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Abstract

In the Lucas Imperfect Information model, output responds to unanticipated monetary

shocks. We incorporate more general information structures into the Lucas model and

demonstrate that output also responds to (dispersedly) anticipated monetary shocks if the

information is imperfect common knowledge. Thus, the real effects of money consist of the

unanticipated part and the anticipated part, and we decompose the latter into two effects,

an imperfect common knowledge effect and a private information effect. We then consider

an information structure composed of public and private signals. The real effects disappear

when either signal reveals monetary shocks as common knowledge. However, when the

precision of private information is fixed, the real effects are small not only when a public

signal is very precise but also when it is very imprecise. This implies that a more precise

public signal can amplify the real effects and make the economy more volatile.
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1 Introduction

In the Lucas Imperfect Information model (Lucas, 1972, 1973), which formalizes the idea of

Phelps (1970), markets are decentralized and agents in eachmarket have only limited information

about prices in other markets. As a consequence, output responds to unanticipated monetary

shocks; that is, imperfect information about prices generates real effects of money. However, if

monetary shocks are anticipated, no real effects arise. This implies that monetary shocks cannot

have lasting effects, which is considered to be a serious shortcoming of the Lucas model.

This shortcoming is attributed to the assumption that all agents share information about the

economy except the prices in their own markets (Townsend, 1983; Phelps, 1983); that is, the

information is common knowledge. Based on this observation, Woodford (2003) introduces a

model departing from the Lucas model in three respects: (i) agents have idiosyncratic private

information, (ii) they adopt a monopolistically-competitive pricing framework, and (iii) infor-

mation processing is dynamic. Then, he demonstrates the persisting real effects numerically.

In his model, the problem to find a solution is complicated, but the solution can be obtained

numerically.

In this paper, we introduce a model departing from the Lucas model in one aspect: agents

are allowed to have any combination of information as imperfect common knowledge. More

specifically, we study the Lucas model with arbitrary Gaussian information structures. Thus,

the underlying model is simpler than that of Woodford (2003), but the information structure

is more general. Our approach has two advantages. First, we follow the standard formulation

of the Lucas model, also appearing in textbooks such as Romer (2019), and thus the role of

information in our model is more plainly understood when it is compared to that in the original

model. Next, we can provide a closed-form solution for each Gaussian information structure,

which enables us to study the role of information analytically. On the other hand, the Lucas

model has no dynamics, which is the limitation of our approach. This paper focuses on the

impact of imperfect common knowledge on the real effects in one period rather than that on the

lasting effects over multiple periods.

First, we demonstrate that the real effects consist of the unanticipated shock effect and the

(dispersedly) anticipated shock effect. The expected value of the unanticipated shock effect

equals zero, but that of the anticipated shock effect does not. Thus, the anticipated shock effect

is indeed anticipated, but the expected value differs across different markets. We also show

that the anticipated effect is composed of a private information effect, which depends upon the
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prediction in each market, and an imperfect common knowledge effect, which depends upon

the aggregate prediction.

Next, we focus on the information structure in which agents receive a combination of a

(common) public signal and a (idiosyncratic) private signal. In this case, the private information

effect is a linear combination of a private signal and an unobserved monetary shock, and the

imperfect common knowledge effect is a linear combination of a public signal and an unobserved

monetary shock. The real effects are largest when either signal does not convey any information

about monetary shocks, and they disappear when either signal reveals monetary shocks as

common knowledge. However, when the precision of private information is fixed, the real

effects are small not only when a public signal contains very precise information but also when

it contains very imprecise information. Thus, a more precise public signal can amplify the real

effects and make the economy more volatile. The intuition behind this result can be understood

in terms of the law of large numbers. When a public signal is very imprecise, agents mainly use

idiosyncratic private signals in predicting monetary shocks, and thus the aggregate prediction

is very precise by the law of large numbers, thereby reducing the aggregate uncertainty and the

real effects. In contrast, when a public signal is not so imprecise, agents use a public signal

as well, and thus the aggregate prediction correlated with a public signal is less precise by the

failure of the law of large numbers, amplifying the aggregate uncertainty and the real effects.

