K0)L

Θ2(S)
{CMK2

n(S)L+O(Θ4L
−4 log n)}

with probability larger than or equal to 1− exp(−K2
0 log pn/8). Hence

|γα
S − γ∗

S | ≤
{2(4 +K0)}1/2

Θ
1/2
2 (S)

{C1/2
M Kn(S)L+O(Θ

1/2
4 L−3/2(log n)1/2)} (S.9)

≤ 1

2
CMLKn(S) =

1

2
M

with probability larger than or equal to 1− exp(−K2
0 log pn/8).

(S.7), (S.9), and simple algebra yield

|γ̂S − γ∗
S | ≤ M = CMLKn(S)

with probability larger than or equal to 1− exp(−K2
0 log pn/8).

Hence the proof of the proposition is complete.
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Proof of Lemma 4) We follow that of Lemma 1 in [7].

Due to the Lipschitz continuity of ρτ (u) and application of the concentration inequal-

ities (Theorems 14.3 and 14.4 in [3]), we have

Eϵ{GS(M)} ≤ 2Eϵ

[
sup

γS∈ΓS(M)

∣∣∣ 1
n

n∑
i=1

ξi{ρτ (Yi −W T
iSγS)− ρτ (Yi −W T

iSγ
∗
S)}
∣∣∣]

≤ 4Eϵ

[
sup

γS∈ΓS(M)

∣∣∣ 1
n

n∑
i=1

ξiW
T
iS(γS − γ∗

S)
∣∣∣],

where {ξj}nj=1 is a Rademacher sequence of and independent of {(Yj,Xj, Zj)}nj=1. Since∣∣∣ n∑
i=1

ξiW
T
iS(γS − γ∗

S)
∣∣∣

=
∣∣∣∑
j∈Sc

( n∑
i=1

ξiXijL
−1/2

)
(γ1j − γ∗

1j) +
∑
j∈Sv

{ n∑
i=1

ξiXijB
T
−1(Zi)(γ−1j − γ∗

−1j)
}∣∣∣

≤ |γS − γ∗
S |
{∑

j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 +∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}1/2

,

we have

Eϵ{GS(M)} (S.10)

≤ 4M

n1/2
Eϵ

[{ 1
n

∑
j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 + 1

n

∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}1/2]

≤ 4M

n1/2

[
Eϵ

{ 1
n

∑
j∈Sc

∣∣∣ n∑
i=1

ξiXijL
−1/2

∣∣∣2 + 1

n

∑
j∈Sv

∣∣∣ n∑
i=1

ξiXijB−1(Zi)
∣∣∣2}]1/2

≤ 4M

n1/2

{ 1
n

n∑
i=1

|WiS |2
}1/2

≤ 4M

√
Θ1(S)

n
.

Next we apply Massart’s inequality (Theorem 14.2 in [3]) to evaluate the stochastic

part GS(M)− Eϵ{GS(M)}. Then noticing

|W T
iS(γS − γ∗

S)|2 ≤ |WiS |2|γS − γ∗
S |2 ≤ |WiS |2M2

and

1

n

n∑
i=1

|WiS |2M2 ≤ Θ1(S)M2,

we have as in Lemma 1 in [7]

Pϵ

(
GS(M) ≥ 4M

√
Θ1(S)

n
+ t
)
≤ exp

{
− nt2

8Θ1(S)M2

}
.
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We used (S.10) to evaluate Eϵ{GS(M)} in the conditional probability.

Hence the proof of the lemma is complete.

Proof of Lemma 1) Recall that B(z) = A0B0(z) and note (S.20) in section S.2. Thus

we have only to demonstrate∣∣∣ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (ϵi + δi)

∣∣∣ ≤ C1{(nL)−1 log pn}1/2 (S.11)

uniformly in l and j with probability tending to 1 for some positive C1. Recall B0l(z) is

the l-th element of the B-spline basis.

Note that

Eϵ

{ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (ϵi + δi)

}
=

1

n

n∑
i=1

B0lXij(Zi)(τ − τi)

and |τ − τi| = O(L−2) uniformly in i.

