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The de-biased group Lasso estimation
for varying coefficient models

Toshio Honda

Abstract

There has been a lot of attention on the de-biased or de-sparsified Lasso since it was

proposed in 2014. The Lasso is very useful in variable selection and obtaining initial es-

timators for other methods in high-dimensional settings. However, it is well-known that

the Lasso produces biased estimators. Therefore several authors simultaneously proposed

the de-biased Lasso to fix this drawback and carry out statistical inferences based on the

de-biased Lasso estimators. The de-biased Lasso procedures need desirable estimators

of high-dimensional precision matrices for bias correction. Thus the research is almost

limited to linear regression models with some restrictive assumptions, generalized linear

models with stringent assumptions and the like. To our knowledge, there are a few papers

on linear regression models with group structure, but no result on structured nonpara-

metric regression models such as varying coefficient models. In this paper, we apply the

de-biased group Lasso to varying coefficient models and closely examine the theoretical

properties and the effects of approximation errors involved in nonparametric regression.

Some simulation results are also presented.

Keywords: high-dimensional data; B-spline; varying coefficient models; group Lasso; bias

correction.

1 Introduction

We consider the following high-dimensional varying coefficient model :

Yi =

p∑
j=1

gj(Zi)Xi, j + εi, (1)

where (Yi, Xi,Zi), i = 1, . . . , n, are i.i.d. observations, Yi is a dependent variable, Xi =

(Xi,1, . . . , Xi,p)T ∈ Rp and Zi ∈ R are random covariates, and an unobserved error εi follows the

normal distribution with mean zero and variance σ2
ε independently of (Xi,Zi). Note that aT is

the transpose of a vector or matrix a. In (1), Zi is a key variable sometimes called an index

variable and Xi,1 satisfies Xi,1 ≡ 1. Besides, Zi takes values on [0, 1] and gj(Zi) j = 1, . . . , p, are
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unknown smooth functions on [0, 1] to be specified later in Section 3. The varying coefficient

model is one of the most popular structured nonparametric regression models. For example,

see [11] for an excellent review on varying coefficient models. Such structured nonparametric

regression models alleviate the curse of dimensionality, but they allow much more flexibility

in modelling and data analysis than linear regression models.

Nowadays a lot of high-dimensional datasets are available because of rapid advances in

data collecting technology and it is inevitable to apply structured nonparametric regression

models to such kinds of high-dimensional datasets for more flexible data analysis. In this pa-

per, we take p = O(ncp) for some positive constant cp and this excludes ultra-high dimensional

cases. This is because the technical conditions and the proofs are complicated and we give

priority to readability. In practice we have to pay some cost for nonparametric estimation of

coefficient functions and have some difficulty dealing with ultra-high dimensional cases. Note

that the actual dimension is pL, where L is the dimension of the spline basis.

In high-dimensional settings, even if p is very large compared to the sample size n, the

number of active or relevant covariates are much smaller than p and we need some vari-

able selection procedures for high-dimensional datasets like the Lasso(e.g.[26] and [1]), the

SCAD(e.g.[7]), feature screening procedures based on marginal models or some index be-

tween the dependent variable and individual covariates(e.g.[9]), and forward variable selec-

tion procedures(e.g.[30] and [17]). [21] is an excellent review paper of feature screening

procedures. The adaptive Lasso and the group Lasso are important variants of the Lasso.

For example, see [35], [33], [22]. There are too many papers on high-dimensional issues to

mention and we just name a few books for recent developments, [3], [13], and [27].

Several authors considered ultra-high dimensional or high-dimensional varying coefficient

models by employing the group Lasso(e.g.[31]), the group SCAD(e.g.[5]), feature screening

procedures based on marginal models and so on (e.g.[8] and [20]), and forward variable selec-

tion procedures(e.g.[6]). In [14] and [15], the authors considered Cox regression models with

high-dimensional varying coefficient structures.

The Lasso is very useful in variable selection and obtaining initial estimators for other

methods like the SCAD in high-dimensional settings. However, it is well-known that the

Lasso is not necessarily selection consistent and produces biased estimators. We need some

suitable initial estimators or screening procedures to reduce the number of covariates when

we implement the SCAD. Screening procedures are based on marginal models or some index

between Yi and individual covariates. And the procedures crucially depend on assumptions

like the one that marginal models reflect the true model faithfully. When we need some reli-

able estimates maintaining the original high dimensionality, these procedures may not be very

useful. The SCAD has the nice oracle property, but it gives no information about removed or
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unselected covariates. When a covariate of interest is not selected, we have no information

other than being not selected. On the other hand, the de-biased Lasso gives some useful in-

formation such as p-values. The SCAD selects covariates and set the coefficient to be 0 if the

covariate is not selected. Statistical inference under the original model is impossible for the

SCAD.

Several authors([34], [18], and [28]) simultaneously proposed the de-biased Lasso to fix

the fore-mentioned drawbacks of the Lasso and the SCAD. It is also called the de-sparsified

Lasso. We can carry out statistical inferences based on the de-biased Lasso estimators while

maintaining the high dimensionality and get information about all the covariates of the orig-

inal high-dimensional model. The de-biased Lasso procedures need desirable estimators of

high-dimensional precision matrices for bias correction. Thus the research is almost limited

to linear regression models with some restrictive assumptions, generalized linear models with

stringent assumptions, and the like. To our knowledge, there are a few papers on linear re-

gression models with group structure(e.g. [23], [25]). The authors of these papers derived

interesting and useful results. But we have found no result on structured nonparametric re-

gression models such as varying coefficient models. Besides their assumptions on covariate

variables cannot cover our setup since we have to deal with W defined in (4) and our design

matrix W has a special structure due to the B-spline basis and {Zi}.
We have to examine the properties carefully by carrying out conditional arguments on {Zi}

and using the properties of the B-spline basis. We also have to take care of approximation er-

rors to true coefficient functions. Our purpose is to estimate coefficient functions and different

from that of [23] and [25] does not deal with random design cases. Both of them consider

only linear models. In this paper, we apply the de-biased group Lasso to varying coefficient

models and closely examine the theoretical properties of estimated coefficients and the effects

of approximation errors involved in nonparametric regression.

This paper is organized as follows. In Section 2, we describe the de-biased group Lasso

procedure for varying coefficient models. Then we present our assumptions and main theo-

retical results in Section 3. Simulation study results are presented in Section 4. The results

suggest that the proposed de-biased group Lasso will work well. Additional numerical results

are given in the Supplement. We prove the main theoretical results in Section 5. The technical

proofs are also relegated to the supplement.

We end this section with some notation used throughout the paper.

In this paper, we write A � B when we define A by B. C, C1, C2, . . ., are generic positive

constants and their values may change from line to line. Note that an ∼ bn means C1 < an/bn <

C2 and that a ∨ b and a ∧ b stand for the maximum and the minimum of a and b, respectively.

In the theory of the group Lasso, index sets often appear and S and |S| stand for the
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complement and the number of the elements of an index set S ⊂ {1, . . . , p}, respectively.

When we have two random vectors U and V , U |V stands for the conditional distribution of

U on V . And N(μ, σ2) means the normal distribution with mean μ and variance σ2 and we

write U ∼ N(μ, σ2) when U follows the normal distribution with mean μ and variance σ2.

Convergence in distribution is denoted by
d→.

For a vector a, ‖a‖ is the Euclidean norm and ‖g‖2 and ‖g‖∞ stand for the L2 and sup norms

of a function g on the unit interval, respectively. We denote the maximum and minimum

eigenvalues of a symmetric matrix A by λmax(A) and λmin(A), respectively. For a matrix A,

‖A‖F and ρ(A) stand for the Frobenius and spectral norms, respectively. We write (A)s,t for the

(s, t) element of a matrix A and Ik is the k-dimensional identity matrix.

2 The de-biased group Lasso estimator

In this section, we define the de-biased group Lasso estimator b̂ from the group Lasso estima-

tor β̂. Then we need some desirable estimator of the precision matrix of Σ in Assumption S1

below and we denote the estimator by Θ̂. We present Θ̂ after we define β̂ and b̂.

• Regression spline model : First we explain our regression spline model for (1). We de-

note the L-dimensional equispaced B-spline basis on [0, 1] by B(z) = (B1(z), . . . , BL(z))T with∑L
k=1 Bk(z) ≡ √L, not 1. We employ a quadratic or smoother basis here. The conditions on L

and coefficient functions are given Section 3, e.g. in Assumptions G and L.

By choosing a suitable β0 j ∈ RL, we can approximate gj(z) by BT (z)β0 j as

gj(z) = BT (z)β0 j + rz j(z),

where rz j(z) is a small approximation error. Then (1) is rewritten as

Yi =

p∑
j=1

Xi, jBT (Zi)β0 j + ri + εi, (2)

where ri =
∑p

j=1
(g(Zi) − BT (Zi)β0 j)Xi, j. Note that we take β0 j = 0 ∈ RL if gj(z) ≡ 0.

Now we define new pL-dimensional covariate vectors and the n × (pL) design matrix for

the regression spline model as

Wi � Xi ⊗ B(Zi) = (Xi,1BT (Zi), . . . , Xi,pBT (Zi))
T ∈ RpL, (3)

where ⊗ is the Kronecker product, and

W �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
WT

1
...

WT
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = (W1, . . . ,Wp), (4)
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where W is an n× (pL) matrix and Wj is an n× L matrix. Note that we have n i.i.d. Wi ∈ RpL.

We write

Wj = (W (1)
j , . . . ,W

(L)
j ) and W (l)

j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
W (l)

1, j
...

W (l)
n, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R
n for l = 1, . . . , L.

Note that Wj is a covariate matrix for gj(Zi)Xi, j and that W (l)
i, j = Xi, jBl(Zi) is an element of W .

By using the above notation, we can represent n observations in a matrix form :

Y =
p∑

j=1

Wjβ0 j + r + ε =Wβ0 + r + ε, where Yi = WT
i β0 + ri + εi, (5)

Y = (Y1, . . . ,Yn)T , r = (r1, . . . , rn)T , ε = (ε1, . . . , εn)T , and β0 = (βT
01, . . . , β

T
0p)T ∈ RpL.

We state a standard assumption on the design matrix W . This is assumed throughout this

paper.

Assumption S1
Σ � E(WiW

T
i ) and λmin(Σ) > C1

for some positive constant C1. Note that Σ is a (pL) × (pL) matrix.

Note that Σ = n−1E(W TW ) and we usually denote the inverse of Σ by Θ, not Σ−1, as

in the literature on high-dimensional precision matrices. The sample version of Σ is Σ̂ �

n−1W TW . When pL is larger than n, we cannot define the inverse of Σ̂. Therefore we

need a reliable substitute of the inverse of Σ̂ in high-dimensional setups and we denote our

estimator of the inverse Θ by Θ̂. We define an n × (p − 1)L matrix W− j by removing Wj from

W = (W1, . . . ,Wp). We consider regression of Wj to W− j when we construct our Θ̂.

• Group Lasso estimator β̂ : We define the group Lasso estimator β̂ for (2) and (5) :

β̂ = (̂βT
1 , . . . , β̂

T
p )T � argmin

β∈RpL

{1

n
‖Y −Wβ‖2 + 2λ0P1(β)

}
, (6)

where β = (βT
1 , . . . , β

T
p )T with β j ∈ RL for j = 1, . . . , p, λ0 is a suitably chosen tuning pa-

rameter, and P1(β) �
∑p

j=1
‖β j‖. We also use this P1(·) for vectors of smaller dimension.

We describe the properties of this group Lasso estimator in Proposition 1 for completeness

although the proposition is almost known.

