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Abstract

The spatial unbundling of parts production and assembly currently characterizes

globalization, leading to the worldwide dispersion of pollution. We consider socially op-

timal (cooperative) environmental taxes in a two-country model of global value chains

in which the location of both parts and assembly can differ. When unbundling costs

are so high that parts and assembly must colocate in the pre-globalized world, pollu-

tion is spatially concentrated, and harmonizing environmental taxes maximizes global

welfare. In contrast, with low unbundling costs triggering the dispersion of parts and

thus pollution throughout the world as today, harmonization fails to maximize global

welfare. Similar results hold when the two countries non-cooperatively choose their

environmental taxes.
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1 Introduction

Globalization since the late twentieth century features not just declining barriers to trade and

factor mobility, but also the lowering of costs for coordinating activities within organizations.

This spatial separation of production stages, which Baldwin (2016) refers to as the second

unbundling, has significant implications for the environment as well as trade.1 This is because

it may promote the relocation of polluting industries to countries with lax environmental

standards, an issue known as the pollution haven hypothesis (Markusen et al., 1995; Levinson

and Taylor, 2008).

One measure taken to act against the harmful impact of unbundling production pro-

cesses could be the a harmonization of environmental standards among countries (Sterner

and Köhlin, 2003). Equalizing regulations among countries does not distort the location

decisions of firms and may mitigate the divergence of environmental quality. However, har-

monization may be too naive a policy to address individual environmental impacts given

country heterogeneity.

We aim to evaluate the effectiveness of environmental tax harmonization using a two-

country model of global value chains à la Baldwin and Venables (2013), where firms produce

a final good through assembling the chain of many parts. Specifically, we characterize the so-

cially optimal environmental taxes (or cooperative equilibrium) that maximize global welfare

and compare them with harmonized taxes. In the pre-globalized world where all production

processes colocate, i.e., before the second unbundling, environmental taxes do nothing to im-

prove the global environment. Setting an equal tax between countries maximizes the global

welfare by not distorting efficient locations. However, in the globalized world where assembly

and parts can be spatially unbundled, i.e., after the second unbundling, environmental taxes

can reduce global environmental damage by avoiding the concentration of polluting pro-

cesses. The simple harmonization is almost never desirable and a more careful coordination

is necessary.

This result is about whether socially optimal and harmonized taxes coincide. One inter-

ested in the need for policy coordination (not just simple harmonization) may also question

whether socially optimal taxes coincide with noncooperative taxes. We show that this is more

likely to hold before the second unbundling than in the globalized world. This is because

prior to the second unbundling, there is little scope for governments to manipulate the loca-

tion of parts through environmental taxes. Each government then lacks a strong incentive

1The first unbundling refers to the spatial separation of consumption and production owing to the devel-
opment of the steam engine in the Industrial Revolution.
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to set specific tax rates so that it realizes the socially optimal taxes in the noncooperative

equilibria. As a result, the equilibrium tax rates chosen by each country do not differ much

from the socially optimal tax rates. The second unbundling, however, makes the location of

parts more sensitive to environmental taxes and thus tax competition leads to equilibrium

tax rates different to the socially optimal tax rates. Our conclusion that current globalization

calls for more careful policy coordination beyond simple harmonization has implications for

the experiences of earlier member states of the European Union (EU) prior to 2004, i.e.,

the EU 15, and the newer member states among the Central and Eastern European (CEE)

countries since 2004.

Some studies have investigated the environmental impact of mobile firms, but the produc-

tion structure in their models is generally too simple to cover fragmentation (Pflüger, 2001;

Zeng and Zhao, 2009; Ishikawa and Okubo, 2017; Forslid et al., 2017; Ikefuji et al., 2016;

Voßwinkel and Birg, 2018).2 Pflüger (2001), for example, examines the effect of pollution

taxes on the international relocation of monopolistically competitive firms. By extending

Pfluger’s model to incorporate transboundary pollution, Ishikawa and Okubo (2017) reveal

that trade liberalization may increase global pollution through firm relocation from a coun-

try with stringent regulation to a country with lax regulation. Voßwinkel and Birg (2018)

examine non/cooperative environmental policies in an oligopolistic competition setting with

a specific focus on the quality of difference of goods. In contrast to these studies where

the vertical linkages between sectors are ignored, we consider a so-called spider structure,

comprising multiple limbs (parts) coming together to make up a body (assembly).

The studies closest to ours are Hamilton and Requate (2004); and Wan et al. (2018), which

examine unilaterally optimal taxes and Nash equilibrium taxes in two-country models with

vertically linked sectors.3 Both these studies assume that upstream firms produce polluting

inputs and are taxed/subsidized by their local government, as do we. However, unlike the

current paper, they also consider international trade in only final goods, which corresponds

to the pre-globalized situation in our analysis. To describe the global value chains in the

present world, we allow for trade in both inputs and assembly relocation.

Using Baldwin and Venables (2013)’s framework, Obashi (2019) characterizes optimal

combinations of trade instruments and finds that policy prescriptions proposed by traditional

2Using an evolutionary game approach, Dijkstra and De Vries (2006) conclude that environmental taxation
may induce polluting firms to stay away from consumers. However, in contrast to our analysis, their focus is
on the spatial unbundling of consumption and production, not the spatial unbundling of production itself.

3See also Wan and Wen (2017). Some studies consider a wider variety of policy tools, including border
tax adjustments as well as emission taxes, although they do not allow for vertical linkages (Lai and Hu, 2008;
Yomogida and Tarui, 2013; Keen and Kotsogiannis, 2014; Sanctuary, 2018; Ogawa and Yanase, 2019).
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trade models are not sufficient to achieve the social optimum. Although environmental issues

were outside the scope of Obashi (2019), her study and ours should be seen as complements as

both emphasize that the evolution of global value chains significantly changes policy design.

The reminder of the paper is structured as follows. Section 2 presents the model and

analyzes the location patterns of parts given assembly location and environmental taxes.

Section 3 allows for endogenous assembly location and examine socially optimal taxes in the

pre-globalized world and Section 4 does this for the globalized world. Section 5 confirms that

our main result holds in different settings. The final section discusses implications for the

real world.

2 The model

Consider a world with two countries, N and S. The two countries have equal population

with unit mass. Each individual inelastically supplies one unit of labor. There are three

types of goods: a final good, a range of parts (intermediate inputs), and a numéraire good.

The numéraire good is produced using labor and is costlessly traded, which equalizes its

international price. With choice of units, the wage rates in both countries are equal to unity.

Each part can be produced using labor in both countries and can be internationally traded.

Parts production generates local pollution and is thus taxed by the domestic government. A

single final good producer (assembler) locates in N or S and assembles the range of parts

into one unit of the good. As in Baldwin and Venables (2013), the two countries differ in

two ways: (i) only N consumes the final good and (ii) the average cost of producing parts is

lower in S than in N .