Finally, we show that the predicted aggregate price level in each market in the Lucas model

is mathematically equivalent to a Bayesian Nash equilibrium in a Bayesian game studied by

Radner (1962). This observation is useful because the existence and uniqueness of the market

equilibrium is implied by those in the corresponding Bayesian game. When the number of

separated markets is infinite, the corresponding Bayesian game is given by a beauty contest

game studied by Morris and Shin (2002). Morris and Shin (2002) also point out a similar

connection: they consider a modified version of the Lucas model which requires each separated

market to clear and show that the price in each market corresponds to an equilibrium action in

a beauty contest game. Thus, our discussion complements the discussion of Morris and Shin

(2002) by showing that, in the case of the standard Lucas model which requires the aggregate

market to clear, the predicted aggregate price level in each market corresponds to an equilibrium

action in a beauty contest game. Note the difference between the predicted aggregate price level

in each market and the price in each market: this difference determines the level of supply in

each market in the Lucas model.
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The impact of public information discussed in this paper is also independently found by

Hellwig (2002) and Amato and Shin (2003) for the model of Woodford (2003), as noted in

Hellwig (2008). It is also related to the main finding of Morris and Shin (2002). Morris and

Shin (2002) examine the mean squared error of the equilibrium action of each player from the

state as a measure of a welfare loss in a beauty contest game and show that it can increase with

the precision of public information. In contrast, we examine the variance of output in the Lucas

model as a measure of the real effects, which is shown to be equivalent to the mean squared

error of the aggregate equilibrium action from the state in a beauty contest game, and show that

it can increase with the precision of public information.

The organization of this paper is as follows. We introduce the model in Section 2. Assuming

symmetric Gaussian information structures, we obtain the market equilibrium in a closed form

in Section 3. Then, we study the impact of public information on the real effects in Section 4.

Section 5 is devoted to the connection between the Lucas model and Bayesian games studied

by Radner (1962) and Morris and Shin (2002).

2 The Lucas model with imperfect common knowledge

We consider the Lucas Imperfect Information model (Lucas, 1972, 1973), which also appears

in textbooks such as Blanchard and Fischer (1989, p. 356) and Romer (2019, p. 293). We follow

the standard formulation, but we drop the assumption that suppliers share information about the

economy.

The economy consists of n separate competitive markets, each of which is called an island.

Let yi and pi denote the logarithms of output and the nominal price of the output, respectively,

in island i ∈ {1, . . . , n}. The supply function in island i is

yi = b(pi − E[p|Ii, pi]), (1)

where b > 0 is a constant, p = n−1 ∑n
i=1 pi is the aggregate price level in logarithm, Ii is the

information about the economy available in island i which is independent of the relative price

pi − p, and E[ · |Ii, pi] is the expectation operator conditional on Ii and pi. The equation (1)

implies that suppliers increase output when they perceive an increase in the expected relative

price pi −E[p|Ii, pi]. In the standard formulation, Ii is the same for all i, but we allow Ii to differ

across i.
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Given Ii, the conditional joint distribution of p and pi is normal with the same expected

value, i.e, E[pi − p|Ii] = 0. Then, by the property of normal distributions, there exists θ ∈ (0, 1)

such that

E[p|Ii, pi] = (1 − θ)E[p|Ii] + θpi . (2)

Thus, (1) is rewritten as

yi = b(1 − θ)(pi − E[p|Ii]) = β(pi − E[p|Ii]) = β(pi − Ei p), (3)

where β = b(1 − θ) > 0 and Ei = E[ · |Ii]. We assume that θ does not depend upon i and Ii.1

We can obtain the following aggregate supply function by taking the aggregation of (3) over

i ∈ {1, . . . , n}:

y = β(p − Ē p), (4)

where y = n−1 ∑
i yi and Ē = n−1 ∑

i Ei. If Ii is the same for all i, then Ei = E ≡ E[·|I] with

Ii = I, and thus (4) is reduced to

y = β(p − E p), (5)

which is the famous Lucas supply function. Output in (5) is increasing in the price surprise

p − E p. In contrast, output in (4) is increasing in the aggregation of the price surprise in each

island p − Ei p.

