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1 Introduction

The Fisher relation underlies many important results in economics and finance. The

relation explains that the nominal interest rate is determined as the sum of the expected

inflation and the real interest rate which is constant or stable. The Fisher relation, thus,

signifies that nominal interest rate has a statistical one-for-one relation with the expected

rate of inflation. Although the Fisher relation looks a simple relation, there are several

alternative models proposed in the literature for the Fisher relation that have di↵erent

implications. In this paper, we examine the Fisher relation by evaluating those alternative

models based on a post-data model determination method.

Empirical analysis on the Fisher relation was initiated by Fama (1975). Constancy of

the real interest was studied by Nelson and Schwert (1977), Garbade and Wachtel (1978),

Mishkin (1981, 1984), and Fama and Gibbons (1982). Correlation between the nominal

interest rate and the inflation rate noted as the Fisher e↵ect was studied by Summers

(1982), Huizinga and Mishkin (1986), and Mishkin (1990). Also, Rose (1988), Atkins

(1989), Mishkin (1992), and Wallace and Warner (1993) studied the real interest rate

based on the concepts of a unit root and cointegration. On the other hand, it was studied

by Clarida and Friedman (1984), Huizinga and Mishkin (1986), and Roley (1986) that

change in the U.S. monetary policy in late 1970’s through mid 1980’s might have a↵ected

dynamics of interest rates and inflation. Evans and Lewis (1995) and Garcia and Perron

(1996) used models of regime switch to analyze behavior of the U.S. real interest rate for

post-war data including the period of policy regime change and oil shocks. Kim and Park

(2016) studied the possibility of short-run instability as well as long-memory properties

of the Fisher relation.

As described above there are several approaches and models for the Fisher relation

proposed in the literature that have di↵erent implications. We, however, do not know

which model is the most appropriate among the several models for the Fisher relation.

This issue is an important one since di↵erent models have di↵erent implications for the

Fisher relation, some of which are conflicting with each other. In this paper, we evaluate

those alternative models for data from the U.S. Japan and Korea in the post war period

before the 2007-2008 world financial crisis. For this purpose we apply a post-data model

determination method to get the model that best fits the data. The post-data model

selection method evaluates relative probability of each model among the alternatives. We
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use a Markov-Chain-Monte-Carlo (MCMC) method for computation of a criterion that

quantifies the relative probability of each model. The model yielding the highest post-

data probability is the one that best fits the data. We use Gibbs sampler to compute

the relative post-data probabilities. Our results indicate that the best model is not the

same for the three countries. However, models with both regimes/periods, a regime with

nonstationary fluctuations and the other with stationary fluctuations, fit data best for

the Fisher relation.

The paper is organized as follows. Section 2 introduces the Fisher relation and related

issues. Section 3 explains several models for the Fisher relation proposed in the literature.

In Section 4 we discuss how to select the model that is the most appropriate for the Fisher

relation. Section 5 concludes the paper.

2 The Fisher Relation and Related Issues

The Fisher relation explains how the nominal interest rate is determined. Let ⇡e
t+1 be

the expected inflation from period t to period t + 1. Also, let r⇤t and it, respectively, be

the ex-ante real interest rate and the nominal interest rate at time t. Then, the Fisher

relation defines that the nominal interest rate is equal to the real interest rate:

(2.1) i⇤t = rt + ⇡e
t+1 + "t

allowing a temporary disturbance "t to the relation.

As is well explained in Kim and Park (2016) and others, the Fisher relation describes

that the nominal interest rate has a one-for-one relation with the expected rate of inflation.

In other words, the Fisher relation describes that there is a stable level of the “real

interest rate” that is equal to the nominal interest rate minus expected inflation, allowing

a temporary disturbance. In terms of ex-ante variables the relation writes as

(2.2) r⇤t = it � ⇡e
t+1 � "t.

We have an ex-post version of the Fisher relation as

(2.3) rt = it � ⇡t+1 � "t.
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where ⇡t+1 and rt are, respectively, ex-post inflation and ex-post real interest rate. Notice

that we use the same notation for the disturbance "t in both cases of ex-ante and ex-post

to save the notation.

Denoting by vt the error of the inflation expectation: vt = ⇡e
t � ⇡t, it is true that

rt = r⇤t + vt. If vt is stationary, which is the case under rational expectations, then the

ex ante real interest rate r⇤t and the ex post real interest rate rt have the same statistical

properties. In this case one can analyze the Fisher relation based on the ex post interest

rate as well as the ex ante rate. Existence of a stable Fisher relation is, in statistical sense,

the same as that the real interest rate is a constant, or a stationary variable fluctuating

around a constant mean. Thus, the Fisher relation is a simple relation in its concept.

