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Abstract

Central banks conduct monetary policy amid of uncertainty about the state of the econ-

omy. Information available in real time is imperfect, and the recent financial crisis

forces policymakers to decide policy actions in a highly uncertain economic environ-

ment with the presence of the effective lower bound.

Concerning the issue on imperfect information, major macroeconomic data avail-

able in real time are subject to revision. Since upcoming data revisions are hardly

predictable, economic agents cannot have perfect information on the current and past

state of the economy. Accordingly, both policymakers and private agents have to make

decisions based on less accurate information. The data uncertainty about the state of

the economy may affect decision-making of policymakers by influencing the private

sector’s optimization. While the problem of data uncertainty is important in the prac-

tice of monetary policy, the impacts of data uncertainty on macroeconomic models are

far less explored.

The recent financial crisis has heightened uncertainty about future monetary pol-

icy in a very low interest rate environment. After the crisis erupted, central banks in

advanced economies have adopted unconventional measures of monetary policy to

stabilize the financial system and spur economic recovery. Several economies includ-

ing euro area and Japan have embarked on negative interest rate policy, and major

advanced economies have been utilizing large asset purchase programs.

Negative interest rate policy marks a dramatic shift from conventional policies with

positive policy rates. However, it is unclear whether the move from zero interest rate

policy to negative interest rate policy reduces the binding constraint on monetary pol-

icy. A vast literature studies when and how well the asset purchase programs by cen-
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tral banks work. Recent studies argue possibility of state-dependence of asset purchase

programs, though there is yet no consensus on this issue.

The aim of my dissertation is twofold. First, I intend to uncover how data uncer-

tainty about current and past state of the economy influences business cycles. I shed

light on the effects of data uncertainty about labor productivity, which is obviously a

key variable in monetary policy decisions. Second, I aim to explore the effectiveness of

unconventional monetary policies in a changing environment after the financial crisis.

I focus on two popular measures of unconventional monetary policy, namely, negative

interest rate policies and asset purchase programs.

My dissertation is organized as follows. Chapter 1 summarizes the literature and

presents motivation and research questions of my dissertation. Chapter 2 investigates

influence of data uncertainty on business cycles, which plays an important role in mon-

etary policy conduct. Chapter 3 studies negative interest rate policies conducted in

several advanced economies. Chapter 4 examines changes in the effectiveness of un-

conventional monetary policies in the United States since the recent financial crisis.

Chapter 5 concludes my dissertation and suggests interesting avenues for future re-

search.
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Chapter 1

Overview of the Dissertation

1.1 Introduction

Central banks conduct monetary policy amid of uncertainty about the state of the econ-

omy. Information available in real time is imperfect, and the recent financial crisis

forces policymakers to decide policy actions in a highly uncertain economic environ-

ment with the presence of the effective lower bound.

Concerning the issue on imperfect information, major macroeconomic data avail-

able in real time are subject to revision. Since upcoming data revisions are hardly

predictable, economic agents cannot have perfect information on the current and past

state of the economy. Accordingly, both policymakers and private agents have to make

decisions based on less accurate information. Data uncertainty about the state of the

economy may affect decision-making of policymakers by influencing the private sec-

tor’s optimization. While the problem of data uncertainty is important in the practice

of monetary policy, the impacts of data uncertainty on macroeconomic models are far

less explored.

The recent financial crisis has heightened uncertainty about future monetary pol-

icy in a very low interest rate environment. After the crisis erupted, central banks in

advanced economies have adopted unconventional measures of monetary policy to

stabilize the financial system and spur economic recovery. Several economies includ-

ing euro area and Japan have embarked on negative interest rate policy, and major

advanced economies have been utilizing large asset purchase programs.

Negative interest rate policy marks a dramatic shift from conventional interest rate
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policies with positive policy rates. These policies are expected to increase potential

margins to the extent interest rates further fall. However, it is unclear whether the

move from zero interest rate policy to negative interest rate policy reduces the binding

constraint on monetary policy. A vast literature studies when and how well the asset

purchase programs by central banks work. Recent studies argue possibility of state-

dependence of asset purchase programs, though there is yet no consensus on this issue.