To describe the second unbundling, we distinguish between two types of frictions. If

the assembler is located in S, it must pay trade costs to export the final good to N . If

the locations of parts and assembly differ, the assembler must pay additional unbundling

costs to import parts from abroad. Unbundling costs include communication costs between

headquarters and foreign suppliers as well as physical transportation costs.4

4As discussed shortly, we assume that both trade costs and unbundling/communication costs increase
proportionally to quantity. There is no general agreement about how to model communication costs (Gokan
et al., 2019). Whether communication costs affect the fixed or variable costs of trade depends on the role
of communications in transactions. The increased use of the Internet (e.g., Freund and Weinhold, 2004),
for example, facilitates the search for trading partners and thus solely affects the fixed costs. However,
in the manufacturing activities, the downstream and upstream production processes need to interact to
coordinate the specification of a customized product and the timing of delivery, which would primarily affect
variable costs. Considering these interactions between headquarters and distant plants, some studies model
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2.1 Preferences

The utility of the representative consumer in i ∈ {N,S} is

Ui = ũ1i +Xi −D(ei), (1)

where Xi is the consumption of the numéraire good, and ei is the pollution level. 1i takes

one if i = N and zero if i = S. The consumer in N obtains ũ from consuming one unit of

the final good. The disutility from pollution is expressed as D(ei) = γe2i /2 with γ > 0. The

budget constraint is

p1i +Xi = 1 + tiei +X, (2)

where p is the final good’s price and ti is the environmental tax by i per unit of pollution.

The income consists of wage (wi = 1), the redistribution of tax revenues (tiei), and the

initial endowment of the numéraire (X). X ensures positive consumption of the numéraire.

Substituting (2) into (1) yields the indirect utility Vi.

2.2 Sourcing decision

The assembler first chooses where to locate and then from which country to source parts.

Here, we consider the sourcing decision of the assembler given its location.

Letting z be the index of parts from the set Z = [b, b], the unit cost of any part z ∈ Z is

unity if it is produced in N . If a part z ∈ Z is produced in S, on the other, its unit cost is

b(z) = z with 0 < b < 1 < b. Thus N has a comparative advantage in parts b ∈ [1, b], while S

has it in parts b ∈ [b, 1). S has an average cost advantage over N , i.e., β ≡ 1− (b+ b)/2 > 0.5

Producing one unit of each part generates one unit of local pollution.

The assembler produces one unit of the final good by assembling one unit of each part.

When parts cross the border, additional unbundling costs θ arise. The sourcing decision is

on a parts basis by comparing the international cost difference. Supposing the assembler is

communication costs as an iceberg cost proportional to the firm’s output (Duranton and Puga, 2005; Fujita
and Thisse, 2006. Indeed, Fink et al. (2005) find that communication costs exert a significant impact on the
variable costs of trade, thereby affecting trade patterns, especially for differentiated goods. We follow the
latter modeling strategy for communication costs.

5The average cost of parts in S is 1
b−b

∫ b

b
b̃db̃ = 1

b−b
· b

2−b2

2 = b+b
2 , while that in N is 1

b−b

∫ b

b
1db̃ = 1.
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in N , a part z is sourced there if

1 + tN︸ ︷︷ ︸
Cost in N

< b(z) + θ + tS︸ ︷︷ ︸
Cost in S

,

→ b(z) > bN ≡ min[max{b, 1− θ +Δt}, b],
where Δt ≡ tN − tS.

The inequality is likely to hold if S’s cost is high (high b(z)), N ’s tax compared with S’s is

low (low Δt), and unbundling costs are high (high θ).

Supposing the assembler is in S, a part z is produced there if

1 + θ + tN︸ ︷︷ ︸
Cost in N

> b(z) + tS︸ ︷︷ ︸
Cost in S

,

→ b(z) < bS ≡ max[min{b, 1 + θ +Δt}, b],

which can be interpreted analogously.

When unbundling costs are sufficiently high, the two unbundling thresholds degenerate,

i.e., bN = b and bS = b, and all parts colocate with assembly. Specifically, supposing θ > θ ≡
max{1− b+Δt, b− 1−Δt}, Fig. 1 draws such a region (NS in the figure) given assembly

location and taxes.6 The co-location motive of the assembler to save unbundling costs is so

strong that neither comparative advantage nor environmental taxes matter. The parts and

assembly are spatially bundled in the pre-globalization world.

When unbundling costs are sufficiently low, the two unbundling thresholds do not degen-

erate. The location of some parts is dictated by comparative advantage and taxes, not by

the colocation motive. Supposing θ < θ ≡ min{1 − b + Δt, b − 1 − Δt}, Fig. 2 depicts the

sourcing pattern.7 Unlike Fig. 1, there are two other regions in Fig. 2, N and S. Parts in N ,

for example, are those in which N has a very strong comparative advantage, and are always

produced in N . As low unbundling costs also make the assembler aware of taxes, the tax

difference now matters for its sourcing decision. The spatial unbundling captures the current

globalization. In what follows, we separately present the analysis of the two cases.

The key mechanism here is that stringent environmental regulations would relocate the

dirtiest parts of the production process to countries with less strict policies, which Cherni-

wchan et al. (2017) refer to as the pollution offshoring hypothesis. If this hypothesis holds,

6Note that bN = b holds if b > 1 − θ + Δt; bS = b holds if b < 1 + θ + Δt. These conditions lead to
θ > max{1− b+Δt, b− 1−Δt}, which is equivalent to Δt ∈ (b− θ − 1, b+ θ − 1).

7This condition is equivalent to Δt ∈ (b+ θ − 1, b− θ − 1).
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domestic firms become cleaner. This is not because they have reduced the emission intensity

of their own activities, but because they have shifted the dirtiest parts of their production

out of the country. There are some empirical evidences to support the pollution offshoring

hypothesis. For example, Cherniwchan (2017) found that the emission intensities of the US

manufacturing plants fell in part due to changes in their access to dirtier intermediate inputs

in Mexico following trade liberalization through the North American Free Trade Agreement

(NAFTA).8

Fig. 1. Sourcing pattern under high unbundling costs.

Fig. 2. Sourcing pattern under low unbundling costs.

8The empirical literature is yet to reach a consensus. For instance, Shapiro and Walker (2018) found that
fragmenting production or offshoring was unlikely to account for a large share of the reductions in emissions
intensities in US manufacturing production.
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3 High unbundling costs: colocation of parts and as-

sembly

We consider here the case where unbundling costs are high: θ > θ so that parts and assembly

are spatially bundled. We first characterize the assembly location for the given taxes and

then derive the socially optimal taxes.

3.1 Assembly location

Let Ci be the total costs of producing one unit of the final good, given assembly in i ∈ {N,S}.
Noting bN = b, we have

CN =

∫ bN

b

(̃b+ θ + tS)db̃︸ ︷︷ ︸
Parts from S

+

∫ b

bN

(1 + tN)db̃︸ ︷︷ ︸
Parts from N

= (b− b)(1 + tN). (3)

Similarly, noting bS = b, we have

CS = τ +

∫ bS

b

(̃b+ tS)db̃︸ ︷︷ ︸
Parts from S

+

∫ b

bS

(1 + θ + tN)db̃︸ ︷︷ ︸
Parts from N

= τ + (b− b)

(
b+ b

2
+ tS

)
, (4)

where trade costs τ enter since the good crosses the border. All parts are sourced locally and

thus θ does not appear here.

