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Abstract

The CUSUM test has played an important role in theory and applications related to
structural change, but its drawback is that it loses power when the break is orthogonal
to the mean of the regressors. In this study, we consider two modified CUSUM tests
that have been proposed, implicitly or explicitly, in the literature to detect such struc-
tural changes, and investigate the limiting power properties of these tests under a fixed
alternative. We demonstrate that the modified tests are superior to the classic tests in
terms of both asymptotic theory and in finite samples, when detecting the orthogonal
structural shift.
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1. Introduction

In this study we investigate the power properties of the modified CUSUM test. The

original CUSUM test was introduced by Brown, Durbin, and Evans (1975), and has been

widely used to test for parameter stability in practical analyses. It has also been investi-

gated extensively and extended in various ways in the literature. With regard to the power

properties, Garbade (1977) studied the finite sample performance of the CUSUM test un-

der three patterns of coefficient variations. Then, based on Monte Carlo experiments, the

results showed that the CUSUM test is quite weak in detecting parameter instability under

the simulation settings. While this property has been repeatedly observed in the literature,

Ploberger and Krämer (1990) conducted a theoretical investigation of the power of the test,

where changes in the parameters are local to zero under the alternative. They showed that

the limiting distribution of the test under the local alternative is expressed as a Brownian

motion plus an additional term related to the interaction between the mean of the regressors

and the direction of the structural change. This result implies that in the case of a simple

shift in parameters, the power of the CUSUM test depends on the angle between the mean

of the regressors and the direction of the shift, and the test loses power when this angle is

perpendicular. Their result theoretically explains the poor performance of the CUSUM test

in the study of Garbade (1977), in which the mean of the regressors is set to be orthogonal

to the shift (the mean is equal to zero). While the original CUSUM test was proposed using

recursive residuals, Ploberger and Krämer (1992) developed a CUSUM test based on ordi-

nary least squares (OLS) residuals, and compared the local power of this test to that of the

original test. On the other hand, Deng and Perron (2008) suggested investigating the power

properties of both versions of the CUSUM test, not under a local alternative, but from a

non-local perspective. They derived the limiting distribution of the test statistic under the

fixed alternative, and confirmed that even in this case, the power of the test depends on the

angle between the mean of the regressors and the direction of the change.

While these undesirable power properties of the CUSUM test have been noted in the

literature, several modified versions of the test have been proposed, explicitly or implicitly, in

order to overcome the problem. For example, Luger (2001) introduced a test statistic based
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on the symmetrization of the absolute value of the recursive residuals. This modified test

performs better than the original test does in terms of power when the angle between the mean

of the regressor and the shift is perpendicular, although the original CUSUM test performs

better when this angle decreases. Hušková and Koubková (2005) considered a quadratic

form of the product of the regressors and the residuals for monitoring tests, while Xia, Guo

and Zhao (2011) studied the model with endogenous regressors, and proposed a CUSUM test

based on the weighted residuals from the GMM estimation. These studies concentrate mainly

on the reactions of the tests to the location change and to the magnitude of the break, but

do not analyze the impact of the angle on the power of the test. Further studies are still

necessary to investigate the performance of this method in terms of detecting an orthogonal

structural change.

Therefore, in this study, we investigate two versions of the CUSUM test modified to avoid

losing power when the mean of the regressor is orthogonal to the shift. Our modified tests are

based on the CUSUM of xjtǔt instead of ǔt, where xjt denotes the jth element of regressor

xt, and ǔt denotes the OLS residuals or recursive residuals. The asymptotic distributions

of the test statistics are investigated under the null hypothesis of parameter stability, as

well as under the fixed alternative, and the powers of the modified tests are investigated.

The finite sample properties of the modified tests are supported by the asymptotic theory,

and we confirm that the modified tests are superior to the classic test, in terms of both the

asymptotic theory and in finite samples, when detecting an orthogonal structural shift.

The remainder of the paper is organized as follows. Section 2 introduces the model and

assumptions. Section 3 presents the asymptotic behaviors of the two modified tests considered

in this study. We further extend the modified tests to models with serially correlated errors.

The finite sample properties are investigated using Monte Carlo simulations in Section 4.

Section 5 concludes the paper. The mathematical proofs are relegated to the Appendix.

2. Models and Assumptions

We consider the standard linear regression model given by

yt = x′tβt + ut (t = 1, 2, · · · , T ), (1)
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where xt = [x1t, x2t, · · · , xkt]′ is a k-dimensional regressor, ut is an unobservable stochastic

disturbance, and βt is a k-dimensional vector of coefficients. Since a constant term is typically

included in a model, the first element of the regressor, x1t, is unity for all t. We consider the

testing problem given by

H0 : βt = β ∀t vs. H1 : βt = β + δ1(t>[Tλ]),

where λ ∈ (0, 1) represents the break fraction and 1(t>[Tλ]) is an indicator function that takes

the value one if t > [Tλ], and zero otherwise. Then, the parameters in (1) are stable under

the null hypothesis, whereas we allow for a one-time change in the parameters under the

alternative.

To investigate the asymptotic properties of the CUSUM test, we make the following

assumptions:

Assumption 1 The regressor xt and the error term ut are defined on a common probability

space, and the following condition holds:

lim
T→∞

sup
1

T

T∑
t=1

‖ xt ‖2+δ< ∞, a.s. for some δ > 0.

