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Abstract
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1 Motivation and Introduction

During the past half century, economists have made coraiteprogress in understanding the the-
oretical structure of equilibrium strategic behaviour entharket mechanisms, such as auctions;
see Krishna [2010] for a comprehensive presentation arldaa@n of progress.

One analytic device, commonly used to describe bidder rattin at single-object auctions,
is a continuous random variable that represents individpactific signals concerning the object’s
true, but unknown, value. This true, but unknown, value Wl revealed onlafter the auction
has ended, when the winner has been determined and thectiiang&ice paid. Regardless of the
winner, however, the value of the object is the same to alll.

The conceptual experiment involves each potential biddexteiving a draw from a signal
distribution. Conditional on his draw, a bidder is then assdrto act purposefully, using the
information in his signal along with Bayes’ rule to maximizg¢her the expected profit or the
expected utility of profit from winning the auction. Anothieequently-made assumption is that
the signal draws of bidders are independent and that thestsidateex antesymmetric—their
draws coming from the same distribution of signals. Thisneavork is often referred to as the
symmetric common-value paradiggymmetric CVP).

Under these assumptions, a researcher can then focus oreaaefative agent’s decision rule
when characterizing equilibrium behaviour. Wilson [191Rjented this framework to illustrate
that the winner’s curse could not obtain, in equilibrium,cang rational bidders. He also demon-
strated that, when the number of biddeiis large (tends to infinity), the winning bid at first-price,
sealed-bid auctions converges almost surely to the traeyridunown, value of the object. In other
words, the auction format and pricing rule play an importate in aggregating the disparate, indi-
vidual pieces of information held by the bidders. Milgrom®TB] subsequently provided a precise
characterization of the structure the signal distributimust possess in order for this convergence
property to hold; Pesendorfer and Swinkels [1997] havamedeto this asull information aggre-
gation

When several, sal, units of a good are simultaneously for sale, at least twoonamt ques-
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tions arise: specifically, who will be the winning bidderslavhat price(s) will those winners pay?
Weber [1983] has described a number dfetient multi-unit auction formats as well as pricing
rules under those formats. For example, Milgrom [1981] &gyved a natural generalization of the
Wilson [1977] model. In Milgrom’s model, each bidder sulsrat price and the auctioneer then
aggregates these demands, allocating the units to thoderbidith the highedt submitted bids.
The winners then pay a uniform price—specifically, the hgjlejected bid.

Pesendorfer and Swinkels [1997] have built on this resebycmvestigating a sequence of
auctions{A;} in which bothn, andk;, increase. They demonstrated that a necessary dhdieut
condition for full information aggregation is tht — o and f, — k) — oo, a condition they
referred to aslouble largenesdUnder this condition, non-negligible supply can be a stuistfor
the strong signal structure required in Wilson [1977] aslasIMilgrom [1979, 1981]. Kremer
[2002] has investigated this further.

While it is heartening to know there are conditions under Wiiiansaction prices will converge
in probability to the true, but unknown, values of objects dale, the rate at which these prices
converge is also of interest. In particular, Hong and Shud®42 asked the question “How large
mustn be to be large enough?” and then investigated the rates afmattion aggregation in
common-value environments. Knowing the conditions undeckthe transaction price provides a
potentially useful estimate of the object’s unknown vakigriportant to understanding the process
some refer to aprice discoverypecause, in practice, neither the number of bidders nordhwer
of units for sale at an auction ever really gets to infinity.

Of course, the pricing rule investigated in Wilson [1977favlilgrom [1979, 1981] as well
as Pesendorfer and Swinkels [1997, 2000] is not the onlyngricule that could be used under a
sealed-bid format. For example, another pricing rule wankdlve allocating thek units to those
bidders who tendered the high&giids, but each winner would then pay what he bid for the unit(s
he won. In general, at multi-unit auctionsfférent auction formats andftkrent pricing rules in-
duce diterent equilibrium behaviour and, thus, translate intéedent transaction prices as well

as potentially dferent expected revenues for sellers. Hence, as JacksonranteK[2004, 2006]



have emphasized, understanding tliects of auction formats and pricing rules has important-prac
tical relevance. Even small changes can hdtexes, as has been illustrated by Mezzetti and Tsetlin
[2008, 2009].

In a companion paper to Milgrom and Weber [1982], which wadlisbhed nearly two decades
later, Milgrom and Weber [2000] proposed an interestingipg rule for multi-unit, oral, ascending-
price auctions. The model considered by Milgrom and Web#rasnulti-unit variant of the clock
model introduced by Milgrom and Weber [1982] in order to stgate behaviour at single-object,
oral, ascending-price (often referred toEasglish auctions. In the multi-unit model, bidders are
assumed to demand at most one unit of the good for sale; Mild2®04] has referred to this as
singleton demandThe current price for all units on sale rises continuousigoading to some
device, such as a clock. As the price rises, the drop-ouepié losing participants are recorded
when they exit the auction. The transaction price is the-@nafprice of the last participant to exit
the auction. Each of the remainikgparticipants is then allocated one unit at the transactime p

One attractive feature of oral, ascending-price auctioasa-vissealed-bid ones, regardless
of the pricing rule, is the scope for information releaseral,cascending-price auctions. This is
particularly important in informational environments lwgubstantial common-value components.
In such environments, by observing the actions of his coitgpst a bidder can augment the in-
formation contained in his signal and, thus, may be abledage the uncertainty concerning the
unknown value of the object for sale. Other things being edhes reduction in uncertainty can
induce participants to bid more aggressively than unddeddzd formats, which means the rev-
enues the seller can expect to garner can increase. Themgie#te linkage between a bidder’s
information and what he perceives others will bid, the higie bidding; Milgrom and Weber
[1982] have referred to this as thekage principle In models of single-object auctions, they used
it to rank the revenues a seller can expect to garner undeliftieeent auction formats and pricing
rules. Specifically, in a theoretical model with one objextdale as well as risk-neutral potential
buyers who haveféliated signals from the same marginal distribution, Milgrand Weber [1982]

demonstrated that the English auction format yields, onames more revenue than first-price auc-



tions, such as the oral, descending-price (Dutch) form#tefirst-price, sealed-bid format. One
can deduce from the structure of the proof in Milgrom and Wgh882] that the same linkage
principle applies to the generalized Milgrom—Weber aucte study below.