The first order condition of the optimality of β̂ yields

−1

n
W T (Y −Wβ̂) + λ0κ0 = 0 ∈ RpL, (7)

where κ0 = (κT0,1, . . . , κ
T
0,p)T with κ0, j ∈ RL for j = 1, . . . , p, ‖κ0, j‖ ≤ 1 for j = 1, . . . , p, and

κ0, j = β̂ j/‖̂β j‖ if ‖̂β j‖ � 0.
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• De-biased group Lasso estimator b̂ : This β̂ is a biased estimator due to the L1 penalty

as we mentioned in Section 1. Thus by constructing Θ̂ such that Θ̂Σ̂ is sufficiently close to

IpL, we define our de-biased group Lasso estimator b̂ = (̂bT
1 , . . . , b̂

T
p )T ∈ RpL with b̂ j ∈ RL for

j = 1, . . . , p for the varying coefficient model (1) and (5) as

b̂ � β̂ + Θ̂λ0κ0 = β̂ +
1

n
Θ̂W T (Y −Wβ̂) (8)

= β̂ + Θ̂Σ̂(β0 − β̂) +
1

n
Θ̂W T (r + ε)

= β0 +
1

n
(Θ̂Σ̂ − IpL)(β0 − β̂) +

1

n
Θ̂W T (r + ε)

= β0 +
1

n
Θ̂W T ε − Δ1 + Δ2,

where we used (7) in the first line,

Δ1 = (ΔT
1,1, . . . ,Δ

T
1,p)T �

1

n
(Θ̂Σ̂ − IpL)(β̂ − β0) ∈ RpL,

Δ2 = (ΔT
2,1, . . . ,Δ

T
2,p)T �

1

n
Θ̂W T r ∈ RpL,

Δ1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δ1,1

...

Δ1,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
1

n
(Θ̂Σ̂ − IpL)(β̂ − β0) ∈ RpL, Δ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δ2,1

...

Δ2,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
1

n
Θ̂W T r ∈ RpL,

and Δ1, j ∈ RL and Δ2, j ∈ RL for j = 1, . . . , p. We will prove that Δ1 and Δ2 are negligible

compared to n−1Θ̂W T ε in Propositions 3 and 4, respectively and closely examine n−1Θ̂W T ε

in Proposition 5 in Section 3.

The evaluation of Δ2 requires more smoothness of the coefficient functions gj(z) than usual

as in Assumption G in Section 3. This is because it is difficult to evaluate the effects of approx-

imation errors while maintaining high-dimensionality as shown in the proof of Proposition 3.

Any model may have some kind of approximation error and it is very important to exam-

ine such effects in the de-biased Lasso method closely. If we are interested in only some of

Xi,1, . . . , Xi,p, not all of them, we do not have to compute the whole b̂ and should concentrate

on only the corresponding blocks.

• Construction of Θ̂ : At the end of this section, we construct Θ̂ by employing the group

Lasso and adapting the idea in [28] to the current group structure. Note that our construction

is different from those of [23] and [25] and that we can exploit just the standard R package

for the Lasso for computation. We also describe some idea of how to Θ̂ in (9)-(11) after the

notation.

We need some more notation before we present our Θ̂. Hereafter, we write a⊗2 � aaT for

a vector a. We define an L × L matrix Σ j,k, an L × (p − 1)L matrix Σ j,− j, a (p − 1)L × L matrix
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Σ− j, j, and a (p − 1)L × (p − 1)L matrix Σ− j,− j :

Σ j,k � E{X1, jX1,kB⊗2(Z1)} = 1

n
E(WT

j Wk)

Σ j,− j � E[{X1, j(X1,1, . . . , X1, j−1, X1, j+1, . . . , X1,p)} ⊗ B⊗2(Z1)] =
1

n
E(WT

j W− j)

Σ− j,− j � E[{(X1,1, . . . , X1, j−1, X1, j+1, . . . , X1,p)T }⊗2 ⊗ B⊗2(Z1)] =
1

n
E(W T

− jW− j)

and Σ− j, j � ΣT
j,− j. Note that they can be defined also from Σ as its submatrices. Furthermore we

define a (p − 1)L × L matrix Γ j as Γ j � Σ−1
− j,− jΣ− j, j and write Γ j = (γ(1)

j , . . . ,γ
(L)
j ), where γ(l)

j ∈
R

(p−1)L for l = 1, . . . , L. We need to estimate this Γ j to define Θ̂. In this paper, we estimate

Γ j = Σ
−1
− j,− jΣ− j, j = (γ(1)

l , . . . , γ
(L)

l ) columnwise by employing the group Lasso differently from

[25]. See Remark 1 at the end of this section.

To present an idea on the construction of Θ̂, we give some insightful expressions such as

(10)-(12). Then we define an n × L matrix E j and its columns η(l)
j ∈ Rn, j = 1, . . . , L, as

E j = (η(1)
j , . . . , η

(L)
j ) � Wj −W− jΓ j. (9)

Since Σ− j, j − Σ− j,− jΓ j = n−1E(W T
− jE j) = 0, we have

1

n
E(W T E1) =

1

n
E{W T (W1 −W−1Γ1)} = (Θ−1

1,1, 0, 0, . . . , 0)T

· · · · · ·
1

n
E(W T E j) =

1

n
E{W T (Wj −W− jΓ j)} = (0,Θ−1

j, j , 0, . . . , 0)T (10)

· · · · · ·
1

n
E(W T Ep) =

1

n
E{W T (Wp −W−pΓp)} = (0, . . . , 0, 0,Θ−1

p,p)T ,

where symmetric L × L matrices Θ j, j will be defined shortly. The above equations imply

1

n
E{W T (E1, . . . , Ep)}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ−1
1,1 0 0 · · · 0

0 Θ−1
2,2 0 · · · 0

0 0 Θ−1
3,3 · · · 0

...
...

...
. . .

...

0 0 0 · · · Θ−1
p,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

= IpL. (11)

Recalling that n−1E(W TW ) = Σ and (9), we define Θ̂ by employing the sample version of the

LHS of (11). Thus we need to estimate Γ j, j = 1, . . . , p. See also (19) below.

Let Θ j,k be an L × L submatrix of Θ exactly as Σ j,k is a submatrix of Σ. Then we have

Θ−1
j, j = Σ j, j − Σ j,− jΣ

−1
− j,− jΣ− j, j =

1

n
E(ET

j E j) =
1

n
E(WT

j E j). (12)
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We explain how we estimate Γ j. Looking at (9) and n−1E(W T
− jE j) = 0 columnwise, we

have

η(l)
j = W (l)

j −W− jγ
(l)
j ∈ Rn, l = 1, . . . , L and j = 1, . . . , p,

and then we estimate Γ j = (γ(1)

l , . . . , γ
(L)

l ) columnwise by employing the group Lasso:

γ̂(l)
j = (̂γ(l)T

j,1 , . . . , γ̂
(l)T
j, j−1
, γ̂(l)T

j, j+1
, . . . , γ̂(l)T

j,p )T � argmin
γ∈R(p−1)L

{1

n
‖W (l)

j −W− jγ‖2 + 2λ(l)
j P1(γ)

}
, (13)

where P1(γ) is defined as in (6), γ̂(l)
j,k ∈ RL for k � j, γ = (γT

1 , . . . , γ
T
j−1, γ

T
j+1, . . . , γ

T
p )T with

γk ∈ RL for k � j, and λ(l)
j is a suitably chosen tuning parameter. We deal with the theoretical

properties of γ̂(l)
j in Proposition 2 in Section 3.

As in (7), we have

−1

n
W T
− j(W

(l)
j −W− jγ̂

(l)
j ) + λ(l)

j κ
(l)
j = 0 ∈ R(p−1)L, (14)

where κ(l)
j = (κ(l)Tj,1 , . . . , κ

(l)T
j, j−1
, κ(l)Tj, j+1

, . . . , κ(l)Tj,p )T with κ(l)j,k ∈ RL for k � j, ‖κ(l)j,k‖ ≤ 1 for k � j, and

κ(l)j,k = γ̂
(l)
j,k/‖̂γ(l)

j,k‖ if ‖̂γ(l)
j,k‖ � 0.

Collecting γ̂(l)
j , κ(l)j,k, and regression residuals into matrices, respectively, we define (p −

1)L × L matrices Γ̂ j and Kj and an n × L matrix Ê j as

Γ̂ j � (γ̂(1)
j , . . . , γ̂

(L)
j ), Kj � (κ(1)

j , . . . ,κ
(L)
j ), and Ê j � Wj −W− ĵΓ j (15)

and write

Γ̂ j = (̂ΓT
j,1, . . . , Γ̂

T
j, j−1, Γ̂

T
j, j+1, . . . , Γ̂

T
j,p)T , Kj = (KT

j,1, . . . ,K
T
j, j−1,K

T
j, j+1, . . . ,K

T
j,p)T , and

Ê j =W (−Γ̂T
j,1, . . . ,−Γ̂T

j, j−1, IL,−Γ̂T
j, j+1, . . . ,−Γ̂T

j,p)T , (16)

where Γ̂ j,k (k � j) and Kj,k (k � j) are L × L matrices. Then by (14), we have

1

n
W T
− jÊ j = KjΛ j, (17)

where Λ j = diag(λ(1)
j , . . . , λ

(L)
j ). The elements of the RHS of (17) will be small because of the

properties of the group Lasso. Recall that n−1E(W T
− jE j) = 0.

We are ready to define Θ̂ by adapting the idea of [28] to the current setup. Let T 2
j be our

estimator of Θ−1
j, j and defined later. See also (9), (11), and (16).

Θ̂T �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IL −Γ̂2,1 −Γ̂3,1 · · · −Γ̂p,1

−Γ̂1,2 IL −Γ̂3,2 · · · −Γ̂p,2

−Γ̂1,3 −Γ̂2,3 IL · · · −Γ̂p,3
...

...
...

. . .
...

−Γ̂1,p −Γ̂2,p −Γ̂3,p · · · IL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 2
1 0 0 · · · 0

0 T 2
2 0 · · · 0

0 0 T 2
3 · · · 0

...
...
...
. . .

...

0 0 0 · · · T 2
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

. (18)
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Hereafter the second matrix on the RHS will be denoted by diag(T−2
1 , . . . ,T

−2
p ). Note that T−2

j

stands for the inverse of T 2
j and is an estimator of Θ j, j.

(16)-(18) give the following equations if we take T 2
j �

1
nWT

j Ê j. Compare (11) and (19),

too.

Σ̂Θ̂T =
1

n
W T (W Θ̂T ) =

1

n
W T (Ê1, . . . , Êp)diag(T−2

1 , . . . ,T
−2
p ) (19)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 2
1 K2,1Λ2 K3,1Λ3 · · · Kp,1Λp

K1,2Λ1 T 2
2 K3,2Λ3 · · · Kp,2Λp

K1,3Λ1 K2,3Λ2 T 2
3 · · · Kp,3Λp

...
...

...
. . .

...

K1,pΛ1 K2,pΛ2 K3,pΛ3 · · · T 2
p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
diag(T−2

1 , . . . ,T
−2
p )

and

Σ̂Θ̂T − IpL =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 K2,1Λ2T−2
2 K3,1Λ3T−2

3 · · · Kp,1ΛpT−2
p

K1,2Λ1T−2
1 0 K3,2Λ3T−2

3 · · · Kp,2ΛpT−2
p

K1,3Λ1T−2
1 K2,3Λ2T−2

2 0 · · · Kp,3ΛpT−2
p

...
...

...
. . .

...

K1,pΛ1T−2
1 K2,pΛ2T−2

2 K3,pΛ3T−2
3 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

The elements of the off-diagonal blocks will be small due to the properties of the group Lasso

in (13).

Taking the transpose of (20), we obtain

Θ̂Σ̂ − IpL =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 T−2T
1 Λ1KT

1,2 T−2T
1 Λ1KT

1,3 · · · T−2T
1 Λ1KT

1,p

T−2T
2 Λ2KT

2,1 0 T−2T
2 Λ2KT

2,3 · · · T−2T
2 Λ2KT

2,p

T−2T
3 Λ3KT

3,1 T−2T
3 Λ3KT

3,2 0 · · · T−2T
3 Λ3KT

3,p
...

...
...

. . .
...

T−2T
p ΛpKT

p,1 T−2T
p ΛpKT

p,2 T−2T
p ΛpKT

p,3 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

We denote (T−2
j )T by T−2T

j . We will closely examine

T−2T
j Λ jKT

j,k = T−2T
j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ(1)

j κ
(1)T
j,k
...

λ(L)
j κ

(L)T
j,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to deal with Δ1 in Proposition 3.

Finally note that T 2
j = n−1WT

j Ê j, our estimator of Θ−1
j, j = Σ j, j − Σ j,− jΣ

−1
− j,− jΣ− j, j, satisfies

min1≤ j≤p ρ(T 2
j ) > C with probability tending to 1 for some constant C as proved in Lemma 6

in Section 5. See also (12) about this definition of T 2
j .
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In Section 4, we chose λ0 and λ(l)
j by cross validation. In the next section, we give theoret-

ically proper ranges of these tuning parameters. But we have no theory for tuning parameter

selection.

