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Abstract

This study investigates which market structure gives rise to indeterminacy of stationary equilibria in a
decentralized economy with non-degenerate distributions of money holdings. I develop a price-posting model
with divisible money and then, examine two alternative markets: a pairwise random matching market and a
many-to-many exchange. Importantly, the former market balances the number of matched buyers and sellers
by definition. As a result, indeterminacy arises under the pairwise matching while a unique equilibrium exists
in the many-to-many market. This balancing assumption also leads to the indeterminacy in a Walrasian
market.
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1 Introduction

This study analyzes which type of market structure of decentralized monetary trade that gives

rise to the real indeterminacy of stationary equilibria initially found by Green and Zhou (1998).

Notably, the indeterminacy of equilibrium distribution is of non-degenerate money holdings,

which is of growing concern in monetary economics. Theoretically, such indeterminacy is po-

tentially a straightforward consequence of decentralized trades with divisible money. Moreover,

recent empirical studies emphasize the influence of heterogeneity of household balance sheets

on the effects of inflation (e.g., Doepke and Schneider (2006) and Auclert (2017)). Thus, the

present study aims to provide a foundation for one aspect of the non-degenerate money holding

distributions, namely, indeterminacy.

A series of works following Green and Zhou (1998) study the circulation of divisible money

using a variety of search models and find a specific type of indeterminacy. There is a continuum

of stationary equilibria where each equilibrium differs not only in nominal prices but also real

terms, such as consumption and production. In addition, the distributions of money holdings

and the number of matchings are uncertain. As a result, economic welfare is unpredictable.

∗The previous title was ”Indeterminacy in Search Theory of Money: Bilateral vs. Multilateral Trades.” I am grateful to Edward
Green, Kazuya Kamiya, Nobu Kiyotaki, Guido Menzio, Ezra Oberfield, Yohei Sekiguchi, Takashi Shimizu, and Chang Sun for their
valuable comments. I thank the participants of The Search Theory Workshop (Osaka) and Summer Workshop on Money, Banking,
Payments, and Finance (Chicago). I also acknowledge financial support from The Nakajima Foundation.

†Hitotsubashi Institute for Advanced Studies (E-mail: gkubotaso@gmail.com)
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I develop a model of price-posting whereby sellers post unit prices of a consumption good and

form submarkets. Then, each buyer visits a submarket and quotes a purchase quantity. Finally,

a market structure determines the allocation in every submarket. This price-posting market

represents daily shopping, for example, a person decides how much meat to buy after looking

at its price by weight in a supermarket. On this model, I examine two alternative market

structures: bilateral trade with random pairwise matching and a two-sided many-to-many

exchange. The random matching one is a variant of the standard competitive search markets

(e.g., Moen (1997); and Rocheteau and Wright (2005)) and the many-to-many matching is a

type of market game (Shapley and Shubik (1977)). As a result, the bilateral trade market gives

rise to the indeterminacy of the stationary equilibrium distributions of money holdings, but the

many-to-many exchange market holds a unique equilibrium.

Pairwise matching equalizes the number of buyers and sellers in both on and off paths.

This balanced trade assumption creates one more identity in the system of equations that

determine the distribution of the stationary equilibrium money holdings; it makes a continuum

of solutions. On the other hand, the many-to-many exchange assumption excludes this identity.

In addition to the decentralized price-posting model, the present study shows that a similar

assumption of balancing buyers and sellers may give rise to indeterminacy in a centralized

market. I consider a Walrasian market with buyer and seller sides. In the standard case,

the Walrasian market holds a unique equilibrium because it allows a many-to-many exchange.

However, under a limited participation restriction by which only the same population of buyers

and sellers enters the market, the model also leads to indeterminacy.

This study builds on the literature on decentralized trade models with divisible money and

indeterminacy. Green and Zhou (1998); Zhou (1999); Green and Zhou (2002); Kamiya and

Sato (2004); Kamiya and Shimizu (2006, 2007, 2011); Ishihara (2010) examine many types

of money search models with non-degenerated distributions of money holdings and show the

similar indeterminacy. It also arises in other models such as market place choice by Matsui and

Shimizu (2005), auction market by Kamiya and Shimizu (2013), New Monetarist model with

indivisible good by Jean et al. (2010), and Walrasian market with indivisible good by Kamiya

et al. (2017).

Wallace (1998) conjectures that the nominal nature of money is the cause of indeterminacy.

However, Zhou (2003) questions this finding by showing indeterminacy in a model with com-

modity money. Another conjecture is that the indivisibility of goods assumed in Green and

Zhou (1998) is the source of indeterminacy. On the contrary, Ishihara (2010) and Kamiya and

Shimizu (2011) find indeterminacy with divisible goods. This study’s price-posting model also

reveals indeterminacy with divisible consumption goods. Kamiya and Shimizu (2006) show

the kind of system of equations about stationary distributions of money holdings that support

indeterminacy but a question remains about the underlying market structure causing inde-
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terminacy1. Kamiya and Shimizu (2013) study a centralized auction market and conjecture

that the non-Walrasian price determination causes the indeterminacy. However, the present

study derives indeterminacy in a Walrasian market too. In a different context, another station-

ary equilibrium indeterminacy is found in economic growth models with knowledge diffusion

(e.g., Luttmer (2007)). Their indeterminacy is associated with fat-tail distributions of firm

productivity. Nevertheless, indeterminacy in decentralized monetary models possibly emerges

on bounded distributions.

This study is further related to tractable search models of non-degenerate distributions of

money holdings. Berentsen et al. (2005) and Rocheteau et al. (2018) study delayed mean-

reverting adjustment processes of money holdings using the new-monetarist model and obtain

non-degenerate distributions. Menzio et al. (2013) provide a competitive search model with

block recursive structure, which results in non-degenerate distribution associated with sort-

ing into different submarkets. While these models incorporate Walrasian markets, the present

study analyzes entirely decentralized markets2. Interestingly, this study derives similar distri-

butions which hold discrete masses. Other notable approaches to generating non-degenerate

distributions in money search models include a countable number of money holdings (Camera

and Corbae (1999)) and numerical methods (Molico (2006); Chiu and Molico (2010, 2011)).

The present study’s many-to-many exchange trade is a variant of Shapley and Shubik

(1977)’s market game. There are other approaches to incorporate the many-to-many exchange

in decentralized monetary models: Corbae et al. (2003) consider a type of coalition formation

game with indivisible money, Howitt (2005) studies the appearance of trading places, and Julien

et al. (2008), Galenianos and Kircher (2008), and Kamiya and Shimizu (2013) analyze auction

markets.

The structure of the rest of the paper is as follows. In Section 2, I propose a simple example

and provide the intuition for the process by which a bilateral trade assumption makes the equi-

librium indeterminate. In Section 3, the environment of the economy and equilibrium concept

are introduced. Section 4 introduces a pairwise matching market and obtains indeterminacy.

In Section 5, a many-to-many exchange market attains the unique equilibrium. Section 6 con-

siders a Walrasian model with and without the limited participation of buyers and sellers, and

studies the emergence of indeterminacy. Section 7 presents the conclusion.
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Figure 1: Distribution of money holdings

2 A simple example

This section proposes a simple example and provides the intuition for the main result. The

example is presented in a reduced-form version of the models in the later sections. There is a

market in which buyers and sellers exchange money and goods every period. The population is

100. The money supply is fixed at $3000. Disregarding consumption, production, and incentives

of agents, I assume only a money transfer rule: an agent holding positive units of money enters

the buyer side and spends all the money holding. An agent holding no cash enters the seller

side and receives money from the buyer side.

I propose two alternative market structures.