Our paper is in six additional sections. In the next, we useMiigrom—Weber clock model to
develop a theoretical framework within which to investegtite stochastic behaviour of the transac-
tion price at a multi-unit, oral, ascending-price auctiativm the common-value paradigm, while
in section 3, we demonstrate that the transaction pricearges in probability to thex anteun-
known, true value as the number of biddeend the number of unitsget large in the Pesendorfer—
Swinkels sense. In section 4, we characterize the asyroptstiribution of the transaction price
when both the number of bidders and the number of units gge¢ laVe also demonstrate that the
asymptotic variance of the transaction price under the iditg-Weber pricing rule is less than
that under the pricing rule used by Pesendorfer and SwinKéilss, if the transaction prices un-
der diferent auction formats and pricing rules are viewed as statistimators of the true, but
unknown, value of the units for sale, then the Milgrom—\Walndz is a more fiicient estimator of
the unknown value than the first-price, sealed-bid rule bgeanore information is released under
the Milgrom—Weber rule than under sealed-bid ones. Notegker, that in our model, when the
number of bidders is large, noffBrence exists between the average transaction prices theder
two auction formats and pricing rules because they convertie true value. Moreoverffdiation
in signals can only reduce the variance of the transactime pmnder the Milgrom—Weber pricing
rule. Thus, by working within the symmetric CVP, we provideugper bound concerning the im-
provement in variance reduction that can obtain under thgrbtn—Weber pricing rule. In section
5, we derive the likelihood function of observed drop-outes, while in section 6, we apply our
methods to data from an auction of taxi license plates he®henzhen, China; our empirical work
provides an estimate of the upper bound concerning the algeiia the variances of transaction
prices when using the Milgrom—Weber pricing rule. In the lfeection, we summarize and con-
clude. Any details too cumbersome to be included in the teé#te@paper have been collected in

the appendix at the end of the paper.



2 Theoretical Moded

Consider an oral, ascending-price auction at whicimits are for sale to a total efbidders, each
of whom wants at most one unit. Focus on the Milgrom and We2@0d(] pricing rule described
in the introduction. Assume that each bidder draws an inaggetly- and identically-distributed
signal X, conditional on the true, but unknown, valde Denote the cumulative distribution and
probability density functions oX, conditional orv, by Fxy (X|v) and fxy(X|v), respectively. Denote
by fy(v) the prior distribution oV, the unknown value.
Consider the vector of signal¥{, Xa, ..., X,), a random sample aof draws fromFy (X|\°).

Because this environment is symmetric, without loss of gaitgrfocus below on bidder 1. Denote

by Y; thei™ ordered signal of the opponents of bidder 1, so

Yi>2Yo>-- > Yy

Denote byz; thei™ order statistic for all of thé;s, so

Z1>7Z,> > 7,

The auction proceeds in rounds= n,n—1,...,k+ 1. In roundm, m bidders continue to
participate in the auction. The auction ends in roukd (1) when the K + 1)* bidder exits the
auction. With no loss of generality, suppose that biddeesoadered in the reverse order of exit
from the auction.

Let Q,, denote the information that has already been revealed imdnowby all the bidders who
have already left the auction. Hende,, equals{z,, z, 1, ..., Zn.1}, WhereQ, is the empty sed.
According to Milgrom and Weber [2000], the symmetric edurilim bidding rule in rounan can
be written as

Bm(X) = EVIXy = Yic= -+ = Ym1 = X, Qn] 1)

where& denotes the expectation operator. H¥g, . ., Yn_1 denote thé&!" through (m— 1) order



statistics among the bidders who remain competing withdryidd On the other hand, the order
statistics in the everf2,, denote the order statistics fall the bidders who have exitted the auction.
For completeness, we describe below our reasoning behihdraaterization of the equilibrium;
in their paper, Milgrom and Weber [2000] presumably omit@dcargument like this because they
found it obvious.

At price p, bidder 1 is concerned with the event tvat. . ., Y1 all drop-out simultaneously at
Bri(p), whereg 1(p) is the inverse bid function. In this event, bidder 1 will beecof the winners
of the auction, together with his remaining«{ 1) competitors. Bidder 1 should stay in the auction

at price levelp if and only if
E[VIXe =% Y=+ = Y1 = B(P), Qm| > p.

In equilibrium, p = Bn(X), sox = B.1(p)—the price level at which bidder 1 should exit—should

satisfy the relation that
p=&[V|X = %Y== Y1 = B(P), |- (2)

Hence, the functional form of the bid function.
The winning price corresponds to the bid submitted by thddmigvith the k+1)> order statistic

of the signals during rounk 1). Hence,

p =& [Vlzk = L1 = Zsts Qk+1] . (3)

3 Limiting Information in the Transaction Price

In this section, and the next, we have two goals: first, toysthd convergence rate of the trans-
action pricep’to the unknown true common valué; and, second, to characterize the limiting

distribution of the transaction prige Tn both of these endeavours, we assume tihgets large,



tends to infinity.
In this regard, we make the following assumption concertinipe number of units for sale

relative ton, the number of bidders at the auction.
Assumption 1 [(n—Kk)/n] — 7, wherer is strictly betweer® and 1.

In words, the proportion of demand met has a stable limit asntimbers of bidders gets large.
Were this not the case, then the transaction price would & b stable limit, without some po-
tentially unrealistic assumptions concerniiygv), as was pointed out by Pesendorfer and Swinkels
[1997].

With regard to our goals, we proceed in two steps. In the fivstdefinev; the maximum-
likelihood estimator (MLE) of°, based on the unobserved (to the researcher, but known to the
participants) order statisti@s,1, . . ., Z,, and then we investigate the rate at whictohverges ta°.