Remark 1 In [25], the authors considered fixed design regression models and estimated all

the columns of Γ j simultaneously in a single Lasso-type penalized regression. On the other

hand, we estimate Γ j columnwise and we can apply the standard theory and also employ the

standard R package to get our estimator of Γ j. We can define another estimator of Θ just

formally even if we estimate Γ j simultaneously. Then the properties will be different from

those of this paper and we cannot apply the standard Lasso theory and R packages then.

3 Theoretical results

In this section, we state the standard result on the group Lasso estimators β̂ and γ̂(l)
j in Propo-

sitions 1 and 2 together with technical assumptions. Then we evaluate Δ1 and Δ2 in (8) and

Θ̂Σ̂Θ̂T in Propositions 3-5. Finally we state the main result on the de-biased group Lasso esti-

mator b̂ in Theorem 1. We will prove Propositions 3-5 in Section 5. Theorem 1 immediately

follows from those propositions. Propositions 1 and 2 will be proved in the Supplement since

we can prove them by just following the standard arguments in the Lasso literature. The proofs

of all the technical lemmas will also be given in the Supplement.

• Basic assumptions : We describe some notation and assumptions before we present the

results on the group Lasso estimators. We define the set of active covariates and the number

of active covariates :

S0 � { j | ‖gj‖2 > 0} ⊂ {1, . . . , p} and s0 � |S0|. (22)

We begin with some definitions to state basic assumptions on the properties of covariates

of our varying coefficient model:

X̃i = (Xi,2, . . . , Xi,p)T and X̆i = X̃i − μX(Zi),

where μX(Zi) = (μX,2(Zi), . . . , μX,p(Zi))
T is the conditional mean of X̃i given Zi. We denote the

conditional covariance matrix of X̃i given Zi by ΣX(Zi). We define X̃i by removing the first

constant element from Xi defined in (1).

Assumption VC
(1) E(Xi, j) = 0, j = 2, . . . , p. Besides, ‖μX, j‖∞ < C1 for j = 2, . . . , p and C2 < λmin(ΣX(z)) ≤
λmax(ΣX(z)) < C3 uniformly in z on [0, 1] for some positive constants C1, C2, and C3. Recall

that εi ∼ N(0, σ2
ε ) and εi is independent of (Xi,Zi).
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(2) There is a constant σ2 independent of Zi such that E{exp(αT X̆i)|Zi} ≤ exp(‖α‖2σ2/2) for

any α ∈ Rp−1.

(3) The index variable Zi has density fZ(z) satisfying C4 < fZ(z) < C5 on [0, 1] for some

positive constants C4 and C5.

The second one, the sub-Gaussian design assumption, allows us to use Bernstein’s inequal-

ity. The first two assumptions may look restrictive. However, we need to construct a desirable

estimator of a precision matrix and even more restrictive assumptions such as normality are

imposed in [28] and [19]. Especially, the arguments in [19] crucially depend on the normality

assumption on the design matrix although it has improved the previous results on the de-biased

Lasso. The assumption on {εi} is the standard one in the literature of the de-biased Lasso. In

[4], the authors developed the theory of the de-biased Lasso for linear models without nor-

mality or sub-Gaussian assumption on design matrices, but they need a restrictive assumption

on the order of p such as p � n and other alternative conditions. The third one is a standard

assumption for varying coefficient models.

Next we state the assumptions on coefficient functions.

Assumption G
(1) gj(z), j = 1, . . . , p, are three times continuously differentiable.

(2) If we choose suitable β0 j ∈ RL and dj j = 1, . . . , p, the approximation error ri, j defined as

ri, j = gj(Zi) − BT (Zi)β0 j satisfies

|ri, j| < C1L−3dj for i = 1, . . . , n and j ∈ S0,
∑
j∈S0

dj < C2, and
∑
j∈S0

d2
j < C3 (23)

for some positive constants C1, C2, and C3.

In this paper,
∑L

k=1 Bk(z) ≡ √L. Then we have for some positive constants C1 and C2 that

C1 < λmin(ΩB) ≤ λmax(ΩB) < C2, where ΩB =
∫ 1

0
B(z)BT (z)dz. See e.g. [16] about this fact.

We employ a quadratic or smoother basis. We give a remark on other spline bases in Remark

2 later in this section.

The former half of Assumption G may be a little more restrictive. However, we need this

assumption to evaluate Δ2. If we take dj = ‖gj‖∞ + ‖g′j‖∞ + ‖g′′j ‖∞ + ‖g(3)
j ‖∞ and some suitable

β0 j, this {dj} satisfies the first one in (23). See e.g. Corollary 6.26 of [24]. This {dj} should

satisfy the second and third ones in (23). Note that we take β0 j = 0 for j � S0 and that g(3)
j (z)

is the third order derivative of gj(z).

We denote the conditional mean and variance of L3
∑

j∈S0
ri, jXi, j given Zi by μr(Zi) and

σ2
r (Zi), respectively. Then under Assumptions VC and G, we have

‖μr‖∞ < C1, and ‖σ2
r‖∞ < C2

11



for some positive constants C1 and C2. The above results, the sub-Gaussian design assumption,

and the use of Bernstein’s inequality imply

|ri| < C3(log n)1/2L−3 (24)

uniformly in i with probability tending to 1 for some positive constant C3. Recall ri is defined

in (2).

• Results on β̂ : The theoretical results on the Lasso crucially depends on the deviation

condition (Lemma 1) and the restrictive eigenvalue (RE) condition or a similar one (Lemma

2). If both of the conditions are established, the standard theoretical results (Proposition 1)

follow almost automatically from them.

Lemma 1 Suppose that Assumptions VC and G hold and that (L−3 log n +
√

n−1L log n)→ 0.

Then for some large constant C, we have

P∞(n−1W T ε) < C

√
L log n

n
and P∞(n−1W T r) < CL−3 log n

with probability tending to 1, where P∞(v) � max1≤ j≤p ‖v j‖ for v = (vT
1 , . . . , v

T
p )T ∈ RpL with

v j ∈ RL for j = 1, . . . , p.

We also use P∞(·) for vectors of lower dimension as we use P1(·).
Some preparations are necessary to define the RE condition. For an index setS ⊂ {1, . . . , p}

and a positive constant m, we define a subset of RpL as in the literature on the Lasso :

Ψ(S,m) � {β ∈ RpL |P1(βS) ≤ mP1(βS) and β � 0},

where βS consists of {β j} j∈S, βS consists of {β j} j∈S, and P1(·) is conformably adjusted to the

dimension of the arguments. Recall β j ∈ RL in this paper. Then we define φ2
Ω

(S,m) for a

non-negative (pL) × (pL) matrix Ω as

φ2
Ω(S,m) � min

β∈Ψ(S,m)

βTΩβ

‖βS‖2 .

In the theory of the Lasso, φ2

Σ̂
(S0,m) plays a crucial role and the lower bound is given in

Lemma 2 below.

Lemma 2 Suppose that Assumptions VC and S1 hold and that s0

√
n−1L3 log n→ 0. Then

2φ2

Σ̂
(S0, 3) ≥ φ2

Σ(S0, 3) ≥ λmin(Σ)

with probability tending to 1.
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Notice that the second inequality is trivial from the definition of φ2
Σ
(S0, 3) and always holds.

The next result may be almost known, but we present and prove it for completeness.

Proposition 1 Suppose that Assumptions VC, S1, and G hold and that (s0

√
n−1L3 log n) ∨

(L−3 log n +
√

n−1L log n) → 0. Then if λ0 = C(L−3 log n +
√

n−1L log n) for sufficiently large

C, we have with probability tending to 1,

1

n
‖W (β̂ − β0)‖2 ≤ 18

λ2
0s0

φ2
Σ
(S0, 3)

and P1(β̂ − β0) ≤ 24
λ0s0

φ2
Σ
(S0, 3)

.

We will prove this proposition in the Supplement including the case where we have some prior

knowledge on S0. Note that C in the definition of λ0 is from Lemma 1. We will follow the

proof in [4] and we can also deal with the weighted group Lasso as in [4] with just conformable

changes. Note that [4] considered the adaptive Lasso for linear regression models. We didn’t

present the adaptively weighted Lasso version since the notation is very complicated in the

current setup of the group Lasso procedures. If an estimator has the oracle property, e.g.

the SCAD estimator and a kind of suitably weighted Lasso estimators as in [10], it is not

biased and we don’t have to apply the de-biased procedure to those estimators. However, as

we mentioned before, no statistical inference is possible while maintaining the original high-

dimensionality.

• Results on γ̂(l)
j for Θ̂ : We consider the properties of another group Lasso estimator γ̂(l)

j

defined in (13). We deal with the deviation condition and the RE condition in Lemma 3

and Lemma 4, respectively. Then Proposition 2 about the group Lasso estimator γ̂(l)
j in (13)

follows almost automatically from them.

We define the active index set S(l)
j ⊂ {1, . . . , j − 1, j + 1, . . . , p} of γ(l)

j in almost the same

way as S0 of β0 and let s(l)
j � |S(l)

j |. We assume S(l)
j is not empty since we can include some

index in it even if it is actually empty.

We need some technical assumptions.

Assumption S2
(1) ‖γ(l)

j ‖ ≤ C1 uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p) for some positive constant C1.

(2) λmax(Σ j, j) ≤ C2 uniformly in j (1 ≤ j ≤ p) for some positive constant C2.

Assumptions S1 and S2(2) imply

C3 ≤ λmin(Θ−1
j, j) =

1

λmax(Θ j, j)
≤ λmax(Θ−1

j, j) =
1

λmin(Θ j, j)
≤ C4 (25)

uniformly in j for some positive constants C3 and C4.

We give some comments on the implications of Assumptions VC, S1, and S2 to consider

the properties of the group Lasso estimator of γ(l)
j in (13). Then we write η(l)

j = (η(l)
1, j, . . . , η

(l)
n, j)

T ∈

13



R
n. Since Σ− j, j − Σ− j,− jΓ j = 0 and our observations are i.i.d., we have

E(Wi,− jη
(l)
i, j) = 0 ∈ R(p−1)L, i = 1, . . . , n, l = 1, . . . , L, and j = 1, . . . , p, (26)

where define Wi,− j by removing Xi, jB(Zi) from Wi and we have W− j = (W
1,− j, . . . ,Wn,− j)

T .

We denote the conditional mean and variance of η(l)
i, j given Zi by μ(l)

η, j(Zi) and σ(l)2
η, j (Zi),

respectively. Under Assumption S2(2), we have

E{η(l)2
i, j } = E[{μ(l)

η, j(Zi)}2 + σ(l)2
η, j (Zi)] = O(1) (27)

uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p). Besides, Assumptions VC and S2(1), and the

properties of the B-spline basis suggest

‖σ(l)2
η, j ‖∞ = O(L) (28)

uniformly in l and j. Assumption S1 is closely related to Assumption S2(1) since Γ j =

Σ−1
− j,− jΣ− j, j.

We need an assumption on μ(l)
η, j(z) similar to (28) to deal with the deviation condition. We

give a comment on this assumption in Remark 3 at the end of this section.

Assumption E Under Assumption VC, we have uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p) ,

‖μ(l)
η, j‖∞ = O(

√
L ).

Next we state Assumptions on the dimension of the B-spline basis L, s0, and s(l)
j . We allow

them to depend on n as long as they satisfy the assumptions.

Assumption L
(1) n−1s(l)2

j L3 log n→ 0 uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p).

(2) n−1s(l)
j L4 log n→ 0 uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p).

(3) n−1s2
0L4(log n)2 → 0.

Lemma 3 Suppose that Assumptions VC, S2, and E hold and that n−1L2 log n → 0. Then for

some large constant C, we have

P∞(n−1W T
− jη

(l)
j ) < C

√
L2 log n

n

uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p) with probability tending to 1.

The convergence rate is worse than that in Lemma 1. This is due to the structure of W , (28),

and Assumption E. There may be possibility of improvement in this convergence rate. See

Remark 4 at the end of this section.
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Lemma 4 Define Σ̂− j,− j as Σ̂− j,− j � 1
nW

T
− jW− j. Then suppose that Assumptions VC, S1, and

L(1) hold. Then

2φ2

Σ̂− j,− j
(S(l)

j , 3) ≥ φ2
Σ− j,− j

(S(l)
j , 3) ≥ λmin(Σ)

uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p) with probability tending to 1.

