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ON ASYMPTOTICS OF LOCAL PRlNCIPAL COMPONENT 
ANALYSIS 

SmNGo OUE 

Abstract 

Assume data are lalldomly distributed oll or near a smooth submanifold of IRd 

When applied to a subset of data in a neighborhood, principal component analysis 
(PCA) gives an estimate of the tangent and normal spaces of the ullderlying manifold. 

Asymptotic properties of the estimate is surveyed in connection with variations of data 

and curvatures of the manifold. A dimension estimate based on the work of Waternaux 

(1975, 1976) is also considered. 

1. Introduction 

Principal component analysis (PCA) is concerned with explaining the variation of data 

by presenting a new orthonormal basis whose vectors represent the directions of maximum 

variability. Let cl > c2 > . . . > cd be the eigenvalues of the sample covariance matrix 

and let vl,v2, . . . , vd be the corresponding eigenvectors, respectively. If the last d - k 

eigenvalues are all small for k e {1, . . . , d - 1}, then the linear subspace spanned by the 

, vk is parallel to the "best" afiine subspace approximation of the first k eigenvectors vl , . . . 

data. By analogy, PCA restricted to data points in a small neighborhood is considered 

as a procedure to estimate the tangent and normal spaces for the neighborhood: the first 

. . . , vk Span a tangent space estimate and the last d - k eigenvectors k eigenvectors vl, 

, vd span a normal space estimate. 
vk+1, ･ ･ -

An explicit use of local PCA in connection with differentiable manifolds has appeared 

in Hoppe, DeRose, Duchamp, McDonald, and Stuetzle (1992) where they consider surface 
reconstruction in IR3 from randomly distributed points on or near the surface. The method 

they have developed requires an estimate of the normal vector for which the last eigenvector 

of local PCA is used. Hoppe et al, however, do not inquire further into the property of the 

last eigenvector as an estimate of the normal vector. In this paper, I would like to clarify 

how variations in data, curvatures of the underlying manifold, and size of the neighborhood 

relate to the performance of the estimates for the general case of k-dimensional manifold in 

lRd (1 ~ k < d). I also consider the estimation of the dimension k when it is unknown. The 

proposed method is based on the work of Waternaux (1975, 1976). 

We 
noise . 

2 Covariance Matrix of Mamfold-valued Data 

assume that data are randomly distributed on a smooth manifold, possibly with 

The eigensystem of the sample covariance matrix is computed from data points 
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within a small neighborhood. When the size of the neighborhood is fixed, it follows from 

the multivariate central limit theorem that the sample covariance matrix is a ~/~:-consistent 

estimator of the population covariance matrix where N is the number of observations in 

the neighborhood. Both the eigenvalues and eigehvectors of the sample covariance matrix 
are also known as 1/~:-consistent estimators of their population counterparts (Waternaux 

1975). Our particular interest is in how well the eigenvectors approximate the tangent and 

normal vectors of the underlying manifold. 

The following notations are used throughout this paper: 

Let A be a linear transformation from lRn to lRm. The same symbol A is used for both 
the transformation and the corresponding m x n matrix with respect to the canonical bases 

of IRn and Iftm . The distinction should be clear from the context. 

Suppose B is a nl x n2 x n3 array of real numbers. The 3-way array B can be thought 
th of as n2 x n3 matrix whose (i,j) component is a nl vector B.ij ' or as nl vector whose 

'th t component is a n2 x n3 matrix Bi_.. For the case nl = n and n2 = n3 = m, we define 
wT[B]tv (w e IRm) to be the vector in IR" given by 

,14 

(wTB1-'w, . . . .WTBra w)T wiwjB.ij =~ 
i,j=1 

The symbol O,, stands for the zero vector in lRr and 0,1xm stands for the n x m matrix 

of zeros. 

2. I Differentiable Submanifolds in IIRf 

Let M be a k-dimensional imbedded Cm_submanifold of IRd with I < k < d; that is, for 
each ,co e M, there exist an open subset JV of IRd and a function p suc~h that 

l. ,co eJ~r; 

2. p is a bijection of class Cm from W onto M n JV where )V is an open subset of IRk ' 

3. The rank of ~l(w) is k for every w e )V; 

4. p~1 is continuous (with respect to the relative topology of M n Ar). 

For our purpose, it is sufficient to assume that M is a C3-submanifold. 

The tangent space T(aeo) of M at ,eo can be identified as a k-dimensional linear subspace 
of lRd given by 

T((Do) = {p'(wo)z : z e IRk} 

where wo is the unique point satisfying 'eo = p(tvo)' It can be shown that T(,co) is, in 

fact, independent of the particular parameterization lp. We also denote the orthogonal 
complement of T(,co), called the normal space, by T(a:o)i. For more general treatments of 
differentiable manifolds, we refer the reader to, e.g., Boothby (1986). 