In the second, we investigate the rate at wipaworiverges t@.”In the next section, we demonstrate
formally that the rate of convergence of the prigéo the true common valué® will be driven
(dominated) by the convergence ratevad V°. In other words, o= \°) is o, (\7 - vo). Therefore, to
understand the rate of information aggregation, ffisas to focus on how approaches® as the
“sample size’h gets large.

Under our assumptions, the MLES defined as

¥ = argmax log [(E)Ln(ZM, e znlv)]

where the joint likelihood function of all the signals releshunder the Milgrom—Weber auction is

proportional to

Li(Za1, -, Zlv) = [1- FXlV(Zk+1|V)]k v (Zir V) Fxv (Zis2lV) - - - T (ZalV). (4)

Here, the terml — Fx|v(zk+1|v)]k captures the fact that only limited information is known cem-

ing the signal values of thie winners—specifically, their signals are greater tkagn. Also, (E)
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captures the fact that there are many ways in whictkthghest order statistics of signals could

exceedy, 1. Equation|((4) is the joint likelihood of the lowest £ k) order statistics—those from

vl to Zn.

3.1 Convergenceof Pricetothe True Value

Given equation (4), the average log-likelihood will be adtion of the lowestri—k) order statistics.

A general function of order statistics can béidult to analyse because of the potentially complex
correlation structure among order statistics. One pdgyils to appeal to the theory df-statistics

to investigate the convergence properties of functionsadéiostatistics. Fortunately, this particular
average log-likelihood function is more tractable tharLastatistic because it can be rewritten as

a function of the entire sample and the samgileuantile. Specifically,

Qn(v)

1
- log Ln(Zcs1, - - - ZlV)

- lﬁ(log(l — Fxv [Fat @) v]) + % Zl log fxv (%) 1] X < Fi* (7))

whereF, (-) denotes the empirical distribution function

Now, under the assumptions made formal below, the sampteptlie If,;l (t) converges in prob-
ability to the true population quantiIE;(l{, (T|VO), by a uniform law of large numbers, <@, (V)

converges uniformly in the parameter spac® tf a deterministic function

Fi (Th)

Q°(v) = (1-7)log (1 - Fxy[Fxh (V)M + f T (V) log fyy(XIV) dx

o0

where the superscript 0 is used to denote the dependende Qh(v) = Q(vo, v).

In order for information to aggregate full@® (v), as a function of,, must be uniquely maxi-



mized atv equal\®. As in the case of full-sample likelihood function, this daa verified using
Jensen’s inequality. Thus, for amynot equal to°, Q°(v) < Q° (vo) This can be shown by taking

the sum of the following two inequalities. First, by Jensanequality,

=1 (O 2L (P
f_if'v( " fxv (}V°) log fxv (xv) dx — f_if'v( " fxv (}IV°) log fxv (Xv°) dx

<T

log [t (xiv) dx - log T] .
Second, it is easy to see that
(1-7)log(1- Fxy [F;llv (7) |v]) +7log Fyy [F;q{, (7v°) |v] <(1-7)log(l-17)+7logr

because the left-hand side, considered as a functiﬁryqp{F;(l{, (T|V0) |v], is maximized at.

Assumption 2 For v # \°, either K, (rlv) # Fj (TlVO) or, with positive probability, X<
F>_(|]\'/ (T|VO) under \?, fX|V (Xv) # fx|v (XlVo)

This assumption mirrors a standard full-sample identiicatondition for likelihood analysis.
While the monotone likelihood-ratio condition used by Mdgr and Weber [1982] is required to
derive the equilibrium bidding strategy, conditional oa tbrm of the equilibrium bidding strategy,
it is not strictly necessary for full information aggregutito hold.

The first inequality will be strict under the first conditiom Assumption 2. Likewise for the
second inequality under the second condition in Assumgiofhus, we have demonstrated that
QP (v) is globally and uniquely maximized &t provided the value identifiesthe signal distribu-
tion fxy (X|v) in the sense of Assumption 2, which is stronger than the dalkedample identifica-
tion condition whenever < 1. The usual Jensen’s inequality argument for full-samigidihood

function is just a special case of the above whésone.
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Now, examine the following first-order condition\&t

PN _[ 1-1) ‘ {anv[Fxlv(Tlvo)V]} . foﬂv<ﬂV°>anN(x|v°) i
ov 1 - Fxv[F5i (rV)M] v o EY,
v=\0 v=\0
o {aFXV[Fxlv(ﬂvO)w]} ) fp;ﬁv(ﬂvo)afxlv(xwo) dx
ov e ov

=0
= 0.

Therefore, subject to the regularity conditions, which@udlined completely in the next section,
Vis a consistent estimator of. To wit, (V — \°) 2o

Given thatQ° (v) is a properly-defined averaged log-likelihood functiont tti@pends linearly
on the observed sample up to a given sample quantile andnhatentral sample quantiles are
y/n-consistent as well as distributed asymptotically norrited information equality then holds for
v, and is related to the asymptotic variancerzo6Given the form ofQ° (v), the expected Hessian is

2Q%v)|  where

v=\0
2 2 »
22QW = —5Fxy |Fs (zV°) Iv] - (5)

2

2 T
1 i T (%wa [F;(&/ (T|VO) |V]) i fo % log fv [F>—<l{/ (u|v°) |v] du.

3.2 Information-Matrix Equality

In full-sample likelihood models, the asymptotic variarafehe maximume-likelihood estimator
is usually calculated using an information-matrix eqyalitHere, we show that an analogous
information-matrix equality also holds for tlpartial sampleinformation model that we consider,
which we shall use to characterize the amount of limitinginfation contained in the price as an
estimate of the true value.

One approach to calculating the information matrix equaditto view the limiting first-order
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condition at® as an identity, and then totallyfirentiate it with respect 8. Specifically, because

=0,

0
—Q°(v)
ov v=\0

then

This can be written as

02
N

Q(v) =0. (6)

a0
+%[6_VQ (V)]

v=\0 u=v=\0

In the next section, the second term on the left-hand sidéchnik the negative of the Hessian
given in equation (5), will be shown to equal the asymptotidance of the score function. The
following provides a direct calculation of the second termreqguation((6), which independently
verifies equation (6) and facilitates the comparison with\thriance of the score function in the
next section.