The assembler chooses the location that yields the lower Ci. Assembly takes place in N

if

ΔC ≡ CN − CS = −τ + (b− b) (β +Δt) ≤ 0,

→ τ ≥ τ ∗ ≡ (b− b) (β +Δt) , (5)

where β ≡ 1− (b+ b)/2,

High trade costs ensure the assembler prefers the proximity to consumers. As seen from the

switching point τ ∗, below which assembly takes place in S, the assembler is more likely to

7



locate in N as N ’s tax becomes lower (lower Δt) and/or N ’s parts are more costly (higher

β). This tendency is magnified by the total number of parts: b− b.

3.2 Social optimum

Environmental taxes potentially affect pollution arising from dirty parts production via two

channels. First, as discussed in Section 2.2, a tax increase in one country makes its pro-

duction cost of parts higher, inducing the assembler to change the sourcing pattern. The

assembler sources more parts from the other country than before, where more pollution and

environmental damage occur. Second, as discussed in Section 3.1, taxes affect the assembler’s

location choice through changes in the switching point, τ ∗, and may lead to a discontinuous

jump in pollution. If an increase in tN makes τ ∗ higher than the exogenously given trade

costs, τ , the assembler moves from S to N and brings N a discontinuous increase in pollution

due to the colocation motive of parts and assembly.

Under high unbundling costs, however, the first channel, i.e., the assembler’s sourcing

decision, is ineffective. The colocation motive is so strong that the unbundling thresholds

degenerate (bN = b; bS = b), implying that environmental taxes affect pollution only through

the second channel, i.e., the assembler’s location decision.

The social/global welfare W is the sum of each country’s indirect utility Vi. Using (1) to

(4), we have

W =

⎧⎨
⎩W |A=N =

∑
i=N,S Vi|A=N = u− (b− b)− (γ/2)(b− b)2 if τ ≥ τ ∗

W |A=S =
∑

i=N,S Vi|A=S = u− τ − (1/2)(b− b)(b+ b)− (γ/2)(b− b)2 if τ < τ ∗
,

where u ≡ ũ+ 2(1 +X),

and where the subscript A = i ∈ {N,S} indicates the assembler’s location. Since all parts

co-locate with assembly, the pollution level in i is ei = b− b if the assembler is in i and it is

ei = 0 otherwise. We do not examine each component of the social welfare here, but details

about the final good’s price and the environmental damage are in Appendix A1.

Surprisingly, taxes do not enter in W . Since the unbundling thresholds degenerate, the

environmental damage does not depend on taxes: D(ei) = (γ/2)(b − b)2. Higher taxes

improve welfare by raising tax revenues, while they reduce welfare by raising the final good’s

price. These two counteracting effects offset each other.9 Taxes thus affect parts location

9For example, if assembly takes place in N , the sum of the consumer surplus and tax revenues in the
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only through changes in assembly location.The social planner cannot manipulate τ ∗ directly,

but can do so indirectly by changing taxes.

Noting that τ ∗ depends on the tax difference, not individual levels, the planner chooses

Δt to attain max{W |A=N ,W |A=S} by (indirectly) manipulating the switching point τ ∗. The

optimal tax difference for any trade costs turns out to be Δt = 0, as Fig. 3 illustrates.10

That is, the planner should not intervene in the assembler’s location choice. If the location

of assembly were manipulated, comparative advantage would be distorted and thus the total

cost would not be minimized. In addition, assembly location affects local environmental

damage, but does not affect global environmental damage, since the assembler sources all

parts locally. The planner is thus unable to reduce the global damage by changing assembly

location. The planner fully respects the cost-minimization location choice of the assembler

by setting the tax difference to zero. The socially optimal switching point then becomes

τ̂ ∗ ≡ τ ∗|Δt=0 = β(b− b).

Fig. 3. Socially optimal tax harmonization (dashed line) and assembly location under high

unbundling costs.

Proposition 1. Under high unbundling costs, environmental tax harmonization, i.e.,

tN = tS, always maximizes social welfare for any level of trade costs.

world is

(ũ− CN ) + tN (b− b) = ũ− (b− b)(1 + tN ) + tN (b− b)

= ũ− (b− b),

which is independent of taxes. The same argument holds if assembly takes place in S. See Appendix A1 for
the exact welfare expressions.

10All proofs of the propositions are in Appendix A2. Given τ , there may be other optimal tax differences
than Δt = 0 (see Fig. A2). But only Δt = 0 maximizes social welfare for any τ .
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4 Low unbundling costs: separation of parts and as-

sembly

We turn to the case where unbundling costs are low: θ < θ. Low unbundling costs allow

parts and assembly to locate in different countries, capturing the second unbundling.

4.1 Assembly location

As Fig. 2 suggests, the two unbundling thresholds are within the interval of [b, b]. The total

cost of the final good in each location is respectively

CN =

(
θ + tS +

b+ bN
2

)
(bN − b)︸ ︷︷ ︸

Parts from S

+(1 + tN)(b− bN)︸ ︷︷ ︸
Parts from N

, (6)

CS = τ +

(
tS +

b+ bS
2

)
(bS − b)︸ ︷︷ ︸

Parts from S

+(1 + θ + tN)(b− bS)︸ ︷︷ ︸
Parts from N

, (7)

where bN = 1− θ +Δt and bS = 1 + θ +Δt. Assembly takes place in N if

ΔC ≡ CN − CS = −τ + 2θ

(
1− b+ b

2
+Δt

)
≤ 0,

→ τ ≥ τ ∗∗ ≡ 2θ (β +Δt) .

Unlike τ ∗ defined in (5), τ ∗∗ depends on θ. Lower unbundling costs make the colocation of

parts and assembly less important, whereas they make the proximity to the consumer in N

more important. A lower θ decreases τ ∗∗, making the assembler more likely to locate in N .

4.2 Social optimum

In contrast to the case of high unbundling costs, environmental taxes affect pollution through

both the assembler’s sourcing and location decisions. A tax increase in one country leads

to the offshoring of dirty parts production and may reduce pollution there without losing

out the assembler. In the globalized world, taxes are more effective in reducing pollution

than in the pre-globalized world. We thus expect that there is a need for more careful tax

coordination than with just simple harmonization.
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With low unbundling costs, we use (1), (2), (6), and (7) to express the social welfare as

W =

⎧⎨
⎩W |A=S =

∑
i=N,S Vi|A=S if τ < τ ∗∗

W |A=N =
∑

i=N,S Vi|A=N if τ ≥ τ ∗∗
,

W |A=S = u−
[
τ +

1

2
(b+ bS)(bS − b) + (1 + θ)(b− bS)

]
− γ

2
[(b− bS)

2 + (bS − b)2],

W |A=N = u−
[(

θ +
b+ bN

2

)
(bN − b) + (b− bN)

]
− γ

2
[(b− bN)

2 + (bN − b)2].