Proposition 2 Suppose that Assumptions VC, S1, S2, E, and L(1) hold and take λ(l)
j = C

√
n−1L2 log n

for sufficiently large C. Then we have

1

n
‖W− j(γ̂

(l)
j − γ(l)

j )‖2 ≤ 18
λ(l)2

j s(l)
j

λmin(Σ)
and P1(γ̂(l)

j − γ(l)
j ) ≤ 24

λ(l)
j s(l)

j

λmin(Σ)

uniformly in l (1 ≤ l ≤ L) and j (1 ≤ j ≤ p) with probability tending to 1.

Actually C in Proposition 2 can depend on l and j if it belongs to some suitable interval.

Note that C in the definition of λ(l)
j is from Lemma 3.

• Results on b̂ : We present Propositions 3-5. Hereafter we assume the conditions on the

tuning parameters λ0 and λ(l)
j in Propositions 1 and 2.

Proposition 3 Suppose that Assumptions VC, G , S1, S2, E, and L(1)-(3) hold. Then we have

‖Δ1, j‖ < C
1

n1/2
· s0L2 log n

n1/2

uniformly in j (1 ≤ j ≤ p) with probability tending to 1 for sufficiently large C.

Proposition 4 Suppose that Assumptions VC, G , S1, S2, E, and L(1)(2) hold. Then we have

‖Δ2, j‖ < C · L−3
( L∑

l=1

s(l)
j

)1/2
log n ≤ CL−5/2 log n(max

l, j
s(l)

j )1/2

uniformly in j (1 ≤ j ≤ p) with probability tending to 1 for sufficiently large C.

We give a comment on possibility of some improvements on Proposition 4 in Remark 5 at

the end of this section. It is just a conjecture that we have not proved yet.

We introduce some more notation before Proposition 5. We denote the residual vectors

from the group Lasso in (13) by η̂(l)
j � Wj −W T

− jγ̂
(l)
j ∈ Rn and note that Ê j = (̂η(1)

j , . . . , η̂
(L)
j ),

where Ê j is an n × L matrix. Besides, we set

Ω̂ � Θ̂Σ̂Θ̂T =
1

n
Θ̂W TW Θ̂T (29)

= {diag(T−2
1 , . . . ,T

−2
p )}T 1

n
(Ê1, . . . , Êp)T (Ê1, . . . , Êp)diag(T−2

1 , . . . ,T
−2
p )

and define its submatrix Ω̂ j,k in the same way as Σ j,k and Θ j,k are defined as submatrices of

Σ and Θ, respectively. We used (16) and (18) in the last line. Note that Ω̂ is a (pL) × (pL)

matrix and it is the conditional variance matrix of n−1/2Θ̂W T ε. Recall diag(T−2
1 , . . . ,T

−2
p ) is

the second matrix on the RHS of (18).
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Proposition 5 Suppose that Assumptions VC, G , S1, S2, E, and L(1)(2) hold and fix a positive

integer m. For any { j1, . . . , jm} ⊂ {1, . . . , p}, we define a symmetric matrix Δ as

Δ �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ω̂ j1, j1 · · · Ω̂ j1, jm
...

. . .
...

Ω̂ jm, j1 · · · Ω̂ jm, jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Θ j1, j1 · · · Θ j1, jm
...

. . .
...

Θ jm, j1 · · · Θ jm, jm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then we have

|λmin(Δ)| ∨ |λmax(Δ)| → 0

uniformly in { j1, . . . , jm} with probability tending to 1.

Our main result, Theorem 1, immediately follows from Propositions 3-5. Recall that Δ1 =

(ΔT
1,1, . . . ,Δ

T
1,p)T and Δ2 = (ΔT

2,1, . . . ,Δ
T
2,p)T . We give a comment on spline bases in Remark 2

below.

Theorem 1 Suppose that Assumptions VC, G , S1, S2, E, and L(1)-(3) hold. Then the de-

biased estimator is represented as

b̂ − β0 =
1

n
Θ̂W ε − Δ1 + Δ2

and we have

‖Δ1, j‖ = op(n−1/2) and ‖Δ2, j‖ < C log n · L−5/2(max
l, j

s(l)
j )1/2

uniformly in j (1 ≤ j ≤ p) with probability tending to 1 for sufficiently large C. Besides, we

have n−1/2Θ̂W T ε | {Xi,Zi}ni=1 ∼ N(0, σ2
ε Ω̂) and Ω̂ converges in probability to Θ blockwise as

defined in Proposition 5.

Remark 2 This remark concerns other spline bases. We can take another spline basis B′(z)

satisfying B′(z) = AB(z) and C1 < λmin(AAT ) ≤ λmax(AAT ) < C2 for some positive constants

C1 and C2. For example, an orthonormal basis B′(z) satisfying
∫

B′(z)(B′(z))T dz = IL. This is

because we deal with and evaluate everything blockwise. We use the desirable properties of the

B-spline basis in the proofs and then we should apply the conformable linear transformation

blockwise.

We consider applications of Theorem 1. Recall we have max j∈S0
‖gj − BTβ0 j‖∞ = O(L−3)

by Assumption G.

• Statistical inference under the original high-dimensional model
(1) ‖gj‖2 : Suppose we use a spline basis satisfying the orthonormal property in Remark

2. Then ‖b̂ j‖ is the estimator of ‖gj‖2. We can also deal with ‖gj − gk‖2 and then ‖b̂ j − b̂k‖
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is the estimator. Recall again that the SCAD gives no information of ‖gj‖2 when this j is

not selected. Most of screening procedures rely on an assumption like the one that marginal

models faithfully reflect the true model. It is important to have a de-biased estimator of ‖gj‖2
for any j based on the initial and original high-dimensional varying coefficient model (1).

Theorem 1 suggests that for any fixed j,

‖̂bj − β0 j‖ = Op

(√L
n

)
if
√

n−1L/{log n · L−5/2(maxl, j s(l)
j )1/2} → ∞. This reduces to L6/{n(log n)2 maxl, j s(l)

j } → ∞.

Note that ‖β0 j‖ − ‖gj‖2 = O(L−3) uniformly in j under Assumption G and this approximation

error is negligible compared to (L/n)1/2.

In addition to point estimation of ‖gj‖2, we can carry out hypothesis testing of H0 : ‖gj‖2 =
0 vs. H1 : ‖gj‖2 � 0 for any j. Then we can approximate the distribution of ‖b̂ j‖ by bootstrap

for j � S0 to compute the critical value as we did in the simulation studies.

(2) gj(z) : We estimate gj(z) with BT (z)̂bj. Since BT (z)β0 j−gj(z) = O(L−3) under Assumption

G, this approximation error is negligible compared to the effect of Δ2 and (L/n)1/2. Note that

{n−1BT (z)Ω̂ j, jB(z)}1/2 ∼ (L/n)1/2 in probability. Therefore for any fixed j, we have

n1/2BT (z)(̂bj − β0 j)/{BT (z)Ω̂ j, jB(z)}1/2 d→ N(0, σ2
ε ) (30)

if
√

n−1L/{log n · L−2(maxl, j s(l)
j )1/2} → ∞. This reduces to L5/{n(log n)2 maxl, j s(l)

j } → ∞.

This condition may be a little restrictive. However, a smaller L may work practically from

Remarks 4 and 5 below. See Subsection S.2.3 in the Supplement for some numerical examples

of confidence bands for gj(z).

We state some remarks here. Those remarks are about possible improvements of our as-

sumptions and we have not proved them yet.

Remark 3 This remark is about Assumption E. First we consider the case of l = 1 for sim-

plicity of notation. For l = 1, μ(1)
η, j(Zi) and σ(1)2

η, j (Zi), i = 1, . . . , n, are written as

μ(1)
η, j(Zi) = a(1)T

j {μX(Zi) ⊗ B(Zi)} and σ(1)2
η, j (Zi) = a(1)T

j [ΣX(Zi) ⊗ {B(Zi)}⊗2]a(1)
j ,

where a(1)
j � (1, 0, . . . , 0,−γ(1)T

j )T ∈ RpL and ‖a(1)
j ‖ = O(1) uniformly in j from Assumption

S2. (28) easily follows from the local support property of B(z). This holds for the other l. On

the other hand, μ(l)
η, j(Zi) is rewritten for general l as

μ(l)
η, j(Zi) = μX, j(Zi)Bl(Zi) −

∑
s∈S(l)

j

μX,s(Zi)b
(l)T
s, j B(Zi) and

∑
s∈S(l)

j

‖b(l)
s, j‖2 = ‖γ(l)

j ‖2,
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where b(l)
s, j is part of γ(l)

j . If
∑

s∈S(l)
j
‖b(l)

s, j‖ < C or s(l)
j < C uniformly in l and j for some positive

constant C, Assumption E holds because of the local support property of the B-spline basis.

Besides since only a finite number of elements of B(z) are not zero for any z due to its local

support property, Assumption E seems to be a reasonable one.

Remark 4 This remark refers to possible improvement on Lemma 3. In Lemma 3, we should

evaluate the expression inside the expectation on the LHS of (31).

E
[ L∑

m=1

{1

n

n∑
i=1

Xi,kBm(Zi)η
(l)
i, j

}2]
=

1

n
E
{
(X1,kη

(l)
1, j)

2

L∑
m=1

B2
m(Z1)

}
≤ C1

L
n

E{(X1,kη
(l)
1, j)

2} (31)

≤ C1L
n

E{|X1,k|2p1}1/p1E{|η(l)
1, j|2p2}1/p2

for some positive constant C1 and (p1, p2) satisfying 1/p1 + 1/p2 = 1. Note that we used

Assumption VC and the fact for some positive constant C3,
∑L

m=1 B2
m(Z1) < C3L uniformly in

Z1 here. If we take p1 = 4 and p2 = 4/3, we have (31)= O(L3/2/n) and this suggests there may

be possibility of improvement in convergence rate up to
√

n−1L3/2 log n. We have not proved

this conjecture yet.

Remark 5 This remark is about possible improvement on Proposition 4. Note that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δ2,1

...

Δ2,p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

=
1

n
rTW

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IL −Γ̂2,1 · · · −Γ̂p,1

−Γ̂1,2 IL · · · −Γ̂p,2
...

...
. . .

...

−Γ̂1,p −Γ̂2,p · · · IL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
diag(T−2

1 , . . . ,T
−2
p )

=
1

n
rT (Ê1, . . . , Êp)diag(T−2

1 , . . . ,T
−2
p )

and

1

n
rT η̂(l)

j =
1

n
rTη(l)

j +
1

n
rTW− j(γ̂

(l)
j − γ(l)

j ).

Recall the definition of Ê j in (15) and Ê j = (̂η(1)
j , . . . , η̂

(L)
j ). Since

|n−1rTW− j(γ̂
(l)
j − γ(l)

j )| ≤ (n−1‖r‖2)1/2(n−1‖W− j(γ̂
(l)
j − γ(l)

j )‖2)1/2

≤ CL−3(log n)1/2(max
l, j

s(l)
j )1/2

√
L2 log n

n

uniformly in j with probability tending to 1 for some positive constant C, this is small enough.

Hence we have only to evaluate n−1rTη(l)
j . Recalling ri =

∑
j∈S0

Xi, j(gj(Zi) − BT (Zi)β0 j) and

η(l)
j = W (l)

j −W− jγ
(l)
j , we conjecture that n−1rTη(l)

j is much smaller than Op(L−3) given in the

proof of the proposition. We have not proved this conjecture yet.
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4 Numerical studies

In this section, we present the results of simulation studies. The proposed de-biased group

Lasso estimator may look complicated. However, it worked well in the simulation studies and

the results imply that this de-biased group Lasso estimator is quite promising.

In the studies, we present the results on hypothesis testing of whether ‖gj‖2 = 0 or not for

j = 1, . . . , 12 in Models 1-3 defined below. We also present some more simulation results and

a real data application in Section S.2 in the Supplement.

We used the cv.gglasso function of the R package ‘gglasso’ version 1.4 on R x64 3.5.0.

The package is provided by Profs Yi Yang and Hui Zou. See [32] for more details. We chose

tuning parameters by using the CV procedure of the cv.gglasso function. First we computed

β̂ by using the CV procedure and then corrected the bias of it to get b̂. We also used the

CV procedure when we computed Θ̂. We didn’t optimize b̂ with respect to λ0 because it

took too much of time even for one repetition. We used an orthonormal spline basis which is

constructed from the quadratic equispaced B-spline basis.

In the three models, Zi follows the uniform distribution on [0, 1] Xi,1 ≡ 1, and {Xi, j}pj=2

follows a stationary Gaussian AR(1) process with ρ = 0.5. We took E{Xi,2} = 0 and E{X2
i,2} = 1

and Zi and {Xi, j}pj=2
are mutually independent. As for the error term, we took εi ∼ N(0, 3).