Let ' Pu(wo) = [ a~t~h-w3 Ilw=wo]ht, 
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be the d x k x k array of the second derivative of p at wo' For each w e IRh, Iet ,1w(t) = 

p(wo + ttv) be the curve on M n JV g~ing through ,co in the direction w. The vector 

iu, d217w _ WT [p" (1vo)]w 
= dt2 t=0 

i,j=1 j lw- ) ' ~ wiwj ~ (wTY?u(wo)w . , wTp~(wo)w) 
awiaw 

-w 
is called the acceleration vector, following Bates and Watts (1980). If we imagine a point 

moving along the curve nw(t), iiu, is the instantaneous acceleration when t = O. 
The acceleration iiu, can be uniquely decomposed as ~, = ~~;w + ~~ where ~TW e T((co) 

and ip~; e T(,co)i' The quantity 

ll~;ll 

Kw = Ilp'(wo)wll2 (1) 
is called the intrinsic curvature in the direction w, which is, in fact, the inverse of the 

radius of the circle which best approximates the curve '7w at t = O. The curvatures are also 

invariant under re-parameterization. 

2. 2 Eigensystem of the Covariance Matrix 

Let JVlo be a bounded open subset of lRd satisfying ~co e JVlo C JV aud let 5 e (O, oo) be 

the diameter of JVlo defined by 

5 = sup{ll~ - (e'll : 'c,'e' e JVlo}. 

This is the neighborhood on which we compute covariance matrices. Since p : W -. M nAf 

is a homeomorphism, Wo = p~1(M n JV;o) is also a bounded open subset of yV. 

We assume that the data Xi, i = 1, . . . , N are iid and that each Xi has the form 

Xi = Yi + c 

where Yi and ci are independent random vectors in lRd. The distribution P of Yi is defined 

on the Borel field of M and assumed to satisfy P(M) = 1. Also, the noise component ei is 

assumed to have the mean Od and covariance T21 where T ~ O is sufiiciently small compared 

with 5. Since we restrict our analysis to the neighborhood JVlo, Iet us normalize P conditioned 

on JVlo by 

Po = P/P(JVlo n M). 

Since p is a homeomorphism, p~1 induces a probability measure Pbp on Wo which is defined 

by Po~'(A) = Po(p(A)) for any Borel set A of Wo. The covariance of Xi is given by 

where 

~ = E[(Y EY)(Y EY)T] (3) 
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and Y - Po. 
Let al ~ ' ' ' ~ Ifd be the eigenvalues of ~]. It follows from (2) that the eigenvalues of the 

covariance matrix for the noisy data {Xi} are aj + T2, j = 1, . . . , d and the eigenvectors 
are the same as those for the noiseless data {Yi}. If T is very large and 

al + T2 -~ a2 + T2 - -- ,Td + T2 
~. 

the eigenvectors for {Xi} are almost indeterminate. Geometrically, it implies that the noise 

component ci inflates the low-dimensional structure toward a ball in lRd 

3. Second-order Approximation of Eigensystem 

Let 

p/(wo) = QR (4) 
where Q is a d x d orthogonal matrix and R is a d x k right triangular matrix, i.e., 

rll rl2 "' rlk [
 

R Rl O r22 ' ' ' r2k and R O(d_k)Xk 

O O ... rkk 

The RHS of (4) is the QR decomposition of {p/(wo)' Since p'(wo) is of rank k, the triangular 

matrix Rl Is nonsingular and, hence, rti ~ O, i = 1, . . . , k. For later purposes, Iet Q = [QI l 

Q2] where Q1 is the d x k matrix of the first k columns of Q. 

Now, we introduce another local parameterization around aeo e M. Let f : w h> v be 
the affine transformation on W given by 

v = f(w) = R1(w - wo)' 

Since Rl Is nonsingular] f maps W onto a nonempty open subset V of IRk and yVo onto a 

bounded open subset Vo C V such that Ok e Vo' Obviously, f is a diffeomorphism between 

W and V so that we can define a new parameterization c = p o f-1. Then, by chain rule] 

)
 

c/(Ok) = P'(wo) QRR~1 = Q (5) dv O(d k)Xk v=0 

Let 5c be the diameter of Vo. Also, Let vl and v2 be points in Vo and let ~ci = c(vi) for 

i = 1,2. Since 

(ci = c'(Ok)vi + o(6~) 

and Q is orthogonal, 

ll(cl-:e2]1 = ( - ~ Q~v~ v2 ) d_k + o(5~12) 

Ilvl - v211 + O(5~12). 
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This implies that 
5/6c = I + o(1) 

and the diameters 5 and 5c are asymptotically equivalent. 