The aim of my dissertation is twofold. First, I intend to uncover how data uncer-

tainty about the current and past state influences business cycles. I shed light on the

effects of data uncertainty about labor productivity, which is obviously a key variable

in monetary policy decisions. Second, I aim to explore the effectiveness of uncon-

ventional monetary policies in a changing environment after the financial crisis. In

this dissertation, I focus on two popular measures of unconventional monetary policy,

namely, negative interest rate policies and asset purchase programs.

1.2 Literature Review

1.2.1 Data uncertainty as a challenge against central banks

A growing number of studies attempt to uncover roles of noisy signals on current and

future productivity in business cycles. Lorenzoni (2009) shows that noise contained

in current productivity induces substantial and persistent effects on economic activity

in the short run. Using a DSGE model with dispersed information, he describes how

public noisy signals on current productivity generate excess optimism and pessimism

about the economy. Blanchard et al. (2013) and Forni et al. (2017) propose identifica-

tion methodologies for noisy signals on future productivity. They show that the noise

around future productivity substantially contributes to business cycles.

Imperfect information including data uncertainty plays an important role in macroe-

conomic dynamics. The literature on imperfect information explores roles of rigidi-

ties regarding processing information in agents’ expectations and decision-making.

Mankiw and Reis (2002) propose a model of sticky information, in which agents infre-
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quently update their information sets even though they continuously receive accurate

signals. Woodford (2003) constructs a noisy information model, in which agents only

respond to part of available information because they receive noisy signals on the true

state of the economy. Rational inattention model proposed by Sims (2003) assumes

that agents do not react to part of information due to their limited capacity in process-

ing information. In his model, information friction causes an imperfect information

problem.

There are few papers measuring impacts of noisy signals on the past state of the

economy and to what extent economic dynamics observed in real time is over- or

under-estimated. Among the papers, Amir-Ahmadi et al. (2017) show that effects of

monetary policy tend to be underestimated when researchers rest on the preliminary

data for macroeconomic indicators. Masolo and Paccagnini (2019) estimate a noise

shock using a real-time output growth series to the model by Blanchard and Quah

(1989), confirming the findings by Lorenzoni (2009).

There is a large body of research investigating statistical characteristics of revisions

to macroeconomic data, which is extensively surveyed by Croushore (2011). Croushore

(2011) shows that revision patterns for major macroeconomic data are different be-

tween first few revisions and the rest of the revisions. Aruoba (2008) points out that

real-time data are noisy and biased estimates of true data, and data revision can be a

combination of noise reduction and updating new information. Jacobs and van Nor-

den (2016) confirm validity of the findings of Aruoba (2008) for U.S. productivity data.

A vast majority of the literature focus on relatively short-term revisions made within

a couple of years after the first release. The role of late revisions occurring long after

the first release is far less explored in the literature. However, late revisions tend to

be large because majority of them are annual or comprehensive revisions to the source

data. Among few papers on this issue, Siklos (2008) emphasizes usefulness of infor-

mation contained in comprehensive revisions for inflation forecasts.
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1.2.2 Effectiveness of negative interest rate policy

In recent years, several advanced economies including the euro area and Japan have

deployed negative interest rate policies. Negative interest rate policy is designed to

relaxing the constraint of the effective lower bound on policy rates by allowing the

policy rates being in negative territory. Grisse et al. (2017) empirically show that mar-

ket participants revise down their perception of the effective lower bound in response

to the announcement about adoptions of negative interest rate policies. Koeda (2019)

examines the effects of a change in the effective lower bound on the Japanese econ-

omy using structural vector autoregression models. She provides evidence suggesting

that increasing the effective lower bound from negative territory can be expansion-

ary. Dell’Ariccia et al. (2017) summarize details on the economies adopting negative

interest rate policies and some early assessments of the successfulness of the policies.

However, it is an open question whether monetary policy becomes less constrained

after introducing the negative interest rate policies. While policy rates can go nega-

tive, deposit rates and other market rates can be still bounded to zero. Moreover, the

effective lower bound on policy rates is unobservable in the economies with negative

interest rate policies.

