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Abstract	
	
We	propose	a	dynamic	model	of	climate	change	abatement	in	which	the	number	of	
contributors	is	endogenous	and	thus	may	differ	between	two	modes	of	cooperation,	
namely,	loose	vs	tight.	In	the	tight	mode	of	cooperation,	each	member	is	prescribed	
a	specific	target,	whereas	in	the	loose	one,	members	choose	their	own	abatement	
levels	as	Nash	players.	Conditions	exist	such	that	the	incentive	to	free	ride	is	lower	
and	the	number	of	contributors	is	higher	in	the	loose	cooperation	framework,	and	
this	can	lead	to	higher	welfare,	both	in	the	steady	state	and	along	the	transition	
path.	Our	theoretical	results	suggest	that	the	loose	coalition	mode,	such	reflected	in	
the	spirit	of	the	Paris	International	COP21	Conference	on	Climate	Change,	by	
attracting	more	participants,	could	turn	out	to	be	more	effective	in	reducing	
emissions	than	the	Kyoto	Protocol.	
	
	
JEL	Classification:	Q2,	Q52,	C73.	
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1 Introduction

The literature on international environmental agreements (IEAs) assumes that a target is set for

each country as part of the agreement - tight cooperation (see, e.g., Carraro and Siniscalco, 1993;

Barrett, 1994; Rubio and Ulph, 2006; Eichner and Pethig, 2013). A robust theoretical result under

that assumption is that the equilibrium number of signatories to a tight IEA is very small.1 In

practice, proposed agreements that prescribe tight cooperation often fail to attract a su¢cient

number of truly committed signatories. For example, the Kyoto Protocol, which was adopted

in 1997 and entered into force in February 2005, was a failure. Although it was signed by 178

countries, only a small number of countries were required to reduce emissions in the Örst phase.

The second phase speciÖed targets for 37 countries, but so far only seven have ratiÖed. Anticipation

that no country will meet their prescribed targets has led to the Paris Agreement in 2015, which

used a distinctly di§erent approach from the Kyoto Protocol. This new approach may be termed

a loose mode of cooperation. At the Paris International COP21 Conference on Climate Change,

countries have agreed on an overall objective of limiting global warming to 2 degrees C relative to

the pre-industrial temperature, but no country is required to set a speciÖc target by a speciÖc date.

Signatories are free to determine their own target, and there is no penalty if a target is not met.

There were some indications that the this form of loose agreement, by attracting more participants,

could turn out to be more e§ective in reducing emissions than the Kyoto Protocol.2

A reason why the IEAs with a tight mode of cooperation do not attract many truly committed

signatories is that the incentive to free ride is very strong. In this paper, we develop a model of loose

cooperation, where countries/members agree in principle to aggregate targets but do not commit to

country-speciÖc targets. One of the advantages of loose targets is that more potential contributors

are willing to join. To the best of our knowledge, this paper represents the Örst theoretical attempt

to show that, compared to tight IEAs, a looser form of cooperation can work better in terms of

improving welfare.

We propose and analyze a dynamic (continuous time) model of voluntary abatement of a public

bad that departs from the existing literature in two ways: (i) the number of contributors is en-

dogenous and dependent on the mode of cooperation; (ii) in addition to the standard cost which is

increasing in the amount of contribution, abating agents must also incur a Öxed participation cost.3

1Barrett performed numerical simulations. The results obtained were proven analytically in Rubio and Ulph

(2006).
2 Indeed, the reactions of the stock markets after the Paris Agreement was reached could be one such indication.

Renewable energy share prices rose after the Paris Agreement. The iShare Global Clean Energy Exchange Trade Fund

rose by 1.4% and the MAC Global Solar Energy index rose by 1.9%. Stock prices of coal companies fell sharply (11.3%

for Peabody Energy, 4.9% for Consol Energy Inc.). The U.S. oil and gas index dropped by 0.5%. See Mukanjari and

Sterner (2018), van der Ploeg and Rezai (2019).
3Classical references on the voluntary provision of public goods include Chamberlin (1974), Bergstrom, Blume and

Varian (1986), Bernheim and Douglas (1986), Cornes and Sandler (1986), and Andreoni (1988). On the voluntary

provision of public goods in dynamic settings see Fershtman and Nitzan (1991), Wirl (1996), Marx and Matthews

(2000), Itaya and Shimomura (2001), Yanase (2006), Long and Shimomura (2007), Benchekroun and Long (2008),
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As to (i), we take a similar approach to that taken by Rubio and Ulph (2007) and de Zeeuw (2008),

who study the dynamic incentives for countries to sign international environmental agreements,

with one important di§erence.4 Rubio and Ulph (2007) and de Zeeuw (2008) assume that members

of an IEA fully coordinate on their contributions. We, instead, do not restrict our attention to that

case, but consider also the scenario in which active contributors decide non-cooperatively on how

much to contribute. As to (ii), the existence of a Öxed participation cost, besides its theoretical

interest, makes the model applicable to a wide range of real-world problems. Consider, for example,
the Paris Accord mentioned above. There are Öxed costs of administration for each country, e.g.,

they have to set up a bureaucratic machinery for the operation of the emission-permits market

and/or the collection of carbon taxes, assessment of Örmsí emission levels, auditing Örmsí report

on emissions of carbon, etc. Besides administrative costs, the Öxed cost may include the political

economy cost, for instance, the cost of overcoming opposition from pressure groups to pass the

legislation and the cost of redistributing from winners to losers within the country.5

We compare the welfare outcomes across two scenarios of private contributions to abatement

of a public bad (such as the stock of pollution) with Öxed participation cost, such that in equilib-

rium some agents choose to be free riders, thus avoiding the Öxed cost. In the non-coordination

scenario, after paying the Öxed cost, contributors choose their contribution levels as Nash players.

In the coordination scenario, those who have chosen to be contributors must coordinate on their

contribution levels. The main result of our analysis is that there exist parameter regions in which

non-coordination results in an increase in both the number of contributors and the aggregate con-

tribution, and consequently, higher social welfare. Loose cooperation can be welfare-improving not

only in the steady state equilibrium but also in terms of present value of net utility.

Another advantage of loose cooperation is that it allows individual countries the áexibility to

respond to idiosyncratic shocks. Many of these shocks are related to political economy consider-

ations, such as discontents from a powerful segment of the electorate. Shocks of this nature are

quite often private information (i.e., not veriÖable by third parties) and therefore state-contingent

transfer payments are not feasible (Bagwell and Staiger, 2005; Amador and Bagwell, 2013). These

are important considerations. However, for simplicity, as a Örst step, we do not model idiosyncratic

shocks and asymmetry among countries.