We tried two cases, (L, p, n,Repetition number) = (5, 250, 250, 200) and (5, 350, 350, 200).

Note that the actual dimension is pL = 1250 and 1750. Besides, the tuning parameters were

determined by the data and one iteration needs 61 runs of the group Lasso with very many

covariates. Therefore it took a long time for only one case of each model.

In Model 1, we set

g2(z) = 2+ 2 sin(πz), g4(z) = 2(2z− 1)2 − 2, g6(z) = 1.8 log(z+ 1.718282), g8(z) = 2.5(1− z).

All the other functions are set to be 0 and irrelevant.

In Model 2, we set

g2(z) = 2 + 2(2z − 1)3, g4(z) = 2 cos(πz), g6(z) =
1.8

1 + z2
, g8(z) =

exp(1 + z)

3.4
.

All the other functions are set to be 0 and irrelevant.

In Model 3, we set

g2(z) = 2 + 2 sin(πz), g4(z) = 2(2z − 1)2 − 2, g6(z) =
1.8

1 + z2
,

g8(z) =
exp(1 + z)

3.4
, g10(z) = 1.8 log(z + 1.718282), g12(z) = 2 cos(πz).

All the other functions are set to be 0 and irrelevant.
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We considered hypothesis testing of

H0 : ‖gj‖2 = 0 vs. H1 : ‖gj‖2 > 0 (32)

for j = 1, . . . , 12 in Models 1-3. We computed the critical values from the result that
√

n(̂bj −
β0 j) is approximately distributed as N(0, Ω̂ j, j) in Theorem 1. Then ‖̂bj‖2 is the estimator of

‖gj‖2 since we used an orthonormal B-spline basis here. We compared ‖̂bj‖2 and the simulated

critical value. The nominal significance levels are 0.05 and 0.10.

In Tables 1-12, each entry is the rate of rejecting H0. Tables 1, 3, 5, 7, 9, and 11 are for

relevant j (H1 is true) and Tables 2, 4, 6, 8, 10, and 12 are for irrelevant j (H0 is true).

As shown in Tables for relevant covariates (H1), the rejection rate is 1.00 for any case.

As for irrelevant covariates (H0), the actual significance levels are close to the nominal ones

except for j = 7 in Models 1 and 2 and j = 7, 9 in Model 3. Note that the standard errors

are 0.022(α = 0.10) and 0.016(α = 0.05) since the repetition number is 200 due to the long

computational time. We also tried 6 more cases where every gj(z) is replaced with gj(z)/
√

2.

There is no significant differences and the results of the 6 cases are presented in the supple-

ment. These simulation results imply that our de-biased Lasso procedure is very promising

for statistical inference under the original high-dimensional model, i.e. statistical inference

without variable selection.

Table 1: H1 for Model 1 with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table 2: H0 for Model 1 with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.06 0.06 0.18 0.12 0.08 0.15 0.08

α = 0.05 0.06 0.02 0.02 0.13 0.06 0.04 0.08 0.06

Table 3: H1 for Model 2 with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00
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Table 4: H0 for Model 2 with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.11 0.11 0.18 0.18 0.12 0.08 0.14 0.12

α = 0.05 0.06 0.06 0.10 0.11 0.06 0.04 0.08 0.05

Table 5: H1 for Model 3 with p = 250 and n = 250

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: H0 for Model 3 with p = 250 and n = 250

j 1 3 5 7 9 11

α = 0.10 0.12 0.07 0.05 0.22 0.22 0.15

α = 0.05 0.07 0.04 0.03 0.14 0.16 0.10

Table 7: H1 for Model 1 with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table 8: H0 for Model 1 with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.03 0.05 0.16 0.11 0.07 0.10 0.08

α = 0.05 0.06 0.02 0.02 0.12 0.06 0.05 0.06 0.05

Table 9: H1 for Model 2 with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00
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Table 10: H0 for Model 2 with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.09 0.10 0.10 0.16 0.11 0.06 0.11 0.08

α = 0.05 0.04 0.04 0.06 0.10 0.06 0.04 0.06 0.05

Table 11: H1 for Model 3 with p = 350 and n = 350

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table 12: H0 for Model 3 with p = 350 and n = 350

j 1 3 5 7 9 11

α = 0.10 0.09 0.05 0.07 0.22 0.20 0.10

α = 0.05 0.07 0.03 0.02 0.17 0.14 0.07

5 Proofs of theoretical results

In this section, we prove Propositions 3-5. We state two technical lemmas before we prove the

propositions. These lemmas will be verified in the Supplement.

We define L × L matrices B̂ j,k and Bj,k for j = 1, . . . , p and k = 1, . . . , p as

B̂ j,k �
1

n
ÊT

j Êk and Bj,k �
1

n
E(ET

j Ek)

See (15) and (9) for the definitions of Ê j and E j. Note that and

Bj, j = Σ j, j − Σ j,− jΣ
−1
− j,− jΣ− j, j = Θ

−1
j, j and Bj,k = E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
η(1)

1, j
...

η(L)

1, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (η(1)

1,k, . . . , η
(L)

1,k)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ . (33)

We establish the convergence of B̂ j,k to Bj,k in Lemma 5.

Lemma 5 Suppose that Assumptions VC, S1, S2, E, and L(1)(2) hold. Then ‖B̂ j,k−Bj,k‖F → 0

uniformly in j (1 ≤ j ≤ p) and k (1 ≤ k ≤ p) with probability tending to 1.
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In the next lemma, we establish the desirable properties of T 2
j . Recall that ρ(A) is the

spectral norm of a matrix A.

Lemma 6 Suppose that Assumptions VC, S1, S2, E, and L(1)(2) hold. Then we have (a) and

(b).

(a) For some positive constants C1 and C2, we have C1 < ρ(T 2
j ) = ρ(T

2T
j ) < C2 and 1/C2 <

ρ(T−2
j ) = ρ(T−2T

j ) < 1/C1 uniformly in j (1 ≤ j ≤ p) with probability tending to 1.

(b) ‖T 2
j − Θ−1

j, j‖F → 0 and sup‖x‖=1 ‖(T−2
j − Θ j, j)x‖ → 0 uniformly in j (1 ≤ j ≤ p) with

probability tending to 1.

Now we begin to prove Propositions 3-5

Proof of Proposition 3) Since (21) and the properties of κ(l)j,k below (14) imply

Δ1, j = T−2T
j Λ j

∑
k� j

KT
j,k (̂βk − β0k)

and

|λ(l)
j

∑
k� j

κ(l)Tj,k (̂βk − β0k)| ≤ max
a,b
λ(b)

a P1(β̂ − β0),

we have uniformly in j,

‖Δ1, j‖ ≤ max
a,b
λ(b)

a ρ(T
−2
j )L1/2P1(β̂ − β0). (34)

Recall that maxa,b λ
(b)
a = O(

√
n−1L2 log n) in Proposition 2. By (34), Lemma 6, and the bound

of P1(β̂ − β0) from Proposition 1, we have

‖Δ1, j‖ ≤ Cλ0s0

√
L3 log n

n
(35)

uniformly in j with probability tending to 1 for some positive constant C.

The desired result follows from (35) and the condition on λ0 in Proposition 1. Hence the

proof of the proposition is complete.

Proof of Proposition 4) Write

(ΔT
2,1, . . . ,Δ

T
2,p) = (n−1W T r)T Θ̂T

= (n−1W T r)T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IL −Γ̂2,1 −Γ̂3,1 · · · −Γ̂p,1

−Γ̂1,2 IL −Γ̂3,2 · · · −Γ̂p,2

−Γ̂1,3 −Γ̂2,3 IL · · · −Γ̂p,2
...

...
...

. . .
...

−Γ̂1,p −Γ̂2,p −Γ̂3,p · · · IL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
diag(T−2

1 , . . . ,T
−2
p ).
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The above expression implies that the absolute value of the l th element of T 2T
j Δ2, j is bounded

from above by

P∞(n−1W T r)(P1(γ̂(l)
j ) + 1) ≤ C1P∞(n−1W T r)(s(l)

j )1/2(‖γ(l)
j ‖ + 1) (36)

uniformly in l and j with probability tending to 1 for some positive constant C1. Note that

the difference between P1(γ̂(l)
j ) and P1(γ(l)

j ) is negligible by Proposition 2 and that P1(γ(l)
j ) ≤

(s(l)
j )1/2‖γ(l)

j ‖.
Thus by Assumption S2(1), (36) and Lemma 6, we have

‖Δ2, j‖ ≤ C2P∞(n−1W T r)
( L∑

l=1

s(l)
j

)1/2
(37)

uniformly in j with probability tending to 1 for some positive constant C2.

(37) and Lemma 1 yield the desired result. Hence the proof of the proposition is complete.

Proof of Proposition 5) The desired result follows from (a) and (b) below, which will be

verified later in the proof.

(a) For any x ∈ RL and y ∈ RL satisfying ‖x‖ = 1 and ‖y‖ = 1,

|xT (Ω̂ j,k − Θ j, jB j,kΘk,k)y| → 0

uniformly in x, y, j, and k with probability tending to 1.

(b) Θ j, jB j,kΘk,k = Θ j,k

Actually (a) and (b) imply that for any x ∈ RmL satisfying ‖x‖ = 1, xTΔx → 0 uniformly

in x and { j1, . . . , jm} with probability tending to 1.

Now we demonstrate (a) and (b).

(a) Recall that Ω̂ j,k = T−2T
j B̂ j,kT−2

k in (29) and Bj, j = Θ
−1
j, j . Then note that

xT (Ω̂ j,k − Θ j, jB j,kΘk,k)y = {xT (T−2
j − Θ j, j)

T }B̂ j,kT−2
k y (38)

+ xTΘ j, j(B̂ j,k − Bj,k)T−2
k y + xTΘ j, jB j,k{(T−2

k − Θk,k)y}.

By Lemmas 5 and 6, we have with probability tending to 1,

‖B̂ j,k − Bj,k‖F → 0 uniformly in j and k (39)

and

‖(T−2
j − Θ j, j)x‖ → 0 uniformly in j and x, (40)

where x ∈ RL and ‖x‖ = 1.
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Besides, by Lemmas 5 and 6, Assumptions S1 and S2(see (25)), (33), and the Cauchy-

Schwarz inequality, we have

ρ(T−2
j ) ≤ C1 (41)

|xT Bj,ky| ≤ (xTΘ−1
j, j x)1/2(yTΘ−1

k,ky)1/2 ≤ C2‖x‖‖y‖ (42)

|xT B̂ j,ky| ≤ (xT B̂ j, jx)1/2(yT B̂k,ky)1/2 ≤ C3‖x‖‖y‖ (43)

uniformly j and k with probability tending to 1 for some positive constants C1, C2, and C3.

We can evaluate the first term on the RHS of (38) uniformly by using (40), (41), and (43).

We can treat the other two terms on the RHS of (38) similarly. We use (S.1) in the Supplement

for the second term to show that the absolute value is less than or equal to ‖ΘT
j, jx‖‖B̂ j,k −

Bj,k‖F‖T−2
k y‖. Hence we have established (a).

(b) When j = k, the equation is trivial. First we consider the case of p = 2. Take two

L-dimensional random vectors U1 and U2 satisfying

E

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝U1

U2

⎞⎟⎟⎟⎟⎟⎟⎠ (UT
1 UT

2 )

⎫⎪⎪⎬⎪⎪⎭ = Σ =
⎛⎜⎜⎜⎜⎜⎜⎝Σ1,1 Σ1,2

Σ2,1 Σ2,2

⎞⎟⎟⎟⎟⎟⎟⎠ .
We have

Σ−1 =

⎛⎜⎜⎜⎜⎜⎜⎝Θ1,1 Θ1,2

Θ2,1 Θ2,2

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝Σ1,1 Σ1,2

Σ2,1 Σ2,2

⎞⎟⎟⎟⎟⎟⎟⎠
−1

.

and consider U1 − ΓT
1 U2 and U2 − ΓT

2 U1, where ΓT
1 = Σ1,2Σ

−1
2,2 and ΓT

2 = Σ2,1Σ
−1
1,1. Then we have

Θ1,1 = [E{(U1 − ΓT
1 U2)(U1 − ΓT

1 U2)T }]−1 and Θ2,2 = [E{(U2 − ΓT
2 U1)(U2 − ΓT

2 U1)T }]−1.

In addition,

B1,2 = E{(U1 − ΓT
1 U2)(U2 − ΓT

2 U1)T } = −Σ1,2Σ
−1
2,2(Σ2,2 − Σ2,1Σ

−1
1,1Σ1,2) = −Σ1,2Σ

−1
2,2Θ

−1
2,2. (44)

Then (44) and (A-74) in [12] yield

Θ1,1B1,2Θ2,2 = −Θ1,1Σ1,2Σ
−1
2,2 = Θ1,2. (45)

Hence we have verified (b) for p = 2.