To measure the degree of the effective lower bound constraint on monetary policy,

sensitivity of government bond yields to macroeconomic surprises is widely used in

the literature. Gürkaynak et al. (2005) show that macroeconomic surprises significantly

influence U.S. long-term interest rates. Moessner and Nelson (2008) find an increase in

the sensitivity of U.S. interest rate futures to macroeconomic surprises despite of the

FOMC’s guidance about future monetary policy around the middle of 2000s. Swanson

and Williams (2014a) and Swanson and Williams (2014b) find that the influence of

surprises in macroeconomic announcements on bond yields varies with the monetary

policy regimes. Altavilla et al. (2017) present that macroeconomic surprises can have

persistent impacts on bond yields over a few months.

The literature also presents that sensitivity of long-term bond yields to macroeco-

nomic surprises in major advanced economies has fallen after the recent financial crisis.
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From the theoretical side, Swanson and Williams (2014a) show that bond yields in an

economy facing the zero lower bound are less responsive to macroeconomic news than

those in an economy not constrained by the bound. They suggest that the zero lower

bound substantially contributed to a decline in the sensitivity of yields for U.S. in the

early 2010s. Swanson and Williams (2014b) find the decline in the sensitivity for Ger-

many and UK during the early 2010s. Moessner et al. (2016) report a decrease in the

sensitivity of shorter-term interest rates in Sweden. More recent studies focus on ef-

fects of forward guidance on the sensitivity of bond yields. Ehrmann et al. (2019) study

the effectiveness of forward guidance policies using a panel data containing macroe-

conomic surprises for several advanced economies. Moessner and Rungcharoenkitkul

(2019) show that forward guidance in the U.S. reduced the sensitivity of shorter matu-

rity bonds even after the policy liftoff from the zero lower bound.

1.2.3 Effectiveness of Large-Scale Asset Purchase Program

There is a vast literature on the Large-Scale Asset Purchase Programs (LSAPs) since the

recent financial crisis. Various papers propose theoretical frameworks to explain the

effectiveness of asset purchases by central banks. They suggest that asset purchases

are particularly effective when financial markets are disrupted. Cúrdia and Woodford

(2011) construct a New Keynesian model with imperfect financial intermediation and

lending to the private sector by the central bank and find that asset purchases targeted

at specific types of assets can be stimulative, particularly during a period of finan-

cial market turmoil. Gertler and Karadi (2013) extend a New Keynesian framework

to introduce a central bank that purchases government bonds and private securities

and compare the effectiveness of different QE programs. They find that a purchase

of private securities is more stimulative than that of government bonds. Moreover,

they find that the LSAP is more effective the longer the time expected at the effective

lower bound. Bauer and Rudebusch (2014) find evidence of signaling effects from asset

purchases that effectively lower expectations on future short-term interest rates.

In contrast, there seems to be no conclusive empirical evidence of changes in the
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effectiveness of the LSAPs on the macroeconomy. Many studies including D’Amico

and King (2013), Krishnamurthy and Vissing-Jorgensen (2011) and Krishnamurthy and

Vissing-Jorgensen (2013) find a decline in the effect of monetary policy on financial

markets during the zero lower bound period, although Ihrig et al. (2018) and Swanson

(2018) show that the announcement of an LSAP has significant effects on the financial

markets. As for the macroeconomic effects, Haldane et al. (2016) find that an increase

in asset purchases can be more stimulative when financial markets are disrupted. In

a similar vein, Hesse et al. (2018) report that the stimulative effects of the LSAPs have

been declining in the recent post-crisis period. They also argue that anticipated asset

purchases can have substantial stimulative effects even in the later stages of an LSAP.

Since the LSAPs and the zero interest rate policy were conducted simultaneously,

a growing number of studies devote much attention to evaluating the effectiveness

of multiple monetary policy measures in a unified way. Against this background,

shadow-rate term structure models have been developed to deal with the zero lower

bound by a number of studies. Bullard (2012), Krippner (2013), and Wu and Xia (2016)

claim that the shadow rate can be used as a single measure of both conventional and

unconventional monetary policies. Wu and Xia (2016) find an expansionary monetary

policy shock is highly stimulative during the zero lower bound period. Furthermore,

Bauer and Rudebusch (2016) suggest that the shadow rate can capture monetary policy

expectations.