There are many examples of successful loose cooperation in world history. Of note is the

Fujiwara and Matsueda (2009), Battaglini et al. (2014), Georgiadis (2015, 2017), and Bowen et al. (2019), inter alia.

All of these papers suppose that there are no Öxed participation costs.
4Rubio and Ulph (2007) and de Zeeuw (2008) build on earlier works on cartel stability in oligopolistic markets by

díAspremont et al. (1983), and on earlier works on IEAs by Carraro and Siniscalco (1993) and Barrett (1994). On

the stability of oligopolistic cartels and IEAs see also Diamantoudi (2005) and Diamantoudi and Sartzetakis (2015),

respectively.
5Another example of contributions to a pure public good with Öxed cost of participation is R&D with complete

spillovers. The Öxed participation cost arises because a Örm that does R&D must incur the cost of setting up a

research lab. Similarly, those who want to contribute articles to Wikipedia must at Örst incur the Öxed costs of

learning the technical side of navigating that website.
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Hanseatic League, a Central European loose confederation of merchant guilds and market cities that

came to dominate Baltic maritime trade for over 300 years, reaching its peak in the 15th century,

with over 100 member cities (Atat¸re, 2008). A more recent example is the Association of South

East Asian Nations (ASEAN) which promote free trade among member countries without requiring

them to abide by strict rules. In modern democracies, political parties are notable instances of loose

cooperation. In the USA, for example, Republicans and Democrats can move in and out of their

parties without penalties, and while political donations are encouraged, party members are not

asked to commit to speciÖc donations. Similarly, religious organizations typically do not insist

on tight cooperation. It seems that our theory of loose cooperation can be useful to understand

phenomena outside the domain of environmental economics.

The remainder of this paper is organized as follows. The model is speciÖed in Section 2. Sections

3 and 4 analyze the non-cooperative and the cooperative case, respectively. A welfare comparison

is provided in Section 5. Section 6 concludes.

2 The Set-up

Consider an economy populated by n ! 2 inÖnitely-lived agents. Time is continuous and denoted
by t 2 [0;1). At t = 0, each agent decides whether or not to contribute to the abatement of a

stock of a public bad (henceforth, the stock of pollution). Contributors are denoted by the index

i = 1; :::;m, where m $ n. The remaining n%m individuals are called free riders, and we use the

index j to refer to free riders. We assume that to be a contributor, an agent must incur a Öxed

participation cost F > 0.

All agents are ex-ante identical. Each agentís maximum productive capacity of the Önal con-

sumption good is a positive number a, which we refer to as their ìbusiness-as-usualî level of output.

Each unit of output generates a unit of emission of a pollutant. The stock of pollution is a public

bad. Individuals realize that if they produce the consumption good at their maximum productive

capacity, they will each add a units of pollutant to the accumulation of the public bad. Cutting

output below the maximum capacity is referred to as ìabatement.î If an individual i chooses the

abatement level xi(t), where 0 $ xi(t) $ a, he will have only a% xi(t) units of output to consume.
We assume that the direct utility derived from consumption is quadratic:

U(a% xi(t)) & [a% xi (t)]% [a% xi (t)]2 ,

where we assume that a < 1=2, so that any xi > 0 constitutes a sacriÖce of direct utility. The stock

of pollution is denoted by k(t) ! 0. At any time t ! 0, the stock k(t) ináicts a damage áow bk(t)2

to each agent, where b > 0. The instantaneous (net) utility function of a contributor is deÖned as

ui(k(t); xi(t)) & U(a% xi(t))% b [k (t)]2 & [a% xi (t)]% [a% xi (t)]2 % b [k (t)]2 ,
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where xi(t) 2 [0; a].6 The instantaneous utility function of a non-contributor is given by

uj(k(t)) & ui(k (t) ; 0) & a% a2 % b[k(t)]2.

The evolution of the stock of pollution is governed by the following di§erential equation:

dk (t)

dt
= na%

mX

i=1

xi (t)% 3k (t) , (1)

where 3 is the natural decay rate of the stock of pollution, with 3 > 0. By (1), the addition to the

stock of pollution is increasing in na and it decreases as the sum of abatement levels (
Pm
i=1 xi (t))

increases.

Let r be the positive rate at which future payo§s are discounted. Once an agent has decided to

be a contributor, his objective functional is

JCi &
1Z

0

e"rt
n
%b [k (t)]2 + a% xi (t)% [a% xi (t)]2

o
dt.

The payo§ of a non-contributor (i.e., a free rider) is

JNj &
1Z

0

e"rt
n
%b [k (t)]2 + a% a2

o
dt. (2)

In our model, all agents are identical ex-ante, but they behave di§erently ex-post. We focus on

the case where in equilibrium there are exactly two groups: a group GC consisting ofm contributors

(where m is endogenously determined) who, in equilibrium, contribute the same amount, x#i > 0

for all i 2 GC , and a group GN consisting of n %m free riders, whose contribution is nil, xj = 0

for all j 2 GN .7

At the beginning of the game (t = 0), individuals decide on whether they are members of group

GC or of group GN . We will refer to t = 0 as Stage 1 and to the time period (0;1) as Stage
2. Accordingly, we will refer to the decision at t = 0 as Stage 1 decision, and to the decisions at

t 2 (0;1) as Stage 2 decisions. In Stage 1, each member of group GC must incur a participation
cost, F > 0. In Stage 2, members of group GC , fully informed about the size of GC , choose their

contribution levels, while members of group GN (who by choice did not incur the participation cost

F in Stage 1) are free riders: their contribution is nil.

Let V Ci and V Nj denote the value functions of a contributor and a free rider, respectively. (These

functions are obtained by solving Stage 2 game). Given V Ci and V Nj , for a (Stage 1) equilibrium

with m contributors to exist it must be that each i 2 GC has no unilateral incentive to deviate and
6We will impose parameter restrictions which guarantee that ui is decreasing in k and increasing in a, and that

consumption net of the abatament, a! xi, is nonnegative.
7We do not consider asymmetric equilibria where abatement levels di§er across the m contributors.
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join GN , and each j 2 GN has no unilateral incentive to deviate by joining GC . Formally, for each
i 2 GC , it must hold that8

V Ci (k0;m)% F ! V
N
j (k0;m% 1) , (3)

and, for each j 2 GN , it must hold that

V Nj (k0;m) ! V Ci (k0;m+ 1)% F . (4)

Inequality (3) states that no contributor would gain by deviating, i.e., it must be individually

rational to contribute (in which case the total number of contributors is m) rather than free riding

(in which case, the total number of contributors becomes m % 1).9 We will refer to condition (3)
as the contributor-rationality condition.