Unlike the case of high unbundling costs, the tax difference Δt affects not just the switching

point τ ∗∗ but the unbundling thresholds bi. The planner chooses Δt to maximize W by

(indirectly) manipulating bi as well as τ
∗∗. Although we do not look at each component of

welfare here, one can find the details about the final good’s price and the environmental

damage in Appendix A1.

Formally, we can the socially optimal tax difference as follows and is illustrated in Fig.

4:11

Δt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δt|A=S ≡ −2γ(β + θ)

2γ + 1
if τ < τa

Δt̂+ ε if τa ≤ τ < τ̂ ∗∗

Δt̂ ≡ τ

2θ
− β if τ̂ ∗∗ ≤ τ < τ b

Δt|A=N ≡ 2γ(θ − β)

2γ + 1
if τ ≥ τ b

,

where τa ≡ 2θ(β − 2γθ)

2γ + 1
, τ̂ ∗∗ ≡ 2βθ

2γ + 1
, τ b ≡ 2θ(2γθ + β)

2γ + 1
,

and ε > 0 is a sufficiently small constant.12 τ̂ ∗∗ is the socially optimal switching point.

The socially optimal tax difference would be zero if there were no environmental damage

γ = 0. The planner intervenes solely for reducing the global environmental damage. Since the

global damage becomes more severe as pollution is more spatially concentrated, the planner

aims to diversify the location of parts. The optimal tax difference is thus set to make the

distribution of parts production more equal.13

As trade costs τ fall, more parts are shifted from N to S because (i) S’s cost advantage

11For τa to be positive, the sensitivity of environmental damage is assumed not to be too large: γ < γ ≡
β/(b− b).

12In Fig. 4, we ignore ε. Δt|A=N can be negative if θ is low enough.
13It can be checked that the socially optimal unbundling threshold bi is closer to the middle point of the

range (b+ b)/2 than the unbundling threshold under no taxes.
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begins to matter and (ii) the assembler moves from N to S. To avoid the concentration of

pollution, N ’s tax compared with S’s is set higher than before and thus the optimal tax

difference decreases with τ . The simple harmonization is no longer desirable except for a

special case at which the optimal tax difference coincides with zero.

Fig. 4. Socially optimal tax difference (dashed line) and assembly location under low

unbundling costs.

Proposition 2. Under low unbundling costs, environmental tax harmonization never

maximizes social welfare except for a specific level of trade costs.

5 Extensions

5.1 Environmental damage function

We assumed a convex form of the environmental damage function, i.e., D(ei) = γe2i /2, which

is fairly common in the literature (e.g., Ulph, 1996; Copeland and Taylor, 2005, Ch. 2). Our

main results, Propositions 1 and 2, do not depend on the specific form of damage function,

as we argue below.

Under high unbundling costs, where all parts production colocates with assembly, pol-

lution occurs only in the country with assembly. The levels of pollution and environmental

damage are then independent of taxes. Therefore, the social planner does not care about the

12



function form of D(·). Regardless of whether it is convex or concave, the harmonized tax

rates are also socially optimal ones.

Under low unbundling costs, the tax difference does affect which parts are produced in

which country, even when it does not change assembly location. In this case, the harmonized

tax rates can generally never be the socially optimal ones no matter what the function form

of D(·) may be. For illustration, consider a situation where θ is close to zero and γ is so high

that the planner cares solely about the environmental damage. The sum of the environmental

damage in each country is given by (γ/2)[D(eN)+D(eS)] = (γ/2)[D(b−b)+D(b−b)], where

b � 1+Δt is the unbundling threshold below (above) which parts are produced in S (N). The

planner attempts to minimize this by altering the unbundling threshold b through changes

in the tax difference Δt ≡ tN − tS.

If D(·) is convex, as assumed in the main analysis, the global damage is minimized

when b is at the middle point: (b + b)/2.14 The socially optimal tax difference must satisfy

b = 1+Δt = (b+ b)/2, or Δt = β ≡ 1− (b+ b)/2 > 0. The harmonized tax rates would lead

to too much pollution in S.

If D(·) is concave, the global damage is minimized when b is at either of the endpoints: b

or b.15 The socially optimal tax difference must be either Δt = 1− b > 0 or Δt = 1− b < 0

to induce all parts production to take place in one country. Tax harmonization that allows

for the diversification of parts production is then poor policy.

5.2 Nash equilibrium vs. social optimum

The focus of this paper is on whether the harmonization policy maximizes social welfare.

We could also ask whether decentralized policies chosen by noncooperative governments, i.e.,

Nash equilibrium policies, lead to the socially optimal outcome. Here, we here intuitively

argue that the Nash equilibrium tax difference is more likely to differ from the socially

optimal one under low unbundling costs than under high unbundling costs. Our main finding

carries over: globalization calls for more careful international coordination than a simple

harmonization rule. The full characterization of Nash equilibria is relegated to Appendices

A3 and A4.

14The FOC for the minimization problem is −D′(b− b) +D′(b − b) = 0, noting that the SOC is satisfied
because of the convexity of D(·): D′′(b− b) +D′′(b− b) > 0. From the FOC, we have D′(b− b) = D′(b− b),
or b = (b+ b)/2.

15This result comes from the fact that the SOC for the minimization problem is not satisfied: D′′(b− b) +
D′′(b− b) < 0.
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5.2.1 High unbundling costs

We consider the governments’ incentive to deviate from the harmonized tax rates: tN =

tS, which maximizes social welfare (see Proposition 1). Since the unbundling thresholds

degenerate under high unbundling costs, i.e., bN = b; bS = b, the levels of pollution and

environmental damage are independent of taxes. The governments can then do little to

reduce local pollution and thus do not tend to prefer specific tax rates.

If trade costs are sufficiently high such that τ ≥ τ̂ ∗, assembly takes place in N (see Section

3). In this case, government S does not wish to challenge government N over assembly by

reducing tS because attracting assembly by the reduced tS would not bring with it much tax

revenue. As there are neither assembly nor tax revenues in S, government S does not have any

incentive to raise tS, either. Government N is also unwilling to change tN because tN does not

enter its objective function.16 The harmonized tax rates are then indeed Nash-equilibrium

ones.

If τ < τ̂ ∗, where assembly takes place in S, government S has an incentive to set tS

higher than tN because by doing so S can increase tax revenues while not inducing assembly

relocation. The Nash equilibrium tax difference can never be zero.

In sum, if τ ≥ τ̂ ∗, the harmonized tax rates are the Nash equilibrium ones as well as the

socially optimal ones.

5.2.2 Low unbundling costs

Under low unbundling costs, the unbundling thresholds do not degenerate, i.e., bN = 1 −
θ + Δt; bS = 1 + θ + Δt. The country without assembly also suffer environmental damage

from dirty input production, implying that both governments, regardless of hosting assembly,

can affect the level of pollution through taxes. They want to choose a specific tax rate that

maximizes their national welfare, which is in stark contrast to the case of high unbundling

costs.

