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ON ASYMPTOTICS OF LOCAL PRINCIPAL COMPONENT
ANALYSIS

SHINGO OUE

Abstract

Assume data are randomly distributed on or near a smooth submanifold of IR¢.
When applied to a subset of data in a neighborhood, principal component analysis
(PCA) gives an estimate of the tangent and normal spaces of the underlying manifold.
Asymptotic properties of the estimate is surveyed in connection with variations of data
and curvatures of the manifold. A dimension estimate based on the work of Waternaux
(1975, 1976) is also considered.

1. Introduction

Principal component analysis (PCA) is concerned with explaining the variation of data
by presenting a new orthonormal basis whose vectors represent the directions of maximum
variability. Let ¢; > ¢3 > -.- > c4 be the eigenvalues of the sample covariance matrix
and let v,,v3,...,v4 be the corresponding eigenvectors, respectively. If the last d — k
eigenvalues are all small for k € {1,...,d — 1}, then the linear subspace spanned by the
first k eigenvectors v1,...,v; is parallel to the “best” affine subspace approximation of the
data. By analogy, PCA restricted to data points in a small neighborhood is considered
as a procedure to estimate the tangent and normal spaces for the neighborhood: the first
k eigenvectors vy,...,v, span a tangent space estimate and the last d — k eigenvectors
Uk+1,- .., V4 Spall a normal space estimate.

An explicit use of local PCA in connection with differentiable manifolds has appeared
in Hoppe, DeRose, Duchamp, McDonald, and Stuetzle (1992) where they consider surface
reconstruction in IR from randomly distributed points on or near the surface. The method
they have developed requires an estimate of the normal vector for which the last eigenvector
of local PCA is used. Hoppe et al, however, do not inquire further into the property of the
last eigenvector as an estimate of the normal vector. In this paper, I would like to clarify
how variations in data, curvatures of the underlying manifold, and size of the neighborhood
relate to the performance of the estimates for the general case of k-dimensional manifold in
IR? (1 < k < d). I also consider the estimation of the dimension k when it is unknown. The
proposed method is based on the work of Waternaux (1975, 1976).

2 Covariance Matrix of Manifold-valued Data

We assume that data are randomly distributed on a smooth manifold, possibly with
noise. The eigensystem of the sample covariance matrix is computed from data points
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within a small neighborhood. When the size of the neighborhood is fixed, it follows from
the multivariate central limit theorem that the sample covariance matrix is a v/ N-consistent
estimator of the population covariance matrix where N is the number of observations in
the neighborhood. Both the eigenvalues and eigenvectors of the sample covariance matrix
are also known as /N-consistent estimators of their population counterparts (Waternaux
1975). Our particular interest is in how well the eigenvectors approximate the tangent and
normal vectors of the underlying manifold.

The following notations are used throughout this paper:

Let A be a linear transformation from IR"” to IR™. The same symbol A is used for both
the transformation and the corresponding m x n matrix with respect to the canonical bases
of IR" and IR™. The distinction should be clear from the context.

Suppose B is a n; X ny X n3 array of real numbers. The 3-way array B can be thought
of as ny X nz matrix whose (i, )th component is a n; vector B.;;, or as n; vector whose
ith component is a ny X n3 matrix B;... For the case n; = n and n, = n3 = m, we define
w" [Blw (w € IR™) to be the vector in IR” given by

m
(wTBl..w,...,wTB,,..'w)T = Z wiw; By;
ij=1
The symbol 0,, stands for the zero vector in IR® and 0,y,, stands for the n x m matrix
of zeros.
2.1 Differentiable Submanifolds in IR’

Let M be a k-dimensional imbedded C™-submanifold of IR® with 1 < k < d; that is, for
each g € M, there exist an open subset A of IR® and a function o such that

1. zg EN;
2. ¢ is a bijection of class C™ from W onto M N A where W is an open subset of IR*;

3. The rank of ¢'(w) is k for every w € W;

1

4. ¢~  is continuous (with respect to the relative topology of M N N).