Inequality (4) states that, for a free rider, it must be better to contribute nil rather than joining

group GC (in which case it assumes that the number of contributors becomes m+1, and that all of

them contribute at their new symmetric equilibrium level with m+ 1 contributors). We will refer

to condition (4) as the free-rider-rationality condition.

As is well-known in the literature, if a plan is optimal at time t=0 it does not necessarily mean

that it will remain optimal at time 9 > 0: time consistency at t = 0 and k(0) = k0 requires that,

at any future date 9 2 (0;1), each contributor (resp. free rider) will Önd it individually rational
to continue to contribute (resp. not contribute). Formally, for each i 2 GC , it must hold that

V Ci (k(9 ;m);m) ! V
N
j (k(9 ;m);m% 1) , (5)

and, for each j 2 GN , it must hold that

V Nj (k(9 ;m);m) ! V Ci (k(9 ;m);m+ 1)% F , (6)

where k(9 ;m) denotes the equilibrium state trajectory with m < n contributors. If (5) and (6)

are both satisÖed then the decisions made at t = 0 by the contributors and the free riders will be

time-consistent, i.e., they will remain optimal (payo§-wise) at any future date.10

In what follows, we will consider two scenarios of contributions to the abatement of the stock of

pollution with Öxed cost of participation, namely, a non-coordination scenario and a coordination

scenario. In the non-coordination scenario, in Stage 2, contributors choose their contribution levels

taking the contributions of the others as given (i.e., as Nash players). We assume that contributors

8These inequalities are standard in the tight coalitions literature (see DíAspremont et al., 1983; Barret, 1994) but

they have never been applied to loose coalitions.
9The agent assumes that if he leaves group GC to join group GN , then (i) the number of contributors will become

m!1, i.e., the other m!1 contributors stay in GC ; and (ii) the remaining contributors will adjust their contribution
level to the new equilibrium level with m! 1 contributors.
10Note that in (5) and (6) the value functions are evaluated under the requirement that the number of contributors

is equal to m < n and constant from time t = 0 until the comparison time ) . Note also that the Öxed cost (paid at

the comparison time )) appears only in (6). This is so because at time ) the Öxed cost has to be paid only by a free

rider who decides to join the group of contributors; a contributor who at time ) > t decides to join the group of free
riders cannot recover the Öxed cost that he paid at time t = 0.
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use (stationary) feedback strategies, i.e., they condition their contributions at time t on the current

level of the stock of pollution, exclusively. In the coordination scenario, those who have chosen to

be contributors collectively decide on their common contribution level with the aim of maximizing

the discounted sum of their utilities.

3 Non-coordination Behavior

We consider Stage 2 decisions Örst. Under non-coordination, each contributor i takes the strategies

of other contributors as given. We must then solve for a non-cooperative feedback equilibrium

of the dynamic game. Given a number of contributors m ! 1, non-cooperative feedback equilib-

rium strategies of a generic contributor have to satisfy the following Hamiltonian-Jacobian-Bellman

(HJB) equation, where V Ci (k;m) denotes the value function of a contributor, given that there are

m contributors:

rV Ci (k;m) = max
xi2[0;a]

n
%bk2 + a% xi % (a% xi)2

+
dV Ci (k;m)

dk
(na% xi %X"i(k)% 3k)

&
, (7)

where X"i(k) =
Pm
h 6=i xh(k), together with the usual transversality condition. Maximization of the

right-hand side of (7) gives (for an interior solution):11

x#i (k) = a%
1

2

'
1 +

dV Ci (k;m)

dk

(
. (8)

Proposition 1 The feedback equilibrium strategy of a contributor under non-cooperative behavior

is given by (i = 1; 2; :::;m)

x#i (k) = a%
1 +ACk +BC

2

for k such that x#i (k) 2 (0; a), where A
C ; BC < 0 are constants (given in the Appendix) that depend

on the parameters of the model.

Proof. See Appendix A.

Corollary 1 The vector of strategies (x#1(k); x
#
2(k); :::; x

#
m(k)) induces a trajectory of k given by

k#(t) = k#ss + e
"-t(k0 % k#ss)

where = > 0 is the speed of convergence (given in the Appendix) and k#ss is the steady state of k

under non cooperative behavior, given by

k#ss =
m
)
1 +BC

*
+ 2a (n%m)

23 %ACm
which is stable.
11For an interior solution x!i (k) 2 (0; a) it must be that dV C

i (k)=dk 2 (!1; 2a ! 1). We will verify later that
conditions on the parameters of the model exist such that dV C

i (k)=dk 2 (!1; 2a! 1) at any point in time, implying
that the equilibrium trajectory of x!i remains between 0 and a throughout the entire planning horizon.

7



Proof. See Appendix B.
Two remarks are in order. First, the equilibrium strategy given in Proposition 1 is for an

interior solution, x#i (k) 2 (0; a). Given the purpose of our analysis, corner solutions are clearly not
interesting: when x#i (k) = 0 the distinction between contributors and free riders vanishes; when

x#i (k) = a abatement levels become state-independent and private consumption turns out to be nil.

Second, the equilibrium strategy given in Proposition 1 is linear in k, with a positive slope equal

to %AC=2 > 0. Thus x#i (k) is increasing in k: the higher the stock of pollution, the higher the

contribution to the abatement by agent i = 1; 2; :::;m, for any given m ! 1.12

Figure 1 below depicts the abatement strategy x#i (k) for the case in which x
#
i (0) > 0.

13

[Insert Fig. 1 about here]

Figure 2 below illustrates the steady-state equilibrium. (The aggregate emission is measured

along the vertical axis.)

[Insert Fig. 2 about here]

Let us now turn to the following question: does an increase in the number of non-cooperative

contributors lead to a lower long-run stock of pollution? Interestingly, the impact of m on k#ss is

ambiguous, depending on the parameters of the model. For instance, if we evaluate the derivative

of k#ss w.r.t. m at m = 1 we Önd that the sign depends on a. SpeciÖcally, if a is below a certain

threshold, ba, then the derivative is positive (therefore k#ss increases in m), otherwise it is negative.
Surprisingly, having more contributors to the abatement of the public bad can make things worse

(i.e., the long-run stock of the public bad is bigger when there is an additional contributor). The

intuition is as follows. We note that the smaller a is, the greater is the marginal loss of direct utility

caused by a given abatement level xi (because, for any given xi, the marginal utility of consuming

a % xi is higher when a is lower). Therefore, when a is small, a contributorís best reply to an
increase in the sum of contributions by others tends to be a big reduction in her own contribution.