However, empirical analysis of the Fisher relation is more or less complicated with mixed

results.

There are several alternative models proposed in the literature for the Fisher relation.

They have di↵erent implications on the stationary and nonstationary behavior of the real

interest rate. Therefore, the issue of which model is the most appropriate for the empirical

Fisher relation is a very important problem. We evaluate those alternative models for the

Fisher relation based on a post-data model determination method.

3 Models for the Real Interest Rate

In the following discussion we use the variable yt for the real interest rate. Also, let

TT = {1, · · · , T} be the sample period. We have all four alternative models for the Fisher

relation in the following, Mi, i = 0, 1, 2, 3.

3.1 An Autogression: M0

The basic model is the pth order autoregression in yt:

(3.1) (yt � µ) =
pX

s=1

�s(yt�s � µ) + "t,

where "t ⇠ iidN(0, �2), and all roots of the characteristic equation 1��1z� · · ·��pz
p = 0

lie outside the unit circle.
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Notice that we can rewrite the model (3.1) as in the following:

(3.2) yt =

 
1�

pX

s=1

�s

!
µ+

pX

s=1

�syt�s + "t,

which is a more commonly used form in the usual time series analysis. We use the

mean-deviated form (3.1) instead of the more common one (3.2) since the former is more

convenient for adopting standard regime switching models in our study.

3.2 A Model with Partial-sample Instability: M1

We incorporate the possibility of partial-sample (or short-run) instability in M0 following

the suggestion in Kim (2003), Andrews and Kim (2008) and Kim and Park (2016). Sup-

pose that in a relatively short period TT
B (⇢ TT ) the process yt becomes unstable, having

properties of a nonstationary unit root or of higher volatility. In the model M1 we assume

that TT
B is identified a priori, which is di↵erent from the model M3 below. Then, we have

the following model for yt:

(3.3) (yt � ⌧t) =
pX

s=1

[�s · I(t 2 TS) + ⇣s · I(t 2 TB)](yt�s � ⌧t�s) + "t

where TS = T \ TB; "t ⇠ N(0, ⌫20); I(·) is the indicator function, and �s and ⇣s are

parameters. For t 2 TS we assume that the mean of yt is ⌧t = µ0 and for t 2 TB

⌧t = µ1 + yt�1. This means that in the period TB the process yt has a unit root and its

first di↵erence �yt is a stationary autoregressive process.

3.3 Markov Regime Switching Model: M2

Assume that the variable yt follows regime switching dynamics across K states st =

1, 2, · · · , K:

(3.4) (yt � ⌧t) =
pX

s=1

�s(yt�s � ⌧t�s) + "t.

for "t ⇠ N(0, ⌫2t ), where ⌧t = µst and ⌫
2
t = �2

st in state st. We assume that µ1 < · · · < µK

for identification. The state variable st follows the first order Markov process with the

transition probability from the state i to j, pij = P[st = j|st�1 = i] for i, j = 1, · · · , K.

Garcia and Perron (1996) used models of regime switch of the M2 type to anlyze behavior

of the U.S. real interest rate for post-war data.
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3.4 An Extended Markov Switching Model: M3

We now consider a Markov switching model that contains a state of nonstationarity. It is

an extension of M2 in the above subsection that only contains K stationary regimes. In

this extended model M3, the last Kth state is set to be a nonstationary state. Then, the

extended model M3 is

(3.5) (yt � ⌧t) =
pX

s=1

[�s · I(st 6= K) + ⇣s · I(st = K)](yt�s � ⌧t�s) + "t

where "t ⇠ N(0, ⌫2t ). The mean of yt in a stationary state is ⌧t = µst and that in the

nonstationary state is ⌧t = µK + yt�1. This implies that the variable yt has a unit root in

the state sK .

Remark: There is an alternative modeling scheme with the regime switching due to its

own lagged variable, known as the self-exciting threshold regression. It was introduced by

Tong and Lim (1980) and studied by Seo (2008), for instance, in relation to the unit root

testing for the model. This alternative specification may be a relevant option for modeling

the Fisher relation. We do not, however, consider this specification in this paper since our

objective is to evaluate the existing models of the Fisher relation. This modeling scheme

can be applied to the Fisher relation in any future work.