Next we deal with the cases of p > 2. We can consider the case of j = 1 and k = 2 without

loss of generality. Take p L-dimensional random vectors U1, . . . ,Up satisfying

E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
U1

...

Up

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (UT
1 , . . . ,U

T
p )

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ = Σ.
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We define a set of Θ1,1,Θ1,2,Θ2,2, B1,2 for this Σ by using U1, . . . ,Up.

Next take the orthogonal projections of U1 and U2 to the linear space spanned by U3, . . . ,Up

and denote them by U1 and U2, respectively. We define the residuals Û1 and Û2 as Û1 =

U1 − U1 and Û2 = U2 − U2. Then by (A-74) in [12], we have

⎛⎜⎜⎜⎜⎜⎜⎝Θ1,1 Θ1,2

Θ2,1 Θ2,2

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎣E

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝Û1

Û2

⎞⎟⎟⎟⎟⎟⎟⎠ (ÛT
1 ÛT

2 )

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎦
−1

. (46)

This means that we can define another set of Θ1,1,Θ1,2,Θ2,2, B1,2 by using Û1 and Û2. These

two sets of Θ1,1,Θ1,2,Θ2,2 are equal to each other. This is because the matrix in (46) is the

same submatrix of Σ−1. As for B1,2, the residual of U1 from the orthogonal projection of U1 to

U2, . . . ,Up is the same as the residual of Û1 from the orthogonal projection of Û1 to Û2. This

also holds for U2 and Û2. Thus two B1,2 are equal to each other.

The result for p = 2 implies that

Θ1,1B1,2Θ2,2 = Θ1,2

Hence the proof of (b) is complete.
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Supplement

S.1 Technical proofs

In this supplement, we prove all the lemmas and Propositions 1 and 2.

We often appeal to the standard arguments based on Bernstein’s inequality and reproduce

the inequality from [29] for reference.

Lemma 7 (Bernstein’s inequality) Let Y1, . . . ,Yn be independent random variables such that

E(Yi) = 0 and E(|Yi|m) ≤ m!Mm−2vi/2 for any positive integer m ≥ 2 and i = 1, . . . , n for some

positive constants M and vi. Then we have

P(|Y1 + · · · + Yn| > x) ≤ 2 exp
{
− x2

2(v + Mx)

}
for v =

∑n
i=1 vi.

We explain here why our Assumption VC in Section 3 allows us to use Bernstein’s in-

equality. Since

E{exp(αT X̆i)|Zi} ≤ exp(‖α‖2σ2/2) and λmin(ΣX(Zi))‖α‖2 ≤ Var(αT X̆i|Zi),

we have

‖α‖2 ≤ CVar(αT X̆i|Zi)

for some positive constant C by Assumptions VC(1)-(2). Recall that X̆i is defined just above

Assumption VC. Hence we can use σ2×the conditional variance instead of ‖α‖2σ2 when we

evaluate the moments necessary for Bernstein’s inequality. Then we can use assumptions and

properties of the conditional variances as well as the conditional means. Note that α can

depend on Zi.

Besides, we state some inequalities related to the Frobenius norm here.

For any matrices A and B for which AB is defined, we have

‖AB‖F ≤ ‖A‖F‖B‖F . (S.1)

This implies that for a k × k symmetric matrix A, we have

|λmin(A)| ∨ |λmax(A)| ≤ ‖A‖F (S.2)

The first one is well known and a requirement of the matrix norms. (S.2) follows from applying

(S.1) to xT Ax with x ∈ Rk and ‖x‖ = 1.
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Proof of Lemma 1) Write

1

n

n∑
i=1

W (l)
i, j (εi + ri) =

1

n

n∑
i=1

Xi, jBl(Zi)εi +
1

n

n∑
i=1

Xi, jBl(Zi)ri � al, j + bl, j. (S.3)

First we evaluate al, j and bl, j defined in (S.3) and then consider (
∑L

l=1 a2
l, j)

1/2 and (
∑L

l=1 b2
l, j)

1/2.

Evaluation of al, j : By Assumption VC and the local support property of the B-spline basis,

we have for some positive constants C1 and C2 that

E{X1, jBl(Z1)ε1} = 0 and E{|X1, jBl(Z1)ε1|m} ≤ C1m!(C2L1/2)m−2

for any positive integer m ≥ 2 uniformly in l and j. By employing the standard argument

based on Bernstein’s inequality, we obtain

|al, j| ≤ C3

√
log n

n
(S.4)

uniformly in l and j with probability tending to 1 for some positive constant C3.

Evaluation of bl, j : By (24) and the non-negativity of the B-spline basis functions, we have

|bl, j| ≤ C1

(log n)1/2

n

n∑
i=1

Bl(Zi)|ri| ≤ C2

log n
nL3

n∑
i=1

Bl(Zi) (S.5)

uniformly in l and j with probability tending to 1 for some positive constants C1 and C2. Since

for some positive constants C3 and C4,

E{Bl(Z1)} ≤ C3L−1/2 and E{Bm
l (Z1)} ≤ C4L(m−2)/2

for any positive integer m ≥ 2 uniformly in l, we can apply the standard argument based on

Bernstein’s inequality and get

1

n

n∑
i=1

Bl(Zi) ≤ C5L−1/2 (S.6)

uniformly in l with probability tending to 1 for some positive constant C5. Therefore by (S.5)

and (S.6), we have for some positive constant C6,

|bl, j| ≤ C6L−1/2 log n
L3

(S.7)

uniformly in l and j with probability tending to 1.

(S.4) and (S.7) yield

( L∑
l=1

a2
l, j

)1/2 ≤ C7

√
L log n

n
and

( L∑
l=1

b2
l, j

)1/2 ≤ C8

log n
L3

(S.8)
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uniformly in j with probability tending to 1 for some positive constants C7 and C8. Hence the

desired results follow from (S.8).

Proof of Lemma 2) Set

δn � max
1≤s,t≤pL

|(̂Σ − Σ)s,t|.

Notice that (̂Σ − Σ)s,t, the (s, t) element of Σ̂ − Σ, is written as

1

n

n∑
i=1

Bl1(Zi)Bl2(Zi)Xi, j1 Xi, j2 − E{Bl1(Z1)Bl2(Z1)X1, j1 X1, j2}.

By Assumption VC and the properties of the B-spline basis, we have uniformly in l1, l2, j1,

and j2,

E{|Bl1(Z1)Bl2(Z1)X1, j1 X1, j2 |} ≤ C1 and

E{|Bl1(Z1)Bl2(Z1)X1, j1 X1, j2 |m} ≤ E{|Bl1(Z1)X1, j1 |2m} + E{|Bl2(Z1)X1, j2 |2m} ≤ C2L(C3L)m−2m!

for any positive integer m ≥ 2 for some positive constants C1, C2, and C3. Thus by applying

the standard argument based on Bernstein’s inequality, we obtain

δn ≤ C4

√
L log n

n
(S.9)

with probability tending to 1 for some positive constant C4.

We evaluate |vT (Σ− Σ̂)v| for v = (vT
1 , . . . , v

T
p )T ∈ Ψ(S0, 3) by employing (S.9). Notice that

‖
p∑

k=1

(̂Σ j,k − Σ j,k)vk‖ ≤
p∑

k=1

‖Σ̂ j,k − Σ j,k‖F‖vk‖ ≤ δnLP1(v).

We used (S.1) and (S.9) here. Then

|vT (Σ − Σ̂)v| ≤ P1(v)P∞((Σ − Σ̂)v) ≤ {P1(v)}2δnL

≤ {P1(vS0
) + P1(vS0

)}2δnL ≤ 16δnL{P1(vS0
)}2 ≤ 16s0δnL‖vS0

‖2.

This implies

vT Σ̂v ≥ vTΣv − 16s0δnL‖vS0
‖2

for v = (vT
1 , . . . , v

T
p )T ∈ Ψ(S0, 3). Hence

vT Σ̂v

‖vS0
‖2 ≥

vTΣv

‖vS0
‖2 − 16s0δnL ≥ vTΣv

‖v‖2 − 16s0δnL. (S.10)

The desired result follows from (S.9) and (S.10). Hence the proof of the lemma is complete.
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We will prove Proposition 1 a little more generally than stated in Section 3. We assume we

have some prior knowledge on S0, i.e. we know an index set Sprior ⊂ S0 and we don’t impose

any penalties on Sprior. This means we replace P1(β) with
∑

j∈Sprior
‖β j‖ or P1(βSprior

) in (6).

Proof of Proposition 1) In the proof, we confine ourselves to this intersection of the two sets

:

{P∞(n−1W T (r + ε)) ≤ λ0/2 } ∩ { 2φ2

Σ̂
(S0, 3) ≥ φ2

Σ(S0, 3) }.
The former set is related to the deviation condition and the latter one is related to the RE

condition. According to Lemma 1 and the condition on λ0, the probability of this intersection

tends to 1.

Because of the optimality of β̂, we have

1

n
‖Y −Wβ̂‖2 + 2λ0

∑
j∈Sprior

‖̂β j‖ ≤ 1

n
‖Y −Wβ0‖2 + 2λ0

∑
j∈Sprior

‖β0 j‖. (S.11)

By (S.11) and the deviation condition, we get

1

n
‖W (β̂ − β0)‖2 + 2λ0

∑
j∈Sprior

‖̂β j‖ ≤ λ0P1(β̂ − β0) + 2λ0

∑
j∈Sprior∩S0

‖β0 j‖.

Since Sprior = S0 ∪ (Sprior ∩ S0), the above inequality reduces to

1

n
‖W (β̂ − β0)‖2 + 2λ0

∑
j∈S0

‖̂β j‖ (S.12)

≤ λ0P1(β̂ − β0) − 2λ0

∑
j∈Sprior∩S0

‖̂β j‖ + 2λ0

∑
j∈Sprior∩S0

‖β0 j‖

≤ λ0P1(β̂ − β0) + 2λ0

∑
j∈Sprior∩S0

‖̂β j − β0 j‖

≤ λ0P1(β̂ − β0) + 2λ0P1(β̂S0
− β0S0

).

This (S.12) is equivalent to

1

n
‖W (β̂ − β0)‖2 + 2λ0P1(β̂S0

) ≤ λ0P1(β̂S0
− β0S0

) + λ0P1(β̂S0
) + 2λ0P1(β̂S0

− β0S0
).

The above inequality yields

1

n
‖W (β̂ − β0)‖2 + λ0P1(β̂S0

) ≤ 3λ0P1(β̂S0
− β0S0

) ≤ 3λ0s1/2
0
‖β̂S0

− β0S0
‖. (S.13)

Note that (S.13) implies that β̂−β0 ∈ Ψ(S0, 3) since P1(β̂S0
) = P1(β̂S0

−β0S0
). Thus we recall

4



the definition of φ2

Σ̂
(S0, 3) and obtain

1

n
‖W (β̂ − β0)‖2 + λ0P1(β̂S0

)

≤ 3λ0s1/2
0

φΣ̂(S0, 3)
n−1/2‖W (β̂ − β0)‖

≤ 1

2n
‖W (β̂ − β0)‖2 + 9λ2

0s0

2φ2

Σ̂
(S0, 3)

Finally by the RE condition, we have

1

n
‖W (β̂ − β0)‖2 + 2λ0P1(β̂S0

) ≤ 9λ2
0s0

φ2

Σ̂
(S0, 3)

≤ 18λ2
0s0

φ2
Σ
(S0, 3)

. (S.14)

The former half of the proposition follows from (S.14).

Next we verify the latter half. Since β̂ − β0 ∈ Ψ(S0, 3),

P1(β̂S0
) ≤ 3s1/2

0
‖β̂S0

− β0S0
‖.