This can lead to the result that an increase in m leads to a decrease in total abatement, and hence

an increase in k#ss.

The impact of an increase in m (starting from m = 1) on the steady-state stock of pollution

is illustrated in Figure 3. As shown in Figure 3, when the number of contributors increases from

1 to a higher number, the steady-state stock k#ss moves to the right (respectively, left) if a < ba
(respectively, a > ba).

[Insert Fig. 3 about here]

12As is well-known in the di§erential game literature, the linear feedback strategy is only one of the inÖnitely many

feedback strategies that satisfy the di§erential equation resulting from di§erentiating the maximized HJB equation

w.r.t. the state variable. However, value functions associated with nonlinear feedback strategies can be obtained only

implicitly, whereas value functions associated with linear feedback strategies are polynomials of degree two, and can

be easily used for the derivation of the equilibrium number of contributors.
13All the pictures in the paper are drawn for parameter values such that x!i (0) > 0. The deÖnition of k is given in

the Appendix (see Appendix A).
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Remark 1 The above surprising result (i.e., an increase in m leads to a decrease in total abate-

ment) cannot be obtained in a corresponding static version of the model. In the static version, with

m contributors and n agents, contributor i chooses xi to maximize

(a% xi)% (a% xi)2 % b(k0 + na%X"i % xi)2

The FOC is

%1 + 2(a% xi) + 2b(k0 + na%X"i % xi) = 0

Let x#i;m denote the symmetric Nash equilibrium, then

%1 + 2(a% x#i;m) + 2b(k0 + na%mx
#
i;m) = 0

It follows that

x#i;m =
2b(k0 + na) + 2a% 1

(2bm+ 2)
and x#i;(m+1) =

2b(k0 + na) + 2a% 1
(2b(m+ 1) + 2)

Clearly, an increase in m will always increase total abatement and therefore decreases the pollution:

mx#i;m =
2b(k0 + na) + 2a% 1

2b+ 2
m

<
2b(k0 + na) + 2a% 1

2b+ 2
m+1

= (m+ 1)x#i;(m+1):

In view of the above Remark, one may ask why there is no static counterpart to the result

(obtained in our dynamic game model) that a bigger m can lead to increased pollution. The key

to the answer is that in a dynamic model, each agent expects that if he increases his emission

today, the pollution stock will be bigger tomorrow, which would in turn induce other agents to

emit somewhat less tomorrow than otherwise; this dynamic strategic consideration may give him

an incentive to undertake less abatement today when he learns that the number of contributors has

increased. In a static model, by deÖnition, such dynamic strategic considerations do not exist.

The impact of m on x#ss is also ambiguous: the derivative of x
#
ss w.r.t. m evaluated at m = 1

is positive if a is below a certain threshold, ea, otherwise it is negative. One can verify that ba > ea.
Starting from m = 1, if a < ea then both k#ss and x#ss increase in m; if ea < a < ba then k#ss increases
and x#ss decreases in m; if a > ba then both k#ss and x#ss decrease in m (see Appendix C).

How does m impact on the speed of convergence, =? We Önd that = is increasing in m for every

m ! 1: more contributors imply faster convergence to the steady state.
Using x#i given in Proposition 1 we can compute the value function of a free rider, which has to

satisfy the following HJB equation:

rV Nj (k;m) = %bk
2 + a(1% a) +

dV
N

j (k;m)

dk
(na%mx#i (k)% 3k) .

It can be checked that V Nj (k;m) = A
Nk2=2+BNk+EN , with AN < 0, BN < 0, and EN given in

the Appendix (see Appendix D).
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Let us now turn to the Stage 1 decision and the investigation of the existence and uniqueness

(or otherwise) of the equilibrium number of contributors under non-coordination, m#. Clearly, the

contributor-rationality condition (3) is satisÖed if and only if F $ F (m), where

F $ F
(m) & V Ci (k0;m)% V

N
j (k0;m% 1)

=
-
AC (m)%AN (m% 1)

.
k20=2 +

-
BC (m)%BN (m% 1)

.
k0 + E

C (m)% EN (m% 1) , (9)

and the free-rider-rationality condition (4) is satisÖed if and only if F ! F (m), where

F ! F (m) & V Ci (k0;m+ 1)% V
N
j (k0;m)

=
-
AC (m+ 1)%AN (m)

.
k20=2 +

-
BC (m+ 1)%BN (m)

.
k0 + E

C (m+ 1)% EN (m) .(10)

Interestingly, the curve F (m) is graphically a horizontal left-ward displacement of the curve

F
(m)
, because of the following property:

Lemma 1 F (m) = F (m"1).

Proof. By deÖnition.
If both F

(m)
and F (m) are monotone decreasing in m (in the Örst quadrant) then the graph of

the curve F (m) lies below that of the curve F
(m)
, with F

(m)
> F (m) > 0 for all m 2 [0; em% 1] and

F
(m)

> F (m) < 0 for all m 2 (em% 1; em), with em being the unique real number such that F
(em)

= 0

(assuming that F
(m)

intersects the horizontal axis). Let bemc denote the largest integer that is less
than or equal to em. Assume that n > bemc. Denote by S the set of bemc critical values of Öxed cost
at which the constraint (3) is binding:

S &
n
F
(1)
; F

(2)
; :::; F

(bemc)
o
.

Clearly, if the Öxed participation cost F is such that F
(s)
> F > F

(s+1)
for some integer s 2

f1; 2; :::; bemcg, then the unique equilibrium conÖguration of contributors and free riders (m#; n%m#)

is (s; n%s). To see this, note that, by Lemma 1, F (s) > F > F (s+1) is equivalent to F (s) > F > F (s),
which means that both rationality constraints (3) and (4) are satisÖed, and therefore (s; n % s) is
an equilibrium conÖguration. Uniqueness follows from the fact that if F satisÖes the condition

F
(s)
> F > F (s), then F cannot satisfy F

(h) ! F ! F (h) for any other integer h 6= s.
It follows that for almost every F in the real interval

h
F
(1)
; F

(bemc)
i
, there is a unique equilibrium

conÖguration of contributors and free riders. The only cases in which non-uniqueness of equilibrium

could arise are when F happens to coincide with one member of the set S deÖned above. In such

cases, there are exactly two equilibria. More precisely, for s = 1; 2; :::; bemc, if F = F
(s)
, then

there are exactly two equilibrium conÖgurations, (s; n% s) and (s% 1; n% (s% 1)). At the former
equilibrium, the rationality constraint of contributors is binding. At the latter one, the rationality

constraint of free riders is binding.