1. Pairwise matching: a random draw decides the matchings of one buyer and one seller.

Each buyer gives the whole amount of money to the partner. The number of matchings is

the smaller of the population of either the buyer or the seller side,

2. Many-to-many exchange: all agents on the buyer side pay all money holdings. The money

is distributed equally to agents on the seller side.

Pairwise matching represents a search theory of money with the most efficient matching func-

tion, that is, there are no unmatched agents on the smaller population side. Many-to-many

exchange is interpreted as Shapley and Shubik (1977)’s market game or Walrasian market.

Suppose there is a money holding distribution in which 60 agents hold $50 each and 40

people hold no cash3. Under the pairwise trade assumption, the number of matchings is 40 =
1Jean et al. (2010) point out the importance of strategic coordination issues. It is required for multiple equilibria in general.

Since indeterminacy following Green and Zhou (1998) arises with a continuum of equilibria, additional conditions provided by
Kamiya and Shimizu (2006) are necessary.

2These studies do not report indeterminacy, possibly because of Walrasian markets, which indeed allow many-to-many matching.
Another difference is that these studies consider only equilibria with continuous and differentiable value functions; indeterminacy
often arises with step value functions in the literature whereas the value functions in this study have kinks.

3This example considers only distribution with two masses.
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min{60, 40}. All 40 sellers hold $50 in the next period. There are 40 among 60 buyers who

exhaust their cash. As in the left diagram of Figure 1, the money holding distribution is

stationary. In general, all the distributions in which x people hold $3000/x and 1 − x hold

nothing can be steady-state equilibria. The pairwise trade market exchanges the same number

of buyers and sellers and keeps the distribution unchanged.

However, in the many-to-many trade case, all the buyers spend their money. In the next

period, 60 agents hold no cash, and 40 agents accumulate $75 each. Therefore, the distribution

is not stationary as shown in the right diagram of Figure 1. The unique stationary distribution

is that 50 agents hold $60 each, and 50 agents hold no cash4. The many-to-many exchange

procedure matches different populations of buyers and sellers. It differentiates the inflow and

outflow of each point on the distribution and violates the stationarity.

3 Environment and Equilibrium Concept

This section introduces a baseline structure of the price-posting model and the equilibrium

concept. The solution is provided with the pairwise trade procedure in Section 4, and with

many-to-many matching in Section 5.

3.1 Environment

Time is discrete and infinite. There are two types of goods: a consumption good and money.

Both goods are divisible. Money is storable while the consumption good is perishable. Money

supply is constant at M through all periods.

There is a unit measure of homogeneous agents. They are anonymous, that is, the history

of actions and money holdings are unobserved by other agents5. Each agent has a linear utility

function uq where q is the unit of the consumption. Each agent also has a production tech-

nology that converts her labor input to the consumption good. I assume capacity-constrained

production, following the industrial organization literature since Levitan and Shubik (1972).

Production of q units yields the following labor disutility:

C(q) =

⎧
⎪⎨

⎪⎩

0 if q = 0

c if q ∈ (0, 1]

+∞ if q > 1

.

In other words, each seller produces at most one unit of the consumption good with constant

disutility c. The function induces a strong incentive for sellers to lower prices because of the

4Note that this study considers a distribution of money holdings to be stationary if it is unchanged every period. Cyclical
equilibria may also exist, for example, 60 agents hold $50 in even periods and 40 agents hold $75 in odd periods. This study focuses
only on the strict concept of stationary equilibrium, because it is the main issue in the existing literature. Cyclical equilibrium is
another worthwhile topic to study, for example, Arbuzov et al. (2019)

5These assumptions preclude non-monetary equilibrium by keeping history, as in Kocherlakota (1998) and contagion equilibrium,
as in Araujo (2004).
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zero marginal costs. This ensures a kind of Bertrand–Edgeworth competition among sellers

which makes the equilibrium simple. Each agent can either only consume or only produce in

each period. The utilities are discounted by a factor β.

Each period consists of four stages.

• Stage 1: each agent decides whether to become a seller or a buyer.

• Stage 2: each seller posts a unit price of the consumption good p in terms of money. The

sellers posting the same price p forms submarket p.

• Stage 3: each buyer observes the distribution of the posted prices and chooses one sub-

market.

• Stage 4: each buyer in each submarket p quotes demand q. In submarket p, given the

participating buyers and sellers, either one-to-one matching or multilateral exchange pro-

cedure decides the allocations of money and the consumption good.

This study assumes that the consumption good is general, that is, each buyer demands goods

produced by any other sellers. The division of buyers and sellers is enough to generate a single

coincidence of wants and circulate money, as in Rocheteau and Wright (2005)6.

3.2 Strategy and Equilibrium

A probability measure λ represents the distribution of money holdings. It satisfies the total pop-

ulation 1 =
∫∞
0 dλ(m) and the money supply M =

∫∞
0 mdλ(m). I assume a symmetric strategy

in which all agents holding m units of money choose the same strategy in the equilibrium. The

strategy allows the use of money holding m as the index of agents7.

Definition 1. A strategy of an agent is a sequence of actions over the four stages x(m) =(
xk(m)

)
k=1,2,3,4

contingent on her money supply m at the beginning of stage 1.

• The action in stage 1, x1(m), is buying or selling. Let S be the set of sellers and B be that

of buyers.

• In stage 2, each seller observes the set of buyers and sellers, and then posts a price p. No

buyer is active.

x2(m|x1, B, S) =

{
p > 0 if x1(m) ∈ S

∅ otherwise.

Let Sp be the set of sellers in submarket p. The set of all the submarkets is P = {p|Sp ̸= ∅}.
6Another possible assumption is that there are K ≥ 3 types of agents and the population of each type is 1/K. A type k agent

consumes the good produced only by type k − 1. Since this economy deals with a price-posting procedure, a type k buyer can go
to a type k − 1 seller’s submarket. Hence, the types can be ignored without loss of generality.

7In other words, each agent chooses a pure strategy. The assumption does not lose generality, because only a measure-zero agent
at a margin may choose a mixed strategy. Thus, to consider a deviation from an equilibrium, I assume a unilateral deviation. Each
agent’s state variable can be represented only by m instead of λ(m) because λ(m) is stationary.
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• In stage 3, each buyer enters one submarket. Each seller is inactive.

x3

(
m|x1, B, (Sp)p∈P

)
=

{
p ∈ P if x1(m) ∈ B

∅ otherwise.

Let Bp be the set of buyers in submarket p.

• In stage 4, each buyer posts a non-negative demand q given her budget constraint. Each

seller is inactive.

x4

(
m|x1, x3, (Sp)p∈P , (Bp)p∈P

)
=

{
q ∈ [0,m/p] if x1(m) ∈ B and p = x3(m)

∅ if x1(m) ∈ S.

The definition of equilibrium consists of three functions of money holdingm at the beginning

of the period: strategy x(m), the discounted sum of utilities V (m) and the distribution of money

holdings λ(m).

Definition 2. The equilibrium consists of stationary x(m), λ(m), and V (m) satisfying the

following conditions: (i) λ(m) is consistent with x(m), (ii) V (m) is induced by x(m) and

λ(m), (iii) given λ(m) and V (m), x(m) is a subgame perfect equilibrium from stage 1 to stage

4, and (iv) V (0) > 0.

This concept is called stationary monetary equilibrium in the literature on the search theory

of money. While most studies8 consider a one-shot game every period, the present study derives

the subgame perfect equilibrium given the dynamic game in each period. Given stationary

λ(m), the discounted value depends only on m. Each agent keeps track of only m, because

the history of other agents is anonymous and the agent is atomic. Condition (iv) means that

engaging in monetary trade is more attractive than autarky. Then, there exist some buyers

and sellers exchange money and goods in the stationary monetary equilibrium. The equilibrium

necessary holds the following submarket:

Definition 3. Submarket p is active if λ(Sp) > 0 and λ(Bp) > 0.