The aggregate demand function is

y = m − p, (6)

where m is nominal money in logarithm. This is one of the simplest possible ways to model

aggregate demand, which is derived form the quantity equation in logarithm m + v = p + y

together with the assumption that the velocity in logarithm v equals zero.

Then, the market clearing condition is

m − p = β(p − Ē p) (7)

by (4) and (6), which is rewritten as

p =
1

1 + β
m +

β

1 + β
Ē p = (1 − r)m + rĒ p, (8)

1For example, assume that zi = p − pi is normally distributed with mean zero and variance σ2
z = cσ2

p , where

σ2
p is the endogenously determined variance of p and c > 0 is constant. That is, prices in separated markets are

more volatile and dispersed when the aggregate price level is more volatile. Then, θ = 1/(1 + c).
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where r = β/(1 + β). Operating Ē on both sides in (8) gives

Ē p = (1 − r)Ēm + rĒ (2)p,

where Ē (2) = Ē Ē . Plugging this into (8) gives

p = (1 − r)m + (1 − r)rĒm + r2Ē (2)p.

By repeating this, we obtain the following representation of p:

p = (1 − r)

(
m +

∞∑
k=1

r k Ē (k)m

)
, (9)

where Ē (k+1) = Ē Ē (k) for k ≥ 1. Moreover, by plugging (9) into (6), we obtain the following

representation of y:

y = r

(
m − (1 − r)

∞∑
k=0

r k Ē (k+1)m

)
. (10)

We will establish the existence (i.e. the convergence) of (9) and (10) in Section 5.

When Ii is the same for all i and thus Ei = E , the law of iterated expectations holds, i.e.,

Ē (k)m = Em for all k ≥ 1, and thus (10) is reduced to

y = r (m − Em) .

This equation shows the key implication of the standardLucasmodel: an unanticipatedmonetary

shock has real effects on output, whereas an anticipated monetary shock has no such effects.

In contrast, when Ii differs across i, the law of iterated expectations does not hold, i.e.,

Ē (k)m , Ē (k
′)m for k , k′, as will be calculated in a closed form in the next section. This

implies that not only an unanticipated monetary shock but also an anticipated monetary shock

has real effects. To demonstrate it, we decompose (10) into the following three terms for each i:

y = r (m − Eim) + r
(
Eim − Ēm

)
+ r

(
Ēm − (1 − r)

∞∑
k=0

r k Ē (k+1)m

)
. (11)

We call the first term an unanticipated shock effect because Ei(m − Eim) = 0. We call the

second term a private information effect because it is the difference between the expectation

Eim in island i and the aggregate expectation Ēm. We call the last term an imperfect common

knowledge effect because it is attributed to imperfect common knowledge of information and

the resulting failure of the law of iterated expectations. It should be noted that the real effects

induced by the second and third terms are in fact anticipated in the sense that the expected

values of these terms are not equal to zero.
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3 Gaussian information structures

In this section, we calculate the real effects of money on output in a closed form. To this

end, we assume that information available in island i is a random vector xi ∈ R
L and that

(m, x1, . . . , xn) is normally distributed with mean zero, i.e., E[m] = 0 and E[xi] = 0 for all i. We

also assume that the covariance structure is symmetric with respect to the exchange of islands:

for all i, i′, j, j′ ∈ {1, . . . , n} with i , i′ and j , j′,

var(xi) = var(xi′), cov(m, xi) = cov(m, xi′), cov(xi, x j) = cov(xi′, x j ′).

Then, for a 1× L matrix M = cov(m, xi)var(xi)
−1 and an L × L matrix A = cov(x j, xi)var(xi)

−1,

it holds that Eim = Mxi and Eix j = Axi for all i , j.