4 Model Selection For the Fisher Relation

In this section we discuss how to compare di↵erent models and select the one that best

fits data for the Fisher relation. Then, we provide the result of selecting a model among

those explained in Section 3.

4.1 Post-data Model Selection

In this subsection we explain how to determine the best model for the real interest rate

out of several alternatives. Our approach is a post data model selection method developed

in the Bayesian framework. Thus, it is a generalized version of the Bayesian information

criterion. In the method we can evaluate relative merit of each model among several
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alternatives and select a model that best fits the data. We use a Markov-Chain-Monte-

Carlo (MCMC) method for the computation of the criterion that quantifies the relative

merit of each model.

Denote by YT = (y1, · · · , yT ), a sample of T observations for the process yt. A family

M consists of candidate models for YT in the presence of uncertainty of the true model.

A model mi 2M is associated with a parameter space ⇥i of dimension pi for i 2 I where

I = {1, ..., I}. Assume that for each mi a family Qi
T (✓

i, YT ) of distribution functions,

with a density qiT (✓
i, YT ), is defined.

Let Pr(mi|YT ) be the post-data (posterior) probability that mi is true. By the Bayes’

rule, we have

(4.1) Pr(mi|YT ) =
qT (YT |mi)Pr(mi)P
j2I qT (YT |mj)Pr(mj)

where Pr(mi) is the prior probability that mi is true and qT (YT |mj) = qiT (YT ). But, notice

that

(4.2) qT (YT |mj) =

Z
qT (YT |✓j,mj)'(✓

j|mj)d✓
i = Ej[qT (YT |✓j)],

where '(✓j|mj) is the prior density associated with the model mj. If we further assume

that Pr(mj) is the same for all j, the model selection rule is to choose mi for which

Ei[qT (YT |✓i)] is the largest.

The quantity in (4.2) can be alternatively interpreted as the marginal likelihood. The

marginal likelihood qT (YT |mj) = Ei[qT (YT |✓i)] can be rewritten as

(4.3) qT (YT ) =
qT (YT |✓)'(✓)
'(✓|YT )

where the script j andmj are omitted for convenience, and '(✓|YT ) is the posterior density

of ✓. The equation (4.3) is a reversed version of the Bayes’ rule. Since (4.3) holds for any

✓, we may evaluate qT (YT ) for a convenient ✓, say ✓ = ✓⇤ the posterior mean. Taking the

logarithm of (4.3) for ✓ = ✓⇤, we have

(4.4) ln qn(YT ) = ln qT (YT |✓⇤) + ln'(✓⇤)� ln'(✓⇤|YT )

Our decision rule is to choose the model mj that yields the highest value of (4.4).

Calculation of the log-likelihood and the log-prior at ✓ = ✓⇤ is relatively easy. However,
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calculation of the posterior '(✓⇤|YT ) is not easy. To compute '(✓⇤|YT ) we can use an

MCMC method such as Gibbs sampler as in Chib (1995).1 Computation of the marginal

likelihood or the posterior '(✓⇤|YT ) for the models in Section 3 is a very demanding work

with highly sophisticated programming.2

We use standard priors for the parameters that are used in the literature. That is, the

regression coe�cients � and ⇣ have normal priors. The error variance �2 has an inverted

gamma distribution. This normal-inverted gamma prior distribution is a conjugate prior

and is standard one used in the literature. The mean µi has a normal prior, and the

transition probability {pij} has a prior of Dirichlet distribution, which are also conjugate

priors. The prior for the transition probability reflects information on duration of a state.

For example, if it is reasonable to think that duration of the state i is four quarters, then

1/(1� pii) = 4, so that pii = 0.75 for the prior.

4.2 Data and Empirical Results

As in many existing works we use the 3-month Treasury bill rate or equivalence for the

nominal interest rate and the consumer price index (CPI) for the price level to compute

the inflation rate. We get the U.S. data of the T-bill rate and the CPI from the Federal

Reserve Board and the Bureau of Labor Statistics, respectively. The Japan and Korean

data are from the International Financial Statistics (IFS). All the data are seasonally

adjusted. The data period is 1957:Q1-2006:Q1 for Japan, 1953:Q1-2006:Q1 for the U.S.

and 1976:Q3-2006:Q1 for Korea.

We consider most possible aspects of each model for the model selection: the number

of states K up to 5 and the order of the autoregression up to 5 for each Mi, i = 0, 1, 2, 3.