The above discussion can be summarized by the following proposition:

10



Proposition 2 In the non-cooperative scenario, if F (m
!) < F < F

(m!)
then there exists a unique

equilibrium in which m# agents contribute and n %m# agents free ride, with n > bemc, bemc being
the largest integer that is less than or equal to em.

Corollary 2 If F (m) > 0 for all m ! 0 or n < bemc, conditions on the parameters of the model
exist under which m# = n, i.e. there are no free riders.

The following numerical example illustrates Proposition 1: Let the parameter values be a =

0:4825, b = 0:012, n = 10, 3 = 0:5, k0 = 0, r = 0:1 and F = 0:045. Can m = 10 be the equilibrium

number of contributors? As F (10) = 0:0423 and F
(10)

= 0:0499, clearly if F 2 (0:0423; 0:0499) then
m# = 10.14

One can also check thatm# = 10 satisÖes the time-consistency condition (5), since V Ci (k(9); 10)%
V Nj (k(9); 9) = 0:0616 + 0:0029e"1:1877/ % 0:0146e"0:5939/ > 0 for all 9 2 [0;1). Therefore, the de-
cisions made at t = 0 by all agents to join group GC are time-consistent.

4 Cooperative Behavior

We now turn our attention to the cooperative scenario. We need to derive V Ci (k0;mjcoop) and
V Nj (k0;mjcoop) under the assumption that those who contribute must act cooperatively, i.e., they
must coordinate their contributions. Under cooperation among contributors, the objective func-

tional of contributor i is given by

JCi (k0;mjcoop) &
1Z

0

e"rt

(
%b [k (t)]2 +

'
a%

X (t)

m

(
%
'
a%

X (t)

m

(2)
dt,

and that of non-contributor j is given by (2), where X (t) =m denotes the coordinated contribution

of the representative contributor i.

As in the previous section, we consider Stage 2 decisions Örst. Given a number of contributors

m ! 1, equilibrium strategies of a generic contributor under cooperative behavior have to satisfy

the following HJB equation:

rV Ci (k;mjcoop) = max
X2[0;na]

(
%bk2 + a%

X

m
%
3
a%

X

m

42
+
dV Ci (k;mjcoop)

dk
(na%X % 3k)

)
,

(11)

together with the usual transversality condition. Maximization of the right-hand side of (11) gives

(for an interior solution):15

X = m

'
a%

1

2

3
1 +m

dV Ci (k;mjcoop)
dk

4(
. (12)

14One can check that x!(0) = 0:0428, and limt!1 x
!(t) = 0:1123, thus a! x!(t) > 0 for all t 2 [0;1).

15For an interior solution x!!i (k) 2 (0; a) it must be that dV C
i (k;mjcoop)=dk 2 (!1=m; (2a! 1)=m). We will verify

later that conditions on the parameters of the model exist such that dV C
i (k;mjcoop)=dk 2 (!1=m; (2a!1)=m) at any

point in time implying that the equilibrium trajectory of x!!i remains between 0 and a troughout the entire planning

horizon.

11



Proposition 3 The feedback equilibrium strategy of a contributor under cooperation is given by

(i = 1; 2; :::;m)

x##i (k) = a%
1 +m

)
ECk + FC

*

2

for k such that x##i (k) 2 (0; a), where E
C ; FC < 0 are constants (given in the Appendix) that depend

on the parameters of the model.

Proof. See Appendix E.

Corollary 3 The vector of strategies (x##1 (k); x
##
2 (k); :::; x

##
m (k)) induces a trajectory of k given by

k##(t) = k##ss + e
"2t(k0 % k##ss )

where G is the speed of convergence (given in the Appendix) and k##ss is the steady state of k under

cooperative behavior, given by

k##ss =
m
)
1 + FC

*
+ 2a (n%m)

23 % ECm

which is stable.

Proof. See Appendix F.
Since EC < 0, clearly x##i (k) is increasing in k: the higher the stock of public bad, the higher the

contribution to the abatement. This is the same as under non cooperation. It can be veriÖed that

mEC < AC for all m > 1, implying that x##i (k) is steeper than x
#
i (k). As the public bad increases,

the response of contributors in the cooperative scenario is stronger than that of their counterparts

in the non-cooperative scenario.

Figure 4 below shows that, if the number of contributors is greater than 1 and is the same under

cooperation and under non-cooperation, then the long-run pollution stock under non-cooperation

is higher than under cooperation, i.e., k#ss > k
##
ss .

16

[Insert Fig. 4 about here]

Would an increase in the number of cooperative contributors result in a lower long-run stock

of pollution? Surprisingly, the answer is: ìIt depends on parameter values.î Indeed, the derivative

of k##ss w.r.t. m evaluated at m = 1 is positive or negative, depending on whether the following

expression is positive or negative:

4(a) & %f2ab (2n% 1) + 3 (2a% 1) (3 + r) + bg .

Notice that 4(a) is decreasing in a and is equal to zero at a = a, where

a =
1

2
%

n

2n+ [(3=b) (3 + r)% 1]
> 0 if (3=b) (3 + r) > 1.

16The deÖnition of k is given in the Appendix (see Appendix E).
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Thus, if a < a (resp. > a) then k##ss increases (resp. decreases) in m (starting from m = 1). Similar

to the non-cooperative case, we Önd that in the cooperative case, a surprising result can arise: if

a and b are small, having more contributors can lead to a greater stock of public bad in the long

run. It is instructive to compare the threshold a of the cooperative case with the threshold ba of
the non-cooperaive case. One can verify that ba > a. This implies that there exists an interval of a,
(i.e. a < a < ba) where an increase in m (starting from = 1) leads to an increase in the steady-state

stock of public bad under non-cooperation, but a decrease in the steady-state stock of public bad

under cooperation.

The comparative steady-state analysis w.r.t. m is summarized in Figure 5.