Thus we have

P1(β̂ − β0) ≤ P1(β̂S0
− β0S0

) + 3s1/2
0
‖β̂S0

− β0S0
‖ ≤ 4s1/2

0
‖β̂S0

− β0S0
‖. (S.15)

By (S.15), the definition of φ2

Σ̂
(S0, 3), (S.14), and the RE condition, we have

P1(β̂ − β0)

≤ 4s1/2
0

φΣ̂(S0, 3)
n−1/2‖W (β̂ − β0)‖ ≤ 12s0λ0

φ2

Σ̂
(S0, 3)

≤ 24s0λ0

φ2
Σ
(S0, 3)

.

This is the latter half of the proposition. Hence the proof of the proposition is complete.

Proof of Lemma 3) First we should evaluate

1

n

n∑
i=1

Xi,kBm(Zi)η
(l)
i, j − E{X1,kBm(Z1)η(l)

1, j}

uniformly in k,m, l, j. Note that E{X1,kBm(Z1)η(l)
1, j} = 0 from the definition of η(l)

1, j. Denote the

conditional mean and variance of X1,kBm(Z1) given Z1 by μ̃k,m(Z1) and σ̃2
k,m(Z1), respectively

and note that ‖μ̃k,m‖∞ ≤ C1L1/2 and ‖σ̃2
k,m‖∞ ≤ C2L uniformly in k and m for some positive

constants C1 and C2 by Assumption VC. Besides, E{̃μ2
k,m(Z1) + σ̃2

k,m(Z1)} is also uniformly

bounded. By Assumptions VC and E, (27), and (28), and some calculations, we have

E{|X1,kBm(Z1)η(l)
1, j|t} ≤ E{|X1,kBm(Z1)|2t} + E{|η(l)

1, j|2t} ≤ C3t!(C4Lt−2)L

5



for any positive integer t ≥ 2 for some positive constants C3 and C4. By applying Bernstein’s

inequality with x = C5

√
n−1L log n for some suitable C5, vi = Ln−2, and M = O(L/n), we

follow the standard argument and obtain∣∣∣∣∣∣∣1n
n∑

i=1

Xi,kBm(Zi)η
(l)
i, j

∣∣∣∣∣∣∣ ≤ C6

√
L log n

n
(S.16)

uniformly in k,m, l, j with probability tending to 1 for some positive constant C6 depending

on C5.

(S.16) yields the desired result of the lemma :⎧⎪⎪⎪⎨⎪⎪⎪⎩
L∑

l=1

∣∣∣∣∣∣∣1n
n∑

i=1

Xi,kBm(Zi)η
(l)
i, j

∣∣∣∣∣∣∣
2
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

≤ C6

√
L2 log n

n

uniformly in k,m, j with probability tending to 1. Hence the proof of the lemma is complete.

Proof of Lemma 4) We should just follow that of Lemma 2. Note that we can use the result

on δn there as it is since it does not depend on j or l. We should replace Σ̂, Σ, S0, and s0 with

Σ̂− j,− j, Σ− j,− j, S(l)
j , and s(l)

j , respectively and then modify the definition ofΨ(S0, 3) conformably.

Proof of Proposition 2) We should just apply the standard argument of the Lasso as in the

proof of Proposition 1. Then the results follow from Lemmas 3 and 4. The details are omitted.

Proof of Lemma 5) Write

B̂ j,k =
1

n
ET

j Ek +
1

n
ET

j W−k(Γk − Γ̂k) +
1

n
(Γ j − Γ̂ j)

TW T
− jEk +

1

n
(Γ j − Γ̂ j)

TW T
− jW−k(Γk − Γ̂k)

� D̂1 + D̂2 + D̂3 + D̂4,

where D̂1, D̂2, D̂3, D̂4 are clearly defined in the last line. We evaluate D̂1, D̂2, D̂3, D̂4 uniformly

in j and k. We suppress the subscripts j and k here.

D̂1 : Exactly as in the proof of Lemma 3, we have

max
1≤a,b≤L

|(D̂1 − Bj,k)a,b| ≤ C1

√
L log n

n
(S.17)

uniformly in j and k with probability tending to 1 for some positive constant C1.

D̂2 and D̂3 : Recall the result in Proposition 2. Then the absolute value of the (a, b) element of

D̂2 is bounded from above by

n−1/2‖η(a)
j ‖n−1/2‖W−k(γ̂

(b)

k − γ(b)

k )‖ ≤ C2(s(b)

k )1/2
√

n−1L2 log n (S.18)

uniformly in a, b, j, k with probability tending to 1 for some positive constant C2. We can treat

D̂3 in the same way.
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D̂4 : By Proposition 2, the absolute value of the (a, b) element of D̂4 is bounded from above

by

n−1/2‖W− j(γ̂
(a)
j − γ(a)

j )‖n−1/2‖W−k(γ̂
(b)

k − γ(b)

k )‖ ≤ C3(s(a)
j s(b)

k )1/2n−1L2 log n (S.19)

uniformly in a, b, j, k with probability tending to 1 for some positive constant C3.

By (S.17)-(S.19) and Assumption L(2), we have

L max
1≤a,b≤L

|(B̂ j,k − Bj,k)a,b| → 0

uniformly in j and k with probability tending to 1. This implies the desired result

‖B̂ j,k − Bj,k‖F → 0

uniformly in j and k with probability tending to 1. Hence the proof of the lemma is complete.

Proof of Lemma 6) Write

T 2
j =

1

n
ÊT

j Ê j + Γ̂
T
j K jΛ j = B̂ j, j + Â j,

where Â j is defined as Â j � Γ̂T
j K jΛ j. Suppose we have proved ‖Â j‖F → 0 uniformly in j with

probability tending to 1. We will verify this convergence in probability at the end of the proof.

Write the singular value decomposition of T 2
j as T 2

j = UT
j Π jV j, whereΠ j = diag(π1, . . . , πL).

Lemma 5 and (S.1) imply that for any x satisfying ‖x‖ = 1,

λmin(Θ−1
j, j) + o(1) ≤ ‖T 2

j x‖ ≤ λmax(Θ−1
j, j) + o(1) (S.20)

uniformly in j with probability tending to 1. This is because ‖Â jx‖ ≤ ‖Â j‖F . Recall also that

Bj, j = Θ
−1
j, j . (S.20) implies that

λ2
min(Θ−1

j, j) + o(1) ≤ min{π2
1, . . . , π

2
L} ≤ max{π2

1, . . . , π
2
L} ≤ λ2

max(Θ−1
j, j) + o(1) (S.21)

uniformly in j with probability tending to 1. (a) follows from (S.21) and (25) since

ρ2(T 2
j ) = max{π2

1, . . . , π
2
L} and ρ2(T−2

j ) = 1/min{π2
1, . . . , π

2
L}.

Next we demonstrate (b). Since

T 2
j − Θ−1

j, j = B̂ j, j − Θ−1
j, j + Â j,

the first result follows from Lemma 5. As for the second result, notice that

T−2
j − Θ−1

j, j = T−2
j (Θ−1

j, j − T 2
j )Θ j, j. (S.22)
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The second result follows from (a), the first one, and (25).

‖Â j‖F : The (a, b) element of Â j is bounded from above by∑
k� j

|λ(b)
j γ̂

(a)T
j,k κ

(b)

j,k | ≤
∑
k� j

λ(b)
j ‖̂γ(a)

j,k ‖ = λ(b)
j P1(γ̂(a)

j ).

Therefore

‖Â j‖F ≤ L max
a,b. j
{λ(b)

j P1(γ̂(a)
j )} ≤ C

√
L4 log n

n
(max

a, j
s(a)

j )1/2 → 0

uniformly in j with probability tending to 1 for some positive constant C. We used Proposition

2, Assumptions S2(1) and L(2), and the fact that P1(γ(a)
j ) ≤ (s(a)

j )1/2‖γ(a)
j ‖. Hence the proof of

the lemma is complete.

S.2 Additional numerical studies

S.2.1 Simulation studies

We present MSE results of our simulation studies here. We compared the oracle estimator, the

original group Lasso, the adaptive group Lasso(ALasso), the group SCAD, and the de-biased

group Lasso in terms of MSE defined below in (S.23). From a theoretical point of view, the

group SCAD has the same asymptotic covariance matrix as the oracle estimator since the

SCAD is selection consistent and a post-selection estimator. Actually the SCAD is almost the

best in MSE among the original group Lasso, the adaptive group Lasso, the group SCAD, and

the de-biased group Lasso. However, we should emphasize again that the de-biased group

Lasso is the estimator without any variable selection and that it is used for statistical inference

under the original high-dimensional model. We are not able to carry out this kind of statistical

inference with the SCAD because it selects covariates.

The models and the parameters such as n and p are the same as in Section 4. We used also

the cv.gglasso function as well as in Section 4. We implemented the group SCAD by using

the R package ‘grpreg’ version 3.2-1 (the cv.grpreg function). It is provided by Prof. Patrick

Breheny. See [2] for more details. Our weights of the adaptive group Lasso estimator are as

follows:

wj �
1

max{‖̂β j‖, 0.001} .

Let gj be an estimator of gj. Then MSE and AME in tables are defined as

MSE � the average over the repetitions of
1

n

n∑
i=1

f 2
j (Zi), (S.23)
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f j = gj or gj − gj for relevant j ∈ S0 and

AMSE � the average over the repetitions of
1

|S|
∑
j∈S

1

n

n∑
i=1

f 2
j (Zi), f j = gj

for S = {1, 3, 5, 7, 9, 10, 11, 12} (Models 1-2) and {1, 3, 5, 7, 9, 11} (Model 3). The group

SCAD and the adaptive group Lasso selected almost no variable fromS = {1, 3, 5, 7, 9, 10, 11, 12}
(Models 1-2) and {1, 3, 5, 7, 9, 11} (Model 3) and AMSE in the captions is that of the de-biased

group Lasso.

Table S.1: MSE for Model 1 with p = 250 (AMSE = 0.0582)

j 2 4 6 8

gj 7.2448 2.3130 2.0411 2.0981

oracle 0.0758 0.0853 0.0764 0.0766

Lasso 0.2670 0.3371 0.2225 0.1698

ALasso 0.1101 0.2708 0.1829 0.1295

SCAD 0.0659 0.0916 0.0849 0.0852

de-biased 0.0933 0.1233 0.1003 0.1004

Table S.2: MSE for Model 2 with p = 250 (AMSE = 0.0639)

j 2 4 6 8

gj 4.4265 1.8147 2.1168 1.9670

oracle 0.0761 0.0854 0.0764 0.0767

Lasso 0.2408 0.2628 0.1524 0.1653

ALasso 0.0841 0.1458 0.0920 0.0974

SCAD 0.0668 0.0965 0.0861 0.0863

de-biased 0.0916 0.1209 0.0911 0.0962
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Table S.3: MSE for Model 3 with p = 250 (AMSE = 0.0563)

j 2 4 6 8

gj 4.4265 2.3130 2.1168 1.9670 2.0411 1.8147

oracle 0.0810 0.0922 0.0808 0.0885 0.0862 0.0813

Lasso 0.2829 0.3322 0.2262 0.1452 0.1866 0.2529

ALasso 0.0955 0.1685 0.1283 0.0911 0.1049 0.1325

SCAD 0.0723 0.0956 0.0882 0.0944 0.0871 0.0840

de-biased 0.1164 0.1413 0.1126 0.1076 0.1123 0.1314

Table S.4: MSE for Model 1 with p = 350 (AMSE = 0.0410)

j 2 4 6 8

gj 7.0290 2.1115 2.0634 2.1013

oracle 0.0504 0.0532 0.0570 0.0500

Lasso 0.1936 0.2512 0.1615 0.1252

ALasso 0.0926 0.2317 0.1597 0.1027

SCAD 0.0522 0.0562 0.0592 0.0570

de-biased 0.0688 0.0769 0.0696 0.0695

Table S.5: MSE for Model 2 with p = 350 (AMSE = 0.0445)

j 2 4 6 8

gj 4.6034 2.0210 2.0928 2.0379

oracle 0.0508 0.0533 0.0570 0.0500

Lasso 0.1751 0.1857 0.1085 0.1212

ALasso 0.0680 0.1052 0.0720 0.0720

SCAD 0.0526 0.0584 0.0593 0.0576

de-biased 0.0685 0.0721 0.0642 0.0691
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Table S.6: MSE for Model 3 with p = 350 (AMSE = 0.0414)

j 2 4 6 8 10 12

gj 4.6034 2.1115 2.0928 2.0379 2.0634 2.0210

oracle 0.0527 0.0558 0.0599 0.0552 0.0513 0.0538

Lasso 0.1952 0.2393 0.1591 0.1024 0.1260 0.1796

ALasso 0.0760 0.1306 0.0995 0.0653 0.0782 0.1071

SCAD 0.0557 0.0603 0.0610 0.0647 0.0607 0.0562

de-biased 0.0792 0.0855 0.0742 0.0754 0.0714 0.0819
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We also present the results on the other three models, Model 1’, Model 2’ and Model 3’.