For our purpose, it is sufficient to assume that M is a C3-submanifold.
The tangent space T'(20) of M at 2, can be identified as a k-dimensional linear subspace
of IR? given by
T(zo) = {¢'(wo)z : z € R¥}

where wo is the unique point satisfying 2o = ¢(wg). It can be shown that T(z) is, in
fact, independent of the particular parameterization . We also denote the orthogonal
complement of T'(2¢), called the normal space, by T(z¢)*. For more general treatments of
differentiable manifolds, we refer the reader to, e.g., Boothby (19886).

Let
32
ﬁp"(wo) — [i

Ow;dw; w:wo] hij
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be the d x k x k array of the second derivative of ¢ at wp. For each w € IR, let nw(t) =
¢(wg + tw) be the curve on M NN going through o in the direction w. The vector

1y
dt?

= w' [¢" (wo)lw
t=0

2w Bw;dw;

Hi=1

) = (w" o (wo)w, ..., w @i(wo)w)T
W=wW,
is called the acceleration vector, following Bates and Watts (1980). If we imagine a point
moving along the curve mp(t), flw is the instantaneous acceleration when ¢ = 0.

The acceleration fjy can be uniquely decomposed as 7y = i), + 72y Where 7%, € T(20)
and i}, € T(zo)*. The quantity

Koy = LS W
ll¢’ (wo)w||?
is called the intrinsic curvature in the direction w, which is, in fact, the inverse of the

radius of the circle which best approximates the curve ny at ¢t = 0. The curvatures are also
invariant under re-parameterization.

2.2 Eigensystem of the Covariance Matrix

Let Ay be a bounded open subset of IR? satisfying £y € Ng C N and let § € (0,00) be
the diameter of Ny defined by

6 =sup{||z — || : =,2' € No}.

This is the neighborhood on which we compute covariance matrices. Since ¢ : W — M NN
is a homeomorphism, Wy = ¢~ !(M N M) is also a bounded open subset of W.
We assume that the data X;, i =1,..., N are #d and that each X; has the form

Xi=Yi+¢

where Y; and ¢; are independent random vectors in IR?. The distribution P of Y; is defined
on the Borel field of M and assumed to satisfy P(M) = 1. Also, the noise component ¢; is
assumed to have the mean 04 and covariance 72 where 7 > 0 is sufficiently small compared
with 8. Since we restrict our analysis to the neighborhood A, let us normalize P conditioned
on Ng by

P = P/P(No ﬂM)

Since ¢ is a homeomorphism, ¢~! induces a probability measure Pyp on Wy which is defined
by Pow(A) = Py(p(A)) for any Borel set A of Wy. The covariance of X; is given by

T4 I (2)

where
) £ = E[(Y - EY)(Y - EY)"] 3)
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and Y ~ P,.
Let o1 > --- > 04 be the eigenvalues of . It follows from (2) that the eigenvalues of the
covariance matrix for the noisy data {X;} are 0; + 7%, j = 1,...,d and the eigenvectors

are the same as those for the noiseless data {Y;}. If 72 is very large and
ot+rimoy+rin R og+ T2,
the eigenvectors for {X;} are almost indeterminate. Geometrically, it implies that the noise
component ¢; inflates the low-dimensional structure toward a ball in IR%.
3. Second-order Approximation of Eigensystem

Let
¢'(wo) = QR (4)

where @ is a d x d orthogonal matrix and R is a d x k right triangular matrix, i.e.,

™M1 T2 ... Tik

R:[Rl ] and R1= 0 92 ... Top
O(a—k)xk :

0 0 e Tkk

The RHS of (4) is the QR decomposition of ¢'(wy). Since ¢’(wy) is of rank k, the triangular
matrix R, is nonsingular and, hence, r; # 0, ¢ = 1,..., k. For later purposes, let Q@ = [@ |
Q2] where Q; is the d x k matrix of the first k columns of Q.

Now, we introduce another local parameterization around &g € M. Let f : w + v be
the affine transformation on W given by

v = f(w) = Ri(w — wo).