A tax increase by government i ∈ {N,S} causes the relocation of parts and thus pollution

to j 	= i. Government j then wishes to increase its tax rate as well to prevent environmental

damage. That is, the two countries’ tax rates are strategic complements: both governments

wish to change their tax rates in the same direction.17 Therefore, irrespective of the level

16An increase in tN has a positive effect on tax revenues and a negative effect on the consumer surplus,
which cancel each other. Therefore, tN does not matter for government N ’s welfare.

17The strategic complementarity leads to a race to the top, in which each country’s tax rate at the Nash
equilibrium is higher than their rate at the social optimal. The argument here assumes that the governments
emphasize environmental damage, i.e., a high γ. If instead γ is low and thus the governments emphasize tax
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of trade costs, the Nash equilibrium tax difference is in general different from the socially

optimal one in such a way that the former is smaller than the latter.

6 Concluding discussion

Desirable environmental policies may drastically change before and after the current global-

ization characterized by the spatial unbundling of production processes. In the pre-globalized

world, environmental tax harmonization avoids distorting efficient location choices and max-

imizes global welfare, despite heterogeneity between countries. In the globalized world, how-

ever, it leads to the excessive spatial concentration of pollution and (almost) never maximizes

global welfare. The second unbundling may then call for careful international coordination

beyond simple harmonization.

We can relate these findings to the experience of countries in the European Union (EU).

From the 1970s onward, the EU sought to harmonize environmental policies among its mem-

ber states. Holzinger et al. (2008) confirm that some 40 environmental measures converged

across 24 advanced economies, including the EU 15, between 1970 and 2000. In addition,

Arbolino et al. (2018) analyze the diffusion process of environmental policies and find that

achievements of the environmental policy objectives of one country converged to the corre-

sponding performance of the other country within the EU 15 from 2000 to 2014. These studies

suggest that harmonization was dominant between member states with similar characteristics

(EU 15) and/or in periods covering years prior to the second unbundling (1970-1990).18

However, it would be difficult to achieve a common goal through harmonized policies

if there are significant disparities in social and economic status among countries. In this

regard, Andonova and VanDeveer (2012) examine environmental policies in the CEE in the

process of EU accession and show that considerable divergence in environmental practices and

institutions persists. Furthermore, as international fragmentation of production or offshoring

expands, less developed nations would be reluctant to raise environmental standards to the

level of stringency level closer to those of the advanced economies because in a world of

liberalized trade and investment they fear losing the interest of foreign investors. Although

environmental policy is not a sole determinant of comparative advantage, it does matter at

the margin, particularly for countries whose competitiveness depends on producing at low

cost production, as in our theoretical framework (World Bank, 2020, Ch.5).

revenues, the complementarity results in a race to the bottom.
18According to Baldwin (2016), the second unbundling accelerated from around 1990 (p.5).
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Lastly, we highlight two important issues that have not been addressed in the current

paper. First, it would be worthwhile investigating how we should coordinate environmental

and trade polices such as import tariffs (Lai and Hu, 2008; Yomogida and Tarui, 2013;

Keen and Kotsogiannis, 2014; Sanctuary, 2018; Ogawa and Yanase, 2019). In the age of

the second unbundling, the location of parts is sensitive to the international cost differences

generated by both policy measures. Key questions would be as follows. Which measure

is effective for the global environment? Are tariffs necessary as border tax adjustments

given different emission taxes at home and abroad? Second, it would also be interesting to

consider pollution emitted during the transportation of goods, considering its importance

among all sources of pollution (Abe et al., 2014; Ishikawa and Tarui, 2018).19 Transportation

pollution is particularly relevant in snake-style production, in which parts move sequentially

from upstream to downstream with value added at each stage. The snake-style production

tends to generate more pollution than the spider-style production we consider in this paper,

because parts produced in one country can be shipped multiple times before they reach the

final stage. Incorporating these aspects into our model would lead to greater externalities

and thus larger deviations between harmonized and socially optimal taxes. We leave these

issues for future research.
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Appendix to “Is Environmental Tax Harmonization
Desirable in Global Value Chains?”

Cheng Haitao Hayato Kato Ayako Obashi

A1 Final good’s price and environmental damage

High-unbundling-cost case. From the discussion in Section 3.1, we obtain the final good’s

price as

p = min {CN , CS} =

⎧⎨
⎩CN = (b− b)(1 + tN) if τ ≥ τ ∗

CS = τ + (b− b)
[
(b+ b)/2 + tS

]
if τ < τ ∗

,

which is shown in Fig. A1. We note that assembly takes place in A = N (A = S) if τ ≥ τ ∗

(τ < τ ∗).

Fig. A1. Final good’s price under high unbundling costs.

20



The environmental damage in each country is

D(eN) =

⎧⎨
⎩(γ/2)(b− b)2 if τ ≥ τ ∗

0 if τ < τ ∗
,

D(eS) =

⎧⎨
⎩0 if τ ≥ τ ∗

(γ/2)(b− b)2 if τ < τ ∗
.

The sum of the two equals

D(eN) +D(eS) = (γ/2)(b− b)2 for any τ .

These are illustrated in Fig. A2.

Fig. A2. Environmental damage under high unbundling costs.

Low-unbundling-cost case. From the discussion in Section 4.1, we obtain the final good’s

price as

p = min {CN , CS} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CN =

(
θ + tS +

b+ bN
2

)
(bN − b)︸ ︷︷ ︸

Parts from S

+(1 + tN)(b− bN)︸ ︷︷ ︸
Parts from N

if τ ≥ τ ∗∗

CS = τ +

(
tS +

b+ bS
2

)
(bS − b)︸ ︷︷ ︸

Parts from S

+(1 + θ + tN)(b− bS)︸ ︷︷ ︸
Parts from N

if τ < τ ∗∗
,

which is shown in Fig. A3. We note that assembly takes place in A = N (A = S) if τ ≥ τ ∗∗

(τ < τ ∗∗).

21



Fig, A3. Final good’s price under low unbundling costs.

The environmental damage in each country is

D(eN) =

⎧⎨
⎩D(eN)

∣∣
A=N

= (γ/2)(b− bN)
2 if τ ≥ τ ∗∗

D(eN)
∣∣
A=S

= (γ/2)(b− bS)
2 if τ < τ ∗∗

,

D(eS) =

⎧⎨
⎩D(eS)

∣∣
A=N

= (γ/2)(bN − b)2 if τ ≥ τ ∗∗

D(eS)
∣∣
A=S

= (γ/2)(bS − b)2 if τ < τ ∗∗
.

The global damage is then

D(eN) +D(eS) =

⎧⎨
⎩[D(eN) +D(eS)]

∣∣
A=N

= (γ/2)
[
(b− bN)

2 + (bN − b)2
]

if τ ≥ τ ∗∗

[D(eN) +D(eS)]
∣∣
A=S

= (γ/2)
[
(b− bS)

2 + (bS − b)2
]

if τ < τ ∗∗
.

