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Abstract

Consider a decision-maker who has an opportunity to wait for information
before making a choice. He can obtain more information by waiting more, but
this is costly. As a result, he endogenously determines the length of time to
choose an alternative, which is called the response time. The present study
models such a decision-maker as if he solves an optimal stopping problem. The
model incorporates a dynamic information structure formalized as an evolving
information partition, which is called filtration. I axiomatically characterize
the model using behavioral data consisting of choices and response times that
depend on choice situations and states. That is, from the data, we can identify
filtration that governs the decision-maker’s learning process as well as other
model parameters. This result implies that using response time helps us un-
derstand the human cognitive process.
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Figure 1: Filtration

1 Introduction

In many economic environments, choice timing is not fixed exogenously; instead, it
is a choice variable of the decision-maker (DM). As a result, the amount of time
consumed to choose, or response time (RT), reflects the decision process of the DM.
In this paper, I theoretically show that response time data, together with choice
data, help us identify the decision process.

Assuming that the available behavioral data are choice and response time data
conditional on the state of the world, I axiomatically characterize a model that incor-
porates endogenously determined learning processes. The model I consider, optimal
stopping representation (OSR), describes a DM who decides when and what to choose
according to his private learning process. The learning process is described by in-
formation filtration, that is, a sequence of information partitions corresponding to
knowledge evolution over time. Filtration is not directly observable from an analyst’s
view, while it is fixed from the perspective of the DM. One of the contributions of
this study is the identification of the DM’s filtration and other model parameters
such as expected utility function, subjective probability, and waiting cost.

My approach to identify filtration is as follows. If DM would learn a realization
of some event at a point in time, he uses this information if doing so is profitable.
Information he has would thus be reflected in choice and response time. Therefore,
filtration is defined as the smallest one that is necessary to describe his behavior.
Once I define the filtration in this way, I can elicit other parameters for an OSR with
a way of Ellis (2018) where I modify suitably to fit the setting of this paper.

I explain the identification strategy for filtration and waiting cost through an
example. Consider a state space Ω = {ω1, ω2, ω3} and a choice situation Bx =
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{fx, gx}, where fx = (x, x, 0) and gx = (0, 0, x). The bet fx pays $x in ω1 and ω2,
and gx pays $x in ω3. Suppose the subjective filtration of the DM F is as depicted
in Figure 1. At t = 0, the DM has no additional information beyond his prior belief.
However, waiting until t = 1, he learns whether the true state is ω1. Further, waiting
until t = 2, he learns the true state completely. Assume waiting longer is costly.
How can the analyst identify the filtration? First, suppose x is large enough that
DM has a strong incentive to learn the state. Then, DM first waits until t = 1 and
learns whether the state is ω1. If it is ω1, he stops and chooses fx. Otherwise, he
continues to wait until t = 2 to learn the true state. Then, he chooses fx if it is ω2,
and gx if it is ω3. In this case, the analyst concludes that the DM distinguishes ω1

and other states at t = 1 by observing the difference of RTs in ω1 and in other states.
Moreover, observing the difference of choices in ω2 and ω3, the analyst can conclude
that the DM can distinguish ω2 and ω3 at t = 2. Integrating these observations,
the analyst elicits the subjective filtration. Next, consider decreasing x. Then, the
incentive to acquire additional information gets weaker than that given the original.
At some point, the DM may decide to stop at t = 1 in all states. The amount of x
decreased by that time bounds the difference in the costs of two RTs. This procedure
identifies the waiting cost.

Optimal stopping representation is a dynamic extension of the optimal inattention
representation (OIR) studied by Ellis (2018), who characterizes a model of rational
inattention, assuming that the observable data are choices conditional on the states.
In an OIR, the DM chooses an alternative after a single information acquisition.
The learning process is described by an information partition that is selected by
the DM for each choice situation. However, in OSR, the DM selects a stopping
time for each choice situation, holding the information filtration fixed. The two
representations cannot be distinguished solely in terms of choice. However, they
explain the DM’s choice through different informations. Consider the example in the
previous paragraph. From the original menu Bx, the DM chooses fx in ω1 and ω2, but
chooses gx in ω3. In this choice situation, Ellis’s strategy identifies the information
the DM acquires as {{ω1, ω2}, {ω3}}.1 However, the DM stops waiting at different
timings in ω1 and ω2. As I illustrated, the analyst can use this RT data to conclude
that the DM learns the true state completely. That is, the identified information
partition is {{ω1}, {ω2}, {ω3}}.

Finally, I present a generalization of OSR. People often make an effort to acquire
information quickly, but also do so slowly on occasion. Because OSR has a fixed
filtration, it does not allow such a flexible choice of information structure. A natu-
ral way to model this class of information acquisition is to incorporate a choice of

1This is what he calls canonical attention rule.
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filtration, not only response time. In Section 5, I introduce a model of this kind and
show that it has no testable implication beyond the optimal inattention model. This
means that, as long as we are concerned with the data this paper treats, it is hard to
extend OIR further than OSR, maintaining an explanatory power on response times.

Literature

Here I overview related decision-theoretic studies.

Decision theoretic approaches to response time

Some recent decision-theoretic papers study what can be learned about the cognitive
process using RT. Among others, Duraj and Lin (2019) is the closest to the present
paper. They behaviorally characterize a DM who solves the optimal stopping prob-
lem with constant waiting cost or geometric discounting, given a filtration over state
space. The most critical difference between Duraj and Lin (2019) and this paper is
that they assume that the analyst can directly observe a DM’s filtration while I treat
filtration as a subjective one. In this paper, I assume that the analyst can observe
the true state, which allows the identification of filtration.

I briefly review other studies. Echenique and Saito (2017) characterized a model
in which the differences of choice values determine response time. Koida (2017)
studies a sequence of incomplete preference relations that become more comparable
over time; in his model, RT is determined when two alternatives become compara-
ble. Baldassi et al. (2018) characterize drift-diffusion model and its multi-alternative
extension.

Dynamic information acquisition

The aim of this paper is to reveal how a DM’s uncertainty resolves over time.
Several existing studies analyzed problems in this regard. Takeoka (2007) adopted
a menu of menus of acts as an alternative and characterized a model with two-stage
costless information acquisition. de Oliveira and Lamba (2019) ask a problem on
judging whether a DM’s action sequence can be rationalized by information flow.
Dillenberger et al. (2018) study an infinite horizon decision model in which the state
evolves following a Markov process and the DM acquires information by choosing an
information partition. While all of these studies assume exogenous choice timing, I
assume it as endogenous.
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Rational Inattention

Economic agents often feel that information acquisition is costly, perhaps for limita-
tion of cognitive ability, and thus, they may avoid acquiring all information even if
that is materially costless. This insight, called rational inattention, was introduced
to economics by Sims (2003). Several decision-theoretic studies provide behavioral
foundations for rational inattention theory using different primitives.

An early paper of this kind is Hyogo (2007). In his model, the DM chooses a
pair of an experiment and a menu, where the anticipated information value of the
experiment is subjective. The following recent studies assume that the analyst does
not observe choices of experiments and rather infers them. Caplin and Dean (2015)
use choice probabilities conditional on states as data. Chambers et al. (2020) studies
a generalization and a discount counterpart of Caplin and Dean (2015). de Oliveira
et al. (2017) use preference relation over menus of acts and characterize rational
inattention model with additive information cost. Higashi et al. (2020) characterize a
generalization and a discount counterpart of de Oliveira et al. (2017). As I explained,
Ellis (2018) uses a state-conditional choice correspondence.

The rest of this paper is organized as follows. In section 2, the analytical frame-
work and optimal stopping representation are introduced. In section 3, I present the
axioms and show the representation results. In section 4, the identification result and
comparative statics are presented. In section 5, I introduce a more general model
and compare the predictive power of my models and Ellis’s OIR. Section 6 concludes.
Proofs are collected in section 7.

2 Setup and model

2.1 Setup

This subsection introduces the framework. Let Ω be a finite state space. Let X
be a convex subset of a metrizable vector space and let d be its compatible metric.
Let A be the set of functions that take Ω to X. Each element of Ais called an act.
With a natural isomorphism, X is regarded as the set of constant acts. The set A is
endowed with the uniform metric d∞(f, g) = maxω∈Ω d(f(ω), g(ω)). Let K be the set
of all non-empty compact sets of A that is endowed with the Hausdorff metric. For
typical elements of the sets above, I write x, y, z ∈ X, f, g, h ∈ A, and A,B,C ∈ K.

For any algebra2 Q over Ω and ω ∈ Ω, Q(ω) denotes the smallest element of Q

2An algebra over Ω is a subset of 2Ω, which is closed under complementation and union, and
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that contains ω. A collection of algebras F = {Ft}t∈R+ is a filtration if Fs ⊂ Ft for
s ≤ t. For filtrations F ,G, write F ≪ G if Ft ⊂ Gt for all t ≥ 0. For any collection
E of events, σ(E) denotes the algebra generated by E .

I call a function λ : Ω → R+ a stopping time. A stopping time is interpreted as
planning on how long to wait for information. Typical stopping times are denoted
as λ, µ. For a stopping time λ and t ∈ R+, let {λ ≤ t} = {ω ∈ Ω|λ(ω) ≤ t}. This
is the event that he stops before t following λ. A stopping time λ is adapted to a
filtration F = {Ft}t∈R+ if {λ ≤ t} ∈ Ft for all t ≥ 0. When this is the case, the DM
can follow λ using the information represented by F . For a filtration F , let TF be
the set of stopping times adapted to F . I sometimes denote TF just as T when what
F denotes for is clear. For a filtration F and λ ∈ TF , let Fλ = {Fλ(ω)(ω)|ω ∈ Ω},
which represents the information obtained by using λ given F .3

A data (c, τ) is a pair of choice correspondence and response time, both condi-
tional on states. A choice correspondence is a function c : K × Ω → K that satisfies
c(B,ω) ⊂ B for any (B,ω) ∈ K × Ω. A value c(B,ω) is what DM chooses given B,
and ω realizes. The response time is a function τ : K × Ω → R+. A value τ(B,ω)
is the amount of time the DM waited before the decision when B is given, and ω is
the true state. Both c and τ are state-dependent because the DM acquires partial
information on the state and is reflected in choice and response time. Given B, the
function τ(B, ·) is a stopping time, which is abbreviated as τB.