It follows from the definition of the tangent space that 

T((eo) = c/(Ok)lRk = QL (6) 
where 

L = Iltk x {Od_k} = {o e IR xk+1 = ' ' ' = xd = O}. 

Since the tangent space T(,co) is a k-dimensional linear subspace of IRd, it can be obtained by 

rotating the linear subspace L. The equation (6) gives an orthogonal matrix which represents 

the rotation, though det Q can be - I because a basis in T(xo) can have a different orientation 

from the canonical basis in L. The representation of T((1;o) which appears on the RHS of 

(6) suggests an advantage of the coordinates with respect to the column vectors of Q. That 

is, for any vector of lRd, the first k coordinates correspond to the tangent space, and the 

last d - k coordinates correspond to the normal space under the Q-coordinate system. The 

result can be directly translated into the original coordinate system through the orthogonal 

transformation Q. It is also suggested that the columns of Ql (or Q2) form an orthonormal 

basis of T(,co) (or T((co)i)' 

Suppose V is a random vector in lRk such that Y = c(V) and Y - Po' We assume that 

the covariance of V is positive definite. Now, Iet us look at the second order expansion of c 

c(V) = c(Ok) + c/(Ok)v + vT[cu(Ok)]v + O(llVll ) 

Using the QR decomposition (5), (7) can be expressed as 

[( ) ( )] c(V) = c(Ok) + Q + O(llVll3) +
 Od_k VT [A2] V 

where (~;) is the representation of c"(Ok) in the Q-coordinate system, A1 Is the h x k x h 

array of the tangent components, A2 Is the (d - k) x k x k array of the normal components 

and 
V [Al]V = (vT[cu(Ok)]V)T, vT[A2]V= (vT[c"(Ok)]V) . 

The (h, i, j)th element of Al Is given by 

( t k) qh a c/av avj lv=0 T 2 
where qh is the hth column of Q1 . From the equation (8), we see that, at low order, elements 
of the normal space enter the covariance matrix through VT [A2]V. 

Let us define the following centered random vectors 

V(o) = V-EV, 
V(1) = VT[Al]V E [LVT[A1]V] , 

V(2) vT[A JV E [LVT[A2]V] 
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The vectors V(o) , V(1), and V(2) can be seen as the first order variation in the tangent 

space, the second order variation in the tangent space, and the second order variation in the 

normal space, respectively. 

Now, using the second-order approximation (8), the covariance matrix ~] can be expanded 

as 
~) = Q(~]1 + 82~]2)QT + o(54) 

where 

~ = Cov(V(o) + v(1)) OhX(d_k) , (g) 
O(d_k)Xk O(d_k)x(d-k) 

J
 

_ OkXk 6
 CT Cov(V(2)) , 

an d 

C = E[(V(o) + v(1))V(2)T]. 

Note that, after taking the expectation, the remainder term is expressed with respect to 6 
since llVll ~ 6c and 6c is asymptotically equivalent to 5. 

Let a} ~ ' ' ' ~ tf~ be the eigenvalues of ~1 and let bl , ･ ･ ･ , b~ be the corresponding 
eigenvectors, respectively. Also, Iet al ~ ' ' ' Z crd be the eigenvalues of ~]. The eigenvectors 

of ~]1 are supposed to be normalized so that their norms are equal to unity. It follows from 

(9) that 

ak+1 = a~+2 = . . (11) . = a~ = O 

an d 

b~ e L for i = l, . . . , k, b~ e Li for i = k + 1, . . . , d (12) 

~+1' ' ' " b~ which span L1 have the same eigenvalue O, we can replace them by any Since b 

orthonormal set of vectors spanning Li . Our choice is to set b~ - ei, i = k + 1, . . . , d. 