To compute this term, we need to calculate

a__
a_VFx\{/ (7v)
as well as
) )
2Py [Fxy @M V] = a—VF;ﬂV (7Iv) v [Fxiv (71v°) Iv].
V=0

Both can be found by totally fferentiating the identity

Fav(@v)
f fXIV (XlV) dx = T,

o0
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which leads to

LZrv [Fay ((M) V] 5
v XV . ZEw[EDE v
fxw[ = (T|V0) |V] EY xlv[ X|V( V) ]

=~ L E R (a) V]

x|v(|)_ v

v=\0 v=0

Using these relations,

2 [%QU (v)] 2 (2P (P (#) V) + 59 [ 2 10g e (W] oy (x10°) dx

u=v=\0 v=0

The next section formally demonstrates that the log-lit@dd function of the partially observed
sample in our model has a similar statistical behavioure¢amual full-sample log-likelihood func-
tion, so \/ﬁ(\‘/— vo) will converge in distribution to a normal random variableask asymptotic

variance is the inverse of eithéy [B%Q“ (v)] or equivalentlyZ,Q°(v)| . We now need to

u=v=\0 v=\0
show thaty/n(p — V) is o, (1) because, then, these will also represent the asymptoianear of

Vi(p- V)

For this purpose, we employ Bayesian asymptotic analysist, iote that

f Z = Z +1 = +1> Q + f
B = Bt (Zet) = f o (= Zon = 201, Qe W)
f fZ|V(Zk = Zii1 = Zie1, Quer1lU) fy(U) du

where the likelihood of the conditioning event in the biddtian is proportional to

fov(Ze = Zisr = Zgr, QiaalV) = [1- FXlV(Zk+1|V)]k_1 leV(Zk+1|V)2 fxv (Zr2lV) - - - fxv (zalv). (7)

Recall the definition in equation (4)

fxiv (Zir1lV)
f Zy = L1 = Zia1, Qe = +1s e e
viz(Ze = Zir1 = Zier, QusalV) Ln(Ze1 Z,|V) L= Frv(ZeaV)]
~ f
= expnOn(v)] xv (Zer1lV)

[1 - Fxy(zealv)]’

13



which we can write, using a change of variables,

oo (QT /)~ QU+ b/ D S

- - - dh.
J expIn (Qn(+ u/ V) = Qn(@))] fu (¥ + u/ V) 1Bl dy

Vi(p-0) = [ h

It is demonstrated in the next section that the above rer@adaposterior distribution is
asymptotically normal. Intuitively;/n(p-v) % 0 obtains because the mean of the above renormal-
ized posterior distribution is asymptotically zero. Itis@aclear that the single-unit English-auction
model investigated by Milgrom and Weber [1982] is a speaalecof this result—whenis one,
which corresponds to the conventional full-sample maximikedihood analysis and Bayesian
posterior distribution. At a typical English auction, wheris one, the only dference from full-
sample maximum-likelihood analysis is that the maximureosdatistic is unobserved. However,

a single order statistic is asymptotically negligible. ékse, the conditioning event in the bid
function in equation (7) diers from the corresponding partial-sample likelihood inapn (4)

only by a single order statistic and theétdrence is asymptotically negligible.

3.3 Simple Example

Consider the following example, which can be solved in cle®edh. Suppose that the conditional

distribution of X is exponential, having mean so
1
fxv (XIv) = " exp(-x/v) for x>0, v>D0.

The posterior distribution needed to compute the bid faamcith equation (11) is proportional to

14



Supposefy (v) is a difuse prioE In this case, the above posterior distribution is then aersy

gamma distribution having parametens{(k + 1) and( X% z + m2), which has mean

Mz +mz
EVIX = Yic= "= Y1 =2 Qn] = ———,

which is also the bid function at round. Therefore, the transaction price is given by the bid

function withmequal k + 1) andz equalz;:

Ij(:ﬁ Zj + (k + l)zk+1

n-k

p=

To see whyp“converges to the trué®, note that in this exampl&,. 5 F;(I{, (r) which equals

—\Wlog (1 - 7). Also, by invoking a law of large numbers,

k24, _
Zin% _P,Vo[wﬂ]_
n 1-71

Therefore,

1

f)—p>VO%[(|Og(1—T)(1—T)+T)]—Volog(l—T) ;T =\P.

The maximum-likelihood estimatat Which is the mode of the posterior distribution, is

lj(:ﬁ Zj + (k + 1)Zk+l

V= n-k+2
Hence,
g n-k .
T n-k+ 2p.
It can then be verified that
Vi(p-% 5 0.

We could also use a Pareto prior, but this would clutter theutations considerably.
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4 Asymptotic Distribution of Transaction Price

In this section, we provide formal conditions to justify ttlaims made in the previous section. Our
analysis is broken into two parts: in the first, we derive thgnaptotic distribution ofyn (\7— vo),
while in the second we show thafn (p - V) is o, (1). As Newey and McFadden [1994] as well as
Chernozhukov and Hong [2003] have pointed out, both partemtepn the stochastic equiconti-
nuity properties of the sample-averaged log-likelihoauction Q,, (v).

To begin, we state assumptiongistient to the task. Instead of striving for the weakest pdssib
set of assumptions, we are content with potentially ovstigng stficient conditions that illustrate
the main results. Note, too, that in theoretical models atians, the monotone likelihood-ratio

condition is typically imposed, which restricts how weak ttonditions for equicontinuity can be.

Assumption 3 The support of the prior distribution,{v) is a compact closed interval, and the

true common valueis contained in the interior of that interval.

Assumption 4 The support of y (X|v) is independent of v and bounded, wHibg fx (Xv) is

uniformly bounded, having bounded continuous third dewes in both arguments on its support.

These two assumptions are regularity conditions requoemonstrate uniform convergence

and stochastic equicontinuity.

Theorem 1 Under Assumptions 1 td 4, if; (v) is continuous at ¥with a finite mean, then

d 4 4 N
\/ﬁ(V _ vo) N N(O, X(1) = % [a_qu (V)] u:V:\/o] )
and
Vi(p-9) 0.
SO

Vi(p- ) 5 N [0.Z(7)].