2.2 Model

Here I explain the model to be studied. The story of the model is as follows: Given a
menu, the DM first chooses a stopping time that bears waiting cost. While waiting for
information, he successively acquires finer information on the true state. Stopping at
the time designated by τ , he uses the obtained information to update his prior belief
following the Bayes rule. Then, he chooses an alternative f ∈ B that maximizes the
expected utility. Anticipating this, the choice of stopping time is done to maximize
the ex-ante net utility. Now I introduce the model formally.

Definition 1. An optimal stopping representation (OSR) (u, π,F , γ) is a quadruple
of

· a continuous affine function u : X → R with u(X) = R,
· a full-support probability π over Ω,

contains Ω. The reason I use algebras, instead of parititons, to formalize information is to simplify
Definition 3.

3This definition of Fλ is equivalent to the usual one in probability theory in this framework.
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· a filtration F over Ω,

· a cost function γ : TF → R+ ∪ {∞} such that γ(λ) ≤ γ(µ) whenever λ ≤ µ
and γ(0) = 0.

It represents a data (c, τ) if it satisfies the following conditions:

τB ∈ argmax
λ∈TF

Eπ

[
max
f∈B

Eπ[u(f)|Fλ]

]
− γ(λ), (1)

c(B,ω) = argmax
f∈B

Eπ[u(f)|FτB ](ω) for all ω ∈ Ω. (2)

The first line of the representation requires that given a menu B, the observed
response time τB maximizes the DM’s ex-ante expected net utility. The second line
requires that he chooses alternatives that maximize conditional expected utility. If
the data satisfy these conditions, they are interpreted as generated by the DM, who
solves the optimal stopping problem.

3 Axiomatic characterization

The axioms I impose to (c, τ) can be classified into three groups. The first group
consists of axioms of optimal stopping. They are new axioms that require consistent
relationships between choice data and response time. The second group consists of
axioms of optimal inattention. These axioms first appeared in Ellis (2018). They
guarantee the existence of a fundamental preference relation for menus behind the
choice correspondence and impose structural assumptions on it. The third group con-
sists of technical axioms. In all axioms, variables with no quantifier are understood
as bounded by a universal quantifier.

3.1 Optimal stopping axioms

Before introducing optimal stopping axioms, I explain how to elicit the filtration F
from the data. First, I define a collection of binary relations {▷◁t}t∈R+ over Ω that
reflects the information DM has at each time point. For r, s ∈ R, let r∧s = min{r, s}.

Definition 2. Two states ω and ω′ are not distinguished until t ∈ R+ if there exists
no B ∈ K that satisfies the following two conditions:

· τ(B,ω) ∧ τ(B,ω′) ≤ t,

· τ(B,ω) ̸= τ(B,ω′) or c(B,ω) ̸= c(B,ω′).
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In this case, I write ω ▷◁t ω
′.

This definition is based on a two-step procedure to judge whether two states are
distinguished by DM at some time point. Suppose there is a menu B such that
τ(B,ω) ≤ t. First, if τ(B,ω) ̸= τ(B,ω′), the DM can distinguish ω and ω′ at
τ(B,ω), and hence, at t. Otherwise, he should stop at the same time in ω and ω′.
Second, if c(B,ω) ̸= c(B,ω′), the DM could distinguish two states also in this case at
t. If neither observation is obtained given any menu, there is no reason to consider
the two states as distinguished until t. The obtained relation ▷◁t generates an algebra
over Ω that represents the information the DM has at t.

Definition 3. (Revealed) filtration is the indexed collection F = {Ft}t∈R+ of algebras
over Ω, given by

Ft = σ({{ω′ |ω′ ▷◁t ω} |ω ∈ Ω}). (3)

Therefore, filtration is defined as the minimal one that is consistent with both choice
data and response time. By definition, the stopping time τB is F -adapted for any
B ∈ K.

The next axiom Dynamic Subjective Consequentialism requires that the DM re-
spects the revealed filtration that is elicited in Definition 3.

Axiom 1 (DSC: Dynamic Subjective Consequentialism). For f, g ∈ B, ω ∈ Ω, and
∆ ∈ FτB such that ω ∈ ∆, if

f(ω′) = g(ω′) for all ω′ ∈ ∆,

then

f ∈ c(B,ω) ⇔ g ∈ c(B,ω).

Given B, the DM acquires information FτB using τB and knows the realization of
an event ∆ ∈ FτB that contains the true state ω. If f, g ∈ B agree on ∆, he treats
them as if they are the same act. This is what DSC states.

The next axiom Information Monotonicity requires that response time reflects
the amount of information necessary for the choices given each menu.

Axiom 2 (IM: Information Monotonicity). If c(A,ω) ̸= c(A,ω′) implies c(B,ω) ̸=
c(B,ω′) for any ω, ω′ ∈ Ω, then τA ≤ τB.
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This axiom states that if choice behavior given B requires more information than
when given A in the sense that whenever the DM’s choice distinguishes ω and ω′

at A, it is the case at B, then the DM waits longer given B. In particular, if A is
singleton, the DM has no incentive for information acquisition. Then, in this case,
he stops faster than in any other situation. As long as the information structure is
independent of choice situations and evolves over time, stopping time should become
longer as choice requires finer information.

3.2 Optimal inattention axioms

I turn to optimal inattention axioms originally appeared in Ellis that axiomatizes
an optimal inattention representation. Here, I briefly introduce them. The axiom
Independence of Nonrelevant Alternative is a variant of the Weak Axiom of Revealed
Preference that is imposed to the conditional choice correspondence.

Axiom 3 (INRA: Independence of Never Relevant Acts). If A ⊂ B and A∩c(B,ω) ̸=
∅ for any ω ∈ Ω, then c(A,ω) = A ∩ c(B,ω) for all ω ∈ Ω.

For the next axiom, I introduce a mixing operation over acts. For f, g ∈ A and
α ∈ [0, 1], let αf + (1 − α)g be an act defined by [αf + (1 − α)g](ω) = αf(ω) +
(1−α)g(ω). This operation is naturally extended as follows. For f ∈ A and B ∈ K,
let αf + (1 − α)B = {αf + (1 − α)g|g ∈ B}. The axiom Attention Constrained
Independence is a form of independence axiom for choice correspondence, which is
an implication of additive information cost.

Axiom 4 (ACI: Attention Constrained Independence). If αg + (1 − α)f ∈ c(αg +
(1− α)B,ω), then αh+ (1− α)f ∈ c(αh+ (1− α)B,ω).

For the next axiom, I define a preference relation over outcomes as follows. For
x, y ∈ X, define

x ⪰R y ⇔ there exists an ω ∈ Ω such that x ∈ c({x, y}, ω).

Let ≻R and ∼R be the asymmetric and symmetric parts of ⪰R, respectively.
Monotonicity states that if an act is chosen from a menu and it is state-wise

dominated by another act in it, then the latter must also be chosen.4

4In the original form of Monotonicity in Ellis includes an assumption of a no null-state. I replace
it here for Axiom C(2) in the next subsection.
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Axiom 5 (M: Monotonicity). For f, g ∈ B, if

f(ω) ⪰R g(ω) for all ω ∈ Ω,

then

g ∈ c(B,ω) ⇒ f ∈ c(B,ω).

3.3 Technical axioms

Here, I pose technical axioms. Introducing preference relations for menus is necessary
to state the axioms. Let ⪰D be a relation over menus such that A ⪰D B if and only
if A∩ c(B,ω) ̸= ∅ for all ω ∈ Ω. The relation A ⪰D B means that, given A, the DM
can follow the optimal policy he uses if B is given. Therefore, if he can choose one
menu from A and B, he weakly prefers A. In this sense, this is a directly revealed
preference relation for menus. Next, let ⪰I denote the transitive closure of ⪰D.5 That
is, assuming his hypothetical preferences for menus are transitive, ⪰D is extended to
⪰I . The relation ⪰I is an indirectly revealed ranking obtained in this way.

The next axiom is Continuity. For x, y ∈ X and ω ∈ Ω, let xωy denote the act
that gives x in ω and y in other states. I write g ⪰I f if {g} ⪰I {f} for simplicity.

Axiom 6 (C: Continuity).

1. For any ω ∈ Ω, {Bn}∞n=1 and {fn}∞n=1 such that Bn → B and fn → f with
fn ∈ c(Bn, ω), if

τBn = τB for any n ∈ N,

then

f ∈ c(B,ω).

2. For any x, y ∈ X such that x ≻R y, ω ∈ Ω, and sequences fn → xωy and
gn → y, there exists n ∈ N such that gn ̸⪰I fn.

The first part is a weak form of upper hemicontinuity of c, which is equivalent
to Ellis’s original condition under Monotonicity. The second part is an implication
of the assumption of a no null state. Suppose a state ω is a non-null state and
x is strictly preferred over y. Then, if fn and gn are sufficiently similar to xωy
and y, respectively, gn is not preferred over fn because the DM does not neglect

5That is, A ⪰I B if and only if there exists B1, . . . , Bn such that A ⪰D B1 ⪰D · · · ⪰D Bn ⪰D B.
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the outcome in ω. Together with other axioms, it guarantees the existence of a
full-support subjective probability.6

The next axiom is Unboundedness, which is used to calibrate the cost function.