Using M and A, we calculate (9) and (10). Let x̄ = n−1 ∑
i xi and An = (n − 1)n−1 A + n−1I,

where I is a unit matrix. Then,

Ēm = n−1
∑

i

Eim = n−1
∑

i

Mxi = M x̄,

Ē x̄ = n−1
∑

i

Eix̄ = n−1
∑

i

(
(n − 1)n−1 Axi + n−1xi

)
= Anx̄.

Thus,

Ē (2)m = Ē M x̄ = n−1
∑

i

Ei M x̄ = Mn−1
∑

i

Eix̄ = M Anx̄,

...

Ē (k)m = M Ak−1
n x̄ (12)

for all k ≥ 2. By plugging (12) into (9) and (10), we obtain

p = (1 − r)(m + r M(I − r An)
−1x̄), (13)

y = r
(
m − (1 − r)M(I − r An)

−1x̄
)

(14)

= r (m − Mxi) + r (Mxi − M x̄) + r
(
M − (1 − r)M(I − r An)

−1
)

x̄, (15)

where r (m − Mxi) is the unanticipated shock effect, r (Mxi − M x̄) is the private information

effect, and r
(
M − (1 − r)M(I − r An)

−1) x̄ is the imperfect common knowledge effect. The last

two effects are anticipated because the expected value of the private information effect in island

i is

Eir (Mxi − M x̄) = r M (I − An) xi, (16)
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and that of the imperfect common knowledge effect is

Eir
(
M − (1 − r)M(I − r An)

−1
)

x̄ = r
(
M − (1 − r)M(I − r An)

−1
)

Anxi, (17)

which are nonzero as long as the coefficient matrices in (16) and (17) are not zero matrices.

4 Public and private signals

In this section, we focus on the Gaussian information structure with xi consisting of public and

private signals and study the impact of each signal on the real effects of money. In so doing,

we consider the limiting case as the number of islands goes to infinity, which substantially

simplifies the calculation, but we can also obtain a similar result in the finite case.

The signal in island i is

xi =


vi

w

 =

m + εi

m + ε0

 ,
where vi is a private signal and w is a public signal. Random variables m, εi, and ε0 are

independently normally distributed with mean zero and variance τ−1
m , τ−1

v , and τ−1
w , respectively.

The reciprocal of the variance of a private signal τv is referred to as the precision of private

information, and that of a public signal τw is referred to as the precision of public information.

Note that

M = cov(m, xi)var(xi)
−1 =

[
τv

τm + τv + τw

τw
τm + τv + τw

]
,

A = cov(x j, xi)var(xi)
−1 = lim

n→∞
An =


τv

τm + τv + τw

τw
τm + τv + τw

0 1

 ,
x̄ = lim

n→∞
n−1

∑
i

xi =


m

w

 .
Thus, (13), (14), and (15) are rewritten as

p =
(1 − r)(τm + τv + τw)m + rτww

τm + (1 − r)τv + τw
,

y =
r((τm + τw)m − τww)
τm + (1 − r)τv + τw

= r(m − Eim) +
rτv(vi − m)
τm + τv + τw

+
r2τv((τm + τw)m − τww)

(τm + τv + τw)(τm + (1 − r)τv + τw)
.

The private information effect in the second term is a linear combination of vi and m, and the

imperfect common knowledge effect in the third term is a linear combination of w and m. Note
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that, when a private signal contains no information about m (i.e., τv = 0), the second and third

terms vanish, in which case the model is reduced to the standard Lucas model.

As a measure of the real effects, we adopt the variance of y and represent it as a function of

τ = (τv, τw):

V(τ) ≡ E[y2]

= E[((τm + τw)m − τww)2] · r2/(τm + (1 − r)τv + τw)2

= E[(τmm − τwε0)
2] · r2/(τm + (1 − r)τv + τw)2

= r2(τm + τw)/(τm + (1 − r)τv + τw)2. (18)

Note that money has no real effects if V(τ) = 0 because y is a constant for any m in this case. It

is straightforward to show that

lim
τv→∞

V(τ) = lim
τw→∞

V(τ) = 0 ≤ V(τ) ≤ r2/τm = V(0, 0).

Thus, money has the largest real effects if there is no information about m (i.e., τv = τw = 0).