A growing body of research focuses on the state-dependence of monetary policy

effectiveness. Lo and Piger (2005) find that policy shocks are more stimulative in re-

cessions and that the asymmetry may not be caused by either the direction or size of

the policy shock. In contrast, Tenreyro and Thwaites (2016) provide empirical evidence

that a change in the Federal Funds rate is less effective in recessions, particularly for

durable goods consumption and business investment.
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1.3 Structure of the Dissertation

The rest of my dissertation is organized as follows.

Chapter 2 uncovers the role of measurement errors in past productivity data in

business cycles. To this end, I use a structural VAR with different vintages of pro-

ductivity data to identify noise components by revision round. The main findings are

twofold. First, noise contained in real-time U.S. labor productivity data significantly

affects the economy in the short run. Noise has qualitatively the same impacts as de-

mand shocks. This is particularly evident for long-lived noise which even remains in

revised data available a few years after the first release. Second, responses of real-time

labor productivity data to fundamental shocks on impact are much smaller than those

of the final data. Data revisions adjust the underestimation of the immediate responses

only gradually. These findings suggest that measurement errors in productivity play

an important role in business cycles for a long period of time.

Chapter 3 studies sensitivity of bond yields to macroeconomic news for selected ad-

vanced economies adopting negative interest rate policies. Specifically, I estimate the

influence of surprises in domestic and U.S. macroeconomic announcements on daily

bond yields since the late 1990s for Germany, Japan, Sweden, and Switzerland. I find

that for all four countries under study the influence of macroeconomic surprises dur-

ing the negative interest rate policy period is non-existent or noticeably weaker than

during the preceding zero interest rate policy period. The results are consistent with

the suggestion that negative interest rate policy is characterized by a lower bound that

is no less constraining than the zero lower bound that characterizes zero interest rate

policy.

Chapter 4 examines changes in the effectiveness of unconventional monetary poli-

cies in the United States since the global financial crisis. To this end, I estimate a

Markov-switching VAR model with absorbing regimes to capture possible structural

changes. My results detect regime changes around the beginning of 2011 and the mid-

dle of 2013. Before 2011, the U.S. large-scale asset purchases had relatively large im-

pacts on the real economy and prices, but became weaker and less persistent after
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the middle of 2013. In addition, after the middle of 2013, which includes the monetary

policy normalization period, the asset purchase shocks had slightly weaker effects than

during the early stage of the LSAPs, but stronger effects than during the late stage of

the LSAPs. By contrast, interest rate shocks had insignificant effects on the real econ-

omy and prices. Finally, the results suggest that the positive responses of durables and

capital goods expenditures to interest rate shocks weakened the negative impacts of

interest rate hikes after the middle of 2013 including the period of monetary policy

normalization.

Chapter 5 concludes my dissertation and suggests interesting avenues for future

research.
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Chapter 2

Noisy Past and Business Cycles

2.1 Introduction

Major macroeconomic data available in real time are subject to revision. Since upcom-

ing data revisions are hardly predictable, economic agents cannot have perfect infor-

mation on the current and past state of the economy. Accordingly, the agents have to

make decisions based on less accurate information. Imperfect information about the

state of the economy should affects the agents’ optimization behavior. Recent stud-

ies on monetary policy, Aoki (2003) and Lorenzoni (2010) for example, point out that

it substantially affects optimal monetary policy. Cimadomo (2016) empirically shows

influence of measurement errors in macroeconomic data on estimation of fiscal rules.

Recent studies show that initial announcements of macroeconomic data, often called

“real-time” data, are signals on true data with measurement errors. The measurement

errors contained in real-time data gradually diminish through data revisions. Data re-

visions incorporate different information across revision rounds. Early revisions reflect

marginal improvements in information, and later revisions contain shifts in economic

structures as well as more comprehensive information. Hence, measurement errors ad-

justed shortly after the first release may have different impacts on business cycles from

those remaining in heavily-revised data. Though, this point has been far less explored

in the literature on real-time data.