Axiom 7 (U: Unboundedness). There exist x, y ∈ X such that x ≻R y and, for any
β ∈ (0, 1), there exist z∗, z∗ ∈ X such that

βz∗ + (1− β)y ≻R x, y ≻R βz∗ + (1− β)x.

3.4 Representation theorem

Now I present a sufficiency result. The axioms I offer are sufficient for the data to
have an OSR.

Theorem 1. If c and τ satisfy INRA, ACI, M, DSC, IM, C, and U, then there exist
u, π, and γ such that (u, π,F , γ) is an OSR of (c, τ).

Next, I turn to the necessity of the axioms.

Theorem 2. For any OSR (u, π,F , γ), there exists a data (c, τ) that satisfies the
following:

1. (c, τ) satisfies ACI, IM, M, DSC, C, and U.

2. There is a dense open subset D of K and a conditional choice correspondence
c′ that satisfies INRA such that the following holds:

for any B ∈ D and ω ∈ Ω, c(B,ω) = c′(B,ω).

In general, an OSR has multiple data consistent with it. While such data may not
satisfy all the postulated axioms in general, there is at least one set of data that
does. This is why the above theorem is written as an existence result. Theorem 1
and Theorem 2 shows that the axioms I posed almost characterize OSR.

3.5 Sketch of the proof of Theorem 1

To show the sufficiency result, I consider a preference relation ⪰ for plans, which is
a pair (F, λ) of a function F : Ω → A and a stopping time λ such that F is Fλ-
measureble. Given a menu B, the DM chooses a stopping time λ and finds the best

6The axioms of Ellis admit a conditional choice correspondence that generates the trivial ⪰I

relation. His argument on eliciting subjective probability has a gap because the non-triviality of
⪰I is not guaranteed.
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act given the event Fλ(ω) for each ω. These choice of stopping time and anticipated
choices are summarized by the plan (F, λ). The relation ⪰ is derived from ⪰I .
Suppose F (ω) ∈ c(A,ω) for each ω and λ = τA. Similarly, suppose G(ω) ∈ c(B,ω)
and µ = τB. Then, the DM follows (F, λ) given A, and (G,µ) given B. From these
observations, I define (F, λ) ⪰ (G,µ) if A ⪰I B. In this approach, the key axiom is
INRA, which guarantees that the preferences for menus are determined by that for
plans.

Then, I construct a utility representation

V (F, λ) = Eπ[Eπ[u(F (ω)(ω))|Fλ]]− γ(λ).

Axiom ACI implies that ⪰R and the restriction of ⪰I to singleton menus satisfy
independence. This observation is used to elicit u and π, together with other axioms.
Also, ACI and IM jointly imply the translation invariance of⪰: if (αF+(1−α)f, λ) ⪰
(αG+(1−α)f, µ), then (αF+(1−α)g, λ) ⪰ (αG+(1−α)g, µ). This is the implication
of additive waiting cost and allows the calibration of γ.

Once the utility representation is obtained, it is used to explain the data (c, τ).
Consider a menu B, and plans (F, τB) and (G, λ) such that F (ω) ∈ c(B,ω) and
ImG ⊂ B. That is, (F, τB) is the plan actually chosen given B, and (G, λ) is another
candidate. It is shown that (F, τB) ⪰ (G, λ) or V (F, τB) ≥ V (G, λ) holds. Therefore
observed the choices of a stopping time and acts is interpred as the maximization of
the net utility.

4 Identification and comparative statics

In this section, I present identification results and comparative statics on filtration.
The identification of filtration is partial. That is, it cannot be uniquely identified but
can be bounded to some extent. The next proposition shows that filtration defined
in Definition 3 is the coarsest one that is consistent with the observed behavior.

Proposition 1. Suppose F = {F}B∈K is the revealed filteration of (c, τ). If (c, τ)
has an OSR (u, π,G, γ), then F ≪ G.

Next, I present the identification result for other parameters. Let T ∗ = {τB|B ∈
K} be the set of stopping times the DM uses given some menu.

Proposition 2. Suppose that (u, π,F , γ) and (u′, π′,F ′, γ′) represent (c, τ) and γ(λ) >
0 for any λ ∈ TF with Fλ ̸= {Ω}. Then,

1. π = π′,
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2. There exist α > 0 and β ∈ R such that

u′ = αu+ β

and

γ′(τ) = αγ(τ)

for any τ ∈ T ∗.

That is, under the assumption that any stopping time is costly whenever it conveys
some information, subjective probability is uniquely identified. Expected utility is
unique up to affine transformation. Moreover, cost function is also identified over
T ∗.

Next, I present the comparative statics of filtration. The relation ω ▷◁t ω′ is
interpreted as a DM not distinguishing ω and ω′ at t. Based on this interpretation,
I define the following comparative statics notion.

Definition 4. For data (c, τ) and (c̃, τ̃), let ▷◁t and ▷̃◁t be their relation defined as
Definition 2, respectively. Individual (c, τ) learns faster than another (c̃, τ̃) if, for
any t and ω, ω′ ∈ Ω,

ω ▷◁t ω
′ ⇒ ω▷̃◁tω

′

for any t ≥ 0.

This notion corresponds to the fineness of the filtration.

Corollary 1. An individual (c, τ) learns faster than (c̃, τ̃) if and only if their filtra-
tions F and F̃ satisfy F ≫ F̃ .

This result follows from Definition 3 as a corollary. The proof is obvious and so
omitted.

5 Generalization and model comparisons

An OSR describes a DM whose information structure is fixed. On the contrary,
people sometimes collect information quickly and sometimes slowly. Therefore, a
generalization of OSR that models joint choices of filtration, stopping time, and acts
is also worth considering. In this section, I formalize such a model. As a result, it is
shown that this model has no testable implications beyond the OIR of Ellis.

Let Π be the set of pairs (F , λ) of filtration and stopping time adapted to the
former. The following model is a generalization of OSR.
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Definition 5. An generalized optimal stopping representation (GOSR) (u, π, {FB}B∈K, γ)
is a quadruple of

· a continuous affine function u : X → R with u(X) = R,
· a full-support probability π over Ω,

· a collection {FB}B∈K of filtrations indexed by menus,

· a cost function γ : Π → R+ ∪ {∞} such that γ(F , λ) ≤ γ(G, µ) whenever
F ≪ G and λ ≤ µ.

It represents a data (c, τ) if the following conditions hold:

(FB, τB) ∈ arg max
(F ,λ)∈Π

Eπ[max
f∈B

Eπ[u(f)|FB
λ ]]− γ(λ), (4)

c(B,ω) = argmax
f∈B

Eπ[u(f)|FτB ](ω) for all ω ∈ Ω. (5)

In contrast to OSR, GOSR has a collection of filtrations (not a fixed filtration) as a
parameter. It models a DM who jointly chooses a filtration and response time that
maximizes the net utility. Optimal stopping representation is a special case of GOSR
where γ is finite only for some fixed filtration.

For comparison with GOSR, the optimal attention representation (OIR) of Ellis
is introduced. Let P denote the set of all partitions over Ω.

Definition 6. An optimal inattention representation (OIR) is quadruple (u, π, γ̂, P̂)
of

· a continuous affine function u : X → R with u(X) = R,
· a full-support probability π over Ω,

· a cost function γ̂ : P → R+ ∪ {∞} such that γ̂({Ω}) = 0 and γ̂(Q) ≥ γ̂(R) if
Q ≫ R,

· a function P̂ : K → P.

It represents c if the following conditions hold:

P̂(B) ∈ argmax
Q∈P

Eπ[max
f∈B

Eπ[u(f)|Q]]− γ̂(Q), (6)

c(B,ω) = argmax
f∈B

Eπ[u(f)|P̂(B)](ω). (7)

The OIR is a model of optimal inattention in which information acquisition is mod-
eled as choosing costly partitions. In the model, given a menu, the DM chooses a
partition optimally to maximize the net utility.
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In this paper, I have studied additional implications to observables, adding tem-
poral structure to information flow. Such a model is not meaningful as long as it has
some implications for RT. The next result shows the (non-)existence of implication
of the models I considered.

Proposition 3.

1. If (c, τ) has a GOSR, then c has an OIR.

2. If c has an OIR, for any response time τ , (c, τ) has a GOSR.

3. There exists a data (c, τ) that does not have OSR, while c has an OIR.

First, any choice consistent with a GOSR can be explained by an OIR. Therefore,
as long as choice data is the only concern, GOSR, and in particular OSR, is not
distinguished from OIR. Second, GOSR has no testable implication beyond OIR.
Third, on the contrary, OSR has additional implications. Therefore, complementing
choice data with RT gives additional information.

6 Concluding Remarks

In this paper, I discuss the behavioral implications of a model of DM who dynamically
acquires information before choice and the extent to which its parameters can be
identified. In the identification strategy, response time data plays an important role.
It reflects the time point when additional information becomes available, making it
possible to identify the filtration. Compared with the OIR of Ellis, the model with
a fixed filtration has an additional implication on RT, while a general model that
allows a menu-dependent choice of filtration does not.

In Section 5, I show that GOSR has no testable implication beyond OIR. In order
to treat GOSR meaningfully, one needs another primitives. One possible alternative
is state-dependent joint distribution over choice and RT. But this extension is yet to
be studied.