In contrast, money has no real effects if either signal reveals the true value of m (i.e., τv = ∞ or

τw = ∞). However, when the precision of private information is fixed, money has very small

real effects not only when a public signal is very precise but also when it is very imprecise,

as the next proposition shows. That is, V(τ) is not a monotone function of τw, whereas it is a

decreasing function of τv.

Proposition 1. The variance of y is decreasing in τv; that is,

∂V(τ)/∂τv < 0.

The variance of y is increasing in τw if τw < (1 − r)τε − τm and decreasing in τw if τw >

(1 − r)τε − τm; that is,

∂V(τ)/∂τv ≷ 0 ⇔ τw ≶ (1 − r)τε − τm,

which implies that

max
τw

V(τv, τw) = V(τv,min{0, (1 − r)τv − τm}).

Proof. A direct calculation yields

∂V(τ)/∂τv = −2(1 − r)r2(τm + τw)/(τm + (1 − r)τv + τw)3,

∂V(τ)/∂τw = −r2(τm + τw − (1 − r)τv)/(τm + (1 − r)τv + τw)3,

which implies the proposition. �
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Fix τv > 0. If τv < τm/(1 − r) (i.e., the precision of private information is sufficiently low),

V(τ) is decreasing in τw, and thus V(τ) is maximized when τw = 0 (i.e., a public signal contains

no information about m). However, if τv > τm/(1 − r) (i.e., the precision of private information

is sufficiently high), V(τ) is increasing in τw for τw < (1−r)τv − τm, and thusV(τ) is maximized

when τw = (1 − r)τv − τm (i.e., a public signal contains noisy information about m).

To explain the intuition behind the above result, note that

V(τ) = β2E[(Ē p − p)2] (19)

by (4). Thus, V(τ) equals the mean squared error of the aggregate expectation Ē p from the

true value of p (times a constant β2). If the precision of public information is very low, the

correlation between Ei p and E j p is also very low, so Ē p is close to p by the law of large numbers,

which results in small real effects. However, as the precision of public information increases,

the correlation between Ei p and E j p also increases, so Ē p is not necessarily close to p by the

failure of the law of large numbers, which results in larger real effects.

We can formally discuss the above intuition in the limiting case as τm → 0; that is, m has

an improper prior. In this case, the expected value of m in island i is

Eim =
τv

τv + τw
vi +

τw
τv + τw

w.

Now assume that τw = 0; that is, a public signal contains no information. Then, Eim = vi and

Ēm = m by the law of large numbers. This implies that p = m by (9), y = 0 by (10), and thus

V(τ) = 0, which implies the following proposition.

Proposition 2. Assume that τm = 0; that is, m has an improper prior. Then, V(τ) = 0 if and

only if τw = ∞ or τw = 0.

That is, money has no real effects not only when a public signal reveals m but also when it

conveys no information about m. In other words, the real effects arise if and only if a public

signal conveys noisy information about m. This is because, in the absence of a public signal,

there is no uncertainty in the aggregate expectation Ēm = m, thus eliminating the volatility of

the economy. A similar argument applies as long as τm is sufficiently small compared to τv.

This is why a more precise public signal can amplify the real effects and make the economy

more volatile.

Finally, we evaluate the anticipated real effects. By direct calculation, the expected value of
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y in island i is

Eiy =
rτv((τm + τw)vi − τww)

(τm + τv + τw)(τm + (1 − r)τv + τw)
,

and its variance is

VE (τ) ≡ E[(Eiy)
2] =

r2τv(τm + τw)

(τm + τv + τw)(τm + (1 − r)τv + τw)2
.

Because

VE (0, τw) = lim
τv→∞

VE (τv, τw) = lim
τw→∞

VE (τv, τw) = 0,

money has no anticipated real effects if and only if there is no private signal, as in the standard

Lucas model, or if either signal reveals m, in which case money does not have the unanticipated

real effects as well. In other words, money has the anticipated real effects if and only if a private

signal conveys noisy information about m and a public signal does not perfectly reveal m. We

can obtain the value of τ which maximizes VE (τ), but it is a solution to a system of quadratic

equations, so we do not calculate it here.