Meanwhile, a submarket may exist that has measure zero agents. It is crucial to consider

each seller’s incentive because one seller’s deviation from the equilibrium makes such a measure

zero submarket. To decide each buyer’s incentive in stage 3, the model needs to specify what

kind of matching and trades appear in such a submarket. This study follows the literature of

the large economy with atomless agents (e.g., Dubey et al. (1982)) and assumes an approximate

equilibrium. The equilibrium in a measure zero submarket is solved by assuming a small and

positive measure of sellers. Then, the equilibrium is obtained when the measure of market

participants converges to zero, which this study calls ε-submarket.
8The models in the literature since Green and Zhou (1998) use a take-it-or-leave-it game, which is generally a two-shot game in

general because an offerer takes into account the receiver’s response. However, all the models assume unobservable money holding of
the trade partner. The offerer cares only about the average actions of all possible receivers. Then, the dynamic decision disappears.
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Definition 4. Suppose that there exists p ∈ P such that Sp ̸= ∅ and λ(Sp) = 0. This is called

ε-submarket. The equilibrium is obtained by solving the buyers’ actions in stage 3 and 4 given

that there is a sufficiently small ε > 0 measure of sellers, and then taking ε → 0.

The following two lemmas are straightforward implications of the definition.

Lemma 1. V (m) is weakly increasing in the equilibrium.

Proof. Suppose x = {xt, xt+1, · · · } is the optimal actions of agent m from time t to the future,

which induces V (m). Consider agent m′ > m. Indeed, agent m′ can also takes x and acquire

the same discounted utility V (m). By the optimality of the strategy of agent m′, V (m′) ≥
V (m).

Lemma 2. In the equilibrium, each agent becomes a buyer and spends money in finite periods

ahead.

Proof. By Lemma 1, V (m) ≥ V (0) > 0 for all m > 0 in the equilibrium. In the model, the

only way to acquire positive utility is by being a buyer and spending money. If agent m never

purchases consumption goods, the discounted sum of utility is never positive.

4 Pairwise Trade with Random Matching

This section builds a variant of the competitive search market, that is, stage 4 incorporates

a pairwise trade with random matching. I derive a set of equilibria differing in both the

distribution of money holdings and real allocation.

In submarket p, the number of matchings is determined by the measure of sellers λ(Sp) and

that of buyers λ(Bp). I assume that the number of matchings is min{λ(Sp),λ(Bp)} without

loss of generality. Acemoglu and Shimer (1999) call this matching function frictionless. This

assumption is for an explicit comparison of the pairwise trade and the many-to-many matching

markets. Indeterminacy can be obtained under any constant returns to scale matching function.

In a matching, buyer m optimally decides a purchase quantity qm under production limit

qm ≤ 1 and budget constraint pqm ≤ m.

4.1 Equilibrium

There is a continuum of stationary equilibria, represented by Proposition 1. In each equilibrium,

all sellers post the same price p∗. All buyers participate in submarket p∗ and spend all their

cash. The single price p∗ is indeterminate. Each p∗ has an associated two-point equilibrium

distribution of money holdings.

There are two main properties that make the equilibrium tractable. The first is a buyer’s

pay-all strategy in stage 4. Given posted price p in stage 4, each buyer optimally chooses

8



quantity q:

V4B(m|p) = max
q

uq + βV (m− pq), s.t. pq ≤ m, q ≤ 1. (1)

This equation defines a buyer’s discounted sum of utilities evaluated at stage 4 given a price p

as V4B(m|p). In the equilibrium, p = p∗. The marginal gain from an increase in q is u. However,

it yields disutility βp∗V ′(m − p∗q). The stationarity implies that the current period marginal

gain is strictly larger than future one. Saving one unit of money enables the purchase of 1/p∗

units of good in the future, because p∗ is unique and stationary. The utility will increase by

u/p∗. By the discount factor β < 1,

βp∗V ′(m− pq∗) ≤ βp∗(u/p∗) = βu < u.

Equation (1) has a corner solution in which either p∗q = m or q = 1 holds.

The second property making the equilibrium tractable is the single-price equilibrium in

stages 2 and 3. Suppose that all the buyers hold m = p∗. Then, each seller posts the same

price p∗ and each buyer necessarily chooses submarket p∗. This is a Nash equilibrium. By the

corner solution in Equation (1), each buyer chooses q = 1 and p∗q = m = p∗. No seller has an

incentive to offer a different price. An offer p > p∗ does not generate profit because each buyer

pays at most p∗. A lower price p < p∗ is worse, because the sales amount never increases owing

to the capacity limit q ≤ 1.

Given these two properties, indeterminate distributions of money holdings appear. In the

two-point distribution9, both the single price and the buyer’s money holdings are p∗. The total

number of matchings is λ(0) = min{λ(0),λ(p∗)}. By the first property, all matched buyers

spend p∗, and the same number of sellers receive p∗. The equilibrium exchanges the same

population of agents between two points, and hence, the distribution is stationary. In the case

of a slightly higher price p̃∗ > p∗, there are fewer buyers. The second property ensures that the

new price p̃∗ is an equilibrium in stages 2 and 3. Then, the market again exchanges the same

number of buyers and sellers. Another equilibrium with a different distribution arises.

Indeterminacy is real because the amount of production is λ(0) in each period. Efficiency

and the welfare change according to the single price p∗. The result is unsurprising. While this

market is a variant of the competitive search market, the main feature is similar to the random

search theories.

Proposition 1. Suppose βu− c > 0. For any p∗ such that

M ≤ p∗ < M

(
(1− β)c

β(u− c)
+ 1

)
,

an equilibrium exists in which
9Some models, such as those of Green and Zhou (1998) and Zhou (1999), derive single-price equilibria with more than two points

distributions. Some agents accumulate money several times owing to random matching. However, such a distribution disappears
in the present model by the buyer/seller choice in stage 1. Interestingly, the many-to-many matching model presented in the next
section causes different incentives for agents and gives rise to more than two point distributions.
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1. λ(p∗) = M/p∗ and λ(0) = 1− λ(p∗), otherwise λ(m) = 0 where λ(0) < λ(p∗),

2. The strategy is x(m) = (S, p∗, ∅, ∅) if m ≤ m̄ and x(m) = (B, ∅, p̃,max{1,m/p̃}) otherwise,
where the equilibrium matching probability of a buyer is λ̃ ≡ λ(0)/λ(p∗), the buyer’s choice

of the submarket is

p̃ = argmax
p

λ̃V4B(m|p),

and the cutoff amount of money holding in stage 1 is

m̄ =
p∗[βλ̃u− (1− β + βλ̃)c]

λ̃u(1 + βλ̃)
,

3. The value function is defined by the following equations:

V (0) =
βλ̃u− (1− β + βλ̃)c

(1− β)(1 + βλ̃)
, (2)

V (m) = V (0) if m ≤ m̄ (3)

V (m) = λ̃

[
m

p∗
u+ βV (0)

]
+ β(1− λ̃)V (m) if m̄ < m ≤ p∗ (4)

V (m) = λ̃ [u+ βV (m− p∗)] + β(1− λ̃)V (m) if p∗ < m (5)

The strategy x(m) is defined as history dependent in one period. In the equilibrium, buyers

have only one option p∗. The strategy does not depend on the history before the current period,

because each agent is anonymous and atomic. Equation (3) represents the discounted value

that an agent with a low money holding becomes a seller in the current period. She holds

p∗ +m units of money in the next period. However, given the unique posted price p∗ and the

capacity constraint q ≤ 1, she can pay only p∗ in each matching. This means that m > 0 units

of money are never used. Equation (4) describes an agent who becomes a buyer in the current

period. She meets a seller with probability λ̃ and spends all her cash. Finally, Equation (5)

shows that, if an agent holds m > p∗ amount of money, she becomes a buyer and spends only

p∗ units of production capacity.