The proof of sufficiency result largely follows that of Ellis. I note that the proof
of Ellis has two correctable gaps. In his proof, he considers plans that are measurable
with respect to some revealed partition, and then constructs a utility representation
over them. The first gap is that even if a plan F requires a partition coarser than some
one actually used, the existence of a menu B with P (B) = σ(F ) is not immediately
guaranteed. Then, the plan may not be comparable with other plans in terms of
⪰I . Therefore, such plans must be excluded through the elicitation of parameters.
To avoid the same problem I define ⪰ only on plans that are implemented with
observed stopping times, and then extend it to all plans. The second gap is that
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non-degeneracy of ⪰I , which is needed to elicit the subjective probability, is not
shown. In my proof, C (2) guarantees non-degeneracy.

7 Proofs

7.1 Proof of Theorem 1

7.1.1 Basic properties of choice correspondence

In this subsection, I investigate the basic properties of the choice correspondence.
First, I construct an expected utility function. Let K(X) be the set of all non-empty
compact subsets of X.7

Lemma 1. Then, there exists a continuous affine function u : X → R such that, for
any B ∈ K(X),

x ∈ c(B,ω) ⇔ u(x) ≥ u(y) ∀y ∈ B.

and u(X) = R.

Proof. I first show that ⪰R is continuous, that is,

{y ∈ X|y ⪰R x} and {y ∈ X|x ⪰R y},

are closed. First, note that Axiom M implies that, for any x, y ∈ X and ω, ω′ ∈ Ω,
c({x, y}, ω) = c({x, y}, ω′). Suppose yn → y, yn ⪰R x, and take any ω ∈ Ω. Since
c({y, x}, ·) and each c({yn, x}, ·) is constant, IM implies τ{yn,x} = τ{y,x} for all n. In
addition, {yn, x} → {y, x} in K. Then, Axiom C implies y ∈ c({y, x}, ω), or y ⪰R x.
This implies that {y ∈ X|y ⪰R x} is closed.

Next, I show that ⪰R is transitive. Suppose x ⪰R y and y ⪰R z, and take any
ω ∈ Ω. Note that c({x, y, z}, ω) is nonempty. If z ∈ c({x, y, z}, ω), then y ⪰R z
and axiom M imply y ∈ c({x, y, z}, ω). Likewise, if y ∈ c({x, y, z}, ω), then x ∈
c({x, y, z}, ω). In conclusion, x ∈ c({x, y, z}, ω) holds for any ω. Then, by INRA,
x ∈ c({x, z}, ω) holds. Therefore, x ⪰R z.

Note that, since ⪰R is complete, transitive, and continuous relation, max⪰R B =
{x ∈ B|x ⪰R y for all y ∈ B} is nonempty. I show that max⪰R B = c(B,ω) holds
for any ω. First, suppose y ∈ max⪰R B and take x ∈ c(B,ω). Then, y ⪰R x and
axiom M imply y ∈ c(B,ω). Thus max⪰R B ⊂ c(B,ω) Next, suppose y /∈ max⪰R B

7Because Monotonicity axiom in this paper is weaker than that of Ellis, I modified the proof of
Lemma 1 is appropriately.
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and take x ∈ max⪰R B. Then, x ≻R y and x ∈ c(B,ω) by the first inclusion.
By INRA, c({x, y}, ω) = {x, y} ∩ c(B,ω) holds for all ω. Then, if y ∈ c(B,ω),
y ∈ c({x, y}, ω) and so y ⪰R x. But this is a contradiction. Thus y /∈ c(B,ω). That
is, c(B,ω) ⊂ max⪰R B.

As Ellis showed in the proof of his Lemma 1, ACI implies Independence of ⪰R.
Then, applying expected utility theorem, take a utility representation u of ⪰R that
is affine and continuous. By Axiom U, u is unbonded.

The next lemma states that choice behavior follows two regularities: First, adding
acts that are dominated by existing ones does not change what to be chosen from A;
secondly, the choice behavior respects the acquired information.

Lemma 2.

1. Assume that, for any g ∈ B, there exists f ∈ A such that u ◦ f ≥ u ◦ g. Then

c(A,ω) = A ∩ c(A ∪B,ω).

2. For f, g ∈ B, ω ∈ Ω, and ∆ ∈ FτB with ω ∈ ∆, if f ∈ c(B,ω) and u(g(ω′)) =
u(f(ω′)) for all ω′ ∈ ∆, then g ∈ c(B,ω).

Proof. Suppose that g ∈ B∩c(A∪B,ω). By the assumption, there is some f ∈ A such
that u◦f ≥ u◦g. This and M implies f ∈ c(A∪B,ω). Therefore A∩c(A∪B,ω) ̸= ∅
for any ω ∈ Ω. Applying INRA shows the first part.

Turn to the second part. Define an act h by

h(ω′) =

{
f(ω′) if ω′ ∈ ∆,

g(ω′) otherwise

and let B′ = B∪{h}. Then by u◦g = u◦h and the first part, B∩c(B′, ω′) = c(B,ω′)
for all ω′. Since f(ω′) = h(ω′) for ω′ ∈ ∆, DSC implies h ∈ c(B′, ω). Finally,
u ◦ g = u ◦ h and M imply g ∈ c(B′, ω), and so g ∈ c(B,ω). The second part is
proved.

7.1.2 Transformation of acts into utility acts

I collect preliminary results to work on real-valued functions, instead of acts. Endow
RΩ with the uniform norm ∥ · ∥. Let K(RΩ) be the set of compact sets of RΩ.

First, I construct a set Y ⊂ X such that u(Y ) = R and show the restriction
u|Y : Y → R of u to Y is a homeomorphism. For each n ∈ Z, take xn ∈ X such that
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u(xn) = n. Let Yn = {(1 − α)xn + αxn+1|α ∈ [0, 1]} and Y =
∪

n∈Z Yn. Let v be
the inverse function of u|Y , which exists by the definition of Y . For each n ∈ Z, let
vn : [n, n+ 1] → Yn be the inverse function of u|Yn .

Lemma 3.

1. For each n ∈ Z, the function vn is uniformly continuous.

2. The function u|Y is a homeomorphism.

Proof. Define a function vn : R → X as

vn(β) = (1− (β − n))xn + (β − n)xn+1.

For β ∈ [n, n+1], vn(β) ∈ Yn holds, and besides the affinity of u implies u(vn(β)) = β
. So the restriction of vn to [n, n + 1] is vn. Because the addition and the scalar
multiplication is continuous in any topological vector space, so is vn. Since it is
affine, it is uniformly continuous, and so is vn.

Turn to the second part. It is sufficient to show that v is continuous. To this
end, take an sequence {x̂k}∞k=1 ∈ R and suppose x̂k → x̂ in R. If x̂ ∈ (n, n + 1)
for some n ∈ Z, for sufficently large k, x̂k ∈ (n, n + 1). The first part implies
v(x̂k) = vn(x̂k) → vn(x̂) = v(x̂) as k → ∞. Turn to the case that x̂ = n for some
n. Then, for sufficiently large k, x̂k ∈ (n − 1, n + 1). Take any ϵ > 0. From the
coninuity of vn−1 and vn, there exist some δ > 0 such that if x̂k ∈ [n − 1, n] and
|x̂k − x̂| < δ, then d(vn−1(x̂k), vn−1(xk)) < ϵ; and if x̂k ∈ [n, n + 1] and |x̂k − x̂| < δ,
then d(vn(x̂k), vn(x̂)) < ϵ. So v(x̂k) → v(x̂) in Y .

Let AY = {f ∈ A| ∀ω ∈ Ω f(ω) ∈ Y }. Define a function Φ∗ : A → RΩ by
Φ∗(f) = u ◦ f , and denote its restriction to AY by Φ : AY → RΩ. Lastly, define
Ψ : A → AY by Ψ = Φ−1 ◦ Φ∗.

Lemma 4.

1. Φ∗ is continuous.

2. Φ is a homeomorphism.

3. Ψ is continuous and u ◦Ψ(f) = u ◦ f for any f ∈ A.

Proof. Consider the first part. Let fk → f in A. Because u is a continuous affine
function, it is uniformly continuous. So, for any ϵ > 0, there is some δ > 0 such that
d(x, y) < δ implies |u(x)−u(y)| < ϵ. Therefore, for sufficiently large k, d∞(fk, f) < δ.
So, for all ω ∈ Ω, |u(fk(ω))− u(f(ω))| < ϵ. That is, ∥u ◦ fk − u ◦ f∥ → 0.
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Consider the second part. The continuity of Φ follows from that of Φ∗. I shall
prove that Φ is a bijection. For f̂ ∈ RΩ, Φ(v ◦ f̂) = u ◦ v ◦ f̂ = f̂ . So it is onto.
Take f, g ∈ AY such that u ◦ f = u ◦ g. Then, f = v ◦ u ◦ f = v ◦ u ◦ g = g. So it is
one-to-one.

Finally, I show that the inverse function Φ−1 : RΩ → AY is continuous. Note
that Φ−1(f̂) = v ◦ f̂ . Take a sequence {f̂k}∞k=1 ∈ RΩ such that f̂k → f̂ in RΩ. Take

n ∈ N such that −n < f̂ < n. Fix any ϵ > 0. The uniform continuity of vj implies
that for each j = −n − 1, . . . , n, there exist δj > 0 such that, if x, y ∈ [j, j + 1]
and |x − y| < δj, then d(vj(x), vj(y)) < ϵ. Let δ = minj δj. Fix a sufficently

large k so that ∥f̂k − f̂∥ < min{δ, 1}. Then, for any ω ∈ Ω, there exists j such
that f̂k(ω), f̂(ω) ∈ [j, j + 1]. Hence, for all ω ∈ Ω, d(v(f̂k(ω)), v(f̂(ω))) < ϵ. So
d∞(Φ−1(f̂k),Φ

−1(f̂)) < ϵ. The third part is trivial.