5 The Lucas model and Radner’s Bayesian game

In this section, we demonstrate that themarket equilibrium in the Lucasmodel is mathematically

equivalent to a Bayesian Nash equilibrium in a Bayesian game studied by Radner (1962). This

observation is useful because the existence and uniqueness of the market equilibrium is implied

by those in the corresponding Bayesian game established by Radner (1962). When once the

market equilibrium is interpreted as a Bayesian Nash equilibrium, Proposition 1 is closely

related to the findings of Morris and Shin (2002) and Ui and Yoshizawa (2015).

5.1 The market equilibrium as a Bayesian Nash equilibrium

Let ai = Ei p be the expected aggregate price level in island i. By (8), ai is a solution to

ai = (1 − r)Eim + rn−1
n∑

j=1
Eia j,

which is rewritten as

ai = α1
∑
j,i

Eia j + α2Eim, (20)
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where α1 = rn−1/(1 − rn−1) and α2 = (1 − r)/(1 − rn−1). This equation can be interpreted as

the first order condition for the problem to maximize

Ei

[
−a2

i + 2α1
∑
j,i

aia j + 2α2mai

]
with respect to ai. In other words, (ai)i∈{1,...,n} is a Bayesian Nash equilibrium of a Bayesian

game with a quadratic payoff function

−a2
i + 2α1

∑
j,i

aia j + 2α2mai, (21)

where ai ∈ R is player i’s action and m ∈ R is a payoff state. As pointed out by Ui (2009), this

game is a Bayesian potential game (Monderer and Shapley, 1996; van Heumen et al., 1996)

which has the same best correspondence as that of a Bayesian game with an identical payoff

function

−
∑

i

a2
i + 2α1

∑
i, j:i< j

aia j + 2α2m
∑

i

ai . (22)

Radner (1962) studies a Bayesian game with an identical payoff function, which is referred as a

team, and shows that it has a unique Bayesian Nash equilibrium if the identical payoff function

is strictly concave, which is true no matter what the information structure is. Moreover, Radner

(1962) obtains the unique Bayesian Nash equilibrium in a closed form in the case of Gaussian

information structures.2

It is straightforward to show that (22) is strictly concave if and only if −1 < α1 < 1/(n − 1).

Note that α1 = rn−1/(1 − rn−1) < 1/(n − 1). Thus, a Bayesian Nash equilibrium (Ei p)i∈{1,...,n}

exists, which also guarantees the convergence of (9) and (10). In the case of Gaussian informa-

tion structures, we can also obtain Ei p in a closed form using the results of Radner (1962) to

calculate y = m − p = r(m − Ē p), which coincides with (14).

The above discussion is summarized in the following proposition.

Proposition 3. The expected aggregate price in island i coincides with the equilibrium action of

player i in a Bayesian game given by (21) or (22). Moreover, under any information structure,

a Bayesian Nash equilibrium exists, and it is unique.
2Ui (2009, 2016) extends these results of Radner (1962) to more general Bayesian games. Ui (2016) also

provides an elementary proof for the uniqueness.
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5.2 Morris and Shin (2002)

In the limit as n→∞,3 (20) is reduced to

ai = rEi ā + (1 − r)Eim, (23)

where ā = limn→∞ n−1 ∑
i ai, because

lim
n→∞

α1
∑
j,i

Eia j = lim
n→∞

rn−1/(1 − rn−1)

n∑
j=1

Eia j = rEi ā,

lim
n→∞

α2Eim = (1 − r)Eim.

Note that (23) can be interpreted as the first order condition of a Bayesian Nash equilibrium in

a Bayesian game with a payoff function

−a2
i + 2rai ā + 2(1 − r)Eim + f (ā,m),

where f (ā,m) is a function of (ā,m). A Bayesian gamewith the above payoff function is referred

to as a beauty contest game because player i’s best response given by (23) is the expected value

of the weighted average of the opponents’ aggregate action ā and the payoff state m.