Proof. This proof constructs a set of equilibria by the guess and verify method. I first assume

a set of V (m) and λ(m), which is characterized by the indeterminate single price p∗. Then,

given assumption V (m) and λ(m), the subgame perfect equilibrium strategy x(m) is derived.

Each step is summarized as a lemma.

The best response actions are derived backward from stages 4 to 1.

stage 4

10



Given an offered unit price p, agent m’s problem is

max
q∈R+

uq + βV (m− pq), s.t. pq ≤ m, q ≤ 1. (6)

Lemma 3. If p ≤
(

1−β(1−λ̃)

λ̃

)
p∗, the buyer chooses q = 1.

Proof. By Equation (3), (4) and (5), the slope of V (m) is less than or equal to λ̃u
p∗[1−β(1−λ̃)]

;

hence, q = 1 maximizes the utility.

If p = p∗, a buyer chooses q = 1 because [1− β(1− λ̃)]/λ̃ ≥ 1.

stage 2 and 3

I consider stages 2 and 3 one at a time and show the single price equilibrium.

Lemma 4. In stages 2 and 3, an equilibrium exists at which all sellers post p∗.

Proof. Consider a seller’s strategy given that all other sellers post p∗. If the seller posts p = p∗,

she succeeds in matching with probability 1 and, by Lemma 3, acquires p∗ units of money. If

the seller posts p ̸= p∗, an ε-market opens. The matching probability does not increase more

than 1. A lower price p < p∗ is not profitable. Moreover, a higher price p > p∗ does not

raise revenue because all buyers spend p∗ units of money given the assumed money holding

distribution.

stage 1

Here, I calculate the discounted sum of the utilities of being a seller and a buyer depending

on m, and then derive the cutoff m̄. By Lemma 4, each seller m posts p∗ and matches with

probability one. The discounted value is

−c+ βV (m+ p∗). (7)

Consider a case in which the agent chooses to be a buyer. If m < p∗, she meets a seller with

probability λ̃ and spends all her money holding. Hence, the discounted utility is Equation (4).

If m ≥ p∗, she can spend at most p∗ units of money, which means (5).

The following proposition shows the existence of m̄ which equates Equations (3) and (4).

The former is larger if m ≤ m̄ and smaller if m̄ < m ≤ p∗. Then, Equation (5) gives a wealthy

agent’s incentive to choose the buyer side.

Lemma 5. There exists m̄ ≤ p∗ such that agent m becomes a seller if m ≤ m̄ and a buyer

otherwise.
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Proof. In Appendix.

The following two lemmas show that x(m) induces λ(m) and V (m). The distribution λ(m)

is clear because λ(0) sellers and buyers match and exchange p∗ money and goods. Indeed this

flow makes λ(m) stationary.

Lemma 6. The strategy x(m) makes λ(m) stationary.

Proof. The λ(0) measure of agents choose the seller side and offer p∗ because 0 < m̄. By

p∗ > m̄, the λ(p∗) become buyers. The number of matching is λ(0) = min{λ(p∗),λ(0)}. In

each matching, the buyer quotes q = 1 and spends p∗ by Lemma 3. Therefore, all the m = 0

agents will accumulate p∗ and the λ(0) among λ(p∗) buyers exhaust their cash in the next

period. Therefore, λ is stationary under x.

Lemma 7. Strategy x(m) is consistent with V (m).

Proof. In Appendix.

Finally, the equilibrium requires V (0) > 0 to enable sellers to participate in the market. By

Equation (2), the condition is rewritten as

λ̃ >
(1− β)c

β(u− c)
.

Since M < p∗ ≤ 2M , 0 < λ̃ ≤ 1. Such λ̃ exists if βu > c. The right-hand side also yields the

lower bound of p∗. The two-point distribution implies p∗ = M(λ̃+1), then p∗ > M
(

(1−β)c
β(u−c) + 1

)
.

!

5 Many-to-many matching market

This section proposes another market to that in Section 4, a many-to-many matching, and

obtains the unique equilibrium. Suppose that there are QS
p =

∫
m∈Sp

dλ(m) measure of sellers in

submarket p. Since each seller produces at most one unit, QS
p is interpreted as the aggregate sup-

ply. An agent m posts a quote q(m) ∈ [0,m/p]. The total amount is QB
p =

∫
m∈Bp

q(m)dλ(m),

which is interpreted as the aggregate demand.

Definition 5. In submarket p, the many-to-many matching procedure yields an allocation such

that every seller exchanges qSp consumption good for pqSp money and each buyer m trades pqBp (m)

money for qBp (m) good defined as

qSp = min

{
1,

QB
p

QS
p

}
, qBp (m) = q(m) ·min

{
1,

QS
p

QB
p

}
.
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Call submarket p excess supply ifQS
p > QB

p , balanced ifQS
p = QB

p , and excess demand otherwise.

In an excess supply submarket, each buyer acquires the exact posted quantity q(m). Every seller

produces less than 1 amount to meet the demand. In an excess demand submarket, each buyer

obtains the posted good reduced by the same proportion QS
p /Q

B
p . In contrast to the pairwise

matching market, the many-to-many market allows all agents to trade. Instead of the rationing,

each quantity of trade is adjusted.

This procedure is related to the market game of Shapley and Shubik (1977). In the market

game, the nominal price per unit is determined by the demand/supply ratio QB
p /Q

S
p . By

contrast, in the present study, the price per unit is predetermined by the sellers’ postings. The

demand/supply ratio QB
p /Q

S
p determines only the allocation of the consumption good10.

This amount of trade is defined only if QS
p > 0. Therefore, the ε-submarket assumption in

Definition 4 is crucial. To consider one seller’s deviation to p, the consequence depends on how

many buyers enter submarket p and how much they quote11.

5.1 Equilibrium

The unique equilibrium is characterized by the single price p∗. Given a set of parameters, p∗

and λ(m) are uniquely determined. The main difference between the pairwise matching and

the many-to-many markets is that the latter possibly generates an equilibrium with more than

two masses. Agents hold 0, p∗, 2p∗, · · · , Np∗ money. Note that this is not an indeterminacy: a

set of parameters uniquely pins down both p∗ and N .

To provide intuition, consider the case of N = 1, which gives rise to a similar two-point

distribution. This case arises under some parameters. In the equilibrium, each agent with 0

units of money becomes a seller and earns p∗ units of money. In the next period, the agent

becomes a buyer and spends p∗. Because of no rationing, the equilibrium distribution of money

holdings is unique. The measure of no-cash agents is λ(0) and they hold p∗ in the next period.

Therefore the distribution is stationary only if λ(0) = λ(p∗).

The equilibrium is characterized by a similar strategy as the one-to-one matching case. In

stage 4, each buyer pays all money holdings. A buyer’s problem is written as

V4B(m|p) = max
q

uqB + βV (m− pqB), s.t. pq ≤ m, qB = q ·min

{
1,

QS
p

QB
p

}
, (8)

which is slightly different from the pairwise matching market. The consumption amount is

adjusted by the seller/buyer ratio, and the capacity constraint q ≤ 1 does not bind. Nonetheless,

pq = m holds at the optimum because of the stationary price p∗ and the discount factor β.