16



Remark 1: In the Pesendorfer—Swinkels model, under the same assamfptn) — (1 — 1), only
the signal of a single last-losing bidder is revealed, mdtef the signals of all the losing bidders.
Therefore, intuitively, the transaction price in the Pekefer—Swinkels model should aggregate
less information than that in the Milgrom—Weber model. latfdhis turns out to be true. While
the prices in both the Pesendorfer-Swinkels and the Milgiaber models converge 8 at
rate y/n, the asymptotic variance of the Pesendorfer—Swinkel® psigreater than the Milgrom—
Weber price. We demonstrate this result formally usingifieénce function representation of the
asymptotic variance. We note, first, from the proof of thetken that (7) equals Vafy, (X, T)]_l,

where thenfluence functiony, (X, 7) is given by

Y1 (X.7) = 2 log v (XIV) 1[X < Fi, ()] -
v (7)]) +

&(Z log fuy (XV) 1[X < F
= (ZFxv [Fxy @M IV]) (1[X < Fi, G Iv] - 7).

Next, we characterize the average log-likelihood funcasrmwell as the score and influence func-
tions in the Pesendorfer—-Swinkels model, and show thatithply a variance larger than (7).
The average log-likelihood of the Pesendorfer—Swinkeldehavhich depends only on a single

order statisti, 1 = Ifgl (1), is given by

G (V) Klog[1 - Fx (Zeal)] + (1 - &) log Fxy (2calv)

(l - T) |Og (l - FX|V [FAr_ll (T) |V]) + 7T IOg FX|V [ﬁr_]l (T) |V] .

Its corresponding score function is

d =~ 1-7 T d =1
M) = ‘(1-FXN[F‘;1<T>\V] - wa[ﬁal«)w])a—vFXIV[Fn (D).

If we evaluate the first-order approximation of the scorecfiom with respect tdf,;l (1) as it

approachet;;q{, (T|V0) atv = 0, and make use of the well-established asymptotic apprdioma
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of the sample quantile

1 &L s R (o) - =

\/ﬁ[lf,;l (1) - Fxv (T|VO)] T« fyg [F ( IVO)]
= XV | Fyv (T

+0p(1), (8)

then we find the following influence function representationthe Pesendorfer—Swinkels score

function:
0 ~ 1 <%
VG (V) = - Z}; w2 (%.7) + 05 (1)
where
b2 (X,7) = a9 a%':xw |Fiv M) Iv] (1[X < Py (7V°)] = 7).

Letting p to denote the transaction price in the Pesendorfer—Svargkedtion model, we have
VA(p- ) 5 A (0. Var [y (X, D)),
In order to show that Vi, (X, 7)] < Var[y, (X, 7)], we compute

Y1 (X 7) =2 (X, 7) = 2 log fxy <X|VO) 1[ (T|v°)] -
&(& 10g fxv (XV) 1[X < Fyf, (+V)]) -
(%P [ (7)) (2[x < By (7] = 7).

We can then easily verify that

COV[lpl (x» T) - lﬂz (X’ T) s Wz (x’ T)] =0.
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Hence,
Var [y (X, 7)] = Var[y2 (X, 7)].

Remark 2: Above, we have indexed the asymptotic variance,lifie proportion of losing bidders.
Intuitively, the larger the fraction of losing bidders, thmre information revealed at the auction.
Therefore, we exped (r) to be a monotonically decreasing functionfin a matrix sense. In

other words, forany & 7; < 7, < 1,
(1) 2 X (7).

This also turns out to be true. To wit, for > 7, Var[y, (X, 71)] < Var[y1 (X, 72)]. This will, in

turn, follow from

Cov(yi (X, 71) — 1 (X, 72) .1 (X, 71)] = 0. 9

Verifying equation (9) is tedious, but straightforward:diépends on the following two key rela-

tions. First,

8(6% l0g i (XIV) 1[X < Fid, (Tl"o)]) = gy [ (1]

and, second, that, far, > 7o,
1X < Py (ralv) M| 1 X < gy (1) V] = 1[X < Fy, (zalv) M)

Hence, under the assumptions made above, especially the@osupport Assumption 4, for
0 < 7 < 1, the larger isr, the more information is aggregated in the Milgrom—Webedetpin
the sense of having a smaller variance despite that the fataweergence stays the same. It can

also be shown that this conclusion continues to hold witltbatsupport Assumption 4. When
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the upper support is increasing \mwhile the condition still holds, the rate of convergenca ca
improve beyondy/n whent equals one. On the other hand, if the lower support is alseasing

in v, then it is possible that the convergence rate is faster {fraaven wherr is zero. In this case,
while there will be no information loss whenincreases above zero, there may be no additional
asymptotic information either untilbecomes one.

This desirable monotonicity property of information aggaton in the Milgrom—Weber model
is in contrast to the Pesendorfer—Swinkels model. The atafuinformation aggregated asymp-
totically in the price of the Pesendorfer—Swinkels modeldsmonotonic inr. For example, when
fxv (xlvo) is uniform in X, the worstr for information aggregation is one-half in the Pesendetfer
Swinkels model, because this involves the worst balanaed®st the winner’s curse and the loser’s
curse. In general, the optimain the Pesendorfer—Swinkels model obviously depends oshthpe
of this conditional density. Intuitively, in the PesendaH#Swinkels model, a fferentr selects a
different information set, while in the Milgrom—Weber modelaggerr always selects a larger

information set.