Against the background, this study investigates macroeconomic impacts of mea-

surement errors about the past state of the economy. In this study, I assume that real-
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time data is a noisy signal on fundamentals. I also consider possibilities that the signal

systematically over- or under-estimates true dynamics of fundamentals. The variable

of interest in this study is labor productivity, because productivity plays a key role in

business cycles and the data have generally experienced sizable revisions over decades.

I use a structural vector autoregression (SVAR) model to jointly model dynamics of

preliminary and true productivity data. As for noise, I consider noise components of

real-time (initially-released) labor productivity data by revision round. In the model,

noise contained in the real-time data consists of two components. These are the noise

remaining in revised data, called “long-lived” noise, and the noise disappearing from

the revised data, called “short-lived” noise. The long-lived noise contemporaneously

affects both of the preliminary productivity data, while the short-lived noise only af-

fects the real-time data on impact. To estimate the two noise components, I construct

an SVAR model based on Galı́ (1999) with two vintages of labor productivity data.1

By using short-run restrictions on long- and short-lived noise shocks, I uncover how

agents respond to different noise shocks, and to what extent their responses observed

in real time data are over- or under-estimated compared with true responses. To con-

firm if the identified noise shocks actually affect expectations, I estimate impacts of the

identified noise shocks on the U.S. Survey of Professional Forecasters (SPF).

The main findings are twofold. First, noise contained in real-time U.S. labor pro-

ductivity data significantly affects underlying fundamentals in the short run. Noise

has qualitatively the same impacts as demand shocks. This is particularly evident for

long-lived noise which even remains in revised data available a few years after the first

release. I also find that the long-lived noise affects current and near-term forecasts on

output and unemployment. Second, responses of real-time labor productivity data to

fundamental shocks on impact are much smaller than those of the final data. Data revi-

sions gradually adjust the underestimation of the immediate responses over a decade.

These findings suggest that noise plays an important role in business cycles for a long

1 In the literature on real-time data, the term “vintage” is often used to indicate timing at which the

data are released. For example, “first vintage” means first release of the data, and “January 2000

vintage” is the latest available data as of January 2000.

10



period of time.

This study is related to a vast literature regarding noisy signals on current and fu-

ture productivity. The literature provides evidence suggesting that noise in signals on

current or future productivity is important to describe business cycles. As for the sig-

nals, Beaudry and Portier (2006) propose a scheme to identify signals to future produc-

tivity (news shocks) in vector error correction models. Following Beaudry and Portier

(2006), a large number of studies attempt to refine the identification scheme of news

shocks.2 Meanwhile, a growing body of research also sheds light on noise around

news shocks. Lorenzoni (2009) shows that noise contained in current productivity

induces substantial and persistent effects on economic activity in the short run. Us-

ing a DSGE model with dispersed information, he describes how public noisy signals

of current productivity generate excess optimism and pessimism about the economy.

Blanchard et al. (2013) and Forni et al. (2017) propose identification methodologies for

noisy signals on future productivity. They show that the noise around future produc-

tivity substantially contributes to business cycles. While the literature assumes perfect

information about the past state of the economy, my study considers imperfect infor-

mation about the past productivity. In the presence of continuous revisions to major

official statistics, perfect information on the past seems to be a too strong assumption.

My empirical results confirm that imperfect information about the past productivity is

important to explain business cycles.

Data uncertainty about the past state is an example of imperfect information. The

literature on imperfect information explores roles of rigidities regarding processing in-

formation in agents’ expectations and decision-making. Mankiw and Reis (2002) pro-

pose a model of sticky information, in which agents infrequently update their infor-

mation sets even though they continuously receive accurate signals. Woodford (2003)

constructs a noisy information model, in which agents only respond to part of avail-

able information because they receive noisy signals on the true state of the economy.

2 Kurmann and Mertens (2014) critically argue the relevancy of Beaudry and Portier (2006) in terms of

long-run restrictions and common trends in the data.
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Rational inattention model proposed by Sims (2003) assumes that agents do not re-

act to part of information due to their limited capacity in processing information. In

his model, information friction causes an imperfect information problem. My focus

is more firmly related to the literature on noisy information. In my model, agents

make decisions based on noisy signals produced by statistics agencies. In this chap-

ter, I provide empirical evidence about the roles of noisy information about the past

productivity in business cycles.