Table 1 shows results of model selection by the method of post-data model selection.

As shown in the Tables 1 the best model selected is di↵erent for the three countries:

M1 is the best model for the U.S. and M3 for Japan and Korea. However, we can see that

for data from the three countries the models with both regimes/periods, a regime with

stationary fluctuations and the other with nonstationary/unstable fluctuations, (M1 and

M3) are selected as the most appropriate models. This result does not apparently confirm

1Good references for the MCMC method and the Gibbs sampler are Gelman, Carlin, Stern and Rubin

(2000), Chib and Greenberg (1996), and Casella and George (1992), among others.
2A detailed explanation of the MCMC used for our models is provided in Appendix A.
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Table 1

The result of model selection

Selected model Number of states lag order

Japan M3 5 4

Korea M3 4 4

U.S. M1 - 3

the existence of Fisher relation since the Fisher relation implies that the real interest rate

is stable with stationary fluctuations around a constant. However, we can say that the

Fisher relation prevails if the nonstationary fluctuations occur only temporarily. Kim and

Park (2016) have shown that the length of the period of nonstationary fluctuations in the

real interest rate is relatively short for a data set similar to that used in this paper.

5 Concluding Remarks

We have compared several alternative models of the Fisher relation for data from Japan,

Korea and the U.S based on the Bayesian model determination method. Among four alter-

native models for the Fisher relation our result shows that models with both regimes/periods

of nonstationarity and stationarity fit data best although the best model is not the same

for the three countries. It is a new and interesting result about the Fisher relation and

would motivate further investigation of related issues.
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Appendix A: Inference on Posterior

1 An Autoregression: M0

Assume that the initial p observations y0 = {y�p+1, · · · , y0} are given. Let yT = {y1, · · · , yT}.
Rewrite the given linear autoregression

(yt � µ) =
pX

s=1

�s(yt�s � µ) + "t,

as in the following:

yt = �0 +
pX

s=1

�syt�s + "t,

where �0 = (1�
Pp

s=1 �s)µ, "t ⇠ N(0, �2). Writing it in a matrix form, we have

yt = XT�+ "

where XT = {x1, · · · ,xT}0 for xt = {1, yt�1, · · · , yt�p}0, and � = {�0,�1, · · · ,�p}. Also,

" = {"1, · · · , "T}0.
The posterior of this model is well known. We divide prior of � and �2 as in the

following

p(�, �2) = p(�|�2)p(�2) (B.1)

Assume that, given �2 prior of � is normal N(�, �2H�1) and prior of �2 is inverted-gamma

IG(⌫/2, s2/2), that is, 1/�2 has a gamma distribution. This prior is a conjugate prior

whose family of distributions is the same as that of its posterior. Now, the prior (B.1)

can be written as

p(�, �2) = p(�|�2)p(�2)

=

✓
1p
2⇡

◆p✓ 1

�2

k/2◆
|H|1/2exp


� 1

2�2
(�� �)0H(�� �)

�

⇥ 1

�(⌫/2)

✓
s2

2

◆⌫/2

exp

✓
� s2

2�2

◆

/
✓

1

�2

◆(⌫+k)/2+1

exp


� 1

2�2
[s2 + (�� �0H(�� �)]

�
,
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where k = dim(�) = p+1. The probability density function of yT , that is, the likelihood

of � and �2 is

l(�, �2|yT ,y0) =

✓
1p
2⇡

◆T ✓ 1

�2

◆T/2

exp


� 1

2�2
(yT �XT�)

0(yT �XT�)

�

=

✓
1p
2⇡

◆T ✓ 1

�2

◆T/2

⇥exp

� 1

2�2
[s2 + (�� �̂)0X0

TXT (�� �̂)
�

where �̂ = (X0
TXT )�1

X

0
TyT , and s2 = (yT �XT�)0(yT �XT�). The posterior density of

� and �2 can be obtained as in the following:

p(�, �2|yT ,y0)

/ l(�, �2|yT ,y0)p(�, �
2)

/
✓

1

�2

◆(⌫+k)/2+1

⇥exp

� 1

2�2
[s2 + s2 + (�� �)0H(�� �) + (�� �̂)0X0

TXT (�� �̂)]
�

=

✓
1

�2

◆(⌫+k)/2+1

exp


� 1

2�2
[s⇤2 + (�� �⇤)0[H +X

0
TXT ](�� �⇤)

�

(B.2)

where

s⇤2 = s2 + s2 + (�� �̂)0[H�1 + (X0
TXT )

�1]�1(�� �̂)]

and

�⇤ = [H +X

0
TXT ]

�1[H�+ (X0
TXT )�̂].