Morris and Shin (2002) consider a beauty contest game with the same Gaussian information

structure as that discussed in Section 4 assuming that τm = 0 (i.e., an improper prior). They

also point out the equivalence of a Bayesian Nash equilibrium in a beauty contest game and the

market equilibrium in the Lucas model, but their discussion is based upon a modified version

of the Lucas model. Instead of the aggregate demand (6), Morris and Shin (2002) assume that

island i has its own demand function yi = Eim− pi and require that demand should equal supply

in each island, i.e., Eim − pi = β(pi − Ei p) for all i. This is rewritten as pi = rEi p+ (1− r)Eim,

which coincides with (23) when pi = ai and p = limn→∞ n−1 ∑
i pi. Therefore, the price pi in

island i coincides with the action ai of player i in a beauty contest game.

In contrast to Morris and Shin (2002), we follow the standard formulation of the Lucas

model; that is, we require the market clearing condition m − p = β(p − Ē p) in the aggregate

market. By Proposition 3, the expected aggregate price level Ei p in island i coincides with the

action ai of player i in a beauty contest game. Note the difference between the price pi in island

i and the expected aggregate price level Ei p in island i, which determines the supply in island i

through yi = β(pi − Ei p) in (3).

3On the application of Radner’s theorem in the case of infinite number of players, see Ui and Yoshizawa (2013).
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In their main result, Morris and Shin (2002) study the property of the mean squared error

of the equilibrium action ai from the payoff state m

MSE[ai] ≡ E[(ai − m)2]

as a measure of a welfare loss, which is the same for all i by the symmetry of payoff and

information structures, and show that

∂MSE[ai]/∂τv < 0,

∂MSE[ai]/∂τw ≷ 0 ⇔ τw ≶ (1 − r)(2r − 1)τε . (24)

In Proposition 1, we study the property of the variance of y given by V(τ). Note that

V(τ) = E[(m − p)2] = rE[(Ē p − m)2] (25)

by (8), which implies that V(τ) equals a constant times the mean squared error of the aggregate

equilibrium action4 ā = Ē p from the payoff state m

MSE[ā] ≡ E[(ā − m)2].

Proposition 1 in the special case of τm = 0 is summarized as follows:

∂MSE[ā]/∂τv < 0,

∂MSE[ā]/∂τw ≷ 0 ⇔ τw ≶ (1 − r)τε . (26)

It is interesting to compare (24) and (26) in our context of the Lucas model, where ai = Ei p

is the prediction of the aggregate price level in island i, and ā = Ē p is the aggregate prediction

of the aggregate price level. The mean squared error of the prediction in each island and that of

the aggregate prediction share the following properties.

• MSE[ai] and MSE[ā] are minimized and equal to zero when τv = ∞ or τw = ∞.

• MSE[ai] and MSE[ā] are decreasing in τv.

• MSE[ai] and MSE[ā] are increasing in τw if τw < (1− r)(2r − 1)τv and decreasing in τw
if τw > (1 − r)τv.

4Morris and Shin (2002) discuss E[(ā −m)2], but they do not calculate its value in the equilibrium of a beauty

contest game.
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However, if (1 − r)(2r − 1)τv < τw < (1 − r)τv, MSE[ā] is increasing in τw, but MSE[ai] is

decreasing in τw. That is, even when MSE[ā] increases with τw, MSE[ai] can decrease with

τw, and whenever MSE[ai] increases with τw, MSE[ā] also increases with τw. In particular, if

r < 1/2, MSE[ai] necessarily decreases with τw, whereas MSE[ā] can increase with τw. This

difference is also attributed to the law of large numbers. Suppose that τw = 0. As discussed

in Section 4, the aggregate prediction ā = Ē p equals m because Ē p = p = m by the law of

large numbers, and thus MSE[ā] = 0. This implies that a more precise public signal increases

MSE[ā]. In contrast, the law of large numbers does not work in an unaggregated prediction

ai = Ei p, and a more precise public signal reduces MSE[ai] > 0.