Assumption 2 The following probability limits exist:

p lim
T→∞

1

T

T∑
t=1

xt = E[xt] = c1,

p lim
T→∞

1

T

T∑
t=1

xtx
′
t = E[xtx

′
t] = C,

p lim
T→∞

1

T

T∑
t=1

xtx
′
t ⊗ xtx

′
t = E[xtx

′
t ⊗ xtx

′
t] = Λ,

where c1 is a k× 1 vector and C and Λ are k× k and k2 × k2 nonsingular and nonstochastic

matrices, respectively.

We need Assumption 2 to investigate the power of the modified CUSUM tests. We denote
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rows of C by c′j for i = 1, · · · , k. That is,

C = E[xtx
′
t] = E

⎡
⎢⎢⎢⎣

x1tx
′
t

x2tx
′
t

...
xktx

′
t

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c′1
c′2
...
c′k

⎤
⎥⎥⎥⎦ .

The vector c1 is called the mean regressor.

Assumption 3 The disturbances {ut} are stationary and ergodic with

E[ut|Ut−1] = 0, E[u2t |Ut−1] = σ2, E[u4t ] < ∞,

where Ut−1 is the σ-field generated by {xt, ut−1, xt−1, ut−2, · · · }.

Assumption 3 implies that the error term is a martingale difference sequence. We first proceed

with this assumption, but it will be relaxed in a later section in order to investigate the effect

of the serial correlation on the power of the tests.

3. The Modified CUSUM Tests

3.1 Preliminaries to the modified CUSUM tests

We first consider the standard CUSUM test in order to motivate the modification. The

test statistic based on the OLS residuals is given by

CUSUMols = sup
0≤r≤1

∣∣∣∣∣∣
1

σ̂
√
T

[Tr]∑
t=1

ût

∣∣∣∣∣∣ ,
where ût are the OLS residuals and σ̂2 = T−1

∑T
t=1 û

2
t , while the recursive residuals based

test statistic is

CUSUM rec = sup
0≤r≤1

∣∣∣∣∣
∑[Tr]

t=k+1 ũt

σ̃
√
T − k

∣∣∣∣∣
/(

1 + 2
[Tr]− k

T − k

)
,

where ũt = (yt−x′tβ̂t−1)/ft for t = k+1, · · · , T are the recursive residuals, β̂t = (X ′
tXt)

−1X ′
tYt

with Xt = [x′1, x′2, · · · , x′t]′ and Yt = [y1, y2, · · · , yt]′, ft = (1 + x′t(X ′
t−1Xt−1)

−1xt)
1/2, and

σ̃2 = (T − k)−1
∑T

t=k+1(ũt − ¯̃u)2 with ¯̃u = (T − k)−1
∑T

t=k+1 ũt.
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Ploberger and Krämer (1990, 1992) derived the limiting distributions of these test statis-

tics under the local alternative, while Deng and Perron (2008) investigated the asymptotic

properties of these statistics under the fixed alternative. Their results imply that the powers

of these tests depend on the angle between the mean regressor and the direction of the break.

To explain this dependence, we demonstrate that the power of the OLS-based test depends on

c′1δ by focusing on the fixed alternative. Given that the OLS estimator of β can be expressed

as

β̂ = β +

(
T∑
t=1

xtx
′
t

)−1 T∑
t=1

(
xtx

′
tδ1(t>[Tλ]) + xtut

)
, (2)

the OLS residuals are given by

ût = ut + x′tδ1(t>[Tλ]) − x′t(β̂ − β), (3)

and thus

1

T

[Tr]∑
t=1

ût =
1

T

[Tr]∑
t=1

ut +
1

T

[Tr]∑
t=1

x′tδ1(t>[Tλ])

− 1

T

[Tr]∑
t=1

x′t

(
1

T

T∑
s=1

xsx
′
s

)−1 [
1

T

T∑
s=1

xsx
′
sδ1(s>[Tλ]) +

1

T

T∑
s=1

xsus

]
. (4)

It can be shown that for r > λ, the second and third terms on the right hand side of (4)

converge in probability to (r − λ)c′1δ and −r(1 − λ)c′1δ, respectively. Therefore, we can see

that the OLS-based CUSUM test loses power when c′1δ = 0.

To avoid the dependence of the power on c′1δ, we modify the CUSUM test such that it

is not based on the residuals, but on the product of xjt (for j �= 1) and the residuals. Let

ŵjt = xjtût and w̃jt = xjtũt. Then, the modified CUSUM test statistics are defined as

CUSUMols
m = sup

0≤r≤1

∣∣∣∣∣∣
1

σ̂j
√
T

[Tr]∑
t=1

ŵjt

∣∣∣∣∣∣ ,

CUSUM rec
m = sup

0≤r≤1

∣∣∣∣∣
∑[Tr]

t=k+1 w̃jt

σ̃j
√
T − k

∣∣∣∣∣
/(

1 + 2
[Tr]− k

T − k

)
,

where

σ̂2
j =

1

T

T∑
t=1

ŵ2
jt and σ̃2

j =
1

T − k

T∑
t=k+1

(w̃jt − ¯̃wj)
2 with ¯̃wj =

1

T − k

T∑
t=k+1

w̃jt.
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Proposition 1 Suppose that Assumptions 1–3 hold.

(a) Under the null hypothesis,

CUSUMols
m ⇒ sup

0≤r≤1
|BBj(r)|, (5)

CUSUM rec
m ⇒ sup

0≤r≤1

∣∣∣∣Wj(r)

1 + 2r

∣∣∣∣ , (6)

where BBj(r) and Wj(r) are the one-dimensional standard Brownian bridge and Brownian

motion, respectively, and ⇒ denotes weak convergence of the associated probability measures.