Next, I show that the choice behavior depends only on the state-dependent util-
ities of the acts in the choice sets. For a moment, I denote u ◦ f as fu and let
Au = {fu|f ∈ A} for A ∈ K.

Lemma 5. If Au = Bu, then the followings hold:

1. [c(A,ω)]u = [c(B,ω)]u for each ω ∈ Ω.

2. τA = τB.

Proof. Lemma 2 (1) implies

c(A,ω) = A ∩ c(A ∪B,ω), c(B,ω) = B ∩ c(A ∪B,ω) (8)

for each ω ∈ Ω. Thus for f ∈ c(A,ω), f ∈ c(A ∪ B,ω). Take g ∈ B such that
fu = gu. Monotonicity implies g ∈ c(A ∪ B,ω). Then g ∈ c(B,ω). The first part is
proved. Next, I show that, for any f ∈ A and g ∈ B with fu = gu, f ∈ c(A,ω) iff
g ∈ c(B,ω). Suppose f ∈ A, g ∈ B and fu = gu. If f ∈ c(A,ω), f ∈ c(A ∪ B,ω) by
(8). Then, by axiom M, g ∈ c(A ∪B,ω). Again by (8), g ∈ c(B,ω).

Turn to the second part. Suppose c(A,ω) ̸= c(A,ω′) and take f ∈ c(A,ω)\c(A,ω′).
If c(B,ω) = c(B,ω′), then there is some g ∈ B such that gu = fu and g ∈ c(B,ω′).
But this implies f ∈ c(A,ω′), which is a contradiction. Thus c(A,ω) ̸= c(A,ω′) iff
c(B,ω) ̸= c(B,ω′). IM implies τA = τB.

The next lemma states that the choice correspondence is translation invariant.
Let Ã = {fu|f ∈ A} and K̃ = {Au|A ∈ K}. For f̃ ∈ Ã and α ∈ R, let αf̃ ∈ Ã be a
function defined by αf̃(ω) = α(f̃(ω)). Similarly, for Ã ∈ K̃ and α ∈ R, let αÃ ∈ K
be the set defined by αÃ = {αf̃ |f̃ ∈ Ã}. For Ã, B̃ ∈ K̃, let Ã + B̃ = {f̃ + g̃|f̃ ∈
Ã, g̃ ∈ B̃}.

19



Lemma 6. If Au = Bu + gu, the followings hold:

1. [c(A,ω)]u = [c(B,ω)]u + gu.

2. τA = τB

Proof. Take C ∈ K, h ∈ A, and x ∈ X such that Cu = 2Bu, h = 2gu, and xu = 0.
Then, Bu = 1

2
Cu+ 1

2
xu = (1

2
C + 1

2
x)u and Au = Bu+ gu = 1

2
Cu+ 1

2
hu = (1

2
C + 1

2
h)u.

By Lemma 5, [c(A,ω)]u = [c(1
2
C + 1

2
h, ω)]u and [c(B,ω)]u = [c(1

2
C + 1

2
x, ω)]u hold.

By ACI, it holds that

1

2
f +

1

2
h ∈ c

(
1

2
C +

1

2
h, ω

)
⇔ 1

2
f +

1

2
x ∈ c

(
1

2
C +

1

2
x, ω

)
, (9)

which implies [c(1
2
C + 1

2
h, ω)]u = [c(1

2
C + 1

2
x, ω)]u + 1

2
hu. Then, [c(A,ω)]u = [c(1

2
C +

1
2
x, ω)]u + 1

2
hu = [c(B,ω)]u + gu.

Turn to the second part. By equation (9), c
(
1
2
C + 1

2
h, ω

)
̸= c

(
1
2
C + 1

2
h, ω′) iff

c
(
1
2
C + 1

2
x, ω

)
̸= c

(
1
2
C + 1

2
x, ω′). Then, IM implies τ 1

2
C+ 1

2
x = τ 1

2
C+ 1

2
h. Note that

Bu = (1
2
C + 1

2
x)u and Lemma 5 (2) imply τ 1

2
C+ 1

2
x = τB. Similarly, τ 1

2
C+ 1

2
h = τA

holds. Therefore τA = τB.

Now I define a choice correspondence c̃ : K(RΩ)× Ω → K(RΩ) and τ̃ : K(RΩ)×
Ω → R+ by

c̃(B̃, ω) = Φ[c(Φ−1(B̃), ω)],

τ̃(B̃, ω) = τ(Φ−1(B̃), ω).

Then, c̃ and τ̃ inherits all the properties of c and τ . Besides, c̃ is translation invariant:

c̃(B̃ + f̃ , ω) = c̃(B̃, ω) + f̃

by Lemma 6. Note

c(B,ω) = Φ−1(c̃(Φ(B), ω)),

τ(B,ω) = τ̃(Φ(B), ω).

for any compact subset B of AY . Once I found a representation of c̃ and τ̃ , the
obtained parameters work for c and τ . In the proof of Theorem 1, I write RΩ as A,
c̃ as c, and τ̃ as τ for simplicity.

20



7.1.3 Preliminary

A plan is a pair (F, λ) of function F : Ω → A and a F -adapted stopping time λ, such
that F is Fλ-mesurable. Let H denote the set of all plans. Let T ∗ = {τB|B ∈ K}
be the set of stopping times DM uses given some menu. Let H∗ = {(F, λ) ∈ H|λ ∈
T ∗} , which consists of plans that can be implemented through a response time
that is actually used when DM faces some menu. I especially pay attention to H∗

because this property facilitates the calibration of γ. For B ∈ K, let ĉ(B) = {F ∈
BΩ |F (ω) ∈ c(B,ω) for all ω}. Henceforth, the notation {fω}ω∈Ω sometimes denotes
for the function ω 7→ fω and sometimes for the set {fω |ω ∈ Ω}.

In the next section, a preference relation over plans is defined from preference
over menus. For that purpose, for each plan (F, λ) ∈ H∗, the existence of a menu
given which DM implements the plan is shown. But in general, there may not be a
menu B that satisfies F ∈ ĉ(B). So, as a substitute, I construct a menu with which
the specified response time is implemented, and the same utility level is given at
each state. Lemma 7 and Lemma 8 serves this purpose. Lemma 7 says that for any
λ ∈ T ∗, there is a menu so that λ is used and utilities obtained at any state is zero.
A plan {gω}ω∈Ω is a selector of c(B, ·) if gω ∈ c(B,ω) for all ω.

Lemma 7. For any λ ∈ T ∗, there exists Bλ ∈ K and {fω}ω∈Ω that satisfy the
followings

1. τ(Bλ, ·) = λ

2. fω(ω) = 0, fω ∈ c(Bλ, ω).

3. For any g ∈ A, fω + g ∈ c(Bλ + g, ω).

Proof. Take any B ∈ K such that τB = λ. Take a selector {gω}ω∈Ω of the correspon-
dence c(B, ·). Define a function h as h(ω) = gω(ω). Define a menu Bλ = B − h.
Note that, by Lemma 6, c(Bλ, ω) = c(B,ω) − h and τBλ

= τB = λ. Define a plan
{fω}ω∈Ω as fω = gω − h, and then the following hold: fω ∈ Bλ, fω(ω) = 0, and
fω ∈ c(Bλ, ω).

For F ∈ AΩ, let F ∗ ∈ A be an act defined by F ∗(ω) = F (ω)(ω). For any
(F, λ) ∈ H∗, if there exists some menu B ∈ K and F : Ω → A such that

F ∈ ĉ(B), (F )∗(ω) = F ∗(ω), and τ(B, ·) = λ,

then write such a menu B as BF
λ .

Lemma 8. For any (F, λ) ∈ H∗, there exists BF
λ ∈ K and a function F : Ω → A

such that

F̄ ∈ ĉ(BF
λ ), (F̄ )∗(ω) = F ∗(ω), τ(BF

λ , ·) = λ.
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Proof. Define BF
λ := Bλ +F ∗, where Bλ is the menu constructed applying Lemma 7

to λ. There is a plan {fω}ω∈Ω ∈ ĉ(Bλ) such that fω(ω) = 0. Then, let F̄ (ω) = fω+F ∗

and observe F (ω)(ω) = F (ω)(ω) and F ∈ ĉ(BF
λ ).

Any choice behavior requires enough information to do so. The next lemma states
this fact. For each B, let P(B) = σ({{ω′ ∈ Ω|c(B,ω′), c(B,Ω)}|ω ∈ Ω}).

Lemma 9. For any B ∈ K, P(B) ⊂ FτB .

Proof. Suppose c(B,ω) ̸= c(B,ω′). Whether τ(B,ω) ≥ τ(B,ω′) or τ(B,ω) ≤
τ(B,ω′), ω and ω′ are distinguished at τ(B,ω).

7.1.4 Preference relation between plans

Here a preference relation between plans in H∗ is defined. I start by considering
preference relations between menus. The next lemma states that the translation
invariance of c inherits to the relations ⪰D, ⪰I . For A ∈ K and f ∈ A, let A +
f = {g + f | g ∈ A}. For F ∈ AΩ and f ∈ A, let F + f ∈ AΩ be defined by
(F + f)(ω) = F (ω) + f .

Lemma 10.

1. If A ⪰D B, then (A+ f) ⪰D (B + f).

2. If A ⪰I B, then (A+ f) ⪰I (B + f).

Proof. Suppose A ⪰D B and take F ∈ ĉ(B) such that ImF ⊂ A. Because ĉ(B+f) =
ĉ(B) + f , F + f ∈ ĉ(B + f). In addition, Im (F + f) = (ImF ) + f ⊂ A + f . The
first part is proved. Suppose A ⪰D C1 ⪰D · · · ⪰D Cn ⪰D B. Then, by the first part,
(A+ f) ⪰D (C1 + f) ⪰D · · · ⪰D (Cn + f) ⪰D (B + f).