Since R; is nonsingular, f maps W onto a nonempty open subset V of IR and Wy onto a
bounded open subset Vo C V such that 0; € Vp. Obviously, f is a diffeomorphism between
W and V so that we can define a new parameterization ¢ = @ o f~1. Then, by chain rule,

d(f1) _ -1 Ii )
v=0k) =QRR;" = Q( Oa-k)xk J ®)

¢'(0¢) = ¢'(wo) (T
Let 64 be the diameter of Vy. Also, Let v; and vz be points in Vg and let @; = ¢(v;) for
t=1,2. Since

x; = ¢'(0k)v,- -+ 0(5;)

V) — V2
Jo (%)

l[v1 — v} + O(63%).

and Q@ is orthogonal,

|1 — 22|

i +0(8%%)
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This implies that
6/6 =1+ o(1)
and the diameters § and §4 are asymptotically equivalent.
It follows from the definition of the tangent space that

T(z) = ¢'(0:)R* = QL )

where
£ =R x {Od_k}:{:BGIR.dZIk+1 = '--:xd::O},

Since the tangent space T'(¢) is a k-dimensional linear subspace of IRY, it can be obtained by
rotating the linear subspace £. The equation (6) gives an orthogonal matrix which represents
the rotation, though det Q can be —1 because a basis in T'(o) can have a different orientation
from the canonical basis in £. The representation of T(xo) which appears on the RHS of
(B) suggests an advantage of the coordinates with respect to the column vectors of Q. That
is, for any vector of IR?, the first k coordinates correspond to the tangent space, and the
last d — k£ coordinates correspond to the normal space under the @Q-coordinate system. The
result can be directly translated into the original coordinate system through the orthogonal
transformation Q. It is also suggested that the columns of Q; (or Q;) form an orthonormal
basis of T'(zo) (or T(z0)t).

Suppose V is a random vector in IR* such that Y = ¢(V) and Y ~ P;. We assume that
the covariance of V is positive definite. Now, let us look at the second order expansion of ¢
at O,

$(V) = ¢(0x) + ¢'(0:)V + VT [¢"(0))V + O(IVIP) (M
Using the QR decomposition (5), (7) can be expressed as
T
svy=son+e[( v )+ (vl )] +ouvi Q

where (2;) is the representation of ¢”/(0) in the Q-coordinate system, A, is the k x k x k

array of the tangent components, A, is the (d — k) X k x k array of the normal components
and
VTV = (VT ["(0)]V)T, VT[4V = (VT[¢"(0)}V)".

The (h,i,7)! element of 4, is given by

al (a2¢/av,-au,-|v=0k)

where g, is the hth column of @;. From the equation (8), we see that, at low order, elements
of the normal space enter the covariance matrix through vT [A9]V.
Let us define the following centered random vectors

v = v_EV,
v = VT[Al]V—E[VT[Al]V],

v

VT[4,V - E [VT[Az]V]
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The vectors V(o), V(l), and V(® can be seen as the first order variation in the tangent
space, the second order variation in the tangent space, and the second order variation in the
normal space, respectively.

Now, using the second-order approximation (8), the covariance matrix ¥ can be expanded

as
T =Q(Z: + 6%2)QT + 0(6%)

where

5, = [ Cov(VO + VD) 0, 0amp) ] , 9)

O(a—k)xk O(d—k)x(d—k)
— -2 Okxk C

Y =6 [ cT COV(V(2)) ) (10)

and

C = E[(V® + viyv®T],

Note that, after taking the expectation, the remainder term is expressed with respect to é
since ||V'|| < 64 and 64 is asymptotically equivalent to 8.

Let o > ... > o} be the eigenvalues of ¥; and let bi,...,b}, be the corresponding
eigenvectors, respectively. Also, let g1 > --- > 04 be the eigenvalues of £. The eigenvectors

of £, are supposed to be normalized so that their norms are equal to unity. It follows from
(9) that

ai+1=a£+2:...=0¢1{=0 (11)
and
bjeLfori=1,.. ,k blellfori=k+1,...,d (12)
Since b PR b} which span £ have the same eigenvalue 0, we can replace them by any
orthonormal set of vectors spanning £1. Our choice is to set b} —e,i=k+1,...,d
Let i € {1,...,k}. We assume that the multiplicity of ¢} is one so that we can use

an expansion of the ith eigenvector of £ around b; with respect to 6. The multiplicity of
the other eigenvalues is arbitrary in the expansions. We also have to rescale the covariance
matrix with respect to é, since the size of eigenvalues o} and o; also depends on é. For that
purpose, let us make a few additional assumptions. First, the neighborhood A is taken to
be the (6/2)-ball {z € IR? : ||z —=zq|| < §/2} so that the neighborhood shrinks symmetrically
in every direction as § becomes smaller. Secondly, we assume that M is orientable and Py
has a positive density g with respect to a volume element Q of M, i.e.,