(b) Under the alternative hypothesis,

1√
T
CUSUMols

m
p−→ |c′jδ|λ(1− λ)√

σ2cjj + λ(1− λ)δ′Λjj,0δ
, (7)

1√
T
CUSUM rec

m
p−→ |c′jδ|q√

σ2cjj + λ(1− λ)δ′Λjj,0δ − (c′jδλ log(λ))2
, (8)

where cjj and Λjj,0 are the (j, j) element of C and the (j,j) block of Λ, respectively; that is,

1

T

T∑
t=1

x2jt
p−→ cjj , and

1

T

T∑
t=1

x2jtxtx
′
t

p−→ Λjj,0,

and q = sup
0≤r≤1

λ log r
λ1(r>λ)

1 + 2r
=

⎧⎪⎨
⎪⎩
λ log λ∗

λ

1 + 2λ∗ 0 ≤ λ < e−
3
2

−λ log λ

3
e−

3
2 ≤ λ ≤ 1,

(9)

with λ∗ = {λ∗ : 0 ≤ λ∗ ≤ 1 and log λ∗ = 1 + log λ+ 1
2λ∗ }.

Proposition 1 shows that our modification could work well, even in the case of c′1δ = 0, for

c′jδ �= 0 and j �= 1. Thus, we can avoid the loss of power caused by the orthogonal change.

However, it is obvious that the modified test loses power if c′jδ = 0, and we do not know

whether c′jδ = 0, for some j = 1, · · · , k. We will discuss how to overcome this problem in the

following subsection.

3.2 Modified CUSUM tests

Note that C = E[xtx
′
t] is positive definite, by Assumption 2. Therefore, we can easily see

that c′jδ �= 0 for at least one of j = 1, · · · , k if δ �= 0. Thus, it is natural to construct the test
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statistics based on all ŵ1t, · · · , ŵkt or w̃1t, · · · , w̃kt in order to avoid the potential loss of power

caused by c′jδ = 0 for some j. One of the possible transformations used in the literature is to

construct a quadratic form based on xtût = [ŵ1t, · · · , ŵkt]
′ or xtũt = [w̃1t, · · · , w̃kt]

′ given by

Qols = sup
0≤r≤1

Qols(r) where Qols(r) =

(∑[Tr]
t=1 xtût

)′ (∑T
t=1 xtx

′
t

)−1 (∑[Tr]
t=1 xtût

)
σ̂2

,

Qrec = sup
0≤r≤1

Qrec(r) where Qrec(r) =

(∑[Tr]
t=k+1 xtũt

)′ (∑T
t=1 xtx

′
t

)−1 (∑[Tr]
t=k+1 xtũt

)
σ̃2

,

where σ̂2 and σ̃2 are defined as before. The following theorem gives the asymptotic properties

of these test statistics.

Theorem 1 Suppose that Assumptions 1-3 hold.

(a) Under the null hypothesis,

Qols ⇒ sup
0≤r≤1

‖BB(r)‖2 , (10)

Qrec ⇒ sup
0≤r≤1

‖W (r)‖2 , (11)

where BB(r) and W (r) are the k-dimensional standard Brownian bridge and Brownian mo-

tion, respectively.

(b) Under the alternative hypothesis,

1

T
Qols p−→ δ′Cδλ2(1− λ)2

σ2 + λ(1− λ)δ′Cδ
, (12)

1

T
Qrec p−→ δ′Cδ(λ log λ)2

σ2 + λ(1− λ)δ′Cδ − (c′1δλ log(λ))2
. (13)

Theorem 1 clearly shows that the modified test statistics Qols and Qrec can avoid the loss

of power caused by c′jδ = 0 for some j, and are consistent because δ′Cδ �= 0.

The other possible transformation is to take the maximum of the absolute values of the

elements of xtût or xtũt. Let

[
Mols

1 (r), · · · ,Mols
k (r)

]′
=

1

σ̂

(
T∑
t=1

xtx
′
t

)−1/2 [Tr]∑
t=1

xtût,

[M rec
1 (r), · · · ,M rec

k (r)]′ =
1

σ̃

(
T∑
t=1

xtx
′
t

)−1/2 [Tr]∑
t=k+1

xtũt,
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and consider the following test statistics:

Mols = max

{
sup

0≤r≤1

∣∣∣Mols
1 (r)

∣∣∣ , · · · , sup
0≤r≤1

∣∣∣Mols
k (r)

∣∣∣}

M rec = max

{
sup

0≤r≤1
|M rec

1 (r)| , · · · , sup
0≤r≤1

|M rec
k (r)|

}
.

Theorem 2 Suppose that Assumptions 1–3 hold.

(a) Under the null hypothesis,

Mols ⇒ max

{
sup

0≤r≤1
|BB1(r)|, · · · , sup

0≤r≤1
|BBk(r)|

}
, (14)

M rec ⇒ max

{
sup

0≤r≤1
|W1(r)|, , · · · , sup

0≤r≤1
|Wk(r)|

}
, (15)

where {BBj(r)} and {Wj(r)} for j = 1, · · · , k are the independent one-dimensional standard

Brownian bridge and Brownian motion, respectively.