10In a market game, a good is never allocated to a person who derives no utility from it, such as a seller in my model. However,
my model allows the possibility that there remains a good left unsold.

11Note that a submarket with a positive measure of sellers and zero-measure buyers is straightforward: it is an excess supply
submarket with qSp = 0 and qBp (m) = q(m)
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The single price equilibrium with the unique balanced submarket holds in stages 2 and

3. In the pairwise trade market, Bertrand–Edgeworth competition gives sellers lower prices

and increases the probability of matching. In the many-to-many market, a cheaper offer may

attract more buyers and raise revenue. Sellers in an excess supply submarket have this incentive

of deviation, because they produce less than 1 unit each. Then, excess supply submarkets

disappear. Excess demand submarkets also do not exist. In such a submarket, buyers purchase

less amount than they desire. Hence, some sellers may post slightly higher prices. Some buyers

may also deviate and choose the new submarkets to purchase more.

In an equilibrium with N > 1, the distribution satisfies λ(0) = λ(p∗) = λ(2p∗) = · · · =
λ(Np∗). Similarly, there is a unique balanced submarket p∗. An agent m = 0 becomes a seller

first and earns p∗. Then, she chooses a seller again and saves 2p∗. She selects the seller side

in a row until m = Np∗. After that, she becomes a buyer and spends Np∗. In other words,

the cutoff level of money holding in stage 1 is between (N − 1)p∗ and Np∗. This one-way

process is similar to Menzio et al. (2013). The submarket is balanced, because, on the seller

side, N/(N + 1) measure of sellers supplies goods. In the buyer side, 1/(N + 1) population of

buyers pay Np∗ amount of money. Hence, the total demand is also N/(N + 1).

ThisN > 1 distribution emerges because each buyer is able to purchase more than one unit of

good in one period. Consider discounted values from the current period to three periods ahead

without matching friction. In the pairwise matching market, a seller obtains−c+βu−β2c+β3u.

If she accumulates N = 2, then it would be −c−βc+β2u+β3u, which is strictly worse, owing to

β < 1. However, in the many-to-many matching market, she may accumulate N > 1, because

she is able to spend all the amount in one period. A discounted value −c− βc− β2c+ β33u is

possible. It may be better if u is sufficiently larger than c and that β is close enough to 1.

This uniqueness result can be interpreted in a general framework provided by Kamiya and

Shimizu (2006), which mainly considers N -point distribution with the single a price p∗. Sta-

tionarity holds by equalities of inflow and outflow at m = 0, p∗, 2p∗, . . . , Np∗. They are written

as a system of equations to determine the distribution. Kamiya and Shimizu (2006) show the

existence of a hidden identity in the system. It is derived by an assumption that, besides the

population flow, the amounts of money transferred among different points are balanced both

on and off paths. The framework of Kamiya and Shimizu (2006) does not explicitly depends on

search markets; however, this identity still relies on a kind of one-to-one matching assumption.

The many-to-many trade market does not share the identity.

Proposition 2. If an integer N satisfies the following condition:

[(1− βN+1)− (1− β)N ]u > (1− β)c ≥ [(1− βN+2)− (1− β)(N + 1)]u,

then there exists the unique equilibrium where

1. The distribution of money holdings is λ(m) = 1/(N + 1) if m = 0, p∗, 2p∗, . . . , Np∗ with

p∗ = 2M/N , otherwise λ(m) = 0.
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2. The value function V (m) is recursively defined as

V (0) =
βNNu−

(
1−βN

1−β

)
c

1− βN+1
,

V (m) = −c+ βV (m+ p∗) if m < m̄,

V (m) =
um

p∗
+ βV (0) if m ≥ m̄,

where

m̄ = p∗
[
βu− c

1− β
− V (0)

]
,

3. The strategy is x(m) = (S, p∗, ∅, ∅) if m < m̄ and x(m) = (B, ∅, p̃,m/p̃}) if m ≥ m̄ where

p̃ = argmaxp λ̃V4B(m|p).

The proof consists of several necessary conditions of the equilibrium, which are summarized

as lemmas. First, the equilibrium value function V (m) is strictly increasing (Lemma 8). An

agent accumulating an additional small amount of money has a chance to spend it and yield

more utility. It is because the capacity constraint does not bind. The equilibrium does not

contain any excess supply submarket (Lemma 9). A seller’s deviation to offer a lower price

benefits buyers as well as the seller, because lower supply/demand ratio is generated. Similarly,

any excess demand submarket disappears because a higher price brings benefits to a seller and

improves the quantity adjustment ratio for a buyer (Lemma 11). Therefore, only balanced

submarkets may exist in the equilibrium. The balanced submarket must be unique; otherwise,

each buyer chooses a lower price submarket (Lemma 10). By the linear utility function, each

buyer is incentivized to spend all their money holdings given the unique posted price p∗ (Lemma

12). This makes the value function continuous (Lemma 13). No jump on V (m) makes a unique

cutoff action in stage 1 such that becoming a buyer if m ≥ m̄ and a seller otherwise (Lemma

14). Finally, the condition that the supply and demand are balanced in the unique submarket

p∗ makes the unique distribution of money holdings.

Proof. Lemma 8 to Lemma 15 obtain necessary conditions of the equilibrium. According to

these lemmas, if the equilibrium exists, it is unique and holds the single balanced submarket

p∗. Lemma 16 assures the existence of this equilibrium.

Lemma 8. V (m) is strictly increasing in the equilibrium.

Proof. Suppose x = {xt, xt+1, · · · } is the optimal actions of agent m from the current period t,

which induces V (m). By Lemma 2, an agent becomes a buyer and uses money in finite periods

ahead, that is, there exists T ≥ t, p > 0, and q > 0, such that xT = {B, ∅, p, q}. Consider a

sequence of actions of agent holding m + σ where σ > 0. Take x̃ = {x̃t, x̃t+1, · · · } such that
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xτ = x̃τ for all τ ̸= T and xT = {B, ∅, p, q̃}, where q̃ =
[
(m+ σ)/p

]
·min{1, (QB

p /Q
S
p )}. Let Ṽ

be the associated discounted sum of utility. x̃ is a feasible action of agent m + σ. By q̃ > q,

Ṽ > V (m). By the optimality, V (m+ σ) ≥ Ṽ . Therefore, V (m+ σ) > V (m).

Lemma 9. There is no excess supply submarket in the equilibrium.

Proof. Suppose there is an excess supply submarket p. This lemma considers a seller’s incentive

to post p− σ where σ > 0 is sufficiently small. By Definition 4, QS
p−σ = ε < QS

p .

In submarket p, there is a buyerm who consumes q and savesm′ = m−pq. If submarket p−σ

is excess supply or balanced, while keeping m′, the buyer can consume (m′ −m)/(p− σ) > q.

Every buyer in submarket p deviates while submarket p − σ is excess supply or balanced. In

the equilibrium, submarket p− σ is excess demand under ε → 0.

Consider a seller in submarket p. Her revenue is pQS
p /Q

B
p < p. If she deviates and posts

p−σ, submarket p−σ is excess demand. Then, she earns p−σ, which is higher than pQS
p /Q

B
p

for sufficiently small σ. Since V (m) is strictly increasing, posting p is not optimal.

Lemma 10. The submarket is unique in the equilibrium.

Proof. By Lemma 9, only excess demand and/or balanced submarkets exist in the equilibrium.

Suppose there are two submarkets p < p′. Each seller provides 1 unit in both submarkets. The

revenue is higher in p′; hence, given strictly increasing V (m), every seller in submarket p moves

to p′. This does not satisfy the equilibrium.