Expansion from the third row to the fourth row of (B.2) is possible by the following fact:

[A+BCD]�1 = A�1 � A�1B[DA�1B + C�1]�1DA�1.

From (B.2) we know that the posterior of �|�2 and that of �2 are, respectively,

�|�2,yT ,y0 ⇠ N(�⇤, �2[H +X

0
TXT ]

�1)

�2|yT ,y0 ⇠ IG(⌫⇤/2, s⇤2/2)
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where ⌫⇤ = ⌫ + T . We need posterior of µ and not that of �0. We rewrite the mean and

variance of the conditional posterior of �, �⇤ and �2[H +X

0
TXT ]�1, respectively, as

�⇤ = (�⇤
0;�

⇤
�0)

0

and

�2[H +X

0
TXT ]

�1 =

 
h11 H12

H 0
12 H22

!

where ��0 = (�1, · · · ,�p)0, h11 = V ar(�0), and H12 = Cov(�0,��0), H22 = V ar(�0).

From properties of multivariate normal distribution, we have (Poirier 1995)

�0|��0, �
2,yT ,y0 ⇠ N(�0

⇤ +H12H
�1
22 (�

⇤
�0 � ��0), h11 �H12H

�1
22 H

0
12).

Therefore, we get posterior of µ|��0, �
2 as

µ|��0, �
2,yT ,y0 ⇠ N

✓
�0

⇤ +H12H
�1
22 (�

⇤
�0 � ��0)

1�
Pp

s=1 �s
,
h11 �H12H

�1
22 H

0
12

(1�
Pp

s=1 �s)2

◆
.

On the other hand, it is easy to show that posterior of ��0|�2 is

��0|�2,yT ,y0 ⇠ N(�⇤
�0, H22).

2 A Model with Partial-sample Instability: M1

Posterior of model M1 can be directly obtained from the extended Markov switching

regime change model M3 by assuming that the state variable is known a priori.

3 Markov Regime Switching Model: M2

We explain how to simulate the posterior distribution of the Markov switching regime

change model based on the Gibbs sampling.

To get the posterior of the Markov switching regime change model M2 by the Gibbs

sampler we have together the parameters of the model, vector of the state variables

{s1, · · · , sT}, mean µ1, · · · , µK , variance �12, · · · , �K2, autoregression coe�cients �1, · · · ,�p,
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and � = {�1, · · · ,�p}. In Gibbs sampling the posterior of parameters in a part is gener-

ated from a conditional distribution of the other part.

1) Generation of ST : Given µ, �2,�, P we can write the posterior of the state vector

ST as in the following:

p(ST |yT ) = p(s1, · · · , sT |yT )

= p(sT |yT )
T�1Y

t=1

p(st|st+1, · · · , sT ,yT )

= p(sT |yT )
T�1Y

t=1

p(st|st+1,yT ).

(B.3)

In (B.3) derivation of the second line from the first line is based on a basic property of con-

ditional probability, and the third line is obtained from the first order Markov properties

of state variables. (B.3) shows that we generate sT , assuming that yT is given, and then

generate st for t = T � 1, T � 2, · · · , 1 successively conditioned on the pre-generated st+1

and yT , by which ST can be generated. The problem is how to get p(st|st+1,yt), which

can be easily available by applying the Hamilton(1989)’s filter. Assuming that the other

parameters are given, we can get the probability of current state p(st|yt) by Hamilton

filter if information up tp t is available. Since, for t = T � 1, T � 2, · · · , 1,

p(st|st+1,yt) =
p(st, st+1|yt)

st+1|yt)

=
p(st+1|st,yt)p(st|yt)

p(st+1|yt)

=
p(st+1|st)p(st|yt)

p(st+1|yt)

from the assumed transition probability and probability obtained from the Hamilton’s

filter, we can get p(st|st+1, yt). From this result we get, for t = T � 1, T � 2, · · · , 1,

P [st = i|st+1, yt] =
p(st+1|st = i)p(st = i|yt)PM
j=1 p(st+1|st = i)p(st = i|yt)

. (B.4)