(b) Under the alternative hypothesis,

1√
T
Mols p−→ max{|v1|, · · · , |vk|}λ(1− λ)√

σ2 + λ(1− λ)δ′Cδ
, (16)

1√
T
M rec p−→ max{|v1|, · · · , |vk|}(−λ log λ)√

σ2 + λ(1− λ)δ′Cδ − (c′1δλ log(λ))2
, (17)

where vj is the k-th element of C1/2δ for j = 1, · · · , k; that is, [v1, · · · , vk]′ = C1/2δ.

Again, we can see from Theorem 2 that the maximum-type tests, Mols and M rec, are

consistent irrespective of whether c′jδ = 0 for some j.

The critical values of the null-limiting distributions of the quadratic-type and maximum-

type tests are obtained by approximating a standard Brownian motion using 2000 inde-

pendent normal random variables with 1000000 replications (see Panel (a) of Table 1). In

addition, it is sometimes the case that the test statistics are constructed by removing the

first and last 100ε % observations. In this case, we have

sup
ε≤r≤1−ε

Qols(r) ⇒ sup
ε≤r≤1−ε

‖BB(r)‖2 , sup
ε≤r≤1−ε

Qrec(r) ⇒ sup
ε≤r≤1−ε

‖W (r)‖2 , (18)

max
1≤j≤k

{
sup

ε≤r≤1−ε

∣∣∣Mols
j (r)

∣∣∣ , j = 1, · · · , k
}

⇒ max
1≤j≤k

{
sup

ε≤r≤1−ε
|BBj(r)|, j = 1, · · · , k

}
, (19)
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max
1≤j≤k

{
sup

ε≤r≤1−ε

∣∣M rec
j (r)

∣∣ , j = 1, · · · , k
}

⇒ max
1≤j≤k

{
sup

ε≤r≤1−ε
|Wj(r)|, j = 1, · · · , k

}
. (20)

The critical values for these distributions with ε = 0.15 are given in Panel (b) of Table 1.

We next investigate the limiting properties of the tests under the alternative based on

Theorems 1 and 2. Since the probability limits under the alternative depend on several

parameters in the model, we focus on a simple case where σ2 = 1 and xt = [1, zt]
′ with

zt ∼ i.i.d.N(1, 1). Furthermore, the change in the coefficients is specified by δ = [1,−1]′ and

δ = [1, 1]′, which correspond to c′1δ = 0 and c′1δ �= 0, respectively. Given that the power

properties depend not only on the probability limits under the alternative, but also on the

critical values used in the tests, we compare these limits divided by the asymptotic 5% critical

values.

Figures 1(a) and (b) show the probability limits of the quadratic-type tests given by (12)

and (13), respectively, divided by the corresponding critical values. We can see that the

limit of the OLS-based version is maximized at the midpoint, whereas that of the recursive-

based version is skewed to the right. As expected from the power analysis of Ploberger and

Krämer (1990) and Deng and Perron (2008), Qrec is more powerful than Qols when the break

occurs early in the sample, whereas the reserved relation is observed when λ is closer to one.

A similar tendency is observed for the maximum-type test, as shown in Figures 1(c) and

(d). The two types of tests, the quadratic-type and maximum-type tests based on OLS, are

compared in Figures 1(e) and (f). However, neither version is uniformly superior to the other,

because the powers depend on many factors, such as the number of regressors k and δ′Cδ,

among others. For instance, in the case of k = 2, the quadratic-type test outperforms the

maximum-type test under our setting, as shown in Figure 1(e). However, Figure 1(f) implies

that the latter performs better in the case of k = 3.

3.3. Modified CUSUM tests with serially correlated errors

In practice, it is sometimes the case that the error term is not a martingale difference

sequence, but instead is serially correlated. As shown by, for example, Tang and MacNeill

(1993), the serial correlation in the error term can produce striking effects on the distribution.

Therefore, when the error term is possibly serially correlated, we need to construct the test
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statistics taking the serial correlation into account. In this case, we replace Assumption 3

with the following assumption.

Assumption 4 The following functional central limit theorem holds:

1√
T

[Tr]∑
t=1

xtut ⇒ Ω1/2W (r)

uniformly for 0 ≤ r ≤ 1, where Ω =
∑∞

p=−∞ Γp with Γp = Cov(xtut, xt−put−p).

The test statistics, Qols, Qrec, Mols, and M rec are defined as before with

Qols(r) =
1

T

⎛
⎝[Tr]∑

t=1

xtût

⎞
⎠

′

Ω̂−1

⎛
⎝[Tr]∑

t=1

xtût

⎞
⎠ , (21)

Qrec(r) =
1

T

⎛
⎝ [Tr]∑

t=k+1

xtũt

⎞
⎠

′

Ω̃−1

⎛
⎝ [Tr]∑

t=k+1

xtũt

⎞
⎠ , (22)

[
Mols

1 (r), · · · ,Mols
k (r)

]′
=

1√
T
Ω̂−1/2

[Tr]∑
t=1

xtût, (23)

[M rec
1 (r), · · · ,M rec

k (r)]′ =
1√
T
Ω̃−1/2

[Tr]∑
t=k+1

xtũt, (24)

where Ω̂ and Ω̃ are the consistent estimators of Ω based on xtût and xtũt, respectively. In

practice, it is often the case that Ω is estimated nonparametrically, such that

Ω̂ = Γ̂0 +
m∑
p=1

k(p,m)
(
Γ̂p + Γ̂′

p

)
where Γ̂p =

1

T

T∑
t=p+1

xtx
′
t−pûtût−p,

k(p,m) = 1 − p/(m + 1) is the Bartlett kernel, and the bandwidth m is selected based on

Andrews (1991) such that

m = [1.1447× (a(δ)T )1/3] where a(δ) =

∑k
j=1 4ρ̂

2
j σ̂

4
j /[(1− ρ̂j)

6(1 + ρ̂j)
2]∑k

j=1 σ̂
4
j /(1− ρ̂j)4

with ρ̂j obtained by regressing ŵjt on ŵjt−1, and σ̂2
j defined as before. Then, Ω̃ is defined

similarly using the recursive residuals.
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Let us define γjj,p and Λjj,p as the probability limits of

1

T

T∑
t=p+1

xjtxjt−putut−p
p−→ γjj,p and

1

T

T∑
t=p+1

xjtxjt−pxtx
′
t−p

p−→ Λjj,p.