Lemma 11. The unique submarket is balanced in the equilibrium.

Proof. By Lemma 9, there is no excess supply submarket. Suppose that the unique submarket

p∗ is excess demand. Suppose a seller posts p∗(1 + σ) where σ > 0 is sufficiently small12. If

submarket p∗(1 + σ) is also excess demand, the seller has a strict incentive of deviation. This

is because that she sells 1 unit of goods in both submarkets and V (m) is strictly increasing.

Hereafter, I show that submarket p∗(1+σ) is excess demand. Suppose x(m) = {xt, xt+1, · · · }
is the optimal actions of a buyer m from the current period t, which induces V (m). Suppose

the buyer chooses qt in period t. By Lemma 2, there is a period T > t when this agent becomes

a buyer and spends a positive amount of money again. Let xT = {B, ∅, p∗, qT}. This buyer’s

posts qt and qT satisfy the constraints: qt ≤ (QS
p∗/Q

B
p∗)(m/p∗) and qT ≤ (QS

p∗/Q
B
p∗)(mT/p∗),

where mT is her money holding at the beginning of period T .

On the contrary, assume that submarket p∗(1 + σ) is excess supply or balanced. Consider a

series of actions x̃ = {x̃t, x̃t+1, · · · }, where xτ = x̃τ for all τ ̸∈ {t, T}. Assume x̃t = {B, ∅, p∗(1+
σ), q(1 + δ)}, where

δ =

[
QS

p∗

QB
p∗

− 1

1 + σ

]
σ.

12I use p∗(1 + σ) instead of p∗ + σ for simplifying the equations.
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This implies δ > 0 and δ → 0 as σ → 0. Since
QS

p∗+σ

QB
p∗+σ

> 1, there exist σ > 0 which satisfies

the budget constraint, that is, p∗qt(1 + σ)(1 + δ) ≤ m. Then, the agent’s money holding at the

beginning of period T is mT − p∗qt(σ + δ + σδ). Let x̃T = {B, ∅, p∗, q̃T} where

q̃T = qT −
QS

p∗

QB
p∗

p∗qt(σ + δ + σδ)

p∗
,

which satisfies the budget constraint.

The discounted utility of periods t and T under x(m) is uqt + βT−tuqT . That for x̃ is

uqt(1 + σ) + βT−tuq̃T . Therefore, the agent has a strict incentive to move to p∗(1 + σ) if

uqtσ > βT−tu(qT − q̃T ) = βT−tuqt(Q
S
p∗/Q

B
p∗)[σ + δ + δσ]

By the definition of δ, the inequality is 1 > βT−t(1 + σ). This is satisfied for sufficiently small

σ > 0.

Lemma 12. Every buyer in the unique submarket exhausts cash, that is, p∗q = m.

Proof. Suppose, on the contrary, that buyer m decides mt+1 = m − p∗q > 0 in period t and

chooses a series of actions x(m) thereafter. By Lemma 2, there exists period T in which

agent m becomes a buyer and mT − mT+1 > 0. Consider x̃(m) where m̃t+1 = mt+1 + σ

and m̃T − m̃T+1 = mT −mT+1 − σ for sufficiently small σ > 0. Indeed it satisfies the budget

constraint. The period t and T actions of x(m) yields u(mT −mT+1)/p∗+βT−t(m̃T −m̃T+1)/p∗,

while x̃(m) leads to u(mT − mT+1 + σ)/p∗ + βT−t(m̃T − m̃T+1 − σ)/p∗. x̃(m) yields strictly

higher utility than x(m).

Lemma 13. The value function V (m) is continuous. For all m′ > m ≥ 0, V (m′) − V (m) ≤
u(m′ −m)/p∗.

Proof. Consider cases in which agent m becomes a buyer for the first time in n period ahead,

since period t for n = 0, 1, 2, · · · . By Lemma 2, there exists an upper bound N such that

n ≤ N . Agent m chooses mt+n+1 = 0 by Lemma 12. Define Ṽn(m) as

Ṽ0(m) =
um

p∗
+ βV (0)

and

Ṽn(m) = −c
n∑

i=1

βi−1 + βnu(m+ np∗) + βn+1V (0)

for n = 0, 1, 2, · · · , N . Then, V (m) = max{Ṽ0(m), Ṽ1(m), . . . , ṼN(m)}. Since Ṽn(m) for all n =

0, . . . , N and max function are continuous, V (m) is also continuous. For all n = 0, . . . , N and

m′ > m ≥ 0, Ṽn(m′)−Ṽn(m) ≤ (u/p∗)(m′−m). Therefore, V (m′)−V (m) ≤ (u/p∗)(m′−m).
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Lemma 14. There exists m̄ such that an agent becomes a buyer if m > m̄ and a seller otherwise.

Proof. Let VS(m) = −c + βV (m + p∗) and VB(m) = um/p∗ + βV (0). Then, V (m) =

max{VS(m), VB(m)}. By V (0) > 0, V (0) = VS(0) > VB(0). Let m̄ be the minimum money

holding of being a buyer, that is, VS(m) > VB(m) for all m < m̄. By the continuity of

V (m), VS(m̄) = VB(m̄). Take m > m̄. VB(m) − VB(m̄) = u(m − m̄)/p∗. By Lemma 13,

VS(m) − VS(m̄) = β[V (m + p∗) − V (m)] < u(m − m̄)/p∗. Therefore, VB(m) > VS(m) for all

m > m̄.

Lemma 15. Suppose the unique equilibrium posted price p∗ satisfies (N−1)p∗ < m̄ ≤ Np∗ with

a positive integer N . Then, the equilibrium money holding distribution is λ(m) = 1/(N + 1) if

m = 0, p∗, 2p∗, . . . , Np∗ and λ(m) = 0 otherwise.

Proof. Given Lemmas 11 and 14, the unique submarket has price p∗, and N ∈ N exists such

that (N − 1)p∗ < m̄ ≤ Np∗. Let If (M) and Of (M) denote the inflow to and outflow from

the set of money holdings M ⊂ R in terms of the measure of agents. The money holding

distribution λ is stationary if If (M) = Of (M) = λ(M) for all M. By Lemma 14 and Lemma

12, If (0) = Of ({m|m > m̄}). Each agent m ≤ m̄ become a seller and earns p∗. Hence,

If ({m|np∗ < m < (n + 1)p∗ for n = 0, 1, 2, . . . , N − 1}) = 0. Then, λ(0) = λ(p∗) = λ(2p∗) =

· · · = λ
(
(N−1)p∗

)
= λ

(
{m|m ≥ m̄}

)
. By the single price p∗ again, If ({m|m ≥ m̄}) = If (Np∗).

The stationary distribution satisfies λ(0) = λ(p∗) = · · · = λ(p∗N) = 1/(N + 1). The single

price satisfies p∗ = 2M/N , because the total money supply is M .

The last lemma shows the existence of the unique equilibrium.

Lemma 16. If a positive integer N satisfies [(1 − βN+1) − (1 − β)N ]u > (1 − β)c ≥ [(1 −
βN+2)− (1− β)(N + 1)], then a unique equilibrium with N-point distribution exists.