Given st+1, p(st+1|yt) is determined independently of st, so that it is cancelled out in the

numerator and denominator. Generation of the state variable from (B.4) can be done

based on the uniform distribution. On the other hand, p(sT |yT ) can be immediately ob-

tained from the Hamilton filter.
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2) Generation of µ: Given ST , �
2,�, P modify M2 as in the following:

ỹt
⌫t

= µ1
s̃1t
⌫t

+ · · ·+ µM
˜sM,t

⌫t
+
"t
⌫t

(B.5)

Here ỹt = yt � (�1yt�1 + · · · + �pyt�p) and s̃i,t = si,t � (�1si,t�1 + · · · + �psi,t�p). Also,

si,t = I(st = i). Letting ut = "t/⌫t, we have that ut ⇠ N(0, 1). Now, rewriting (B.5),

ỹ = s̃µ+ u (B.6)

where ỹ = {ỹ1/⌫t, · · · , ỹt/⌫t}0, s̃i = {s̃i,1, · · · , s̃i,T}0, i = 1, · · · ,M), and s̃ = {s̃1, · · · , s̃M}.
Also, u = {u1, · · · , uT}0 and u ⇠ N(0T , IT ). Then, the likelihood of (B.6) becomes

l(µ|ỹ,ST,�
2,�,P) =

✓
1p
2⇡

◆T

exp


�1

2
(ỹ � s̃µ)0(ỹ � s̃µ)

�
. (B.7)

Now, assume that the prior distribution of µ is independent of the other parameters and

is Gaussian with mean a0 and variance m0
�1:

µ|ST,�
2,�,P ⇠ N(a0,m0

�1)I(µ1<···<µK) (B.8)

where I(µ1 < · · · < µK) is a restriction for the identification of states. With this restric-

tion the prior of µ is a truncated normal distribution. From (B.7) and (B.8) we get a

conditional posterior of µ:

p(µ|ST ,�
2,�,P,yT )

/ l(µ|ỹ, ST ,�
2,�,P)p(µ|ST ,�

2,�,P)

/ |m0
�1|�1/2

exp


�1

2
[(µ� a0)

0m0(µ� a0) + (ỹ � s̃µ)0(ỹ � s̃µ)]

�

/ |m⇤|�1/2exp


�1

2
[(µ� µ⇤)0(µ� µ⇤)

�
,

where m⇤ = (m0 + s̃

0
s̃)�1, µ⇤ = m ⇤ (m0a0 + s̃

0
ỹ). Therefore, the conditional posterior of

µ is a normal distribution:

µ|ST ,�
2,�,P,yT ⇠ N(µ̃,m⇤)I(µ1<···<µK)

16



where I(µ1 < · · · < µK) is a restriction for the identification of states. After generation

of µ we take only those satisfying this restriction.

3) Generation of �2: Given ST ,µ,�, P , we generate �12, · · · , �K2 individually one by

one since they are independent of each other. First, for

"t = (yt � ⌧t)�
LX

p=1

�p(yt�p � ⌧t�p)

let

"̃i = {"t|st = i}0

for i = 1, · · · , K. With "t having a normal distribution with mean 0 and variance �2
st , we

have the likelihood of "̃i as

l(�2
i |"̃i, ST ,µ,�, P ) /

✓
1

�2
i

◆Ti
2

exp


� 1

�2
i

"̃i
0"̃i

�

where Ti is the sample size of the ith states (st = i). Assuming that the prior of �2
i is an

inverted Gamma, IG(⌫i/2, �i/2),

p(�2
i |ST ,µ,�, P ) /

✓
1

�2
i

◆⌫i/2�1

exp

✓
� �i
2�2

i

◆
,

we know that a conditional posterior of �2
i is

p(�2
i |ST ,µ,�, P, "̃i) /

✓
1

�2
i

◆Ti+⌫i/2�1

exp

✓
��i + "̃i

0"̃i
2�2

i

◆
,

which is another inverted Gamma,

�2
i |ST ,µ,�, P, "̃i ⇠ IG

✓
Ti + ⌫i

2
,
�i + "̃i

0"̃i
2

◆

We can generated the posterior of �2
i from the fact that the inverse of a Gamma has an

inverted Gamma distribution.