Theorem 3 Suppose that Assumptions 1, 2, and 4 hold and that the quadratic-type and

maximum-type test statistics are constructed using (21)–(24).

(a) Under the null hypothesis, Qols, Qrec, Mols, and M rec have the same limiting distributions

as those in Theorems 1(a) and 2(a).

(b) Under the alternative hypothesis, if δ′(Λjj,1 − Λjj,0)δ → 0 as |δ| → ∞ for some j, then

1

T 2/3
Qols = Op(‖δ‖−4/3),

1

T 2/3
Qrec = Op(‖δ‖−4/3),

1

T 1/3
Mols = Op(‖δ‖−2/3),

1

T 1/3
M rec = Op(‖δ‖−2/3),

whereas if δ′(Λjj,1 − Λjj,0)δ �→ 0 as |δ| → ∞ for all of j, then

1

T 2/3
Qols = Op(1),

1

T 2/3
Qrec = Op(1),

1

T 1/3
Mols = Op(1),

1

T 1/3
M rec = Op(1).

We can see that δ′(Λjj,1 − Λjj,0)δ → 0 if xt consists of only a constant (xt = 1). In

this case, the tests suffer from the so-called non-monotonic power problem as investigated

by Vogelsang (1999) and several methods have been proposed to overcome this problem by

Crainiceanu and Vogelsang (2007), Kejriwal (2009), Juhl and Xiao (2009), Shao and Zhang

(2010), Yang and Vogelsang (2011), and Yamazaki and Kurozumi (2015) among others. We

also note that even if the above condition does not hold, the divergence rates of the test

statistics are reduced in the case of serially correlated errors compared to the case in Section

3.2. That is, the modifications robust to serial correlation result in the reduction of power,

as is often observed in the literature.

4. Finite Sample Properties

In this section, we investigate the finite sample performance of the tests considered in this

study. The data generating process (DGP) we consider is given by

yt = x′t(βt + δ1(t>[Tλ])) + ut, ut = ρut−1 + εt,

12



where xt = [1, zt]
′, β = [1, 1]′, and {εt} ∼ i.i.d.N(0, (1 − ρ)2). The settings for δ and λ are

explained later. The stochastic regressor zt is an AR(1) process with mean 1 and variance 1,

given by

zt = 0.5 + 0.5zt−1 + et, {et} ∼ i.i.d.N(0, 0.75),

where {et} is independent of {εt}. We set ρ = 0 to investigate the performance of the

truncated versions of the tests in Section 3.2 given in (18)–(20), while ρ = 0.4 and 0.8 are

used for the tests that are robust to serial correlation developed in Section 3.3. The sample

size T is 100 and 200, the number of replications is 5000, and all computations are conducted

using the GAUSS matrix language.

We first investigate the finite sample performance of the tests in Section 3.2 with ρ = 0.

From Panel (a) of Table 2, we can see that the sizes of all the tests are relatively well

controlled, although they tend to be slightly conservative. Since the empirical sizes of the

tests are different, we investigate the finite sample properties of the tests under the alternative

using the size adjusted powers. We set a one-time shift in the coefficient to δ = b[1, 1]′ (non-

orthogonal change with c′1δ = 1) and δ = b[−1, 1]′ (orthogonal change with c′1δ = 0), in

which the magnitude of the change is controlled by b = 0, 0.5, 1.0, 1.5, and 2.0, and the

break fraction λ is set to 0.5. Figures 2(a) and (b) show that the difference in power is

relatively small among the three tests based on the same (OLS or recursive) residuals when

c′δ = 1. However, as is seen in Figures 2(c) and (d), when c′δ = 0, the modified tests

are more powerful than the original tests. When we focus on either the quadratic-type or

maximum-type tests, the OLS-based test is more powerful than the recursive-based test. We

also investigate the effect of the location of the break on the performance of the quadratic-

type and maximum-type tests by changing λ from 0.2 to 0.8. Figures 2(e)–(h) show that the

effect of the location of the change in finite samples is consistent with the theoretical result

given in Section 3. For example, the modified tests using the OLS residuals are maximized

at λ = 0.5, whereas for an early break, the tests using recursive residuals outperform those

using OLS residuals and vice versa for a late break.

In the case where the error term is possibly serial correlated, we should use the tests

proposed in Section 3.3, the empirical sizes of which are summarized in Panels (b) and (c) of

13



Table 2. We can see that the tests based on the OLS residuals tend to suffer from under-size

distortion, particularly when the serial correlation is strong, with ρ = 0.8. With regards to

power in the case of ρ = 0.4, the relative performance of the tests seems to be preserved,

but we also observe from Figures 3(a) and (b) that the tests suffer from the so-called non

monotonic power.2 Figures 3(g) and (h) show that the effect of the location of a change on

the tests is similar to the case of serially uncorrelated errors. We obtain the similar tendency

in the case of ρ = 0.8 and omit details.