Proof. Suppose that the equilibrium has N masses as in Lemma 15. Let VN(m) be the dis-

counted utilities in the equilibrium with a positive integer N , V S
N (m) = −c+ βVN(m+ p∗) be

the value of selling goods, and V B
N (m) = um/p∗ + βVN(0) be the value when purchasing goods

and spending all money holding. On the equilibrium path, agent m = 0 sells goods N times,

being a buyer, and spends all money holding. Therefore,

VN(0) = −c
N−1∑

i=0

βi + βNNu+ βN+1VN(0) ⇔ VN(0) =
βNNu−

(
1−βN

1−β

)
c

1− βN+1
. (9)

The equilibrium exists if V S
N (p∗n) > V B

N (p∗n) for all n = 0, 1, . . . , N − 1 and V S
N (p∗N) ≤

V B
N (p∗N). The incentive condition for n ≤ N − 1 is

VN(np
∗) = V S

N (np∗) > V B
N (np∗). (10)
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By Lemma 13,

V S
N

(
np∗
)
− V S

N

(
(n− 1)p∗

)
= VN

(
np∗
)
− VN

(
(n− 1)p∗

)
≤ u = V B

N

(
np∗
)
− V B

N

(
(n− 1)p∗

)

for n = 1, . . . , N − 1. Therefore, it is sufficient to show V S
N

(
(N − 1)p∗

)
> V B

N

(
(N − 1)p∗

)
for

Equation (10). This is rewritten as

−c+ βV (Np∗) > (N − 1)u+ βV (0).

By Equation (9), the condition is rewritten by f1(N) as

f1(N) ≡ [(1− βN+1)− (1− β)N ]u > (1− β)c.

Similarly, the incentive condition for m = N is

V S
N

(
Np∗

)
≤ V B

N

(
Np∗

)
.

It is characterized by f2(N) as

f2(N) ≡ [β(1− βN+1)− (1− β)N ]u ≤ (1− β)c.

Then,

f2(N) = β(1−βN+1)−(1−β)N = 1−βN+2−1+β−(1−β)N = 1−βN+2−(1−β)(N+1) = f1(N+1)

The sequence of f1(N) and f2(N) satisfies

f1(1) > f2(1) = f1(2) > f2(2) = f1(3) > f2(3) = · · · .

Therefore, if f1(N) > (1 − β)c ≥ f2(N) is satisfied, a unique equilibrium with N -point mass

distribution exists.

The proof of Lemma 16 defines the cutoff amount m̄ as

V B(m̄) =
um̄

p∗
+ V (0) = −c+

βum̄

p∗
+ βV (0) = V S(m̄)

⇔ m̄ = p∗
[
βu− c

1− β
− V (0)

]

It also solves the value function V (m) recursively as in this proposition.

!

6 Walrasian market

In this section, I show a similar result of the indeterminacy in a Walrasian market. Consider

a unit measure of a continuum of agents who have the same preference as in the price-posting
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model. Similarly, there are consumption good and fixed amount of money M . There is one

competitive market which has two sides: the seller and the buyer. As the price taking case

in Rocheteau and Wright (2005), money is still essential. Each agent decides which side to

enter at the beginning of each period. I consider two cases about the centralized market: no

restriction and limited participation.

6.1 No Restriction

I derive an equilibrium in which the unit price p is stationary. Each agent solves

V (m) = max{VS(m), VB(m)},

VS(m) = max
q∈[0,1]

−c+ βV (m+ pq),

VB(m) = max
q∈[0,m/p]

uq

p
+ βV (m− pq),

where V (m) is the ex-ante discounted utility, VS(m) is the ex-post value of a seller, and VB(m)

is that of a buyer. Since the utility function is linear, no buyer has an incentive to save money;

hence, VB(m) = um/p + βV (0). The fixed costs of production allows the seller to produce

q = 1. Therefore,

V (m) = max

{
−c+ βV (m+ p),

um

p
+ βV (0)

}
.

The solution is

V (m) =

{
βu−c
1−β2 if m ≤ m̄,
um
p + β

(
βu−c
1−β2

)
if m > m̄,

where m̄ = p(βu−c)
u(1+β) . The optimal behavior is that of being a seller if m ≤ m̄ and of being a

buyer otherwise. This satisfies m̄ < p.

Let the money holding distribution be 0 < λ(p) < 1 and λ(0) = 1− λ(p). The transition of

money is similar: an agent m = 0 becomes a seller and earns p, and then, becomes a buyer and

exhausts her cash.

The aggregate good demand is λ(p) · p/p = λ(p), while the supply is λ(0). The equilibrium

price p∗ solves λ(p∗) = λ(0) = 1/2. This is the unique distribution.

6.2 Limited participation

Next, the Walrasian market incorporates a type of pairwise matching assumption: the measures

of participating buyers and sellers must be equal. Let λ(B) and λ(S) be the measures of agents

who are willing to enter the buyer side and seller side, respectively. The market randomly

chooses min{h(S), h(B)} measure of buyers and sellers to enter and make the others autarky.
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Consider a case in which λ(B) ≥ λ(S) and define λ̃ = λ(S)/λ(B). Given a stationary price p,

the values of a potential seller and buyer are

VS(m) = max
q∈[0,1]

−c+ βV (m+ pq),

VB(m) = λ̃ · max
q∈[0,m/p]

[
uq

p
+ βV (m− pq)

]
+ (1− λ̃)βV (m).

Given the similar actions of each buyer and seller, the ex-ante value function is

V (m) = max

{
−c+ βV (m+ p), λ̃

[
um

p
+ βV (0)

]
+ (1− λ̃)βV (m)

}
.

Then, the solution is

V (m) =

⎧
⎨

⎩

βλ̃u−[1−β(1−λ̃)]c

1−β(1−λ̃+βλ̃)
if m ≤ m̄,

λ̃um
p[1−β(1−λ̃)]

+ β
(

βλ̃u−[1−β(1−λ̃)]c

1−β(1−λ̃+βλ̃)

)
if m > m̄,

where m̄ = p(βu−c)
u(1+β) .

Assume a similar distribution of money holdings with two masses at 0 and p. The optimal

choice is the same as in the no-restriction case. However, the measure of participating buyers

in this market is λ(0) = min{λ(0),λ(p)} instead of λ(p) in the no-restriction case. Then,

the aggregate demand is λ(0) · p/p = λ(0). Indeed the aggregate supply is λ(0); hence, the

equilibrium holds with a continuum of stationary prices p∗.

It is worthwhile to compare the result with Kamiya and Shimizu (2013), who show the inde-

terminacy in an auction market and uniqueness in a Walrasian market in a similar environment.

My result indicates that the uniqueness might not depend on Walrasian competitive price deter-

mination. From the viewpoint of pairwise matching, their indeterminacy in the auction market

seems to depend on the indivisible good assumption, that is, the measure of successful sellers

is always the same as that of the buyers. They also conjecture that a uniqueness result might

hold in an all-pay auction market, which is one example of many-to-many matching.

7 Conclusion

This study analyzes the indeterminacy of stationary distributions of money holdings in a decen-

tralized economy. A price-posting model with two alternative market structures is considered.

The equilibrium is indeterminate with the pairwise trade market but unique in the many-to-

many matching. A Walrasian market model also gives arise to a similar result under a similar

participation restriction.

The market structures in this study are extremes in opposite directions. On the one hand, the

pairwise trade assumption completely excludes agents who fail to make matches in the market.
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On the other hand, the many-to-many matching market allows all agents to be involved. An

interesting extension would be a mixed case in which some agents match bilaterally, some have

multilateral negotiations, and some are excluded. I conjecture that the unique equilibrium may

still arise because only the exact equality of the measures of buyer and seller make indeterminate

distributions. The mixed case might be useful as a method of equilibrium selection in an

indeterminate model, such as introducing the small possibility of many-to-many matching in a

search market.
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Appendix

Proof of Lemma 5

I check the incentives of three cases: m < m̄, m̄ ≤ m ≤ p∗, and m > p∗. Since the last case

is independent from m̄, I consider this one first and show that agent m becomes a buyer. This

is equivalent to Equation (5) and (7) satisfying

−c+ βV (m+ p∗) ≤ λ̃ [u+ βV (m− p∗)] + (1− λ̃)βV (m),

⇔ λ̃
[
V (m+ p∗)− V (m− p∗)

]
+ (1− λ̃)

[
V (m+ p∗)− V (m)

]
≤ λ̃u+ c

β
.