5 Deriving Likelihood Function of Observed Drop-Out Prices

In section 2, we derived the bid function of a representabideler as well as characterized the
transaction price; see equations (1) and (3). In sectionsd3awe then demonstrated that the
transaction price converged in probability to the true,nown valuev® and derived its asymptotic
distribution. To provide a framework within which to condwur empirical analysis in section 6,
in this section, we derive the likelihood function of the hidta observed by an econometrician.
We highlight the fact that the sampling variability of theoaometrician’s estimate of the true, but
unknown value® will depend on nuisance parameters unknown to the econimmetr

We first introduce some additional notation. We denoteppyhé j™" drop-out price, sg =
1,2,...,n— k. For example, in our empirical application, we havequal forty bidders and

equal twenty units, so there are twenty drop-out priceslastebeing the transaction price, which
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we denoted above hyy, but now denote ag,’x. Thus, our observables ang. (., . .., Prn-k-1, Pr_k)-
Now, from equation (2), we can recover the signal consistéhtthe first bidder’s drop-out price—

viz.,

70 = B (Do)

Likewise, for each of = 2,3,...,n—k, we can recursively recovey, the signals of then—k—1)

losing bidders, so

'2n—j+1 = ﬁﬁiljﬂ(f)j; Qn—j+1)-

For thek bidders who win the auction, all we know is tfﬂqtexceedﬁ;_l(n_k_l)(f)n_k; Qii1).

In the general case, the bid functign (x) in equation((1) takes the following form:

ﬁm(x’ Qm) — fv fV(V)g (Xl = Yk = ... = Ym—l = Xa lev)
[ RUg(X=Ye=...= Yn1=XQnu) du
where
m+1
g(Xs=Ye="...= Y1 =XQnV) = [1-Fxyv (X|V)]k_l fyv (XIV -kl 1—[ fxv (Zj |V)-

j=n

If we assume thafy (V) is diffuse and thak givenv is normal, having meawm and variancer?,

then we can write

g(xlek:...=Ym—l:X,Qm|V):[1_(D( P )] oMkl ( o )
1 m+1

== e(5)

j=n

To summarize, under the assumptions of normality as welldaese prior,

utri ) = [V [1- 0 (=) o (=) e (2Y)
Sl- ()] o (=)™ It () du

Consider £, 7,1, . .., Z,1), the vector of § — k) signals consistent with the observed drop-out
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prices as well as the transaction price. The joint likelithdonction of all the signals consistent

with the drop-out prices revealed under the Milgrom—Wehsetian is

L@, - 2V, 0) =[1 - Fxy(ZalV, 0)| v (ZesalV, 0)|M

(10)

n—k— 1(pn k— 1) a,311( 1)

Pn-k-1

- B2
fxiv (Zs2lV, 0) l

-+ v (Zalv, ) ‘

Here,0 denotes a vector of unknown parameters, and captures th@égorobability density and
cumulative distribution functions of signals can dependarameters known to the bidders, but
unknown to the econometrician.

The econometrician’s MLE i5 defined as
~ n\~ . - ~
¥ = argmax log [(k)Ln(Zm, s ZnlV, 0)
\"

wheref denotes the MLE of°. While knowing the true nuisance parameter§Siis unimportant

in demonstrating that the transaction price convergesabatsility to the true, unknown valué,
because the parameters containeff iare of second-order importance, the nuisance parameters ar
critical when calculating an estimate of the sampling \taviain V, the econometrician’s estimate

of the true, but unknown valué.

6 Empirical Application

We have applied the methods described above to data fromcéinraof taxi license plates held in
Shenzhen, China in October 2007. At this auction, the mualt¢ipnsportation bureau sold@O0
additionalred taxilicense plates. Red taxis are special in Shenzhen becayseatheperate both
inside and outside the Special Economic Zone (SEZ), uyidtlow taxs which can operate only
inside the SEZ, angreen taxs which can only operate outside the SEZ.

The city of Shenzhen had not issued any new license plateeddaxis since 1993. However,

rapid growth in Shenzhen'’s population meant that patrone wrperiencing a shortage of taxis,
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leading to an increase in the number of illegally-operatedgst In 2007, the per capita number
of taxis in Shenzhen was low when compared to other parts afiaChonly 10305 taxis were
licensed in a city of 5 million permanent residents, about 148 taxis for every 10000 residents.
The Ministry of Construction in China recommended that cishsuld have 21 taxis for every
10,000 residents.

Before the auction, the authorities reviewed the qualifocetiof all those who had applied to
participate at the auction. Potential bidders could beviddal taxi companies or groups formed
by different companies. While fifty-one ‘firms’ apparently requdsie participate, only forty
potential bidders were certified to participate at the amctirhusn was 40.

In written documentation, potential bidders were reminttetle aware of the risks involved.

For example, consider a translation of the text from one o

Following this auction, more taxi license plates will beuied through auction or other
ways over the next four years. The number of taxis in Shenzhibmeach about
20,000 by 2011. The issuance of a great number of license platgg lmave much

impact on the taxi industry.

Despite these warnings, representatives of taxi compamigx® city showed great interest in the
auction, perhaps because operating a taxi has been one lufthest profit margins in the trans-
portation industry. Also, historically, taxis have progata stable return against investment.
Before the auction, 53 out of 73 taxi companies in Shenzheredviretween 50 to 200 taxis
each. To wit, the majority of the city’s taxi companies wemgadl- and medium-sized ones. Some
incumbent taxi drivers expressed concern that entry worddeeprofits. One was quoted in the

local newpaper (our translation) as saying that

Actually we are not earning much nowadays. If more taxis warthe road, we would

have a hard time making ends meet.

In contrast, local residents supported the issuance otiaddi license plates. One was quoted

(again our translation from the local newspaper) as saying

23



The sooner new taxis hit the road the better. It's too hardaibahtaxi during peak

hours and holidays.

This anecdotal evidence, along with casual observatiggests to us that the value of a red-
taxi license plate in Shenzhen has a large common-value @oemp. Before the auction, however,
this common value was unknown to potential bidders. Usingteter means at their disposal,
potential bidders formed estimates of the unknown commduwevavhich they then used during
bidding at the auction.

The auction in Shenzhen proceeded according to the rulesilded in Milgrom and Weber
[2000]. In written rules announced before the auction, tarities informed potential bidders
that the 2000 license plates on sale would be distributed evenly anioadinal twenty highest
bidders; each winner would be required to buy 100 licensiepla

The auctioneer, Tian Tao, was a registered member of Chingsoa industry association.
The reserve price was set at 1800 yuan per license plate, but the price rose to, 800 yuan
in fourth minute of bidding. During the auction, Tian rem@ttbidders repeatedly to be aware
of the risks involved. In fact, Tao took a break for ten mirsute allow the bidders “to cool their
enthusiasm.” We have translated one of his comments asstbige of the most intensive auctions
I've experienced in my career as an auctioneer.” At the otd$be auction, the price of a red-taxi
license plate was 54800 yuan, around US$80,000.