If a use of a plan (F, λ) is observed given B, it is a best plan. The second part
of the next lemma states this observation. For f, g ∈ A, define an act f ∧ g ∈ A by
(f ∧ g)(ω) = min{f(ω), g(ω)}.

Lemma 11.

1. Consider menus A,B ∈ K, F ∈ AΩ and G ∈ ĉ(B) such that F ∗ ≥ G∗, and F
is FτB -measurable. Then, A ⪰I B.

2. Suppose F ∈ ĉ(B), ImG ⊂ B, and (G,µ) ∈ H∗. Then, BF
τB

⪰I BG
µ .
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Proof. Let hω = F (ω) ∧ G(ω) and consider a menu C = {hω}ω∈Ω. For any h ∈ C,
there exists g ∈ B such that g ≥ h. So INRA andM implies B∩c(B∪C, ω) = c(B,ω)
for any ω ∈ Ω. So c(B,ω) ̸= c(B,ω′) implies c(B ∪ C, ω) ̸= c(B ∪ C, ω′). Then, IM
implies τB ≤ τB∪C , and FτB ⊂ FτB∪C

.
Let

∆ω = {ω′ ∈ Ω|F (ω′) = F (ω) and G(ω′) = G(ω)}.

Note that G is FτB -measurable since P(B) ⊂ FτB . Because F and G are FτB -
measurable and FτB ⊂ FτB∪C

, ∆ω ∈ FτB∪C
holds. For any ω′ ∈ ∆ω,

hω(ω
′) = F (ω)(ω′) ∧G(ω)(ω′) = F (ω′)(ω′) ∧G(ω′)(ω′) = G(ω′)(ω′) = G(ω)(ω′).

Note that, for all ω, G(ω) ∈ c(B ∪C, ω). Then, by ∆ω ∈ FτB∪C
, the equation above,

and Lemma 2 (2), hω ∈ c(B ∪ C, ω) holds. Conclude C ⪰D B ∪ C ⪰D B. It is easy
to show that A ⪰I C. Combining these shows the first part. Applying the first part
to the menus BF

τB
, B, and BG

µ shows the second part.

Elicitation of the subjective probability requires the continuity of the preference.
For this reason, I use the topological closure ⪰∗ of ⪰I :

A ⪰∗ B ⇔ There exist sequences An → A and Bn → B such that An ⪰I Bn.

Naturally, ⪰∗ is also translation invariant and transitive.

Lemma 12.

1. If A ⪰∗ B, then A+ f ⪰∗ B + f .

2. If A ⪰∗ B and B ⪰∗ C, then A ⪰∗ C.

Proof. Assume A ⪰∗ B and take sequences An → A, Bn → B with An ⪰I B. Then,
by Lemma 6 An + f ⪰I Bn + f . Taking n → ∞ proves the first part.

Assume A ⪰∗ B ⪰∗ C and take sequences An → A, Bn → B, B′
n → B, and

Cn → C with An ⪰I Bn and B′
n ⪰I Cn. Passing to a subsequence, wlog assume

dh(Bn, B), dh(B
′
n, B) < n−1. Then, Bn + n−1 ⪰I B′

n − n−1. Moreover, An + n−1 ⪰I

Bn+n−1 and B′
n−n−1 ⪰I Cn−n−1. From the transitivity of ⪰I , An+n−1 ⪰I Cn−n−1

follows. Taking n → ∞ proves the second part.

Finally, I define the preference relation over plans. For (F, λ), (G,µ) ∈ H∗, let

(F, λ) ⪰ (G,µ) ⇔ BF
λ ⪰∗ BG

µ .

And this relation is translation invariant in the following sense:
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Lemma 13. For (F, λ), (G,µ) ∈ H∗ and f ∈ A,

(F, λ) ⪰ (G,µ) ⇒ (F + f, λ) ⪰ (G+ f, µ).

Proof. From Lemma 11 (1), BF
λ + f ∼I BF+f

λ follows. By definition, (F, λ) ⪰ (G,µ)
means BF

λ ⪰∗ BG
µ . This and the linearity of ⪰∗ imply BF

λ + f ⪰∗ BG
µ + f . Combine

this with BF+f
λ ⪰I BF

λ + f and BG
µ + f ⪰I BG+f

µ . Then, by the transitivity of ⪰∗,

BF+f
λ ⪰∗ BG+f

µ or (F + f, λ) ⪰ (G+ f, µ).

7.1.5 Representation

Now I turn to the elicitation of subjective probability and cost function. The first is
the subjective probability. For f, g ∈ A, write f ⪰∗ g if {f} ⪰∗ {g} for notational
simplicity.

Lemma 14. There is a full-support probability π over Ω such that, for any f, g ∈ A,

f ⪰∗ g implies

∫
fdπ ≥

∫
gdπ.

Proof. By C (2) and the definition of ⪰∗, 1ω0 ≻∗ 0 holds for any ω and thus ⪰∗ is
non-degenerate. The relation ⪰∗ is reflexive, transitive, monotonic, linear, contin-
uous, and non-degenerate. Follow the argument in Lemma 9 of Ellis and obtain a
probability π such that f ⪰∗ (≻∗)g implies

∫
fdπ ≥ (>)

∫
gdπ. For any ω, because

1ω0 ≻∗ 0, π(ω) > 0 holds. That is, π is full-support.

Next, I elicit the cost function on T ∗ and one-way utility representation on H∗.
The idea of calibration is as follows. If (F, λ) ⪰ (G,µ) and λ is more costly than µ,
the utility from F compared to G is large enough to compensate the cost increase.
The difference of utility between F and G is evaluated using π under expected utility
criterion. For a moment, denote fλ for a plan (F, λ) ∈ H∗ where F ∈ ĉ(BF

λ ) and
F ∗ = f . In the proof of the next lemma, I denote π(f) for the integration

∫
fdπ.

Lemma 15.

1. There exists γ∗ : T ∗ → R and V ∗ : H∗ → R such that

(F, λ) ⪰ (G,µ) ⇒ V ∗(F, λ) ≥ V ∗(G,µ),

where

V ∗(F, λ) =

∫
F ∗dπ − γ∗(λ).
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2. For λ, µ ∈ T ∗, if λ ≤ µ, then γ∗(λ) ≤ γ∗(µ).

Proof. By IM, stopping time for singleton menus {f} are the same. Take some f
and let λ = τ{f}. Let Mλ,µ = {f ∈ A|fλ ⪰ 0µ} and let

γ∗(λ) = inf
f∈Mλ,λ

∫
fdπ,

V ∗(F, λ) =

∫
F ∗dπ − γ∗(λ).

Claim. inff∈Mλ,µ

∫
fdπ ≥ γ∗(λ)− γ∗(µ)

⊢ Take gn ∈ Mµ,λ with π(gn) → γ∗(µ) and hn ∈ Mλ,µ with π(hn) → infh∈Mλ,µ

∫
hdπ.

Since [gn]µ ⪰ 0λ, 0µ ⪰ [−gn]λ. Combining with [hn]λ ⪰ 0µ, I have [hn]λ ⪰ [−gn]λ or
[gn + hn]λ ⪰ 0λ. Thus,

γ∗(λ) = inf
f∈Mλ,λ

∫
fdπ ≤

∫
gn + hndπ → γ∗(µ) + inf

h∈Mλ,µ

∫
hdπ.

That is, infh∈Mλ,µ

∫
hdπ ≥ γ∗(λ)− γ∗(µ). ⊣

If (F, λ) ⪰ (G,µ), then [F ∗]λ ⪰ [G∗]µ or [F ∗ − G∗]λ ⪰ 0µ. Then, by the claim
above, ∫

F ∗ −G∗dπ ≥ γ∗(λ)− γ∗(µ),

or V (F, λ) ≥ V (G,µ). This shows the first part.
Consider λ, µ ∈ T ∗ and λ ≤ µ. Then, take F ∈ ĉ(Bλ) and G ∈ ĉ(Bµ) such that

F ∗ = G∗ = 0. Applying Lemma 11 (1), I obtain (F, λ) ⪰ (G,µ), or −γ∗(λ) ≥ −γ∗(µ)
in terms of the representation. This shows the second part.

Next, I extend the domain of V ∗ to H and show that the extension V is maximized
by implemented plans.

Lemma 16. If F ∈ ĉ(B), (G,µ) ∈ H, and ImG ⊂ B, then V (F, τB) ≥ V (G,µ),
where V : H → R and γ : T → R is defined as

V (F, λ) =

∫
F ∗dπ − γ(λ),

γ(λ) = inf
λ̃∈T ∗(λ)

γ∗(λ̃)
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Here, T ∗(λ) = {λ̃ ∈ T ∗|λ̃ ≥ λ}. Moreover, γ is increasing; γ(λ) ≥ γ(µ) whenever
λ ≥ µ.

Proof. Take F and (G,µ) as the hypothesis of the statement. Then, by Lemma 11
(2), (F, τB) ⪰ (G, µ̃) holds for any µ̃ ∈ T ∗(µ). Since γ(τB) = γ∗(τB), this implies∫

F ∗dπ − γ(τB) ≥
∫

G∗ − γ∗(µ̃).

Take the supremum of the right hand side.

The next lemma states that benefit from any implementable choice is bounded
by an optimal choice.

Lemma 17. For B ∈ K and an algebra Q of Ω, the following hold:

1. If F ∈ BΩ and F is Q-measurable,

E[F ∗] ≤ E

[
max
f∈B

E[f |Q]

]
.