5. Conclusion

When a structural change is orthogonal to the mean of the regressors, the standard

CUSUM tests lose power. As a result, several modified tests have been proposed, explicitly

or implicitly, in the literature. We investigated the asymptotic properties of such modified

tests, and found that they can successfully reject the null hypothesis, even in the case of

an orthogonal structural change. In this sense, the modified tests could complement the

standard test in empirical analyses.

2Since the main purpose of this study is to investigate the modified CUSUM tests developed to overcome
the loss of power caused by an orthogonal shift of parameters, we do not pursue this problem further here.
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Appendix

Proof of Proposition 1: (a) In the case of the OLS residuals, from the functional central

limit theorem (FCLT), the weak law of large numbers (WLLN), and the continuous mapping

theorem (CMT), we have
√
T (β̂ − β) ⇒ C−1B(1), (25)

where B(r) = [B1(r), · · · , Bk(r)]
′ for 0 ≤ r ≤ 1 is a k-dimensional Brownian motion with

variance σ2C. Since ût = ut − x′t(β̂ − β), we have

1√
T

[Tr]∑
t=1

ŵjt =
1√
T

[Tr]∑
t=1

xjtut − 1√
T

[Tr]∑
t=1

xjtx
′
t(β̂ − β)

⇒ Bj(r)− rc′jC
−1B(1)

= Bj(r)− rBj(1),

where the last equality holds because c′jC
−1 = [0, · · · , 0, 1, 0, · · · , 0]. Similarly, we have

σ̂2
j =

1

T

T∑
t=1

x2jtu
2
t + op(1)

p−→ σ2cjj .

Since Bj(r)−rBj(1) =d σc
1/2
jj BBj(r) where BBj(r) is a standard Brownian bridge, we obtain

(5).

For the CUSUM test based on the recursive residuals, following Ploberger and Krämer

(1988), we have

1√
T − k

[Tr]∑
t=k+1

w̃jt =
1√

T − k

[Tr]∑
t=k+1

xjtũt ⇒ σc
1/2
jj Wj(r),

and T−1
∑T

t=1 w̃
2
jt

p−→ σ2cjj , where Wj(r) for 0 ≤ r ≤ 1 is a standard Brownian motion. We

then obtain (6).

(b) Since β̂ is expressed as (2) under the alternative, we have

β̂ − β
p−→ (1− λ)δ.
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Then, using expression (3), the numerator of the test statistic becomes

1

T

[Tr]∑
t=1

ŵjt =
1

T

[Tr]∑
t=1

xjtut +
1

T

[Tr]∑
t=1

xjtx
′
tδ1(t>[Tλ]) −

1

T

[Tr]∑
t=1

xjtx
′
t(β̂ − β)

p−→ 0 + c′jδ(r − λ)1(r>λ) − rc′j(1− λ)δ

= c′jδ
[
(r − λ)1(r>λ) − r(1− λ)

]
(26)

uniformly over 0 ≤ r ≤ 1, the absolute value of which is maximized at r = λ, which is equal

to |c′jδ|λ(1− λ). Similarly, we have

1

T

T∑
t=1

ŵ2
jt =

1

T

T∑
t=1

x2jtu
2
t +

1

T

T∑
t=1

(
xjtx

′
tδ1(t>[Tλ])

)2
+

1

T

T∑
t=1

(
xjtx

′
t(β̂ − β)

)2

+
2

T

T∑
t=1

x2jtutx
′
tδ1(t>[Tλ]) −

2

T

T∑
t=1

x2jtutx
′
t(β̂ − β)

− 2

T

T∑
t=1

x2jt1(t>[Tλ])δ
′xtx′t(β̂ − β)

p−→ σ2cjj + (1− λ)δ′Λjj,0δ + (1− λ)2δ′Λjj,0δ + 0− 0− 2(1− λ)2δ′Λjj,0δ

= σ2cjj + λ(1− λ)δ′Λjj,0δ. (27)

From (26) and (27), we obtain (7).

The proof in the case with the recursive residuals is analogous to the OLS case. We first

note that since ft
p−→ 1, it can be shown that T−1

∑T
t=1(1/ft − 1)xtx

′
t

p−→ 0, which implies

that T−1
∑T

t=1 xtx
′
t/ft

p−→ C. This result will be used repeatedly in our proofs below.

Since the recursive residuals are written under the alternative as ũt = [ut + x′tδ1t>[(Tλ]) −
x′t(β̂t−1 − β)]/ft and β̂t−1 − β =

(∑t−1
s=1 xsx

′
s

)−1 (∑t−1
s=1 xsx

′
sδ1t>[Tλ] +

∑t−1
s=1 xsus

)
, w̃jt can

be expressed as

w̃jt =
1

ft
xjtut +

1

ft
xjtx

′
tδ1(t>[Tλ]) −

1

ft
xjtx

′
t

(
t−1∑
s=1

xsx
′
s

)−1( t−1∑
s=1

xsx
′
sδ1(s>[Tλ]) +

t−1∑
s=1

xsus

)
.