Let i e {1, . . . , k}. We assume that the multiplicity of (Til is one so that we can use 

an expansion of the ith eigenvector of ~] around b~ with respect to 5. The multiplicity of 

the other eigenvalues is arbitrary in the expansions. We also have to rescale the covariance 

matrix with respect to 6, since the size of eigenvalues (Ti and ai also depends on 5. For that 

purpose, Iet us make a few additional assumptions. First, the neighborhood JV:o is taken to 
be the (5/2)-ball {,e e IRd : Ila;-'~oll < 5/2} so that the neighborhood shrinks symmetrically 

in every direction as 5 becomes smaller. Secondly, we assume that M is orientable and Po 

has a positive density g with respect to a volume element ~ of M, i.e., 

f
A
 

Po(A) = 9~ 

(Boothby 1986). This induces a positive density go with respect to the Lebesgue measure 

on Wo. By applying the mean value theorem to go, the variance of any one-dimensional 

marginal distribution of Poc (and, therefore, of Po) is of order 82 as 5 -. O. With these 

assumptions and the simplicity of a*1 , 

a; = 5 2al > o a; = O(1) as 5 - O 
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-Then, using a perturbation argument (Wilkinson 1965, pp'66-70)' for suificiently small 5, 

; _ 1;J 
~ ~(7pjibj b b~ + 5 + O(53) 

a j~i 

pji pij 
5~2cr a; + 52pii + 64 ~ + o(54) 

j~$ '7i - a3 

where 
pji = bJ~T(5-2~2)b~ = pij 

and b Is an unnormahzed ergenvector corresponding to ai. It follows from (10) that 

O for j e {1, . . . , k} 
pji = _~E[5-4b~kT(V(o) + v(1))V~2)] for j e {k+ l, . ..,d} 

where blk e Rk is the vector of the first k components of bJ . Since b e L blk Is also a 

unit vector. Then, using (11), 

)
 

5
 

Ok + o(52) 
~~ E[5-3(b~kT v(o))V(2)] 

53 d-k 
5~2ai = ~ E[5-3(b~kT v(o))V(2)] + O(54) (14) or:+ 

at 
t t=1 

The first order term in the expansion (13) is a vector in Li. For I = 1, . . . , d k the (k+1)th 

coordinate of the first order term is proportional to 

l. the inverse of the eigenvalue vt , 

2. the covariance between the ql~coordinate variation V,(2) in the normal space and the 

projection of the variation V(o) onto the bJk-direction in the tangent space. 

(t ) Let t be a unit vector in IRk . When the manifold M is fairly flat in the direction of Q Od_k 

near 'co, the linear order term along the direction, tT v(o) in the Ql-coordinate system, is 

likely to be large compared with the second order terms tTv(1) and Vm(2), m = 1, . . . , d - k. 

Since V(o) is bounded, this implies that the covariance between tTv(o) and V~) tends 

to be small Although the vanances of V(o), V(1) and V(2) depend on therr probability 

distributions, the idea suggests the influential role played by the underlyin geometry of the 
support M nJV;o. Since al ' ' ' " ak are the eigenvalues of 5-2Cov(V(o) + v I ), b~ with large 

i e {1, . . . , k} corresponds to the direction where the variation of V(o) + v(1) is relatively 

small and, hence, M is less linear. It follows that the eigenvectors Qbi of ~ with large 

i e {1, . . . , k} is more likely to be contaminated since 

1. a: is smaller thau a; for j < i, 
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2. b~ corresponds to the direction where M is less linear 

Qbk is actually dragged to the Therefore, the tangent space estimate spanned by Qbl ' ' ' " 

manifold M in the directions where M is relatively nonlinear. 

The expansion (14) shows a similar result for the eigenvalue: the third order coeficient 

lkT (o) (2) is proportional to both a'~1 and the sum of covariances ~]~~lk E[(bi V )Vt l' 
In the rest of this section, we derive a few inequalities ~hich relate the contamination 

from the normal space to the curvatures of M. First, the orthogonality of the matrix Q 

implies that 
6 IIV(2)ll < IIV(2)II _ IIV(2)ll _Kv, 

- IIVll2 ~ IIQTVll2 ~ 

where Kv is the intrinsic curvature in the direction of V (1) and satisfies 

Kv < sup Kv = K < oo 
~ Ilvll=1 

Then, by Jensen's inequality, 

d-h d-k E[6 2V(2)] 2 = ~ - E 5-2Vl(2) 2 = E[5-411V(2)ll2] ~ K2. (15) E[8 2V(2)] 2 ~ ~ 

l=1 t=1 
Smce llb~kll = 1, it follows from the Cauchy-Schwarz inequality that 

lb~kTv(o)1 ~ IIV(o)ll ~ 5. (16) 
Then, by (15) and (16), the norm of the first order term in (13) is bounded by 

t ( k )Il O
 

~F E[5-3(b~kTv(o))V(2)] - cr: a 

Since 

d-k d-k ~ - ~ IVl(2)1 < I~~liV(2)ll < V~~'j~5 K V(2) < 

l=1 l=1 
the absolute value of the third order term in (14) is also bounded by 

53 d-k ~1~~:~K 63. 
crt ~E[5-3(blkTv(o))V(2)] < (18) a

:
 t ,=1 

The same argument does not hold for ah+1 ' ' ' " ad since they correspond to the multiple 

eigenvalue O. However, using the Gerschgorin circle theorem (see, e.g., Noble and Daniel 
1977), we can still access their sizes. In fact, for i e {k + 1, . . . , d}, 