In table 1, we present the prices called out during the aneiong with the number of bidders
who exited the auction at those prices, while in figure 1 waaépe empirical survivor function
of prices. The prices in this table are in,D00 yuan.

Zhang Hongzhi, a manager of Shenzhen Xilie Taxi Company, ejgrted in the newspaper
to have said that he “felt very excited after we won a bid.” Befhis attending the auction, his
company had decided on 580 yuan as the highest they would pay for a red-taxi licelhete p

To implement equation (4), we assumed tatconditional on\®, is distributed normally,
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Figure 1: Estimated Survivor Function of Drop-Out Prices

having variancer?, so

X _VO 2 _\,O
Fxv (xV) =I lelzexpl—(u = ) du= @ (X . )}
with 2
X =V X—\°

We also assumed thég(v) is a difuse prior. In table 2, we present the MLEs\WBfando as well
as their standard errors; the logarithm of the likelihoadction for this empirical specification is
—55.98. Here, the units of the parameters estimates are, @0D0yuan.

In order to understand the implications of these paramstenates, we used these parameters
to simulate the dierences between the prices in a Milgrom—Weber auction anesarforfer—
Swinkels auction. A subset of these results are reporteabie 8. Each entry in the table provides
the diference in the expected revenue between the Milgrom—Welsépawand the Pesendorfer—

Swinkels auction, measured in units of 10,000 yuan. In dafitig table 3, we need three param-
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eters: the prior mean and variance of the common value llision as well as the variance of
the signal distribution conditional on the common value. W¥ed the estimate af to specify

the prior mean, and the estimate @fnecessary to specify both the variance of the signal dis-
tribution and the prior variance of the value distributioAs predicted by the linkage principle
of Milgrom and Weber [1982], the Milgrom—Weber auction ajwaenerates an higher expected
revenue than the Pesendorfer-Swinkels auction. Howeseabde 3 illustrates, the flierence in

the expected revenues is rather small when compared to l®tbetling price and the estimated

common value.

7 Summary and Conclusions

Using a clock model of a multi-unit, oral, ascending-prieection, within the common-value
paradigm, under the Milgrom—Weber pricing rule, we haveys®al the asymptotic behaviour of
the transaction price as the number of bidders and the nuoflits get large. We have demon-
strated that even though the transaction price is detedryea (potentially small) fraction of
losing drop-out bids, that price converges almost suretiié@x anteunknown, true value. Subse-
guently, we have demonstrated that the asymptotic distoibof the transaction price is Gaussian.
We also demonstrated that the asymptotic variance of timsdcion price under the Milgrom—
Weber pricing rule is less than that under the pricing rukdusy Pesendorfer and Swinkels. Thus,
if the transaction prices underffirent auction formats and pricing rules are viewed as statis
estimators of the true, but unknown, value of the units fée,shen the Milgrom—Weber pricing
rule is a more fficient estimator of the unknown value than the first-pricalesbid rule because
more information is released under the Milgrom—Weber rbbntunder sealed-bid ones. Note,
however, that in our model, when the number of bidders islang diference exists between the
average transaction prices under the two auction formatgeaing rules because they converge
to the true value. Moreoverfidiation in signals can only reduce the variance of the tratica

price under the Milgrom—Weber pricing rule. Thus, by wotkwithin the symmetric CVP, we
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have provided an upper bound concerning the improvemerdriance reduction that obtains un-
der the Milgrom—Weber pricing rule. Finally, we applied snethods to data from an auction of
taxi license plates held in Shenzhen, China, finding that etimate of the unknown, true value

was not significantly dierent from the transaction price at siz€1 but is at size 05.
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Appendix
To reduce clutter in the text of the paper, in this appendig,asllect the proofs of the results

claimed in the text.

Proof of Main Theorem

The proof involves verifying two high-level conditions ineWey and McFadden [1994] as well
as Chernozhukov and Hong [2003]. The first condition deliassistency, while the second

delivers asymptotic normality of and the relation thas/n(p — V) is o, (1). We first state these
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conditions within the context of our notation.

Condition 1 For anyés > 0, there exists ai > 0, such that

lim inf P*{ sup [Qn (v) - O, (vo)] < —e} =1

n—eo V—0|>6

Condition 2 There existd, (vo) and J such that for v in an open neighbourhood 8f v

i. n [Qn v) - On (vo)] = (v— vo) An (VO) - %(v— v°)2 [nJO] + R, (V),

ii. For any sequencé, — 0,

ReMW)I
S Ty —p = 0

ji. An (vo) /4/n SN (O, QO), where both 3 andQ? are positive definite.

Condition 1 is, in turn, implied by uniform convergence@f(v) to Q° (v) and becaus@?® (v)
is uniquely maximized at®. The unique maximum o€°(v) at\? is a direct consequence of
the identification Assumption 2. To show that Wén (V) — Q°(v) | is 0, (1), first note that the
individual terms in the summand of the second term consisth®fproduct of lodxy (Xi|v) and
1(X% <€), where¢ equalslf;1 (). Given Assumption 4, the first is a type Il function and the
second is a type | function defined in Andrews [1994]. Boths$atPollard’s entropy condition,

and are stable under multiplication. Hence,

sup % 2,109 iy (V) 1% < &) = & [log fiov (XiIV) 1(X < &)] | = 05 (D).
Vi i=1

Next, & [log fxy (Xi|v) 1 (X < €)] is a Lipschitz function irf and the Lipschitz constant in uniform

in v. Hence, given that (1) LN F;(l{, (T|Vo), we also have

&(log fxv (Xiv) 1| % < Ft (1)]) - & (log fww (XiIV) 1| Xi < Fx, (T|v°)])' =0,(1).