For later use, by Equation 4,

V (p∗)− V (0) =
hu− c

1 + βh
. (A.1)

The equations of V (m) implies V (m+p∗)−V (m) ≤ V (p∗)−V (0) and V (m+p∗)−V (m− p∗) ≤
V (2p∗)− V (0) ≤ 2[V (p∗)− V (0)] for all m ≥ 0. Hence, it is sufficient to show

(1 + λ̃)[V (p∗)− V (0)] ≤ λ̃u+ c

β
.

By Equation (A.1),

⇔ (1 + λ̃)(λ̃u+ c)

1 + βλ̃
≤ λ̃u+ c

β
.

Since β(1 + λ̃) ≤ 1 + βλ̃, the condition is satisfied.

The next case is m < m̄, in which each agent becomes a seller. First, suppose m < m̄. If

agent m chooses to be a seller, the discounted value, by Equation (4), is

βV (m+ p∗) = λ̃ [u+ βV (m)] + β(1− λ̃)V (m+ p∗).

By Equation (5),

βV (p∗) = λ̃ [u+ βV (0)] + β(1− λ̃)V (p∗).

Since V (m) = V (0), V (m+ p∗) = V (p∗). Then,

−c+ βV (p∗) = −c+ β

(
λ̃u+ c

1 + βλ̃
+ V (0)

)

=
β(λ̃u+ c)− c(1 + βλ̃)

1 + βλ̃
+ βV (0) =

βλ̃u− c(1− β + βλ̃)

1 + βλ̃
+ βV (0).
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If the agent selects the buyer side, the discounted value is

λ̃

(
mu

p∗
+ βV (0)

)
+ β(1− λ̃)V (m) =

λ̃mu

p∗
+ βV (0).

Therefore, I need to show

βλ̃u− c(1− β + βλ̃)

1 + βλ̃
>

λ̃mu

p∗
.

This can be rewritten as

p∗[βλ̃u− c(1− β + βλ̃)]

λ̃u(1 + βλ̃)
> m,

whose left-hand side is m̄.

Finally, I consider m̄ ≤ m < p∗. Equation (4) is rewritten as

[1− β(1− λ̃)]V (m) = λ̃

[
m

p∗
u+ βV (0)

]
.

This is satisfied if m = m̄. Then,

⇒ [1− β(1− λ̃)][V (m)− V (0)] = [1− β(1− λ̃)][V (m)− V (m̄)] =
λ̃u

p∗
(
m− m̄

)
.

Similarly, Equation (5) implies

[1− β(1− λ̃)]V (m+ p∗) = λ̃ [u+ βV (m)] ,

which also holds if m = 0. Then,

[1− β(1− λ̃)][V (m+ p∗)− V (p∗)] =
βλ̃2u(m− m̄)

[1− β(1− λ̃)]p∗
,

⇔ V (m+ p∗) = V (p∗) +
βλ̃2u(m− m̄)

[1− β(1− λ̃)]2p∗
.

If agent m̄ ≤ m < p∗ chooses to be a seller, the expected value is

−c+ βV (m+ p∗) = −c+ βV (p∗) +
β2λ̃2u(m− m̄)

[1− β(1− λ̃)]2p∗

= −c+ β

[
λ̃u+ c

1 + βλ̃
+ V (0)

]
+

β2λ̃2u(m− m̄)

p∗[1− β(1− λ̃)]2

=
βλ̃u− (1− β + βλ̃)c

1 + βλ̃
+

β2λ̃2u(m− m̄)

p∗[1− β(1− λ̃)]2
+ βV (0)
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If she decides to be a buyer, it is

λ̃

(
mu

p∗
+ βV (0)

)
+ β(1− λ̃)V (m)

= λ̃

(
mu

p∗
+ βV (0)

)
+ β(1− λ̃)

[
λ̃u(m− m̄)

p∗[1− β(1− λ̃)]
+ V (0)

]

=
λ̃mu

p∗
+ β(1− λ̃)

λ̃u(m− m̄)

p∗[1− β(1− λ̃)]
+ βV (0).

I need to show

−c+ βV (m+ p∗) ≤ λ̃

(
mu

p∗
+ βV (0)

)
+ β(1− λ̃)V (m),

which is rewritten as

βλ̃u− (1− β + βλ̃)c

1 + βλ̃
+

β2λ̃2u(m− m̄)

p∗[1− β(1− λ̃)]2
≤ λ̃mu

p∗
+ β(1− λ̃)

λ̃u(m− m̄)

p∗[1− β(1− λ̃)]

⇔ βλ̃u− (1− β + βλ̃)c

1 + βλ̃
+

βλ̃u(m− m̄)

p∗[1− β(1− λ̃)]

[
βλ̃

1− β(1− λ̃)
− (1− λ̃)

]
≤ λ̃mu

p∗

⇔ p∗[βλ̃u− (1− β + βλ̃)c]

λ̃u(1 + βλ̃)
+

β(m− m̄)

1− β(1− λ̃)

[
(1− λ̃)(1− β)− λ̃2β

1− β(1− λ̃)

]
≤ m

⇔ m̄+
β(m− m̄)

1− β(1− λ̃)

[
(1− λ̃)(1− β)− λ̃2β

1− β(1− λ̃)

]
≤ m

⇔ m̄

[
1− β(1− λ̃)(1− β)− λ̃2β2

[1− β(1− λ̃)]2

]
≤ m

[
1− β(1− λ̃)(1− β)− λ̃2β2

[1− β(1− λ̃)]2

]

⇔ m̄ ≤ m.

!

Proof of Lemma 7

This proof is divided into several cases. First, suppose an agent holds m < m̄. Given the

strategy x, she becomes a seller. Then, the Bellman equation satisfies

V (m) = −c+ βV (m+ p∗) = −c+ β
{
λ̃ [u+ βV (m)] + (1− λ̃)V (m+ p∗)

}

Given λ̃ = [1−λ(p∗)]/λ(p∗) and λ(p∗) = M/p∗, this equation is independent fromm. Therefore,

V (0) = V (m) for m < m̄.
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Then, the expected return is

−c+ βV (m+ p∗) = −c+ βV (p∗)

= −c+
βλ̃u

1− β(1− λ̃)
+

(
β2λ̃

1− β(1− λ̃)

)
V (0)

= −c+
βλ̃u

1− β(1− λ̃)
+

(
β2λ̃

1− β(1− λ̃)

)
βλ̃u− (1− β + βλ̃)c

(1− β)(1 + βλ̃)

=

(
(1− β)(1 + βλ̃) + β2λ̃

[1− β(1− λ̃)](1− β)(1 + βλ̃)

)
βλ̃u−

(
β2λ̃

(1− β)(1 + βλ̃)
+ 1

)
c

=
βλ̃u− (1− β + βλ̃)c

(1− β)(1 + βλ̃)
, (A.2)

which yields (3).

Second, if p∗ > m ≥ m̄, the agent becomes a buyer. Given x, the agent trades with

probability λ̃; then the discounted utility is

λ̃

(
m

p∗
u+ βV (0)

)
+ β(1− λ̃)V (m), (A.3)

which is (4).

Finally, suppose m ≥ p∗. The agent becomes a buyer and the expected utility is

λ̃[u+ βV (m− p∗)] + β(1− λ̃)V (m). (A.4)

It is Equation (5).

!
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