[Insert Fig. 5 about here]

As in the case of non-cooperation, the speed of convergence, G, increases in m for every m ! 1.
By comparing G with =, we see that, in general, G can be either higher or lower than =. However,

if r ! 0, we have that = > G. By continuity, = > G for r small enough. If agents are su¢ciently

patient then convergence is faster under non-cooperation than under cooperation.

Using x##i given in Proposition 3 we can compute the value function of a free rider, which has

to satisfy the following HJB equation:

rV Nj (k;mjcoop) =

(
%bk2 + a(1% a) +

dV Nj (k;mjcoop)
dk

(na%mx##i (k)% 3k)

)
.

We can show that V Nj (k;mjcoop) = E
Nk2=2+FNk+HN , with EN , FN , and HN given in the Appendix

(see Appendix G).

Let us now turn to the investigation of the existence and uniqueness (or otherwise) of the

equilibrium number of contributors under cooperation.

The following inequalities are the counterparts of inequalities (9) and (10) for the case of coop-

eration among contributors:

F $ F
(m)

& V Ci (k0;mjcoop)% V
N
j (k0;m% 1jcoop)

=
-
EC (m)% EN (m% 1)

.
k20=2 +

-
FC (m)% FN (m% 1)

.
k0 + H

C (m)% HN (m% 1) , (13)

F ! F (m) & V Ci (k0;m+ 1jcoop)% V
N
j (k0;mjcoop)

=
-
EC (m+ 1)% EN (m)

.
k20=2 +

-
FC (m+ 1)% FN (m)

.
k0 + H

C (m+ 1)% HN (m) . (14)

The following Lemma is the counterpart of Lemma 1 for the case of cooperation among con-

tributors.

Lemma 2 F
(m)

= F (m"1).

Proof. By deÖnition.
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If both F
(m)

and F (m"1) are monotone decreasing in m (in the Örst quadrant), and if there

exists an bm > 0 such that F
(bm)

= 0, then the graph of the curve F (m) lies below that of the curve

F
(m)
, with F

(m)
> F (m"1) > 0 for all m 2 [0; bm%1] and F

(m)
> F (m"1) < 0 for all m 2 (bm%1; bm).

Proposition 4 In the cooperative scenario, if F (m
!!) < F < F

(m!!)
then there exists a unique

equilibrium in which m## agents contribute and n%m## agents free ride, with n > bbmc, bbmc being
the largest integer that is less than or equal to bm.

Corollary 4 If F
(m)

> 0 for all m ! 0 or n < bbmc, conditions on the parameters of the model
exist under which m## = n, i.e. there are no free riders.

As in the non-cooperative scenario, there are two cases in which the equilibrium number of

contributors is non-unique: (i) F = F (m
!!), with F (m

!!) > 0, in which case there exist two equilibria,

m## and m## + 1; (ii) F = F
(m!!)

, with F
(m!!)

> 0, in which case there exist two equilibria, m##

and m## % 1.
The following numerical example illustrates Proposition 2: a = 0:4825, b = 0:012, n = 10,

3 = 0:5, k0 = 0, r = 0:1, and F = 0:045. Can m = 2 be the equilibrium number of contributors in

the cooperative case? We get F (2) = 0:0289 and F
(2)
= 0:4518, implying that if F 2 (0:0289; 0:4518)

then m## = 2.17 One can also check that m## = 2 satisÖes the time-consistency condition (5),

since V Ci (k(9); 2) % V
N
j (k(9); 1) = 0:4678 + 0:0008e"2:3515/ % 0:0167e"1:1758/ > 0, and (6), since

F = 0:045 > 0:0313+0:0002e"2:3515/%0:0026e"1:1758/ for 9 2 [0;1). Therefore, the decisions made
at t = 0 by two agents to join group GC and by eight agents to join group GN are time-consistent.

Figure 6 below depicts the four thresholds of F , namely F , F , F and F (for the parameter

values used in the previous numerical examples).

[Insert Fig. 6 about here]

As can be seen in Fig. 6, suppose we draw a horizontal line representing a give Öxed cost level F

and suppose this line intersects the vertical line (representing a given integer m, say m = 2) at a

point in the region CDGF then we can deduce that the number of contributors in the cooperative

and the non-cooperative scenarios is the same m (see for instance point H in Fig. 6).18 Outside

this region, the numbers of contributors in the two scenarios are di§erent from each other: if the

horizontal line representing F is above C then m## > m#; if F is below E then m## < m#. For

F = 0:045, the number of contributors is 10 under non-cooperation (see point B in Fig. 6) and 2

under cooperation (see point A in Fig. 6).

17One can check that x!!(0) = 0:1415, and limt!1 x
!!(t) = 0:3176, so that a ! x!!(t) > 0 for all t 2 [0;1).

Moreover, limt!1 k
!!(t) = 8:3796. Note that, compared with the non-cooperative case, where m! = 10, we have

limt!1 x
!!(t) > limt!1 x

!(t) but, because m!! = 2 < 10, limt!1 k
!!(t) > limt!1 k

!(t).
18For a = 0:4825, b = 0:012, n = 10, 5 = 0:5, k0 = 0 and r = 0:1 we get F (2) = 0:167 and F

(2)
= 0:2023. Hence, if

F = 0:2 then m! = m!! = 2 (recall that F (2) = 0:0289 and F
(2)
= 0:4518).
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The trajectories of k#(t) and k##(t) (for the parameter values used in the previous numerical

examples) are depicted in Figure 7.

[Insert Fig. 7 about here]

As shown in Figure 7, under the parameter values stated above, the stock of public bad turns

out to be higher under cooperation than under non-cooperation not only at the steady state but

also at any point in time during the transition phase. This is so because the free riding incentive is

stronger when potential free-riding agents know that the active contributors will coordinate their

contributions rather than behaving as Nash players.

Finally, Figures 8a and 8b below plot the trajectories of individual and total contributions in the

cooperative and non-cooperative scenarios (for the parameter values used in the previous numerical

examples).

[Insert Fig. 8 about here]

Individual contributions are higher under cooperation than under non cooperation at any

point in time (see Fig. 8a). However, the number of contributors in the non cooperative scenario

(m# = 10) exceeds that in the cooperative scenario (m## = 2), and total contribution turns out to

be higher in the former than in the latter (see Fig. 8b).