Then, we have

1

T

[Tr]∑
t=1

w̃jt
p−→ 0 + c′j

∫ r

0
δ1(v>λ)dv − c′j

∫ r

0

[
(vC)−1

∫ v

0
Cδ1(w>λ)dw

]
dv

= c′jδλ[log(r)− log(λ)]1(r>λ) (28)
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uniformly over 0 ≤ r ≤ 1. Using standard calculus, we have that |c′jδ|λ[log(r)−log(λ)]1(r>λ)/(1+

2r)| takes the maximum value |c′jδ|q, where q is defined as (9). Furthermore, similarly to

(27), we have

1

T

T∑
t=1

w̃2
jt

p−→ σ2cjj + (1− λ)δ′Λjj,0δ

+

∫ 1

0
tr

[
1

v
C−1

(∫ v

0
Cδ1(w>λ)dw

)(∫ v

0
Cδ1(w>λ)dw

)′ 1
v
C−1Λjj,0

]
dv

+0− 0− 2

∫ 1

0
tr

[
δ1(v>λ)

∫ v

0
δ′1(w>λ)dw

1

v
Λjj,0

]
dv

= σ2cjj + λ(1− λ)δ′Λjj,0δ. (29)

From (28) and (29), we can see that

σ̃2
j

p−→ σ2cjj + λ(1− λ)δ′Λjj,0δ −
(
c′jδλ log(λ)

)2
.

We then obtain (8).�

Proof of Theorem 1: (a) From (25), we have

1√
T

[Tr]∑
t=1

xtût ⇒ B(r)− rB(r),

and thus ⎛
⎝[Tr]∑

t=1

xtût

⎞
⎠

′(
T∑
t=1

xtx
′
t

)−1
⎛
⎝[Tr]∑

t=1

xtût

⎞
⎠⇒ σ2‖BB(r)‖2.

Since σ̂2 p−→ σ2 under the null hypothesis, (10) is obtained.

The null limiting distribution of Qrec can be derived similarly.

(b) In the same way as (26), we have

1

T

[Tr]∑
t=1

xtût
p−→ Cδ

[
(r − λ)1(r>λ) − r(1− λ)

]
(30)

uniformly over 0 ≤ r ≤ 1, and, thus,⎛
⎝ 1

T

[Tr]∑
t=1

xtût

⎞
⎠

′(
1

T

T∑
t=1

xtx
′
t

)−1
⎛
⎝ 1

T

[Tr]∑
t=1

xtût

⎞
⎠ p−→ δ′Cδ

[
(r − λ)1(r>λ) − r(1− λ)

]2
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uniformly over 0 ≤ r ≤ 1, which achieves a maximum at r = λ, while σ̂2 p−→ σ2+λ(1−λ)δ′Cδ,

as proved by Deng and Perron (2008). We then obtain (12).

In the case of recursive residuals, in the same way as in (28), we have

1

T

[Tr]∑
t=k+1

xtũt
p−→ Cδλ (log(r)− log(λ)) 1(r>λ)

uniformly over 0 ≤ r ≤ 1, and, thus,⎛
⎝ 1

T

[Tr]∑
t=k+1

xtût

⎞
⎠

′(
1

T

T∑
t=1

xtx
′
t

)−1
⎛
⎝ 1

T

[Tr]∑
t=k+1

xtût

⎞
⎠ p−→ δ′Cδ

[
λ(log(r)− log(λ))1(r>λ)

]2
,

while σ̃2 p−→ σ2 + λ(1− λ)δ′Cδ − (c′1δλ log(λ))2 is shown by Deng and Perron (2008), which

implies (13).�

Proof of Theorem 2: (a) Since

[
Mols

1 , · · · ,Mols
k

]′
=

1

σ̂

(
T∑
t=1

xtx
′
t

)−1/2 [Tr]∑
t=1

xtût
d−→ BB(r),

(14) is obtained. (15) can be proved similarly to (11).

(b) Under the alternative, we have

[
Mols

1 , · · · ,Mols
k

]′ p−→ C1/2δ
[
(r − λ)1(r>λ) − r(1− λ)

]
√
σ2 + λ(1− λ)δ′Cδ

and, therefore,[
sup

0≤r≤1
|Mols

1 |, · · · , sup
0≤r≤1

|Mols
k |
]′

p−→ 1√
σ2 + λ(1− λ)δ′Cδ

[|v1|λ(1− λ), · · · , |vk|λ(1− λ)]′ ,

where vj is defined as in Theorem 2. We then have

1√
T

max
1≤j≤k

sup
0≤r≤1

∣∣∣Mols
j (r)

∣∣∣ p−→ max1≤j≤k{|v1|, · · · , |vk|}λ(1− λ)√
σ2 + λ(1− λ)δ′Cδ

.

For the recursive residuals, we can prove (17) similarly to the proof of Theorem 1(b).�

Proof of Theorem 3
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(a) The null limiting distributions can be obtained in the same way as in Theorems 1(a) and

2(a).

(b) We first derive the divergence rate of the bandwidth m. Since ût is expressed as (3), in

the same way as (27), we have

1

T

T∑
t=p+1

ŵjtŵjt−p
p−→ γjj,p + λ(1− λ)(δ′Λjj,pδ) (31)

for a given p. Then, we have

ρ̂j
p−→ γjj,1 + λ(1− λ)δ′Λjj,1δ

γjj,0 + λ(1− λ)δ′Λjj,0δ
,

and hence

1−ρ̂j
p−→ γjj,0 − γjj,1 + λ(1− λ)δ′(Λjj,0 − Λjj,1)δ

γjj,0 + λ(1− λ)δ′Λjj,0δ
=

{
Op

(‖δ‖−2
)

: δ′(Λjj,0 − Λjj,1)δ → 0
Op(1) : δ′(Λjj,0 − Λjj,1)δ �→ 0

.