4) Generation of �: Given ST and �2, µ, P , let !t = yt� ⌧t and rewrite M2 as follows:

!̃t

⌫t
= �1

!t�1

⌫t
+ · · ·+ �p

!t�p

⌫t
+
"t
⌫t

(B.9)

Letting ut = "t/⌫t, we have ut ⇠ N(0, 1). Now, write (B.9) as

z = X�+ u (B.10)
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where z = {!1/⌫1, · · · ,!T/⌫T}0, and for xt = {!t�1/⌫1, · · · ,!t�1/⌫t}0 X = {x1, · · · , xT}0.
Also, for u = {u1, · · · , uT}0, u ⇠ N(0T , IT ). Then, the likelihood of (B.10) is

l(�|z, ST ,µ,�
2, P ) =

✓
1p
2⇡

◆T

exp


�1

2
(z � X�)0(z � X�)

�
. (B.11)

Now, assume that the prior of � is independent of the other parameters and has a normal

distribution with mean b0 and variance B�1
0 ,

�|ST ,µ,�
2, P ⇠ N(b0, B0

�1)I(�2�S). (B.12)

where I(� 2 �S) is a stability condition for � where �S is the space of � such that roots

of the characteristic equation 1 � �1z � · · · � �pz
p = 0 lie outside the unit circle. From

(B.11) and (B.12) we get a conditional posterior of �:

p(�|ST ,µ,�
2, P, z)

/ l(�|z, ST ,µ,�
2, P )p(�|ST ,µ,�

2, P )

/ |B0
�1|�1/2

exp


�1

2
[(�� b0)

0B0(�� b0) + (z � X�)0(z � X�)]

�

/ |B⇤|�1/2exp


�1

2
[(�� �⇤)0B0(�� �⇤)

�

,

where B⇤ = (B0+X 0X)�1 and �⇤ = B⇤(B0b0+X 0z). Therefore the conditional posterior

of � is a Gaussian as in the following:

�|ST ,µ,�
2, P, z ⇠ N(�̂, B⇤)I(�2�)

which is a truncated normal. As for µ we take only the generated values satisfying these

restrictions.

5) Generation of P : Given ST ,�2, µ,�, ST being given conditionally, we can count

the number of transitions between states in a sample. Thus, let nij be the number of

transitions from state i to state j. Then,
PK

i=1

PK
j=1 nij = T . Since for i = 1, · · · , K

the number of transitions to states j = 1, · · · , K follows a multinomial distribution, the

likelihood of pij (j = 1, · · · , K) is

l(pi1, · · · , piK |yT ) =

 
K�1Y

j=1

pnij
ij

! 
1�

K�1X

j=1

pij

!niK

.
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Since piK = 1� (pi1 + pi(K�1)) we do not consider piM . For the prior of transition proba-

bility we use a Dirichlet distribution. The pdf of pij having a Dirichlet distribution with

parameters ↵i1, · · · ,↵i(K�1) is as follows

p(pi1, · · · , pi(K�1)|ST ) =

 
K�1Y

j=1

p
↵ij�1
ij

! 
1�

K�1X

j=1

pij

!↵iK�1

.

Therefore, a conditional posterior of pij is

p(pi1, · · · , pi(K�1)|ST ,yT ) =

 
K�1Y

j=1

p
nij+↵ij�1
ij

! 
1�

K�1X

j=1

pij

!niK+↵iK�1

.

That is, pij has a Dirichlet distribution with parameters ni1 + ↵i1, · · · , ni(K�1) + ↵i(K�1):

pi1, · · · , pi(K�1)|ST ,yT ⇠ Dirichlet(ni1 + ↵i1, · · · , ni(K�1) + ↵i(K�1)).

We generate Dirichlet random numbers by a Gamma distribution. That is, with xij

generated from Gamma(↵ij, 1) we have pij as xij/
P

xij.

4 An Extended Markov Switching Model: M3

Inclusion of instability state(s) in M2 does not substantially a↵ect estimation of posterior

distribution by Gibbs sampler. However, given ST , �2,�, P we need to modify the part

of generation of µ. Since, in M3, ⌧t = µ1s1,t + · · ·+ µK�1sK�1,t + (µK + yt�1)sK,t, we can

rewrite M3 as in the following with si,t = I(st = i):

yt � yt�1sK,t �
pX

s=1

 s,t(yt�s � yt�s�1sK,t�s)

= µ1[s1,t �
pX

s=1

 s,ts1,t�s] + · · ·+ µK [sK,t �
pX

s=1

 s,tsK,t�s] + "t

where  s,t = [�s · I(st 6= K) + ⇣s · I(st = K)]. Thus, having ỹt = yt � yt�1sK,t �Pp
s=1  s,t(yt�s � yt�s�1sK,t�s) in (B.5) we can generate µ by the same method. In this

case the identifying restriction for the distribution of µ becomes I(µ1 < · · · < µK�1). We

can generate all the other parameters except ⌧t by the same method as in M2.
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Appendix B:

Estimation of Marginal Likelihood

Estimation of marginal likelihood can be done by Chib(1995)’s algorithm. This algorithm

calculates a posterior density based on the fact that Gibbs sampler generates parameters

of a posterior. For Gibbs sampling we need to know the exact form of a posterior density.