Pg(A):/AgQ

(Boothby 1986). This induces a positive density go with respect to the Lebesgue measure
on Wy. By applying the mean value theorem to go, the variance of any one-dimensional
marginal distribution of Py¢ (and, therefore, of Py) is of order 62 as § — 0. With these
assumptions and the simplicity of o},

a;:6_2a}>0, o =0O(1) as§ -0
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-Then, using a perturbation argument (Wilkinson 1965, pp.66-70), for sufficiently small 4,

; Biibj
b = bl +8 | | +0(&),
bt g — 07}
j#i ! J
§ 2%, = o'+ 52,3,',' + & E ———ﬂjiﬁ‘j + 0(64)
: o —o"

TR

where
Bii = bl T (6725,)b} = Bi;

and b; is an unnormalized eigenvector corresponding to o;. It follows from (10) that

_ 0 for j € {1,...,k}
=\ ZEE B T(VO + VOWD] forje{k+1,...,d)

where b}* € IR is the vector of the first k components of b}. Since b} € L, bi¥ is also a
unit vector. Then, using (11),

5 0
b o= bt ( B3 (T VO v ) +0(5%) (13)
1 1
52 & LT 5 (0)\1/(2) 4
7% = ol +—= D BTGV + 0@ (14)

t =1

The first order term in the expansion (13) is a vector in L+ Forl=1,...,d—k, the (lc+l)th
coordinate of the first order term is proportional to
1. the inverse of the eigenvalue o7},

2. the covariance between the q;-coordinate variation VI(Z) in the normal space and the
projection of the variation v onto the b}k-direction in the tangent space.

Let ¢ be a unit vector in IR¥. When the manifold M is fairly flat in the direction of Q (f)d_k)

near zg, the linear order term along the direction, ¢7 V() in the Q,-coordinate system, is
likely to be large compared with the second order terms tTv() and V,S."), m=1,...,d—k.
Since V(9 is bounded, this implies that the covariance between tTv©® and VS‘:) tends
to be small. Although the variances of V(o), v() and v depend on their probability
distributions, the idea suggests the influential role played by the underlying geometry of the
support M NNj. Since o1, ...,0} are the eigenvalues of 6“2Cov(V(°) +V 1)), b; with large
i€ {l,...,k} corresponds to the direction where the variation of v(® 4 v is relatively
small and, hence, M is less linear. It follows that the eigenvectors Qb; of L with large
t € {1,...,k} is more likely to be contaminated since

1. o} is smaller than o} for j <7,
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2. b} corresponds to the direction where M is less linear.

Therefore, the tangent space estimate spanned by Qb,, ..., Qb; is actually dragged to the
manifold M in the directions where M is relatively nonlinear.

The expansion (14) shows a similar result for the eigenvalue the third order coefficient
is proportional to both ¢} ~! and the sum of covariances Z, lk E[(b“‘TV(o))V(z)]

In the rest of this section, we derive a few inequalities which relate the contamination
from the normal space to the curvatures of M. First, the orthogonality of the matrix @
implies that
v _ vl _
viP ~leTviE ~ v

where Ky, is the intrinsic curvature in the direction of V' (1) and satisfies

572V <

Ky < sup Ky =K <0
foll=t

Then, by Jensen’s inequality,
, d—k , d=k 9
|Et2v®)| = 3 BV < 3B || = BV < K2 (19)
=1 i=1
Since ||b}*|| = 1, it follows from the Cauchy-Schwarz inequality that

BHETVO| < v < 6. (16)