We note the following:

D(eN)|A=N > D(eN)|A=S,

D(eS)|A=N < D(eS)|A=S,

D(eN)|A=S −D(eS)|A=S = −γ(b− b)(β +Δt+ θ) < 0,

D(eS)|A=N −D(eN)|A=S = γ(bN − b+ b− bS)(β +Δt) > 0,

D(eS)|A=S −D(eN)|A=N = γ(bS − b+ b− bN)(β +Δt) > 0,

[D(eN) +D(eS)]
∣∣
A=S

− [D(eN) +D(eS)]
∣∣
A=N

= γ(bS − bN)(bN + bS − b− b)

= 4γθ(β +Δt) > 0.

Although the inequalities above unambiguously hold, we still need to check the relationship
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between the two countries’ pollution levels when the assembly is in N :

D(eN)|A=N −D(eS)|A=N = −γ(b− b)(β +Δt− θ).

Country N ’s pollution level tends to be lower when country S’s average cost advantage is

larger (higher β); the tax difference is larger (high Δt); and the unbundling costs are lower

(lower θ). Depending on the sign of β +Δt − θ, the environmental damage is illustrated in

Figs A4 and A5.

Fig. A4. Environmental damage under low unbundling costs if β +Δt− θ < 0.

Fig. A5. Environmental damage under low unbundling costs if β +Δt− θ > 0.
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A2 Proofs of propositions

A2.1 Proof of Proposition 1

From (1), (2), (3), and (4), the indirect utility of the representative agent in each country is

given by

VN =

⎧⎨
⎩VN |A=S = ũ− CS + 1 +X if τ < τ ∗

VN |A=N = ũ− CN + tN(b− b)− (γ/2)(b− b)2 + 1 +X if τ ≥ τ ∗
,

VS =

⎧⎨
⎩VS|A=S = tS(b− b)− (γ/2)(b− b)2 + 1 +X if τ < τ ∗

VS|A=N = 1 +X if τ ≥ τ ∗
,

where CS = τ + (b − b)/[(b + b)/2 + tS]; CN = (b − b)(1 + tN); τ ∗ ≡ (b − b)(β + Δt);

β ≡ 1− (b+ b)/2. The social welfare is defined by the sum of each country’s indirect utility:

W =

⎧⎨
⎩W |A=S = VN |A=S + VS|A=S = u− τ − (1/2)(b− b)(b+ b)− (γ/2)(b− b)2 if τ < τ ∗

W |A=N = VN |A=N + VS|A=N = u− (b− b)− (γ/2)(b− b)2 if τ ≥ τ ∗
,

where u ≡ ũ+ 2(1 +X),

as given in the main text.

Taxes do not enter the expressions of social welfare and only affect the location decision

of the assembler. The social planner thus chooses the assembly location through taxes that

gives the higher social welfare. A simple comparison of welfare between the two locations

reveals

max{W |A=N ,W |A=S} =

⎧⎨
⎩W |A=S = u− τ − (b− b)(b+ b)/2− (γ/2)(b− b)2 if τ < τ̂ ∗

W |A=N = u− (b− b)− (γ/2)(b− b)2 if τ ≥ τ̂ ∗
,

where W |A=N = W |A=S holds at τ̂ ∗ ≡ β(b− b).

To see the results intuitively, it is helpful to illustrate the assembly location pattern in

the (τ,Δ) plane, as Fig. A6 shows. The upward-sloping line is the cost-indifference one:

τ = τ ∗, or equivalently, Δt = τ/(b − b) − β, which represents N ’s maximum tax rate that

keeps assembly there. The social planner should set taxes so that the assembly locates in N
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if τ ≥ τ̂ ∗ and it locates in S otherwise. The optimal tax difference is thus

Δt

⎧⎨
⎩> τ/(b− b)− β if τ < τ̂ ∗

≤ τ/(b− b)− β if τ ≥ τ̂ ∗
,

which is represented by the shaded area in Fig. A7. As is clear from Fig. A7, only the tax

harmonization Δt = 0 (dashed line) maximizes the social welfare for any level of trade costs.

Fig. A6. Location of assembly under high unbundling costs.

Fig. A7. Socially optimal tax difference (shaded area) and assembly location under high

unbundling costs.

A2.2 Proof of Proposition 2

We first derive the unconstrained socially optimal taxes given the location of assembly. With

low unbundling costs, the indirect utility of the representative agent in each country is given
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by

VN =

⎧⎨
⎩VN |A=S = ũ− CS + tN(b− bS)− (γ/2)(b− bS)

2 + 1 +X if τ < τ ∗∗

VN |A=N = ũ− CN + tN(b− bN)− (γ/2)(b− bN)
2 + 1 +X if τ ≥ τ ∗∗

,

VS =

⎧⎨
⎩VS|A=S = tS(bS − b)− (γ/2)(bS − b)2 + 1 +X if τ < τ ∗∗

VS|A=N = tS(bN − b)− (γ/2)(bN − b)2 + 1 +X if τ ≥ τ ∗∗
,

where Ci is defined in (6) and (7); and τ ∗∗ ≡ 2θ(β +Δt); bN = 1− θ +Δt; bS = 1 + θ +Δt.

The social welfare is defined by the sum of the two country’s indirect utility:

W =

⎧⎨
⎩W |A=S =

∑
i=N,S Vi|A=S if τ < τ ∗∗

W |A=N =
∑

i=N,S Vi|A=N if τ ≥ τ ∗∗
,

W |A=S = u−
[
τ +

1

2
(b+ bS)(bS − b) + (1 + θ)(b− bS)

]
− (γ/2)[(b− bS)

2 + (bS − b)2],

W |A=N = u−
[(

θ +
b+ bN

2

)
(bN − b) + (b− bN)

]
− (γ/2)[(b− bN)

2 + (bN − b)2],

as given in the text.

For the social welfare level at each assembly location, the first-order conditions give

dW |A=S

dtN
= −dW |A=S

dtS
= 0,

→ (tN − tS)|A=S = − 2γ

2γ + 1
(θ + β) ≡ Δt|A=S,

dW |A=N

dtN
= −dW |A=N

dtS
= 0,

→ (tN − tS)|A=N =
2γ

2γ + 1
(θ − β) ≡ Δt|A=N .

Since dW |A=i/dtN and (−dW |A=i/dtS) are collinear, what matters for the social welfare

maximization is the tax difference and not the absolute levels of taxes.

We then allow for endogenous assembly location and see how it affects the optimal taxes.

As in Appendix A2.1, it is helpful to consider in the (τ,Δt) plane. The upward-sloping line in

Fig. A8 is the cost-indifference line: τ = τ ∗∗, or equivalently, Δt = τ/(2θ)−β ≡ Δt̂. Putting

the unconstrained maximizers derived before into the plane, we can obtain Fig. A9 and

identify that there are three cases to be considered. Letting τa (or τ b) be the intersection

of the cost-indifference line and Δt|A=S (or Δt|A=N), the three cases are characterized as

26



follows.

Case (i) τ < τa. The social optimum will be either the constrained maximum

with assembly in N , W |A=N, Δt=Δ̂t, or the unconstrained maximum with assembly in S,

W |A=S, Δt=Δt|A=S
.

Case (ii) τa ≤ τ < τ b. The social optimum will be either the constrained maxi-

mum with assembly in N , W |A=N, Δt=Δ̂t, or the constrained maximum with assembly in S,

W |A=S, Δt=Δ̂t+ε.