2. There is some G ∈ BΩ that satisfies

E[G∗|Q](ω) = max
f∈B

E[f |Q](ω).

Proof. Let {Q(ω)|ω ∈ Ω} = {∆1, . . . ,∆I}. For the first part, observe

E[F ∗] =
I∑

i=1

π(∆i)E[F
∗|∆i] ≤

∑
i

π(∆i)max
f∈B

E[f |∆i] = E[max
f∈B

E[f |Q]].

For the second part, take any gi ∈ argmaxf∈B E[f |∆i] for each i and define
G ∈ BΩ by G(ω) = gi for ω ∈ ∆i. Then, for ω ∈ ∆i,

E[G∗|Q](ω) = E[G∗|∆i] = E[gi|∆i] = max
f∈B

E[f |Q](ω).

Now, I show the optimality of implemented response times.

Lemma 18. For any B ∈ K,

τB ∈ argmax
λ∈T

E[max
f∈B

E[f |Fλ]]− γ(λ).
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Proof. Let F ∈ ĉ(B). Take any (G,µ) ∈ H with ImG ⊂ B and E[G∗|Fµ] =
maxf∈B E[f |Fµ]. Then, by Lemma 16 and Lemma 17,

E[max
f∈B

E[f |FτB ]]− γ(τB) ≥ E[F ∗]− γ(τB)

≥ E[G∗]− γ(µ) = E[max
f∈B

E[f |Fµ]]− γ(µ).

Note µ is arbitrary.

Finally, I show the optimality of the implemented choices.

Lemma 19. c(B,ω) = argmaxf∈B E[f |FτB ](ω) for all ω

Proof. First, I show c(B,ω) ⊂ argmaxf∈B E[f |FτB ](ω) for all ω ∈ Ω. Take any ω
and f ∈ c(B,ω). En route to a contradiction, suppose there exists g ∈ B with
E[g|FτB ](ω) > E[f |FτB ](ω). Take any FτB -measurable selector F of c(B, ·) that
satisfies F (ω) = f and define a plan G as

G(ω′) =

{
g if ω′ ∈ FτB(ω)

F (ω′) otherwise.

By construction, E[G∗] > E[F ∗]. Since (G, τB) ∈ H, Lemma 16 implies V (F, τB) ≥
V (G, τB), or E[F

∗] ≥ E[G∗], which is a contradiction. Thus c(B,ω) ⊂ argmaxf∈B E[f |FτB ](ω).
Next, I consider the converse inclusion. Fix any ω∗ and take f ∈ argmaxh∈B E[h|FτB ](ω

∗).
Let {P(B)(ω)|ω ∈ Ω} = {∆0, . . . ,∆I} where ∆0 = P(B)(ω∗). Take a P(B)-
measurable F ∈ ĉ(B) and set g0 = f , gi = F (ω) for ω ∈ ∆i. Define new acts
gni = gi − n−11l∆c

i
for each i and consider a menu

Bn = (B − n−1) ∪ {gni }Ii=0.

Let Gn be a plan defined by Gn(ω) = gni for ω ∈ ∆i. I show that ĉ(Bn) = {Gn}.
Note that gi ∈ argmaxh∈B E[h|∆i] by the inclusion proved before. Since gni (ω) =

gi(ω) for ω ∈ ∆i, g
n
i ∈ argmaxh∈Bn E[h|∆i]. To show that gni is the only maximizer,

take any g ∈ Bn\{gni }. Then, there is some g′ ∈ B that satisfies g′(ω)− n−1 = g(ω)
for ω ∈ ∆i. So

E[g|∆i] = E[g′|∆i]− n−1 < E[gi|∆i] = E[gni |∆i],

which shows argmaxh∈Bn E[h|∆i] = {gni } . Next, I show gni ̸= gnj for i ̸= j. If
gni = gnj , gi(ω) = gj(ω) + n−1 for ω ∈ ∆j. So E[gi|∆j] = E[gj|∆j] + n−1, which is a
contradiction. Thus, P(Bn) = P(B). Then, by IM, τBn = τB for all n. Note gni → gi
and Bn → B, and apply C (1) to obtain gi ∈ c(B,ω).

Lemma 18 and 19 prove Theorem 1.
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7.2 Proof of Theorem 2

Fix an OSR (u, π,F , γ). First I construct a data (c, τ) that satisfies M. To this end,
two lemmas are necessary.

Lemma 20. For any algebra Q, if there is some λ0 ∈ T such that Q ⊂ Fλ0, the
function

λ(ω) = min{t ∈ R+ | Ft(ω) ⊂ Q(ω)}

is a well-defined F-adapted stoping time. Moreover, for any F-adapted stopping time
µ, λ ≤ µ if Q ⊂ Fµ.

Proof. Take any ω. By the assumption, there is some t ≥ 0 with Ft(ω) ⊂ Q(ω).
Let t∗ = inf{t ∈ R+|Ft(ω) ⊂ Q(ω)}. Let tn ↓ t∗ ≥ 0 and Ftn(ω) ⊂ Q(ω). Since
Ω is finite, Ftn(ω) = Ft∗ for sufficiently large n. Then, Ft∗(ω) ⊂ Q(ω). That is,
t∗ = min{t ∈ R+|Ft(ω) ⊂ Q(ω)} and λ is well-defined.

Next, I show that λ is F -adapted. Note

λ(ω) ≤ t ⇔ ∃s ≤ t, Fs(ω) ⊂ Q(ω) ⇔ ω ∈
∪

s∈[0,t]

{ω | Fs(ω) ⊂ Q(ω)}

and

{ω | Fs(ω) ⊂ Q(ω)} =
∪

{Fs(ω) |ω ∈ Ω, Fs(ω) ⊂ Q(ω)}.

So {λ ≤ t} is written as a union of elements of Ft. That is, λ is F -adapted. The
inclusion Q ⊂ Fλ is obvious. For the last part, suppose µ(ω) < λ(ω). By definition
of λ, Fµ(ω)(ω) ̸⊂ Q(ω) and thus Q ̸⊂ Fµ.

For each B ∈ K, λ ∈ T , and ω ∈ Ω, let c̃(B, λ, ω) = argmaxf∈B E[u(f)|Fλ](ω)
and let P̃(B, λ) be the algebra generated by ω 7→ c̃(B, λ, ω).

Lemma 21. For any B ∈ K and λ, µ ∈ T , if P̃ (B, µ) ⊂ Fλ and λ ≤ µ, then
c̃(B, λ, ω) = c̃(B, µ, ω) for any ω.

Proof. Fix any ω ∈ Ω. First, I show c̃(B, µ, ω) ⊂ c̃(B, λ, ω). Take any f ∈ c̃(B, µ, ω).
Note that f ∈ c̃(B, µ, ω′) for any ω′ ∈ Fλ(ω) ⊂ P̃ (B, µ)(ω) by assumption. Then,
for any g ∈ B,

E[u(f)|Fλ](ω) = E[E[u(f)|Fµ]|Fλ](ω) ≥ E[E[u(g)|Fµ]|Fλ](ω) = E[u(g)|Fλ](ω).
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That is, f ∈ c̃(B, λ, ω).
Next, I show c̃(B, µ, ω) ⊃ c̃(B, λ, ω). Suppose f /∈ c̃(B, µ, ω) and take g ∈

c̃(B, µ, ω). By assumption, for any ω′ ∈ Fλ(ω) ⊂ P̃(B, µ)(ω), g ∈ c̃(B, µ, ω′) hold.
Then,

E[u(g)|Fλ](ω) = E[E[u(g)|Fµ]|Fλ](ω) > E[E[u(f)|Fµ]|Fλ](ω) = E[u(f)|Fλ](ω)

and so f /∈ c̃(B, λ, ω).

I construct a data that satisfies IM. For each B ∈ K, let P̃(B) = {P̃(B, λ) |λ ∈
argmaxλ∈T E[maxf∈B E[u(f)|Fλ]]− γ(λ)}. Let P̃ be the set of algebras Q such that
there exists some µ ∈ T with Q ⊂ Fµ and enuemrate it as P̃ = {Q1, . . . , Qn}. Let λi

be the minimal stopping time that satisfies Qi ⊂ Fλi
, whose existence is guaranteed

by Lemma 20.
Let K1 = {B ∈ K |Q1 ∈ P̃(B)}. For i = 2, . . . , n, let Ki = {B ∈ K |Qi ∈

P̃(B)}\
∪i−1

j=1Kj. Then, K1, . . . ,Kn partition K.
I show that

λi ∈ argmax
λ∈TF

E[max
f∈B

E[u(f)|Fλ]]− γ(λ). (10)

for B ∈ Ki. Take any µ ∈ argmaxλ∈TF E[maxf∈B E[u(f)|Fλ]]− γ(λ) with P̃(B, µ) =
Qi. Then, because Qi ⊂ Fλi

and λi ≤ µ, Lemma 21 shows c̃(B, λi, ω) = c̃(B, µ, ω)
for any ω. Then, since λi ≤ µ, (10) holds.

For B ∈ Ki, let τB = λi and c(B,ω) = c̃(B, λi, ω). Then, the OSR represents(c, τ)
satisfies the requirement. I already showed that (c, τ) is represented by the given
OSR. Suppose P(A) ⊂ P(B). Then, by construction, τA is the minimal stopping
time such that P(A) ⊂ FτA and thus τA ≤ τB, which is IM.

Next, I show (c, τ) satisfies the rest of axioms in the first part.
ACI: By the construction of τ , Fταg+(1−α)B

= Fταh+(1−α)B
.