There are few papers measuring impacts of noisy signals on the past state of the

economy and to what extent economic dynamics observed in real time is mismeasured.

Among them, Amir-Ahmadi et al. (2017) show that impacts of monetary policy tend to

be underestimated when researchers rest on the preliminary data for macroeconomic

indicators. Masolo and Paccagnini (2019) estimate a noise shock using a real-time out-

put growth series to the model by Blanchard and Quah (1989), confirming the findings

by Lorenzoni (2009). I extend the scheme of Masolo and Paccagnini (2019) to the model

with both revised and real-time data of productivity. Using the model, I analyze noise

impacts by revision round. I also examine if the finding of Amir-Ahmadi et al. (2017)

hold true for other fundamental shocks and explore what is behind the results.

This study is also related to a large literature on data revisions, which is extensively

surveyed by Croushore (2011). Croushore (2011) shows that revision patterns for ma-

jor macroeconomic data are different between first few revisions and the rest of the

revisions. Aruoba (2008) points out that real-time data tend to be noisy and biased

estimates of true data, and data revision can be a combination of noise reduction and

updating new information. Jacobs and van Norden (2016) confirm validity of the find-

ings of Aruoba (2008) for U.S. productivity data. Considering their findings, my model

describes data revision process as a combination of noise reduction and adjustment of

over- or under-estimation about dynamics of fundamentals.

A vast majority of the literature focuses on relatively short-term revisions made

within a couple of years after the first release. The role of late revisions occurring

long after the first release is far less explored in the literature. However, late revisions
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tend to be large because majority of them are annual or comprehensive revisions to

the source data. Among few papers on this issue, Siklos (2008) emphasizes usefulness

of information contained in comprehensive revisions for inflation forecasts. My study

highlights importance of such late revisions in the real side of the economy.

The remainder of this chapter is organized as follows. Section 2.2 presents prop-

erties of revisions to U.S. labor productivity data. Section 2.3 introduces a framework

to study economic impacts of noisy signals about the past state of fundamentals. Sec-

tion 2.4 presents an SVAR model with noise shocks, and describes my identification

methodology. Section 2.5 explains the dataset. Section 2.6 presents my results and

robustness check. Section 2.7 concludes.

2.2 Properties of Revisions to U.S. Labor Productivity

The productivity measure in this study is quarterly real output per hour of all persons

of nonfarm business sector for the United States, a principal U.S. productivity measure

among policymakers and economists. It is released by the Bureau of Labor Statistics

eight times per year, in second and third months of every quarter. Hours worked of

nonfarm business sector hours are released together with the labor productivity data.

The real output used to compute productivity is based on the gross domestic product

(GDP) of the National Income and Product Accounts (NIPA) constructed by the Bu-

reau of Economic Analysis. The hours worked is based on the Current Employment

Statistics (CES) by the Bureau of Labor Statistics. Hence, the labor productivity data

are going to be updated when these source data are revised.

Table 2.1 summarizes types of revision to the U.S. labor productivity data. The

first and second revisions for a quarter occur one month and three months after the

first release, respectively. These revisions include more complete information. Two

annual revisions to labor productivity data subsequently take place in every March

and August. March releases incorporate annual or comprehensive revisions of the CES,

and August releases reflect those of the NIPA. The annual revisions of the source data
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include comprehensive data, annual surveys for instance, and reflect improvements

in methodology. Comprehensive revisions of the NIPA and CES, occurring every five

years, include the most comprehensive available data such as census data, and reflect

substantial methodological changes including new international statistical standards.

Figure 2.1 illustrates chronological changes in the labor productivity growth rate

for 2008Q1. The figure clearly shows that the data revision proceeds is not monotonic.

In May 2008, when the data was first released, labor productivity in 2008Q1 grew by

3.2% from a year ago. The figure was revised up to 3.5% by March 2009. However, a

comprehensive revision of the NIPA in July 2009 caused a large downward revision,

and the resulting figure recorded 2.5% in August 2009. By subsequent annual revisions

of the NIPA, the figure was further revised down to 1.9% in August 2011. In August

2013, the productivity growth rate for 2008Q1 was revised down again to 1.4%, largely

due to the NIPA comprehensive revision in July 2013. The growth rate has been only

slightly revised since then.