Case (iii) τ ≥ τ b. The social optimum will be either the unconstrained maximum

with assembly in N , W |A=N, Δt=Δt|A=N
, or the constrained maximum with assembly in S,

W |A=S, Δt=Δ̂t+ε.

Fig. A8. Location of assembly under low unbundling costs.

Fig. A9. Unconstrained optimal tax differences under low unbundling costs.
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For the latter reference, it is informative here to compare the constrained maxima between

the two locations.

W |A=N, Δt=Δ̂t −W |A=S, Δt=Δ̂t+ε = τ + β(bN − bS) + 2[θ + γ(bN − bS)][1− (bN + bS)/2− β]

= τ(2γ + 1)− 2βθ,

noting that ε is sufficiently small. On Δt = Δt̂, it holds that bN − bS = −2θ and bN + bS =

2(1 + Δt̂). We thus have W |A=N, Δt=Δ̂t ≥ W |A=S, Δt=Δ̂t+ε if τ ≥ τ̂ ∗∗ ≡ 2βθ/(2γ + 1) and

W |A=N, Δt=Δ̂t < W |A=S, Δt=Δ̂t+ε otherwise. It can be also checked that τa < τ̂ ∗∗ < τ b.

With these in hand, we will derive the socially optimal taxes in each case.

Case (i) τ < τ a. In this case, we have

W |A=S, Δt=Δt|A=S
> W |A=S, Δt=Δ̂t > W |A=N, Δt=Δ̂t.

The socially optimal outcome is the unconstrained maximum with assembly in S.

Case (ii) τa ≤ τ < τ b. As τ̂ ∗∗ is in between τa and τ b, this case is further divided into

two subcases.

Case (ii-a) τa ≤ τ < τ̂ ∗∗. We have

W |A=S, Δt=Δ̂t+ε > W |A=N, Δt=Δ̂t.

The socially optimal outcome is that assembly takes place in S and the tax difference is set

at Δt = Δt̂+ ε.

Case (ii-b) τ̂ ∗∗ ≤ τ < τ b. We have

W |A=N, Δt=Δ˜t ≥ W |A=S, Δt=Δ̂t+ε.

The socially optimal outcome is that assembly takes place in N and the tax difference is set

at Δt = Δt̂.

Case (iii) τ ≥ τ b. In this case, we have

W |A=N, Δt=Δt|A=N
> W |A=N, Δt=Δ̂t > W |A=S, Δt=Δ̂t+ε.
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The socially optimal outcome is the unconstrained maximum with assembly in N .

In sum, the socially optimal tax difference is

Δt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δt|A=S = −2γ(β + θ)

2γ + 1
if τ < τa

Δt̂+ ε if τa ≤ τ < τ̂ ∗∗

Δt̂ =
τ

2θ
− β if τ̂ ∗∗ ≤ τ < τ b

Δt|A=N =
2γ(θ − β)

1 + 2γ
if τ ≥ τ b

,

where τa ≡ 2θ(β − 2γθ)

2γ + 1
, τ̂ ∗∗ ≡ 2βθ

2γ + 1
, τ b ≡ 2θ(2γθ + β)

2γ + 1
,

as given in the main text.

A3 Nash equilibrium outcome under high unbundling

costs

As noted in Appendix A2.1, under high unbundling costs, the indirect utility of the repre-

sentative agent in each country is given by

VN =

⎧⎨
⎩VN |A=S = ũ− CS + 1 +X if τ < τ ∗

VN |A=N = ũ− CN + tN(b− b)− (γ/2)(b− b)2 + 1 +X if τ ≥ τ ∗
,

VS =

⎧⎨
⎩VS|A=S = tS(b− b)− (γ/2)(b− b)2 + 1 +X if τ < τ ∗

VS|A=N = 1 +X if τ ≥ τ ∗
,

where CN = (b − b)(1 + tN); CS = τ + (b − b)[(b + b)/2 + tS]; τ
∗ ≡ (b − b)(β + Δt). The

unbundling thresholds degenrate: bN = b; bS = b.

(i) First, we investigate S’s best responses given N ’s pollution tax. Evaluating the switching

point τ ∗ at taxes making the locations indifferent to S (i.e., VS|A=S = VS|A=N), we get the

threshold tax rate: t̂N = τ/(b− b)− β + (γ/2)(b− b).

If tN ∈ [0, t̂N ], S imposes a pollution tax satisfying tS ≥ tN − τ/(b− b)+β so as to induce

A = N and VS|A=N = 0. Or else, S’s welfare is negative (A = S, VS|A=S < 0).
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If tN ∈ (t̂N ,∞), S imposes a pollution tax satisfying tS < tN − τ/(b− b) + β − ε so as to

induce A = S and positive welfare where ε is a sufficiently small constant.

(ii) Second, we investigate N ’s best responses given S’s pollution tax. Similarly, evaluating

the switching point τ ∗ at taxes making the locations indifferent to N (i.e., VN |A=S = VN |A=N),

we get the threshold tax rate: t̂S = −τ/(b− b) + β + (γ/2)(b− b).

If tS ∈ [0, t̂S), then VN |A=S > VN |A=N holds. N imposes tN > tS + τ/(b − b) − β and

chooses A = S.

If tS ∈ [t̂S,∞), then VN |A=S < VN |A=N holds. N imposes tN < tS + τ/(b − b) − β and

chooses A = N .

(iii) Third, we combine (i) and (ii) together to get the Nash equilibria as follows.

If τ/(b − b) − β < 0, or τ < τ̂ ∗, both locations can be the Nash equilibria, i.e., ANE ∈
{N,S}. The Nash equilibrium tax differences at ANE = N are ΔtNE < 2[τ/(b− b)− β], and

those at ANE = S are ΔtNE = τ/(b− b)− β.

If τ/(b− b)− β = 0, or τ = τ̂ ∗, the tax differences and the assembly location at the Nash

equilibria are respectively ΔtNE ≤ 0 and ANE = N .

If τ/(b− b)− β > 0, or τ > τ̂ ∗, the tax differences and the assembly location at the Nash

equilibria are respectively ΔtNE < τ/(b− b)− β and ANE = N .

From Appendix A2, we can see that the Nash equilibria coincides with the socially optimal

outcomes for τ ≥ τ̂ ∗, which are shown in Fig. A10.
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Fig. A10. Nash equilibrium tax difference (shaded area and Δt = τ/(b− b)− β) and

assembly location under high unbundling costs

A4 Nash equilibrium outcome under low unbundling

costs

As noted in Appendix A2.2, the indirect utility of the representative agent in each country

is given by

VN =

⎧⎨
⎩VN |A=S = ũ− CS + tN(b− bS)− (γ/2)(b− bS)

2 + 1 +X if τ < τ ∗∗

VN |A=N = ũ− CN + tN(b− bN)− (γ/2)(b− bN)
2 + 1 +X if τ ≥ τ ∗∗

,

VS =

⎧⎨
⎩VS|A=S = tS(bS − b)− (γ/2)(bS − b)2 + 1 +X if τ < τ ∗∗

VS|A=N = tS(bN − b)− (γ/2)(bN − b)2 + 1 +X if τ ≥ τ ∗∗
,

where Ci is defined in (6) and (7); and τ ∗∗ ≡ 2θ(β +Δt); bN = 1− θ +Δt; bS = 1 + θ +Δt.