Since Assumption A4 implies

E
{ 1
n

n∑
i=1

B0l(Zi)Xij(τ − τi)
}
= O(L−3)

and

Var
{ 1
n

n∑
i=1

B0l(Zi)Xij(τ − τi)
}
= O(n−1L−5),

uniformly in l and j, we apply Bernstein’s inequality unconditionally and obtain∣∣∣Eϵ

{ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (ϵi + δi)

}∣∣∣ ≤ C2{(nL5)−1 log pn}1/2 +O(L−3) (S.12)

uniformly in l and j with probability tending to 1 for some positive C2.

Noticing that
1

n

n∑
i=1

B2
0l(Zi)X

2
ij ≤ C3L

−1

uniformly in l and j with probability tending to 1 for some positive C3, we apply Bern-

stein’s inequality conditionally and obtain∣∣∣ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (ϵi + δi)− Eϵ

{ 1
n

n∑
i=1

B0l(Zi)Xijρ
′
τ (ϵi + δi)

}∣∣∣ ≤ C4{(nL)−1 log pn}1/2

(S.13)

uniformly in l and j with probability tending to 1 for some positive C4.
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Hence (S.11) follows from (S.12) and (S.13) and the proof of the lemma is complete.

Proof of Lemma 2) We can prove this lemma almost in the same way as Lemma B.5

in [26] and the detailed proof is very lengthy. We just outline the proof.

First we define dlj(γS0) by

dlj(γS0) =
1

n

n∑
i=1

B0l(Zi)Xij[ρ
′
τ (Yi −W T

iS0γS0)− ρ′τ (Yi −W T
iS0γ∗

S0)

− Eϵ{ρ′τ (Yi −W T
iS0γS0)− ρ′τ (Yi −W T

iS0γ∗
S0)}]

and take and fix any positive C0. Then as in the proof of Lemma 1, we have only to

prove that

|dlj(γS0)| ≤ C1{(nL log n)−1 log pn}1/2

uniformly in l, j ∈ S0
v , and γS0 ∈ ΓS0(C0L(n

−1 log pn)
1/2(log n)k) with probability tend-

ing to 1 for some positive C1 depending on C0.

Note that the conditional variance of dlj(γS0) is uniformly bounded by

C2XM

nL
L(n−1 log pn)

1/2(log n)k ≤ C3XM{n−3(log n)2k log pn}1/2

with probability tending to 1 for some positive C2 and C3. They depend on C0. Besides,

we can cover ΓS0(C0L(n
−1 log pn)

1/2(log n)k) by N open balls with radius

[{C0L(n
−1 log pn)

1/2(log n)k}n−2m]1/2

for any large fixed m and this N satisfies

N = O(nmdV (S0)).

See Lemma 2.5 in [29] for this upper bound of N . We denote the centers of the covering

open balls by γ1, . . . ,γN . Note that

pLN = O(exp{log pn +mdV (S0) log n}).

For any γs among the centers, we have by employing Bernstein’s inequality condi-

tionally that

Pϵ

(
|dlj(γs)| ≥ C4

√
log pn

nL log n

)
≤ exp

{
− C3

(log pn)
1/2n3/10

XM(log n)k+1

}

6



uniformly in γs with probability tending to 1 for some positive C4 and C5 and we also

have from Assumption A4 that

pLN exp
{
− C3

(log pn)
1/2n3/10

XM(log n)k+1

}
= exp

[
C6{log pn +mdV (S0) log n} − C3

(log pn)
1/2n3/10

XM(log n)k+1

]
→ 0

for some positive C6. Therefore we successfully evaluated dlj(γS0) at all the centers.

We can evaluate dlj(γS0) inside the open balls exactly as in the proof of Lemma B.5

in [26] since we can take any large m. Hence the proof of the lemma is complete.