αg + (1− α)f ∈ c(αg + (1− α)B,ω) ⇔ αg + (1− α)f ∈ arg max
f̃∈αg+(1−α)B

E[u(f̃)|Fταg+(1−α)B
]](ω)

⇔ αh+ (1− α)f ∈ arg max
f̃∈αh+(1−α)B

E[u(f̃)|Fταh+(1−α)B
]](ω)

⇔ αh+ (1− α)f ∈ c(αh+ (1− α)B,ω).

DSC: Suppose f, g ∈ B, ω ∈ ∆ ∈ FτB , and f(ω′) = g(ω′) for any ω′ ∈ ∆. Assume
f ∈ c(B,ω). Then, by the definition of OSR, f ∈ argmaxh∈B E[u(h)|FτB ](ω). But

E[u(f)|FτB ](ω) =

∫
∆

u(f)dπ(·|∆) =

∫
∆

u(g)dπ(·|∆) = E[u(g)|FτB ](ω).
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So, g ∈ argmaxh∈B E[u(h)|FτB ](ω) = c(B,ω).
C(1): Suppose Bn → B, fn → f , fn ∈ c(Bn, ω) and

τBn = τB for any n ∈ N.

Then, FτBn
= FτB for all n.

Since fn ∈ c(Bn, ω), fn ∈ argmaxh∈Bn E[u(h)|FτBn
](ω). Letting ∆ = FτB(ω), this

can be written as ∫
∆

u(fn)dπ(·|∆) = max
h∈Bn

∫
∆

u(h)dπ(·|∆).

Let n → ∞. Then, the LHS converges to
∫
∆
u(f)dπ(·|∆) By Berge maximum theo-

rem (Aliprantis and Border (2006), p. 570), the RHS converges to maxh∈B
∫
∆
u(h)dπ(·|∆).

Thus f ∈ argmaxh∈B E[u(h)|∆](ω) = c(B,ω).
C (2): Let U(B) = maxλ∈T E[maxf∈B E[u(f)|Fλ]]− γ(λ). I show A ⪰I B implies

U(A) ≥ U(B). For this, it is enough to show A ⪰D B implies U(A) ≥ U(B). Suppose
F ∈ ĉ(B) and ImF ⊂ A. Then, U(A) = maxλ E[maxf∈A E[u(f)|Fλ]] − γ(λ) ≥
E[F ∗]− γ(τB) = U(B).

Now turn to the proof of the necessity of C (2). For any singleton menu {f},
U({f}) = E[u(f)]. Moreover, U({fn}) → U({f}) when fn → f by the continuity
of u. Suppose x > y, fn → xωy, and gn → y. En route to a contradiction, assume
{gn} ⪰I {fn} for all n. Then U({gn}) ≥ U({fn}) holds for all n. Let n → ∞
and obtain U({y}) ≥ U({xωy}) or E[y] ≥ E[xωy]. However, since π is full-support,
E[y] < E[xωy]. Contradiction.

M and U follows from Theorem 2 in Ellis since c has an OIR. The second part is
also a direct implication of Theorem 2 in Ellis.

7.3 Proof of Proposition 1

Lemma 22. Suppose (c, τ) has an OSR (u, π,G, γ). If τ(B,ω), τ(B,ω′) ≤ t and
ω′ ∈ Gt(ω), then c(B,ω) = c(B,ω′) and τ(B,ω) = τ(B,ω′).

Proof. Observe ω′ ∈ Gt(ω) ⊂ GτB(ω)(ω) = GτB(ω). By the symmetric argument,
GτB(ω) = GτB(ω

′). Because τB is G-adapted, τB(ω) = τB(ω
′). For any f ∈ B,

c(B,ω) = E[u(f)|GτB ](ω) = E[u(f)|GτB ](ω
′) = c(B,ω′).

Lemma 23. Suppose (c, τ) has an OSR (u, π,G, γ). If ω′ ∈ Gt(ω), then either
τ(B,ω), τ(B,ω′) ≤ t or t < τ(B,ω), τ(B,ω′) holds.
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Proof. Note that τB is G-adapted for any B ∈ K, or {τB ≤ t} ∈ σ(Gt) for any t ≥ 0.
If ω ∈ {τB ≤ t}, then Gt(ω) ⊂ {τB ≤ t}. So ω′ ∈ Gt(ω) implies ω, ω′ ∈ {τB ≤ t}. If
ω ̸∈ {τB ≤ t}, then Gt(ω) ∩ {τB ≤ t} = ∅. In this case, ω, ω′ ̸∈ {τB ≤ t}. In both
cases, the conclusion of the statement holds.

Proof of Proposition 1

En route to a contradiction, assume the proposition does not hold. Then, there is
some ∆ ∈ Ft\Gt for some t. Because Ft = σ({{ω′|ω′ ▷◁t ω}|ω ∈ Ω}), any ω ∈ ∆
and ω′ ∈ ∆c are distinguished until t. Since ∆ /∈ Gt, for some ω ∈ ∆ and ω′ ∈ ∆c,
ω′ ∈ Gt(ω) holds. Otherwise, for any ω ∈ ∆, Gt(ω) ⊂ ∆ and so ∆ =

∪
ω∈∆ Gt(ω) and

contradicts to the assumption ∆ /∈ σ(Gt). Fix such ω and ω′. Then, there exists a
menu B that satisfies the followings:

1. τ(B,ω) ∧ τ(B,ω′) ≤ t,

2. τ(B,ω) ̸= τ(B,ω′) or c(B,ω) ̸= c(B,ω′).

By the assumption and Lemma 23, τ(B,ω), τ(B,ω′) ≤ t. Then, by Lemma 22,
c(B,ω) = c(B,ω′) and τ(B,ω) = τ(B,ω′). A contradiction.

7.4 Proof of Proposition 2

For the OSR (u, π,F , γ), define the corresponding OIR (u, π, γ̂, P̂) by

P̂(B) = FτB ,

γ̂(Q) =

{
inf{γ(λ)|λ ∈ T , Q ⊂ Fλ} if ∃λ ∈ T s.t. Q ⊂ Fλ

∞ otherwise.

Similary, for the OSR (u′, π′,F ′, γ′) define an OIR (u′, π′, γ̂′, P̂′).
By Theorem 3 in Ellis, the following hold:

1. π = π′,

2. there exist α > 0 and β ∈ R such that u′ = αu+ β and γ̂′(Q) = αγ̂(Q).

I show the uniqueness of cost function. By the optimality of τB in OSR, τB takes
the smallest cost to acquire FτB and so γ̂(FτB) = γ(τB). Then,

γ′(τB) = γ̂′(FτB) = αγ̂(FτB) = αγ(τB).
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7.5 Proof of Proposition 3

Consider the first part. Suppose (c, τ) has an GOSR (u, π, {FB}B∈K, γ). Define

P̂(B) = FB
τB
,

γ̂(Q) =

{
inf{γ(F , λ)|(F , λ) ∈ Π, Q ⊂ Fλ} if ∃(F , λ) ∈ Π s.t. Q ⊂ Fλ,

∞ otherwise.

for each B ∈ K and Q ∈ P. I show that (u, π, γ̂, P̂) is an OIR of c. The second
requirement of the OIR directly follows from that of OSR and the definition of P̂. For
notational simplicity, let Û(B,Q) = E[maxf∈B E[u(f)|Q]]− γ̂(Q) and U(B,F , λ) =
E[maxf∈B E[u(f)|Fλ]]−γ(λ). Consider the first requirement of OIR. Take any Q ∈ P.
If there is no (G, µ) ∈ Π such that Q ⊂ Gµ, then γ̂(Q) = ∞ and so Û(B, P̂(B)) ≥
Û(B,Q). Otherwise, note that U(B,FB, τB) ≥ U(B,G, µ) for any (G, µ) ∈ Π. So,

Û(B, P̂(B)) = U(B,FB, τB) ≥ max
(G,µ)∈Π;
Q⊂Gµ

U(B,G, µ) = Û(B,Q),

where the equalities follow from the definition of P̂(·) and γ̂(·). The first part is
proved.

Turn to the second part. Let (c, τ) be any data such that c has an OIR. Suppose
(u, π, γ̂, P̂) is an OIR of c. Let FB

t = P̂(B) for all B ∈ K and t ≥ 0. Let γ(F , λ) =
γ̂(F0) for any F , λ. Take any (G, λ) ∈ Π, and let Q = G0. Then,

γ(FB, τB) = γ̂(FB
0 ) = γ̂(P̂(B)) ≤ γ̂(Q) = γ̂(G0) = γ(G, λ)

and therefore,

U(B,FB, τB) = Û(B, P̂(B)) ≥ Û(B,Q) = U(B,G, λ).

This is condition (4) of GOSR. Condition (5) is trivial.
Turn to the third part. Let Ω = {ω1, ω2} and X = R. Let c be the choice

correspondence defined by the OIR defined by the following parameters: u(x) = x,
π = (1/2, 1/2), γ({Ω}) = 0, and γ({{ω1}, {ω2}}) = 1. Let τB = 0 for all B ∈ K.
Then, (c, τ) does not have an OSR. Since γ({{ω1}, {ω2}}) < ∞, there is some B ∈ K
such that c(B,ω1) ̸= c(B,ω2). Since τB = 0, F0 = {{ω1}, {ω2}}. Next, let f ϵ

i = ϵ{ωi}0
for ϵ > 0, and i = 1, 2. I consider a menu Bϵ = {f ϵ

1, f
ϵ
2}. Then, for ϵ small enough,

c(Bϵ, ω1) = c(Bϵ, ω2) by the condition (6) of OIR. However, if (c, τ) has an OSR,
c(Bϵ, ωi) = {f ϵ

i } for i = 1, 2. Contradiction.
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