5.3 Ui and Yoshizawa (2015)

Ui and Yoshizawa (2015) also consider a Bayesian Nash equilibrium given by (20) under the

same Gaussian information structure as that discussed in Section 4 and study the property of

the following function:

W(τ) = E

[
c1

∑
i

a2
i + c2

∑
i< j

aia j + c3
∑

i

mai + c4
∑

i

ai + c5

]
, (27)

which is the expected value of a quadratic function of the equilibrium actions and the payoff

state. They show that there exist constants ζ, η, ξ ∈ R such that

W(τ) = ζ(var[ai] − cov[ai, a j]) + ηcov[ai, a j] + ξ, (28)

where var[ai] is the variance of an action and cov[ai .a j] is the covariance of actions of different

players. This representation is useful because the ratio of the coefficients ζ/η together with

the signs of ζ and η determines whether W(τ) is increasing, decreasing, or otherwise. We

can explain the intuition as follows by focusing on the precision of public information. The

covariance cov[ai, a j] necessarily increases with the precision of public information because

more precise information causes more correlated actions. In contrast, the difference between

the variance and the covariance var[ai] − cov[ai, a j] necessarily decreases with the precision of

public information because a higher correlation of actions brings the variance and the covariance

closer. The property of W(τ) is determined by the combination of the above properties of

cov[ai, a j] and var[ai] − cov[ai, a j].

We can regard V(τ) is a special case of (27) with ai = Ei p and obtain the following

representation of V(τ).
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Lemma 1. For ζ = −2r/(1 − r), η = −r , and ξ = rτ−1
m , V(τ) has a representation (28) with

ai = Ei p.

This representation is useful in understanding why V(τ) can increase with τw. Note that

both ζ and η are negative. Thus, we can explain the property of V(τ) in terms of the properties

of −(var[ai] − cov[ai, a j]) and −cov[ai, a j]. When τw is small, cov[ai, a j] is also small, so

−(var[ai] − cov[ai, a j]) is dominant in V(τ), and it is increasing in τw. When τw is large,

−(var[ai] − cov[ai, a j]) is close to zero, so −cov[ai, a j] is dominant in V(τ), and it is decreasing

in τw. Therefore, V(τ) is increasing in τw when τw is small and decreasing in τw when τw is

large.5

For completeness, we give a proof for Lemma 1.

Proof of Lemma 1. Let ai = Ei p and ā = Ē p. Then, by (25),

V(τ) = E[r(ā − m)2] = rE[ā2 − 2mā + m2] = rE[ā2] − 2rE[mā] + rτ−1
m . (29)

First, because E[ai] = 0, we obtain

E[ā2] = lim
n→∞

E

(
n−1

∑
i

ai

)2
= lim

n→∞
n−2E

[∑
i

a2
i + 2

∑
i< j

aia j

]
= lim

n→∞
n−2E

[
na2

i + n(n − 1)aia j
]

= cov[ai, a j]. (30)

Next, note that

E[mā] = lim
n→∞

n−1
∑

i

E[mai] = E[mai] = E[Eimai] = E[aiEim]. (31)

Because (23) is rewritten as

ai = rEi ā + (1 − r)Eim = r lim
n→∞

n−1
∑

j

Eia j + (1 − r)Eim = rEia j + (1 − r)Eim,

and it implies that

aiEim = (a2
i − raiEia j)/(1 − r) = Ei(a2

i − raia j)/(1 − r),

5Using Lemma 1 together with the results of Ui and Yoshizawa (2015), we can also obtain Proposition 1

because Ui and Yoshizawa (2015) characterize W(τ) for all ζ and η.
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(31) is reduced to

E[mā] = E[(a2
i − raia j)/(1 − r)] = (var[ai] − rcov[ai, a j])/(1 − r). (32)

Therefore, by (29), (30), and (32),

V(τ) = rcov[ai, a j] − 2r(var[ai] − rcov[ai, a j])/(1 − r) + rτ−1
m

= −2r(var[ai] − cov[ai, a j])/(1 − r) − rcov[ai, a j] + rτ−1
m ,

which establishes the lemma. �
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