Proof of Lemma 3) We prove the former half by using Assumption A3’. By exploiting

(25) and Assumptions A3’ and B4’, we have

1

n

n∑
i=1

|ai(τi − τ)| ≤
(
n−1

n∑
i=1

a2i

)1/2(
n−1

n∑
i=1

(τi − τ)2
)1/2

= Op

((qn log pn)1/2
n

)
.

uniformly in γS ∈ ΓS(M1L(qnn
−1 log pn)

1/2) and S since

1

n

n∑
i=1

a2i = Op(n
−1Lqn log pn) and

1

n

n∑
i=1

(τi − τ)2 = Op(L
−6)

uniformly as well.

Before we consider the latter, we should recall that B(z) = A0B0(z), where B0(z) =

(B01(z), . . . , B0L(z))
T is the equispaced B-spline basis on [0, 1], and that the first element

of B(z) is L−1/2. Therefore we should deal with

XM

nL1/2

n∑
i=1

|τi − τ | (S.14)

and

XM

n

n∑
i=1

B0(Zi)|τi − τ |. (S.15)

As for (S.14), we have

XM

nL1/2

n∑
i=1

|τi − τ | = Op

( X2
M

L2+1/2+α

)
(S.16)

from the assumption on (τi − τ).

Since we have E{B0j(Zi)} = O(L−1) uniformly in j, we have

XM

n

n∑
i=1

B0j(Zi)|τi − τ | = Op

(X2
M(log n)1/2

L3+α

)
(S.17)

7



uniformly in j from the standard argument based on Bernstein’s inequality.

(S.16) and (S.17) yields that

|bS |2 = |Sv|Op

(X4
M log n

L5+2α

)
+ |Sc|Op

( X4
M

L5+2α

)
uniformly in S. Since

dV (S) = (L− 1)|Sv|+ |Sc|,

the result for bS2 follows from the same argument.

Hence the proof of the lemma is complete.

S.2 Properties of B-spline bases

We describe properties of our basis and give comments on some misleading assumptions

on spline bases in the literature for reference.

First we describe how to construct our orthonormal spline basisB(z) = (B1(z), . . . , BL(z))
T

from the equispaced B-spline basis on [0, 1], which is denoted byB0(z) = (B01(z), . . . , B0L(z))
T .

Recall that L = cLn
1/5 in this paper. We also should recall two well-known facts:

L∑
j=1

B0j(z) = 1 and B0j(z) ≥ 0 (S.18)

C1

L
≤ λmin(Ω0) ≤ λmax(Ω0) ≤

C2

L
(S.19)

where Ω0 =
∫ 1

0
B0(z)B

T
0 (z)dz and C1 and C2 are positive constants and independent of

L.

Therefore there exists an L× L matrix A0 such that

B(z) = A0B0(z),

∫ 1

0

B(z)BT (z)dz = A0Ω0A
T
0 = L−1IL,

B1(z) = L1/2, and B2(z) =

√
12

L

(
z − 1

2

)
.

We denote the L× L identity matrix by IL.

We can obtain an A0 numerically by carrying out the Gram-Schmidt orthonormal-

ization. Notice also that

C3 ≤ λmin(A0A
T
0 ) ≤ λmax(A0A

T
0 ) ≤ C4, (S.20)
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where C3 and C4 are positive constants and independent of L.

When we deal with varying coefficient models, B1(z) = L−1/2 is used for the con-

stant parts and B−1 = (B2(z), . . . , BL(z))
T is used for the non-constant parts. When

we deal with additive models, B2(z) =
√

12
L

(
z − 1

2

)
is used for the linear parts and

(B3(z), . . . , BL(z))
T is used for the nonlinear parts.

Next we consider approximation by our spline basis B(z) = (B1(z),B
T
−1(z))

T =

(B1(z), B2(z),B
T
−2(z))

T under Assumption A3. Assume that

∥g∥∞ + ∥g′∥∞ + ∥g′′∥∞ ≤ Cg.

Varying coefficient models: There exists γ∗
−1 ∈ RL−1 such that ∥gn − γ∗T

−1B−1∥∞ ≤
C1CgL

−2. We can take γ∗
1 = L1/2gc.

Additive models: Let g(x) satisfy
∫ 1

0
g(x)dx = 0. Then there exist γ∗

2 ∈ R and γ∗
−2 ∈

RL−2 such that

∥gl − γ∗
2B2∥∞ + ∥ga − γ∗T

−2B−2∥∞ ≤ C2CgL
−2.