5~2ai ~ Il~:2112 + o(52) ~ Il~:211F + o(52) (19) 
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where llAll2 is the Euclidean (12) matrix norm and llAllF is the Frobenius norm of A = [a"] 
t J 

given by 

IIAvll 

IIAll2 = max llvll=1 Ilvll ' 

IIAllF = 

Then, the leading term (first order) 

k d-k ( ~~ 2
 
l=1 m=1 

ll2 (. 3 ) 
~ ~ Iaij 12 

in the RHS of (19) is bounded by 

5-2E[Vl(o)V~(2)] 

ll2 2) ~ V~~~~K5 (20) 

4. Local Dimension Estimation 

Let 7i , i = 1, . . . , d, be the eigenvalues of the population covariance matnx of X If M 

is a k-dimensional linear submanifold, 

7k+1 = 7k+2 = ' ' Ird = T2. 

As we have seen in the previous section, 7t ' i = k + l, . . . , d, may be greater than T2 for a 

general submanifold M and the amount of deviations from T2 is related to the curvatures 

of M. (See (20).) 
Let ,c~ be the rth cumulant of the ith component Xil of Xl; that is, 'c~ is the coefficient 

of (it)r/r! in the expansion in powers of t of log c(t) where c(t) is the characteristic function 

of Xtl ' Similarly, the bivariate cumulant ,ct,': of Xil and Xjl Is defined as the coefficient of 

(iti)r (itj)s 

r! st. 

in the expansion of the joint log-characteristic function log c(ti , tj) of Xil and Xjl' Let 

cl ~ c2 ~ ･ ･ ･ ~ cd be the eigenvalues of the sample covariance matrix. Waternaux (1975, 
1976) has shown that, if 7k+1 > 'Yk+2 > ' ' ' > 'yd, the asymptotic distribution of 

) ( )] [( -ck+1 7k+1 

cd 7d 
is normal with mean zero and covariance matrix A = [Aij] where 

Aij = 27 + 'c' for t 3 (22) { ~ ~ 
'es2'2 for i ~ j 
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Anderson (1963) has derived the same asymptotic distribution also for the spherical case 

7k+1 = ' ' ' = 7d under the assumption of normal population ('c~ = ,e$2J2 = O, V(i,j)). His 
result for the spherical case can be directly generalized to nonnormal populations if 

' Ii i3-n22 - -n4 i ~ j 
2
 

ijlm = O (i, j, l, n~) ~ (i, i, i, i) and (i, j) ~ (1, m) 
'cllll 

Otherwise, the expression for the joint distribution becomes intractable for d - k > 2 (Wa-

ternaux 1975). 

According to (21) and (22), 1/~(~ - ~) where 

~= ~ ci/(d k) 7 - = ~ Iri/(d k) 

i=k+1 i=k+1 
is asymptotically normal with mean zero and variance 

~ k+1 Ir~ + ~)~ k+1 n~ + ~d " 2 ~ ･= ,: 

(d - k)2 i'j=k+1 'e22 (23) 

By applying the mean value theorem to the positive density go of Poc, the cumulants of 

Y1 can be approximated by those of the uniform distribution on yvo for which n~ < O and 
lct?J2 = O. If the noise component ei is normal or any random vector which has 'c~ < O and 

nt2J~ = O, the variance given by (23) is smaller than 2(~~ k+1 7~)/(d - k)2 for small 5. Let 

za be such that ~ zor I 1 2 f_oo 1/~~e~2g d:c = I - a 

Using the consistent estimator 2(~d 2 )/(d - k)2 of 2(~f=k+1 7~)/(d - k)2 in place of 
i=k+1 ci 

the variance (23), an asymptotic test of level a for the null hypothesis 7 = O is defined to 

reject the hypothesis if 

2 ~ 112 (
 

c > za i=k+1 c~ (24) 
N(d - k)2 

In order to estimate the local dimension k of JVlo, we specify an admissible upper bound 
C for T2152. Then, our dimensiori estimate is defined as the smallest k which satisfies 

2~d 2 112 
~ > c52 + za i=k+1 ci 

N(d - k)2 

One direction relating to future research is to connect the test given by (24) with the 

work of Cutler (1986) and Cutler and Dawson (1989) on a general theory of local dimension. 

HITOTSUBASHI UNIVERSITY 
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