Since σ̂2
j = Op(‖δ‖2) by (27), we can see that a(δ) = Op

(‖δ‖4) if δ′(Λjj,0 − Λjj,1)δ → 0, for

some j, and is Op(1) otherwise. Hence,

m =

{
Op

(‖δ‖4/3T 1/3
)

: δ′(Λjj,0 − Λjj,1)δ → 0 ∃j
Op(T

1/3) : δ′(Λjj,0 − Λjj,1)δ �→ 0 ∀j .

Using this result, we next derive the divergence order of Ω̂. In the same way as (31),

Γ̂p
p−→ Γp + λ(1− λ)plim

1

T

T∑
t=p+1

xtx
′
tδδ

′xt−px
′
t−p = Op(‖δ‖2).

Then, since
∑m

p=1 k(p,m) = O(m),

‖Ω̂‖ =

∥∥∥∥∥∥Γ̂0 +

m∑
p=1

k(p,m)
(
Γ̂p + Γ̂′

p

)∥∥∥∥∥∥
≤ O(m)Op(‖δ‖2) =

{
Op

(‖δ‖10/3T 1/3
)

: δ′(Λjj,0 − Λjj,1)δ → 0 ∃j
Op(‖δ‖2T 1/3) : δ′(Λjj,0 − Λjj,1)δ �→ 0 ∀j . (32)

Since it can be shown that (30) holds under Assumption 4, we can see that

Qols =

{
Op

(‖δ‖−4/3T 2/3
)

: δ′(Λjj,0 − Λjj,1)δ → 0 ∃j
Op(T

2/3) : δ′(Λjj,0 − Λjj,1)δ �→ 0 ∀j .

Thus, we obtain the result.

The order of Mols is obtained similarly using (30) and (32).

Since we can obtain the result of Qrec and M rec in the same way as in the case of the

OLS residuals, we omit the proof.�
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Table 1: Asymptotic critical values

1% 5% 10%

Quadratic Max Quadratic Max Quadratic Max

ols rec ols rec ols rec ols rec ols rec ols rec

(a) r ∈ [0, 1]
k=1 1.465 3.792 1.210 1.947 1.806 4.958 1.344 2.227 2.608 7.795 1.615 2.792
k=2 2.077 5.776 1.341 2.215 2.469 7.179 1.465 2.478 3.347 10.406 1.718 3.002
k=3 2.584 7.473 1.412 2.366 3.009 9.033 1.532 2.616 3.945 12.553 1.773 3.122
k=4 3.038 9.035 1.461 2.468 3.491 10.738 1.578 2.712 4.488 14.486 1.813 3.207
k=5 3.464 10.522 1.498 2.546 3.942 12.340 1.613 2.784 4.999 16.312 1.842 3.270

(b) r ∈ [0.15, 0.85]
k=1 1.463 3.218 1.210 1.794 1.805 4.217 1.344 2.054 2.608 6.636 1.615 2.576
k=2 2.077 4.902 1.340 2.043 2.469 6.100 1.465 2.283 3.347 8.842 1.718 2.770
k=3 2.584 6.350 1.412 2.179 3.009 7.680 1.532 2.412 3.945 10.680 1.773 2.883
k=4 3.038 7.675 1.461 2.274 3.491 9.127 1.578 2.500 4.488 12.298 1.813 2.959
k=5 3.464 8.932 1.498 2.346 3.942 10.489 1.613 2.567 4.999 13.886 1.842 3.018

Table 2: Empirical sizes under H0

CUSUM Quadratic Max

ols rec ols rec ols rec

(a) ρ = 0
T = 100 0.035 0.039 0.033 0.039 0.032 0.040
T = 200 0.039 0.040 0.037 0.039 0.040 0.040
(b) ρ = 0.4
T = 100 0.042 0.050 0.019 0.059 0.020 0.049
T = 200 0.048 0.050 0.033 0.057 0.034 0.052
(c) ρ = 0.8
T = 100 0.006 0.044 0.002 0.072 0.002 0.048
T = 200 0.029 0.038 0.006 0.057 0.009 0.039

1



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

Quadratic-ols
 Quadratic-rec

(a) Quadratic of ols and rec (c′δ = 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Quadratic-ols
 Quadratic-rec

(b) Quadratic of ols and rec (c′δ �= 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Max-ols
Max-rec

(c) Max of ols and rec (c′δ = 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Max-ols
Max-rec

(d) Max of ols and rec (c′δ �= 0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

Quadratic-ols
Max-ols

(e) Quadratic and Max of ols (k = 2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Quadratic-ols
Max-ols

(f) Quadratic and Max of ols (k = 3)

Figure 1: Asymptotic power properties
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(a) T = 100, c′δ = 1
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(b) T = 200, c′δ = 1
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(c) T = 100, c′δ = 0
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(d) T = 200, c′δ = 0
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(e) T = 100, c′δ = 1
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(f) T = 200, c′δ = 1
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(g) T = 100, c′δ = 0
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(h) T = 200, c′δ = 0

Figure 2: Size-adjusted powers (ρ = 0)
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(a) T = 100, c′δ = 1
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(b) T = 200, c′δ = 1
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(c) T = 100, c′δ = 0
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(d) T = 200, c′δ = 0
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(e) T = 100, c′δ = 1
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(f) T = 200, c′δ = 1
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(g) T = 100, c′δ = 0
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(h) T = 200, c′δ = 0

Figure 3: Size-adjusted powers (ρ = 0.4)