5 Welfare Comparison between Cooperation and Non-cooperation

Welfare with m contributors and n%m free riders is given by

W # (k0;m; n) = mV
C
i (k0;m) + (n%m)V

N
j (k0;m)%mF , (15)

if the contributors do not coordinate their contributions, and by

W ## (k0;m; n) = mV
C
i (k0;mjcoop) + (n%m)V

N
j (k0;mjcoop)%mF , (16)

if the contributors act cooperatively. Equations (15) and (16) make use of the value functions and

therefore measure the discounted sum of (net) utilities. From (15) and (16), using Corollaries 1 and

2, we can derive the steady-state welfare levels in the cooperative and non-cooperative scenarios,

W ##
1 and W #

1, respectively, which we will use later in this section.

While the equilibrium number of contributors under non-coordination is in general not the

same as that under coordination, it turns out to be useful to deÖne, as an intermediate step in our

analysis, for the same common m, the di§erence 6W &W ## %W #, with

6W = m
-
V Ci (k0;mjcoop)% V

C
i (k0;m)

.

+(n%m)
-
V Nj (k0;mjcoop)% V

N
j (k0;m)

.
.

It can be checked that the term between the Örst set of square brackets is positive. The term

between the second set of square brackets can be rewritten as

b

Z 1

0
e"rt

n
[k# (t)]2 % [k## (t)]2

o
dt,
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since the consumption level of the non contributors is the same irrespective of whether the contrib-

utors cooperate or not. Under the hypothesis that the number of contributors is the same under

cooperation and under non-cooperation, it is easy to verify that k# (t) > k## (t) for any t, implying

that the above integral is positive. We can then state the following (unsurprising) proposition:

Proposition 5 For any given common m ! 1, it holds that welfare is higher under cooperation

than under non cooperation.

The above proposition establishes that if the equilibrium m is the same, then the welfare

outcome when the contributors coordinate their contributions is superior to the outcome under

non-cooperation. However, when the endogenous number of contributors under non-cooperation is

larger than that under cooperation, it is possible that non-cooperation may lead to higher welfare

than cooperation. The following example illustrates this interesting result.

Numerical Example: a = 0:4825, b = 0:012, n = 10, 3 = 0:5, k0 = 0, r = 0:1. Under the

above parameter values, we determined before that m# = 10 and m## = 2. If F = 0:045 we Önd

that welfare when the contributors cooperate is smaller than under non-cooperation:

W ## (2; 10jF = 0:045) = %42:1706 < W # (10; 10jF = 0:045) = %28:842.

Going beyond numerical examples, let us formalize a key result of our paper:

Proposition 6 (Cooperation can reduce welfare when the number of free riders is en-
dogenous) Take parameter values such that m# > m##. If m# % m## is large enough then there

exists an interval of F such that W ## (m##; n) < W # (m#; n).

Proof. See Appendix H.
For the parameter values in the numerical example above, the set of admissible Öxed costs such

that m# = 10 and m## = 2 is given by [0:0289; 0:0499]. Any F 2 [0:0289; 0:0499] would lead to
W ## (2; 10) < W # (10; 10).

In the remainder of this section, we will compare the steady-state welfare level under cooperation

with that under non-cooperation. DeÖne

6W1 & W ##
1 %W #

1 = m
-
V Ci (k

##
1;mjcoop)% V

C
i (k

#
1;m)

.

+(n%m)
-
V Nj (k

##
1;mjcoop)% V

N
j (k

#
1;m)

.
.

It can be checked that 6W1 > 0. Hence, for the same number of contributors, we obtain the same

qualitative result as that previously obtained with the discounted welfare measures. In general,

the equilibrium number of contributors under non-cooperation di§ers from that under cooperation.

Using the parameter values of the numerical example above we Önd that

W ##
1 (2; 10jF = 0:045) = %61:6167 < W # (10; 10jF = 0:045) = %42:9171,

which is in line with the discounted welfare comparison.

In conclusion, we have shown that there exists parameter values such that cooperation is welfare-

reducing, both at the steady state and along the transition path.
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6 Concluding Remarks

We have analyzed a dynamic game of voluntary abatement of a public bad with Öxed cost of

participation, in which the number of contributors is endogenously determined. One of our striking

results is that cooperation among contributors can worsen social welfare and lead to a higher

steady-state level of public bad compared to Nash behavior.

When the number of contributors is the same in the cooperative and the non-cooperative set-

tings, social welfare turns out to be higher if contributors coordinate on their contribution levels

rather than choosing their contribution levels as Nash players. However, our analysis has shown

that the number of contributors in the cooperative and non-cooperative settings may di§er signif-

icantly. Conditions on the parameters of the model exist such that the incentive to free ride is

higher and, consequently, the number of contributors is lower in the cooperative setting, compared

to the non-cooperative one, leading to a lower social welfare in the former than in the latter. A

policy implication of this Önding is that insisting on a tight coalition is not necessarily welfare

improving. In the context of international environmental agreements, our analysis suggests that

an accord in the spirit of COP 21, i.e., the Paris Accord, might be able to bring more countries

on board, leading to higher total contribution to the abatement of the public bad compared to an

agreement imposing speciÖc targets for each country, which is what the Kyoto Protocol was trying

to achieve.

Possible extensions of our framework include: (i) relaxing the assumption of full cooperation

by considering a coe¢cient of cooperation ranging from zero to one (see, for instance, Vives, 2008;

Colombo and Labrecciosa, 2018); (ii) allowing for agents heterogeneity (see McGinty, 2007; Pavlova

and de Zeeuw, 2013); (iii) allowing for asymmetric information about agentsí characteristics (see

Bagwell and Staiger, 2005; Amador and Bagwell; 2013); (iv) accounting for uncertainty and ambi-

guity about the evolution of the stock of public bad (see, for instance, Lemoine and Traeger, 2014,

2016).

Acknowledgment: Part of this research was carried out at Hitotsubashi Institute for Advanced
Study, Hitotsubashi University.
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Appendix

Appendix A: Proof of Proposition 1

Inserting (8) into (7) yields (under symmetry)

rV Ci (k;m) =
1

4

(
1% 4bk2 %

'
dV Ci (k;m)

dk

(2)

+
dV Ci (k;m)

dk

5
an+

m

2

'
1% 2a+

dV Ci (k;m)

dk

(
% 3k

&
. (A.1)

Given the linear quadratic structure of the game at hand we guess a value function of the form

V Ci (k;m) = A
C k

2

2
+BCk + EC , (A.2)

where AC , BC , and EC are constants. Let 6 =
q
4b (2m% 1) + (23 + r)2. It can be checked that

(A.2) with

AC =
23 + r %6
2m% 1

< 0,

BC =
AC (2a (n%m) +m)
AC(1% 2m) + 2 (3 + r)

< 0,

and

EC =
BC

-
2m(1% 2a) + 4an+BC(2m% 1)

.
+ 1

4r
,

satisÖes (A.1) for any k 2 (k; k), with k = (2a%1%BC)=AC and k = %(1+BC)=AC . For k =2 (k; k)
we have a corner solution, either x#i = 0 or x

#
i = a. SpeciÖcally, x

#
i = 0 for k < k and x

#
i = a for

k > k. Note that k $ 0 if a is su¢ciently close to 1=2; in that case x#i (k) > 0 for all k > 0.