Suppose that we consider computation of the following posterior density at ✓⇤ =

(✓⇤
1, · · · ,✓⇤

B):

p(✓⇤|yT ) = p(✓⇤
1|yT )p(✓

⇤
2|yT ,✓

⇤
1)⇥ · · ·⇥ p(✓⇤

B|yT ,✓
⇤
1, · · · ,✓

⇤
B�1) (C.1)

where ✓⇤(r = 1, · · · , B) can be a vector. Suppose that there exist unobserved state vector

ST = {s1, · · · , sT} in this model. The first term can be computed by conditional densities

of the other parameters

p(✓⇤
1|yT ) =

Z
p(✓⇤

1|yT ,✓T ,✓2, · · · ,✓B, ST )dp(✓2, · · · ,✓B, ST |y) (C.2)

where the integral is taken with respect to parameters other than ✓1. The set {(✓(g)
2 , · · · ,✓(g)

B , S
(g)
T )|g =

1, · · · , G} is obtained as a generated sample from G times Gibbs sampling of the joint

posterior of (✓2, · · · ,✓B, ST ), p(✓2, · · · ,✓B, ST |y). Therefore, the integral (C.2) is approx-
imately computed as

p̂(✓⇤
1|yT ) = G�1

GX

g=1

p(✓⇤
1|yT ,✓

(g)
2 , · · · ,✓(g)

B , S
(g)
T )).

Now for r = 2, · · · , B we calculate consecutively p(✓⇤
r|yT ,✓

⇤
1, · · · ,✓⇤

r�1),

p(✓⇤
r|yT ,✓

⇤
1, · · · ,✓⇤

r�1)

=

Z
p(✓⇤

r|yT ,✓
⇤
1, · · · ,✓⇤

r�1,✓r+1, · · · ,✓B, ST )dp(✓r+1, · · · ,✓B, ST |y),

so that we can get

p(✓⇤
r|yT ,✓

⇤
1, · · · ,✓⇤

r�1) = G�1
GX

g=1

p(✓⇤
r|yT ,✓

⇤
1, · · · ,✓⇤

r�1,✓
(g)
r+1, · · · ,✓

(g)
B , S

(g)
T ).
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Here, (✓(g)
r+1, · · · ,✓

(g)
B , S

(g)
T ) can be obtained from the previously applied Gibbs sampler by

fixing (✓1, · · · ,✓r�1) = (✓⇤
1, · · · ,✓⇤

r�1) and by executing Gibbs sampling again. That is,

we perform Gibbs sampling consecutively for a conditional posterior as in the following

✓(g)
r  p(✓r|y,✓⇤

1, · · · ,✓⇤
r�1,✓

(g�1)
r , · · · ,✓(g�1)

B , S
(g�1)
T )

✓(g)
r+1  p(✓r+1|y,✓⇤

1, · · · ,✓⇤
r�1,✓

(g)
r ,✓(g�1)

r+1 , · · · ,✓(g�1)
B , S

(g�1)
T )

...

✓(g)
B  p(✓B|y,✓⇤

1, · · · ,✓⇤
r�1,✓

(g)
r , · · · ,✓(g)

B�1, S
(g�1)
T )

S
(g)
T  p(ST |y,✓⇤

1, · · · ,✓⇤
r�1,✓

(g)
r , · · · ,✓(g)

B ).

The value of ✓r generated along with values of the other parameters in Gibbs sampling

is used for posterior instead of the fixed value ✓⇤
r. After computing posterior of (C.1) we

get the marginal likelihood

ln p̂(yT ) = ln l(yT |✓) + ln p(✓)� ln p̂(✓|yT ).

We can easily calculate l(yT |✓) and p(✓). Numerical standard deviations of a posterior

density and a marginal likelihood can be calculated as is explained in Chib(1995).

For the model of Markov switching regime change we can partition parameters as

µ,�2,�, P and apply the above algorithm.
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