sup
\"
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Therefore, the second term &%, (v) converges uniformly irv to the second term a®°(v). The
first term ofQ, (V) is also a Lipschitz function df:rjl (7) with the Lipschitz constant being uniform
in v. Therefore, by the same argument, the first terr@gpfv) also converges uniformly imto the
first term of QP (v). Hence, Condition 1 holds.
The second condition is more involved than the first. We déﬂnd)elf‘l (7) wheres® denotes
Fyv (T|VO) We rewriteQ,, (v) asO, (v g) to emphasize its direct dependencefohlote that, while
0, (v, 5) is differentiable irv, it is notin&, so arguments relying on stochastic continuity arguments

are required. Tha, (vo) andJ® elements in Condition 2 are given by
0° -
M) = N0 (.) @ (. 87) (B €

and

P= (08,

o2

respectively. We decompo& (v) into R (v) + R2 (v) with

R0 =n| 2(2.8) - 2 (P) - @ (P E- )| (v-v)

and

02

R =nfv- )’ | 509 - 2]

wherev* is a mean value betweefi andv. Becaus%’é@n (v*é) - J0 LN 0, it follows that

sup _RMI__ IRV

= 0p(1).
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Consider, nextR: (v), and definem(v, &) = (%Qn (v, €). By stochastic equicontinuity, it follows

from the entropy property ah(v, &) that
Vin[m(V,€) - m(V,£%) - m(V, &) + m(\, £°)| = 0, ().

Note, too, by a second-order mean-value expansimn(u?, g) in &, that

2
Vi [m(vo, &) -m(V, &) - 63—%690 (V.£%) (€ - §°)] =0p(D).
Therefore, we can write
2
VA 2. 8) - (2.85) - 2P ) (E- ) = 0,10,

ConsequentlyR: (v) = \/ﬁ(v— v°) 0p (1). Using the relation that/ (1 + x2) < 1/2, we conclude
that

sup IR (V) <0,(1) sup VAV -V

T < o (D).
v-vojss, 1+ NIV — Vo2 vovies, L+ nv—vo2 P

Having verified Conditions 2.i and 2.ii, it remains to verify i@bition 2.iii. The Hessian ternd®
is obviously positive definite because the limiting likeldd function is multiple-times smoothly
differentiable, and becaus®uniquely maximize€® (vo, go). We note, next, thaa, (vo) /n takes

the form
1-7 il =1 1-7 ) -1
1R [FRiON] XV [F“ (7) |V] * 1-Fxv[Fiy (V] v [FXIV @) IV] *

(E-&)(Z1og fuv (XIV) 1[X < Frt()]) + E (2 log v (XiV°) 1[ X < Fit (7)) -

& (% log v (XiIV) 1[% < Fi, (t)]) + 05 (=)
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whereE denotes the empirical mean. Because we have representetitieace function of{—£°)

as equation (8), we can compute that
n
Aa (V) = " 0 (X) + 0p (VP)
i=1
where

y (%)= Zlog fuy (XIV) 1[X < Fyl, (riv)| - &(Z log fuy (XiV) 1[Xi < Fy, (r)]) -
= (2Fxv [Fit V) fxv [Fid @) V] [Frt () = Fi, (2M0)]
Zlog v (%) 1[X < Fik, (rIv)] - & (2 log fxw (Xiv) 1[ % < Fi, (eM)]) +

2 (8P [Fid WV 1]% < Fd ()] - o).

Direct calculation of the asymptotic variance in the lasé]iwhile accounting for the covariance

between the two terms, yields

2 2
Var[y (%)) = 8[6% 109 f (xi|v)] 1% < Fib )]+ 2 (P [P am )

By inspection, we see that its inverse coincides with the g$gtic variance given it (7),
which has been verified to equl in the information matrix equality calculation and, henise,

also positive definite. Its inverse yields the asymptoticarece of\/ﬁ(f) - vo) and \/ﬁ(v - vo).
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Table 1: Announced Price, Number of Exits, and Total Exits

Price 20.00| 22.00| 23.00| 24.00| 25.00| 26.00| 27.00| 28.00
Exits 0 2 0 0 0 0 0 0
Total Exits 0 2 2 2 2 2 2 2
Price 29.00| 30.00| 31.00| 32.00| 33.00| 34.00| 35.00| 36.00
Exits 0 0 0 0 0 0 0 1
Total Exits 2 2 2 2 2 2 2 3
Price 37.00| 38.00| 39.00| 40.00| 41.00| 42.00| 43.00| 44.00
Exits 0 0 0 0 1 0 2 1
Total Exits 3 3 3 3 4 4 6 7
Price 45.00| 46.00| 47.00| 48.00| 49.00| 50.00| 50.50| 51.00
Exits 0 3 1 0 1 1 2 2
Total Exits 7 10 11 11 12 13 15 17
Price 51.20| 51.40| 51.50| 51.60| 51.70| 51.80| 51.90| 52.00
Exits 0 0 0 0 0 0 0 0
Total Exits 17 17 17 17 17 17 17 17
Price 52.10| 52.20| 52.30| 52.40| 52.50| 52.55| 52.60| 52.65
Exits 0 0 0 0 1 0 1 0
Total Exits 17 17 17 17 18 18 19 19
Price 52.70| 52.75| 52.80| 52.85| 52.90| 52.95| 53.00| 53.05
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.10| 53.15| 53.20| 53.25| 53.30| 53.35| 53.40| 53.45
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.50| 53.55| 53.60| 53.65| 53.70| 53.75| 53.80| 53.85
Exits 0 0 0 0 0 0 0 0
Total Exits 19 19 19 19 19 19 19 19
Price 53.90| 53.95| 54.00| 54.05| 54.10| 54.15| 54.20| 54.25
Exits 0 0 0 0 0 0 0 1
Total Exits 19 19 19 19 19 19 19 20

Table 2: Maximum-Likelihood Estimates of Normal Specificat

Parameter Estimate| Std.Error
e 56.31 0.97
o 19.35 3.95
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Table 3: Simulated Dierences in Expected Revenue
Number of Objects

Number of Bidderg 10 20 30
20 0.138
30 0.301| 0.079
40 0.265| 0.127| 0.171
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