(i) First, we derive the best responses of each country with exogenous assembly location.
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N ’s best response given tS and A = N is

t̃BR
N (tS)|A=N ≡ tN =

γ

1 + γ
tS +

γ

1 + γ
(b− 1 + θ).

N ’s best response given tS and A = S is

t̃BR
N (tS)|A=S ≡ tN =

γ

1 + γ
tS +

γ

1 + γ
(b− 1− θ).

S’s best response given tN and A = N is

t̃BR
S (tN)|A=N ≡ tS =

1 + γ

2 + γ
tN +

1 + γ

2 + γ
(1− θ − b).

S’s best response given tN and A = S is

t̃BR
S (tN)|A=S ≡ tS =

1 + γ

2 + γ
tN +

1 + γ

2 + γ
(1 + θ − b).

(ii) Second, we allow for endogenous location and derive S’s best response with endogenous

assembly given tN .

tBR
S (tN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t̃BR
S (tN)|A=N if tN < t̂∗N

tS|A=S = tN − τ/(2θ) + β if t̂∗N ≤ tN ≤ t1N

t̃BR
S (tN)|A=S if tN > t1N

,

where t̂∗N = τ(2+γ)/(2θ)+(3+γ)θ+(γ/2)(b−b)+(b−1)−
√

2(2 + γ)τ + 2θ(2 + γ)(b− b+ 2θ)

is the switching point of assembly location at which S is indifferent to where assembly takes

place; t1N = (2 + γ)[τ/(2θ)− γ] + (1 + γ)(1 + θ − b).20 It is illustrated in Fig. A11.

20We need to assume that θ < (b − b)/2(1 + γ) to avoid the case where the switching point falls between
the two exogenous best response lines. The assumption is reasonable since we restrict our attention to the
case of low unbundling costs.
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Fig. A11. S’s best response with endogenous assembly location (red curve).

(iii) Third, we allow for endogenous location and derive N ’s best response given tS.

tBR
N (tS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t̃BR
N (tS)|A=S if tS < t1S

tN |A=S ≡ tS + τ/(2θ)− β if t1S ≤ tS ≤ t̂∗S

tN |A=N ≡ tS + τ/(2θ)− β if t̂∗S < tS ≤ t2S

t̃BR
N (tN)|A=N if tS > t2S

,

where t̂∗S ≡ γ(b − 1) − (1 + γ)[τ/(2θ) − β] is the switching point of assembly location at

which N is indifferent to where assembly takes place; t1S ≡ γ(b− 1− θ)− (1+ γ)[τ/(2θ)− β];

t2S ≡ γ(b − 1 + θ) − (1 + γ)[τ/(2θ) − β]. Note that t̂∗S = (t1S + t2S)/2. N ’s best response is

illustrated in Fig. A12.
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Fig. A12. S’s best response with endogenous assembly location (blue curve).

(iv) Fourth, we derive Nash equilibria with endogenous assembly location. We only need to

combine the best responses of the two countries together and then to see whether there exist

intersections or overlapping lines. Fig. A13 draws the cost-indifference line at τ = 0, i.e.,

τ ∗∗ ≡ 2θ(β + Δt) = 0, or tN = tS − β. Note that the cost-indifference line locates above

the intersection of t̃BR
N (tS)|A=S and t̃BR

S (tN)|A=S. Therefore, there are two types of Nash

equilibria depending on τ : one characterized by the cost-indifference line; the other by the

intersection of t̃BR
N (tS)|A=N and t̃BR

S (tN)|A=N , i.e., point B.

Fig. A13. Cost-indifference line at τ = 0.
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We have seen that N is indifferent to where assembly takes place if tN = t∗N , so is S at

tS = t̂∗S, or equivalently tN = t̂∗∗N ≡ t̂∗S + τ/(2θ)− β. Noting that the two countries’ switching

points are t̂∗N and t̂∗∗N , the two switching points are equalized at21

τ1 ≡
θ

[√
θ(2 + γ){2γ2(θ + b− b) + γ(2 + 2b− 4b+ θ)}+ 2(1− b)− (γ2 + 3γ + 1)θ − (b− 1)(1 + γ)

]
(1 + γ)2

.

Then, for τ < τ1, the Nash equilibria occur on the cost-indifference line where Δt|NE
A=S =

τ/(2θ)− β (see Fig. A15). At point B, N ’s and S’s pollution taxes are

tBN =
γ(2 + γ)

2(1 + γ)
(b− 1 + θ) +

γ

2
(1− θ − b),

tBS =
γ2

2
(b− 1 + θ) +

1 + γ

2
(1− θ − b).

Equalizing tBN and t̂∗N gives

τ2 ≡
2θ
√
2θ(1 + γ)

[
γ2(b− b) + γ(θ + 1 + 2b− 3b)

]
+ 2(1− b)− θ(2γ2 + 3γ + 2)− (b− 1)(2 + γ)

(1 + γ)(2 + γ)

Then, for τ > τ2 the Nash equilibrium occurs at point B where Δt|NE
A=N = γ(b−1+θ)/[2(γ+

1)]− (1− θ − b)/2 (see Fig. A18).

For τ1 ≤ τ ≤ τ2, there are two possible cases: (a) both countries still impose pollution

taxes along the cost-indifference line, but they choose different assembly locations (see Fig.

A16); (b) their best-response curves have neither intersections nor overlapping parts (see Fig.

A17). In both cases, there is no Nash equilibrium.

To conclude, we have

ΔtNE =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Δt|NE

A=S ≡ τ/(2θ)− β if τ < τ1

No Nash equilibrium if τ1 ≤ τ ≤ τ2

Δt|NE
A=N ≡ γ(b− 1 + θ)/[2(γ + 1)]− (1− θ − b)/2 if τ > τ2

,

which is shown in Fig. A14. The Nash equilibria coincides with the socially optimal outcomes

only for τ ∈ (τa, τ̂ ∗∗), which is narrower than τ ≥ τ̂ ∗. We can thus conclude that the

21It can checked that ∂ t̂∗N/∂τ > 0; ∂ t̂∗∗N /∂τ < 0; and t̂∗N < t̂∗∗N holds at τ = 0.
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decentralized policy outcomes are more likely to deviate from the socially optimal ones in

the age of the second unbundling.

Fig. A14. Nash equilibrium tax difference (blue line) and assebly location under low

unbundling costs.
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Fig. A15. Nash equilibrium for τ < τ1.

Fig. A16. Case (a) for τ1 ≤ τ ≤ τ2: overlapping line with different assembly location.
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Fig. A17. Case (b) for τ1 ≤ τ ≤ τ2: no intersections.

Fig. A18. Nash equilibrium for τ > τ2.

38