We defined them by replacing gj with gj/
√

2 in Models 1-3.

Model 1’(p = 250 and n = 250)

Table S.7: H1 for Model 1’ with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.8: H0 for Model 1’ with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.11 0.06 0.06 0.16 0.10 0.08 0.15 0.10

α = 0.05 0.06 0.01 0.03 0.12 0.06 0.05 0.07 0.06

Table S.9: MSE for Model 1’ with p = 250 (AMSE = 0.0596)

j 2 4 6 8

gj 3.6224 1.1565 1.0206 1.0490

oracle 0.0758 0.0853 0.0764 0.0766

Lasso 0.2574 0.3138 0.2025 0.1526

ALasso 0.0878 0.2178 0.1406 0.1026

SCAD 0.0678 0.1171 0.1107 0.0985

de-biased 0.0873 0.1134 0.0925 0.0940

Model 2’(p = 250 and n = 250)

Table S.10: H1 for Model 2’ with p = 250 and n = 250

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00
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Table S.11: H0 for Model 2’ with p = 250 and n = 250

j 1 3 5 7 9 10 11 12

α = 0.10 0.12 0.10 0.16 0.18 0.12 0.08 0.14 0.12

α = 0.05 0.06 0.06 0.10 0.10 0.06 0.04 0.08 0.05

Table S.12: MSE for Model 2’ with p = 250 (AMSE = 0.0641)

j 2 4 6 8

gj 2.2132 0.9073 1.0584 0.9835

oracle 0.0760 0.0853 0.0764 0.0767

Lasso 0.2195 0.2291 0.1354 0.1471

ALasso 0.0722 0.1199 0.0807 0.0829

SCAD 0.0711 0.1225 0.1023 0.1002

de-biased 0.0841 0.1102 0.0858 0.0899

Model 3’(p = 250 and n = 250)

Table S.13: H1 for Model 3’ with p = 250 and n = 250

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table S.14: H0 for Model 3’ with p = 250 and n = 250

j 1 3 5 7 9 11

α = 0.10 0.14 0.07 0.05 0.20 0.20 0.14

α = 0.05 0.09 0.04 0.02 0.14 0.15 0.09
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Table S.15: MSE for Model 3’ with p = 250 (AMSE = 0.0575)

j 2 4 6 8 10 12

gj 2.2132 1.1565 1.0584 0.9835 1.0206 0.9073

oracle 0.0809 0.0922 0.0808 0.0885 0.0862 0.0812

Lasso 0.2615 0.3005 0.2022 0.1261 0.1614 0.2184

ALasso 0.0837 0.1459 0.1097 0.0830 0.0898 0.1080

SCAD 0.0745 0.1164 0.1078 0.1063 0.1023 0.1018

de-biased 0.1036 0.1250 0.1016 0.0982 0.1000 0.1163

Model 1’(p = 350 and n = 350)

Table S.16: H1 for Model 1’ with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.17: H0 for Model 1’ with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.03 0.05 0.16 0.10 0.08 0.10 0.08

α = 0.05 0.06 0.02 0.03 0.10 0.06 0.04 0.06 0.05

Table S.18: MSE for Model 1’ with p = 350 (AMSE = 0.0419)

j 2 4 6 8

gj 3.5145 1.0557 1.0317 1.0506

oracle 0.0504 0.0532 0.0570 0.0500

Lasso 0.1874 0.2380 0.1501 0.1154

ALasso 0.0702 0.1602 0.1144 0.0762

SCAD 0.0538 0.0649 0.0707 0.0657

de-biased 0.0658 0.0725 0.0658 0.0664

Model 2’(p = 350 and n = 350)

14



Table S.19: H1 for Model 2’ with p = 350 and n = 350

j 2 4 6 8

α = 0.10 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00

Table S.20: H0 for Model 2’ with p = 350 and n = 350

j 1 3 5 7 9 10 11 12

α = 0.10 0.10 0.10 0.11 0.16 0.10 0.06 0.12 0.08

α = 0.05 0.05 0.06 0.06 0.10 0.06 0.04 0.06 0.06

Table S.21: MSE for Model 2’ with p = 350 (AMSE = 0.0449)

j 2 4 6 8

gj 2.3017 1.0105 1.0464 1.0189

oracle 0.0506 0.0532 0.0570 0.0500

Lasso 0.1618 0.1678 0.0987 0.1120

ALasso 0.0564 0.0797 0.0606 0.0597

SCAD 0.0544 0.0718 0.0682 0.0650

de-biased 0.0647 0.0679 0.0614 0.0664

Model 3’(p = 350 and n = 350)

Table S.22: H1 for Model 3’ with p = 350 and n = 350

j 2 4 6 8 10 12

α = 0.10 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.05 1.00 1.00 1.00 1.00 1.00 1.00

Table S.23: H0 for Model 3’ with p = 350 and n = 350

j 1 3 5 7 9 11

α = 0.10 0.09 0.04 0.07 0.22 0.18 0.10

α = 0.05 0.08 0.03 0.03 0.16 0.12 0.06
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Table S.24: MSE for Model 3’ with p = 350 (AMSE = 0.0420)

j 2 4 6 8 10 12

gj 2.3017 1.0557 1.0464 1.0189 1.0317 1.0105

oracle 0.0525 0.0558 0.0599 0.0552 0.0513 0.0537

Lasso 0.1839 0.2241 0.1475 0.0922 0.1127 0.1636

ALasso 0.0632 0.0980 0.0801 0.0584 0.0645 0.0839

SCAD 0.0571 0.0654 0.0689 0.0709 0.0667 0.0676

de-biased 0.0737 0.0786 0.0694 0.0705 0.0661 0.0756
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S.2.2 A real data application

We applied the proposed de-biased group Lasso procedure to the Boston Housing data as in

e.g. [S1] and [S3]. The data set is available in the R package ‘MASS.’ See also [S2] about

the data set. The data set has 14 variables, crim, zn, indus, chas, nox, rm, age, dis, rad, tax,

ptratio, black, lstat, medv, and 506 samples. The details of these variables are given at the end

of this section. We augmented the data set by adding some artificial variables.

In this study, we followed [S1] and [S3] and took Y = medv and lstat as the index variable.

Note that [S1] does not deal with high-dimensional models. As for lstat, we defined Z as

Z = F(lstat), where F(·) is the distribution function of 2× the χ2 distribution with d.f. 6. We

did this transformation to make the distribution of Z close to that of the uniform distribution

on [0, 1]. Note that [S1] and [S3] included only part of the original variables e.g. crim, rm,

tax, and ptratio in their models. We removed only a dummy variable chas since it does seem

to be significant in our preliminary analysis. The conditional number of the covariance matrix

of 11 original variables exceeds 100. This setup is unfavorable to any data analysis procedure.

The conditional number of the covariance matrix of only crim, rm, tax, and ptratio is about 14.

In this section, we present two results : the one with 11 original variables and 89 aug-

mented variables in Table S.25 and the one with only 11 original variables in Table S.26.

We explain our augmented model. Let q be the number of the original variables (q = 11).

Then our augmented model is

Y = g0(Z) +

q∑
j=1

gj(Z)Xj +

p∑
j=q+1

gj(Z)Xj + ε. (S.24)

First we standardized the q original variables so that they have mean 0 and variance 1 and

got X1, . . . , Xq. The details of the artificial variables are as follows:

X′j+11 = 0.25Xj + 0.75Rj, j = 1, . . . , q,

where Rj, j = 1, . . . , q, are i.i.d. N(0, 1) random variables. Then we standardized X′q+1, . . . , X
′
2q

as well and defined Xq+1, . . . , X2q from them. X′2q+1, . . . , X
′
p are i.i.d normal random variables

and we also standardized them to define X2q+1, . . . , Xp.

In the tables, ‖̂bj‖2 and ‖β̃ j‖2 are from the de-biased Lasso and the SCAD, respectively. We

computed p-values in the tables in a similar way to the critical values in Section 4 by using

Theorem 1. We tried p = 100 with L = 5 and the quadratic spline basis. The results of 24

larger ‖̂bj‖2 are given in Table S.25. In [S3], they included only four original variables (rm,

crim, tax, ptratio) and straightforward comparisons are very difficult.

If we compute all b̂ j for a large p, it will take a very long time. Therefore some kind of

screening that chooses rather many covariates and does not miss relevant variables may be
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necessary in practical situations.

In the two tables, the de-biased Lasso and the SCAD show different behaviors. The two

tables also show different results. The original Lasso selected only two variables, rm and

ptratio, in either model. This may be due to the large conditional number larger than 100

among the 11 original variables. Even the SCAD and the Lasso may have difficulty dealing

with such highly correlated data sets. As for the augmented variables, some have p-values less

than 0.05. But most of the augmented variables have larger p-values.

18



Table S.25: The model with 11 original variates and 89 augmented variables

Variable black zn rm rad tax dis

‖̂bj‖2/Var(Y) 0.120 0.116 0.114 0.074 0.049 0.049

‖β̃ j‖2/Var(Y) 0.005 0.000 0.082 0.112 0.000 0.062

p-value 0.002 0.000 0.000 0.000 0.000 0.000

Variable crim 14 indus ptratio nox 77

‖̂bj‖2/Var(Y) 0.028 0.026 0.024 0.024 0.017 0.009

‖β̃ j‖2/Var(Y) 0.000 0.000 0.000 0.059 0.06 0.000

p-value 0.015 0.000 0.002 0.000 0.120 0.016

Variable 42 21 37 80 88 59

‖̂bj‖2/Var(Y) 0.009 0.008 0.007 0.006 0.006 0.006

‖β̃ j‖2/Var(Y) 0.001 0.000 0.000 0.001 0.000 0.001

p-value 0.011 0.015 0.034 0.055 0.056 0.062

Variable 97 74 24 53 65 64

‖̂bj‖2/Var(Y) 0.006 0.006 0.006 0.006 0.006 0.006

‖β̃ j‖2/Var(Y) 0.000 0.000 0.000 0.000 0.000 0.000

p-value 0.049 0.052 0.052 0.064 0.084 0.086

Table S.26: The model with only 11 original variates

Variable zn black rm rad tax dis

‖̂bj‖2/Var(Y) 0.128 0.117 0.090 0.075 0.050 0.049

‖β̃ j‖2/Var(Y) 0.000 0.005 0.073 0.264 0.057 0.115

p-value 0.000 0.092 0.000 0.000 0.002 0.000

Variable ptratio crim indus nox age NA

‖̂bj‖2/Var(Y) 0.030 0.030 0.021 0.020 0.006 NA

‖β̃ j‖2/Var(Y) 0.046 0.117 0.043 0.028 0.000 NA

p-value 0.000 0.015 0.026 0.097 0.512 NA

‖̂bj‖2 and p-value are from the de-biased group Lasso and ‖β̃ j‖2 is from the group SCAD.
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We reproduced the details of 14 variables from the R documentation of the R package

‘MASS.’

crim : per capita crime rate by town(We took the logarithm in this section.)

zn : proportion of residential land zoned for lots over 25,000 sq.ft

indus : proportion of non-retail business acres per town

chas : Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

This is not used in our model.

nox : nitric oxides concentration (parts per 110 million)

rm : average number of rooms per dwelling

age : proportion of owner-occupied units built prior to 1940

dis : weighted distances to five Boston employment centres

rad : index of accessibility to radial highways

tax : full-value property-tax rate per USD 10,000

ptratio : pupil-teacher ratio by town

black : 1000(B - 0.63)ˆ2 where B is the proportion of blacks by town

lstat : lower status of the population

medv : median value of owner-occupied homes in USD 1000’s
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S.2.3 Confidence bands for gj 

We present 8 figures of 95% confidence bands for gj, j=1,…,8,  and they are based on 
Theorem 1. We took one simulated sample for Model 1 with p=n=350. Real and broken lines 
represent ture gj  and estimated gj, respectively. The other two lines are lower and upper 
bands for gj(t), not simultaneous bands on [0,1]. The broken lines look sufficiently close to 
the real lines and the real lines are almost between the lower and upper bands. Therefore 
these figures imply our procedure is very promising. 
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