Then, by (15) and (16), the norm of the first order term in (13) is bounded by

6 0, K
o “( E[-3(6TvO)v®) )” <8 -
Since
d—k Ak
Vi< WP VI- RVl < V- R K
=1 I=1

the absolute value of the third order term in (14) is also bounded by

—k
Z B3 T vy @) < YA EK 5 (18)
01
The same argument does not hold for o441, ...,04 since they correspond to the multiple

eigenvalue 0. However, using the Gerschgorin circle theorem (see, e.g., Noble and Daniel
1977), we can still access their sizes. In fact, fori € {k+1,...,d},

§720; < [ISall2 + O(8?) < [|Z2|lF + O(8%) (19)
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where |||, is the Euclidean (l;) matrix norm and ||A||r is the Frobenius norm of A = [a;;]
given by

o | Av]|
bl
o=t ol

llAll2

1/2

ZZ las;[?

i

lAllr

Then, the leading term (first order) in the RHS of (19) is bounded by

=1 m=1

k d—k 1/2
(22 3 |5-2E[v,(°)v,$3)]|2) < 2k({d - b)KS. (20)

4. Local Dimension Estimation

Let v;, i = 1,...,d, be the eigenvalues of the population covariance matrix of X;. If M

is a k-dimensional linear submanifold,
Tl = Tepz ==V =T

As we have seen in the previous section, 7,, i = k + 1,...,d, may be greater than 72 for a
general submanifold M and the amount of deviations from 72 is related to the curvatures
of M. (See (20).)

Let & be the '} cumulant of the i*® component X;; of X1; that is, «} is the coefficient
of (it)" /r! in the expansion in powers of ¢ of log #(t) where ¢(t) is the characteristic function
of X,1. Similarly, the bivariate cumulant ¥ of X;; and Xj; is defined as the coefficient of

(it:)" (it;)’
r! st

in the expansion of the joint log-characteristic function log ¢(t;,t;) of Xi1 and Xj;. Let
¢1 > ¢ > --- > cq be the eigenvalues of the sample covariance matrix. Waternaux (1975,
1976) has shown that, if yg4+1 > Yk42 > - > 74, the asymptotic distribution of

Ck+1 Te+1
wil |- (21)

Cd Yd

is normal with mean zero and covariance matrix A = [X;;] where

29+ fori=j
= T 22
Aij { K3 fori#j (22)
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Anderson (1963) has derived the same asymptotic distribution also for the spherical case
Yk41 = -+ = 74 under the assumption of normal population («} = &3, = 0, ¥(4,5)). His
result for the spherical case can be directly generalized to nonnormal populations if

o

1 .,
k3 —5'911 i#]

RAR =0 (,4,1,m) # (i4,i,4) and (i, 5) # (I, m)
Otherwise, the expression for the joint distribution becomes intractable for d — k > 2 (Wa-

ternaux 1975).
According to (21) and (22), V/N (& — 7) where

d d
e= Y a/(d—k), 7= 3 vi/(d—k)
izk+1 i=k+1

is asymptotically normal with mean zero and variance

d d ; d ij
23 k41 7+ Dicke1 K2t Dkl K3y (23)
(d—k)?

By applying the mean value theorem to the positive density gy of Py¢, the cumulants of
Y, can be approximated by those of the uniform distribution on W, for which rc; < 0 and
n’?]_z = 0. If the noise component ¢; is normal or any random vector which has &} < 0 and
K3y = 0, the variance given by (23) is smaller than 2(E?=k+l v2)/(d — k)? for small §. Let

Zy be such that
2o 1
/ ——e =10
—oo V2T

Using the consistent estimator 2(3°7_, ., ¢)/(d — k)? of 28 178)/(d - k)? in place of
the variance (23), an asymptotic test of level a for the null hypothesis ¥ = 0 is defined to

reject the hypothesis if
1/2
2 Zl'i-k+1 cf
g Siizkil i) 24
c>z°'(N(d—k)2 (24)

In order to estimate the local dimension k of A, we specify an admissible upper bound
C for 72/62. Then, our dimension estimate is defined as the smallest k which satisfies

d 1/2
2 Ei:k-{-l ciz)

- 2
c>Cé +za( N(d= k)2

One direction relating to future research is to connect the test given by (24) with the
work of Cutler (1986) and Cutler and Dawson (1989) on a general theory of local dimension.

HiTOTSUBASHI UNIVERSITY
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