Note that C1 and C2 are independent of the specific function. We verify the latter

here since the former is easier.

Corollary 6.26 in [25] implies that there is γ∗ = (γ∗
1 , γ

∗
2 ,γ

∗T
−2)

T such that

∥g − γ∗TB∥∞ ≤ C3CgL
−2 (S.21)

since B(x) is constructed from B0(x). Noticing

γ∗
1 = L1/2

∫ 1

0

(γ∗TB(x)− g(x))dx

and |γ∗
1 | ≤ C3CgL

−3/2, we can take γ∗
1 = 0 without affecting (S.21).

Put

g∗(x) = γ∗
2B2(x) + γ∗T

−2B−2(x) and g(x) = γ′
2B2(x) + ga(x),

where γ′
2 is defined in the second equation and gl(x) = γ′

2B2(x) . Recalling the decom-

position of g(x) and that B(x) is an orthonormal basis with the normalization factor of

L−1 and ∥B2∥∞ = O(L−1/2), we get

L−1|γ∗
2 − γ′

2| =
∣∣∣ ∫ 1

0

(g∗(x)− g(x))B2(x)dx
∣∣∣ ≤ C4CgL

−5/2.

Thus we have |γ∗
2 − γ′

2| ≤ C4CgL
−3/2 and

∥(γ∗
2 − γ′

2)B2∥∞ ≤ C5CgL
−2. (S.22)
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Note that C3, C4, and C5 are independent of the specific function. Hence the desired

result follows from (S.21) and (S.22).

Finally we consider

Ω1 =

∫ 1

0

B′
0(z)(B

′
0(z))

Tdz, Ω2 =

∫ 1

0

B′′
0 (z)(B

′′
0 (z))

Tdz, and B0(Z1)− E{B0(Z1)}.

We demonstrate that both Ω1 and Ω2 does not necessarily have desirable properties

for theoretical analysis. This conclusion also applies to B0(Z1)− E{B0(Z1)}.
Take a three times continuously differentiable function g(z). Then Corollary 6.26 in

[25] implies that for some γ ∈ RL,

∥g − γTB0∥ ≤ C1L
−3

3∑
j=0

∥g(j)∥,

∥g′ − γTB′
0∥ ≤ C2L

−2

3∑
j=0

∥g(j)∥,

∥g′′ − γTB
′′

0∥ ≤ C3L
−1

3∑
j=0

∥g(j)∥.

where C1, C2, and C3 are independent of g(z).

Taking g(z) = sin(2πRz) with R → ∞ and R3/L → 0, we have from the above three

inequalities that

∥g∥ ∼ 1, ∥g′∥ ∼ R, ∥g′′∥ ∼ R2,

γΩ0γ ∼ 1, (γΩ1γ)
1/2 ∼ R, (γΩ2γ)

1/2 ∼ R2.

These and (S.19) imply that Ω1 and Ω2 have eigenvalues λ̃1 and λ̃2 satisfying λ̃jL →
∞ (j = 1, 2), respectively. This contradicts some critical assumptions in some papers.

To consider B0(Z1)− E{B0(Z1)}, we note the following equations.

L∑
j=1

τj = 1 and


B02(Z1)− E{B02(Z1)}

...

B0L(Z1)− E{B0L(Z1)}

 = DB0(Z1), (S.23)

where τj = E{B0j(Z1)} and the (L− 1)× L matrix D is defined by

D = (0 IL−1)−


τ2 · · · τ2

. . . . . . . . . . .

τL · · · τL

 .
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When Z1 has a bounded density function, τj ∼ 1/L uniformly in j and we have

iTL−1D = (τ1 − 1, τ1, . . . , τ1) and |DT iL−1| ∼ 1

for iL−1 = (1, . . . , 1)T ∈ RL−1. This means

λmin(DDT ) = O(L−1) and λmin(DΩ0D
T ) = O(L−2).

This implies that the basis in (S.23) is not suitable for additive models for this poor

eigenvalue property. That is why we have introduced another basis.
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