Appendix B: Proof of Corollary 1

The equilibrium trajectory of the stock of pollution under no cooperation, k#(t), is the solution of

the following Örst-order di§erential equation:

dk(t)

dt
= an%mx#i (k(t))% 3k(t),

with x#i (k) given in Proposition 1. It can be checked that

k#(t) = k#ss + e
"-t(k0 % k#ss),

where

= =
23 (1%m)%m (6% r)

2 (1% 2m)
> 0

is the speed of convergence to k#ss, with k
#
ss given in Corollary 1 (the expression of 6 is given in

Appendix A). It is immediate to verify that limt!1 k#(t) = k#ss.
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Appendix C: Thresholds of a

The derivative of k#ss w.r.t. m evaluated at m = 1 is decreasing in a and nil at a = ba, with

ba = %2b2 + b (3 + r) (6jm=1 % 23 % r)% 3 (3 + r)
2 (6jm=1 % r)

2
n
2b2 (n% 1) + b (3 + r) [(1% 2n) (6jm=1 % r) + 23 (n% 1)]% 3 (3 + r)

2 (6jm=1 % r)
o .

The derivative of x#ss w.r.t. m evaluated at m = 1 is decreasing in a and nil at a = ea, with

ea = 3 (43 + 3r % 6jm=1)
2 f2bn% 3 [23 (n% 2) + r (n% 3)% (n% 1) 6jm=1]g

.

Appendix D: Coe¢cients of V Nj (k;m)

The coe¢cients of the value function of a non contributor under non cooperation are given by:

AN =
2b (1% 2m)

m6+ (23 + r) (m% 1)

BN =

'
m(6% (23 + r))
2(2m% 1)

+ 3 + r

("1

.AN
'
m(2a(m% n)%m)(2b(2m% 1)% (3 + r)(6% (23 + r)))

4(2m% 1)(b(2m% 1) + 3(3 + r))
+ a(n%m) +

m

2

(

EN = r"1
h
a(1% a) + aBN (n%m) +BN

m

2

+
mBN (2a(m% n)%m)(2b(m% 1)% (3 + r)6% (23 + r))

4(2m% 1)(b(2m% 1) + 3(3 + r))

(

with 6 given in Appendix A.

Appendix E: Proof of Proposition 2

Inserting (12) into (11) yields

rV Ci (k;mjcoop) =
1

4

5
1% 4bk2 +

dV Ci (k;mjcoop)
dk

.
'
2m (1% 2a)% 4k3 + 4an+m2dV

C
i (k;mjcoop)

dk

(&
. (E.1)

As in the non cooperative case, we guess a value function of the form

V Ci (k;mjcoop) = E
C k

2

2
+ FCk + HC , (E.2)

where EC , FC , and HC are constants. Let 9 =
q
4bm2 + (23 + r)2. It can be checked that (E.2)

with

EC =
23 + r % 9

m2
< 0,
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FC =
EC [2a(m% n)%m]
ECm2 % 2 (3 + r)

< 0,

and

HC = r"1
h
a(1% a) + aBN (n%m) +BN

m

2

+
mBN (2a(m% n)%m)(2b(m% 1)% (3 + r)6% (23 + r))

4(2m% 1)(b(2m% 1) + 3(3 + r))

(
,

satisÖes (E.1) for any k 2 (k; k), with k = ((2a% 1)=m% FC)=EC and k = %(1=m+ FC)=EC . For

k =2 (k; k) we have a corner solution, either x##i = 0 or x##i = a. SpeciÖcally, x##i = 0 for k < k and

x##i = a for k > k. Note that k $ 0 if a is su¢ciently close to 1=2; in that case x##i (k) > 0 for all
k > 0.

Appendix F: Proof of Corollary 2

The equilibrium trajectory of the stock of pollution under cooperation, k##(t), is the solution of the

following Örst-order di§erential equation:

dk(t)

dt
= an%mx##i (k(t))% 3k(t),

with x##i (k) given in Proposition 2. It can be checked that

k##(t) = k##ss + e
"2t(k0 % k##ss ),

where

G =
9% r
2

> 0

is the speed of convergence to k##ss , with k
##
ss given in Corollary 2 (the expression of 9 is given in

Appendix E). It is immediate to verify that limt!1 k##(t) = k##ss .

Appendix G: Coe¢cients of V Nj (k;mjcoop)

The coe¢cients of the value function of a non contributor under cooperation are given by:

EN = %
2b

9
< 0,

FN = %
EN (3 + r) [m (2a% 1)% 2an] (9% r)

2 [bm2 + 3 (3 + r)] (9 + r)
< 0,

and

HN = r"1
h
a(1% a) + aFN (n%m) + FN

m

2

+
BN [2a(m% n)%m]

7
2bm2 % (3 + r) [9% (23 + r)]

8

4 [bm2 + 3(3 + r)]

#
,

with 9 given in Appendix E.
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Appendix H. Proof of Proposition 6

The di§erence W ## (m##; n) %W # (m#; n) is increasing in F (for m# > m##) and equal to zero at
eF , where

eF =
1

m# %m##

7
m#V Ci (k0;m

#) + (n%m#)V Nj (k0;m
#)

%
-
m##V Ci (k0;m

##jcoop) + (n%m##)V Nj (k0;m
##jcoop)

.8
,

which is positive if m# %m## is large enough. If F 2 F \ F# \ F##, with F & fF : 0 $ F $ eFg,
F# & fF : maxf0; F (m

!)g < F < F
(m!)g, and F## & fF : maxf0; F (m

!!)g < F < F
(m!!)

g,
then the equilibrium number of contributors is m# in the non-cooperative scenario and m## in the

cooperative scenario, and W ## (m##; n) < W # (m#; n). For the parameter values in the numerical

example in Section 5, we obtain eF = 1:7110. Therefore, any F 2 [0:0289; 0:0499] would lead to
W ## (2; 10) < W # (10; 10).
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