To better understand how much revisions improve the data, I compute summary

statistics of revisions to labor productivity data by revision round. I consider total

revision from the first release to the latest releases, and separate total revision into

two rounds referring to the revision schedule of labor productivity statistics. The first

round is up to 24 revisions, which occur roughly three years after the first release. It

covers early revisions up to first two annual revisions to the labor productivity data.

The second round covers revisions from the 25th to the latest releases. Revisions in this

round reflect third and further annual revisions, part of which reflects comprehensive

revisions of the NIPA and CES. I set the break at 24 revisions, because major studies

on real-time data focus on revisions during the first couple of years after the initial

release.3 The sample period is from 1968Q1 to 2008Q1. The starting date is set to be

the end of May 1968 vintage of output per hour, which is its first vintage data. My

sample ends in 2008Q1 to obtain the preliminary data experiencing sufficient numbers

3 For example, Aruoba (2008) defines final data as the data 3 years after the first release. Faust et al.

(2005) use the term “short-term” revisions for revisions made during two years after the first release.
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of annual and further revisions.

Table 2.2 provides summary statistics for revisions to labor productivity growth

rates. Both total revision and its components are broadly sizable and very volatile.

The mean values range from -0.16 to 0.47 percentage points, and majority of them

are statistically significant. Specifically, the mean values of 25th and later revisions

are much larger than the earlier revisions. The noise-to-signal ratios, the ratio of the

standard deviation of revisions to that of the final data, range from 0.50 to 0.87. This

means that variance of revisions is quantitatively much close to the variation of the

final data. The last column reports negative correlation between revisions and the first

estimates of labor productivity. If revisions convey only new fundamental information,

one would observe no correlation between revisions and preliminary estimates. The

results provide informal evidence of the presence of noise in preliminary estimates of

labor productivity.

To summarize the results, labor productivity data are subject to large revisions over

a long time period. Preliminary estimates of labor productivity may contain noise

which gradually disappears from the data through a long process of data revision.

The revisions to productivity data show different statistical characteristics by revision

round, suggesting importance of analyzing noise by revision round.

2.3 A Simple Model with Noisy Signals on the Past

My primary interest is to describe how noise contained in real-time data about the past

economy affects business cycles, and to what extent economic dynamics observed in

real time is over- or under-estimated. Section 2.2 shows that revisions to labor produc-

tivity have different characteristics by revision round. This suggests that roles of noise

remaining in heavily-revised data can differ from those of noise disappearing shortly.

In this section, I present a framework to study how the two types of noise in signals

about past fundamentals influence expectations.
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2.3.1 Setup

I rely on three assumptions to identify noise shocks. The first assumption is that eco-

nomic agents learn the true state of the economy from public noisy signals. The idea

comes from dispersed information models. In a dispersed information setup, each

agent receives a noisy signal on the current state of the economy, which is slightly

different among agents. To better understand the economy, each agent also relies on

public noisy signals on the state of the economy. This assumption may be reasonable

in practice, considering the fact that financial markets respond to new releases of GDP

and other macroeconomic data.

The second assumption is that public signals for a period become available with a

certain lag. In reality, major macroeconomic indicators are first released after the end

of reference periods. For example, first estimates of labor productivity for a quarter

become available a few weeks after the quarter ends. In this study, I assume that public

noisy signals on the period t are released at the beginning of the period t+1. In learning

the state of the economy, agents respond to noise contained in signals because they

cannot perfectly disentangle the noise and fundamental fluctuations in the signals.

The third assumption is that public information for a period is subject to revi-

sion, and a revision eliminates only part of the noise contained in the information.

I call the noise contained both in the revised and initially available information “long-

lived noise,” and the noise disappearing from the revised information “short-lived

noise.” This assumption is based on facts shown in Section 2.2, which suggests differ-

ence between noise remaining in heavily-revised data and noise disappearing shortly.

The first two assumptions are employed in Masolo and Paccagnini (2019). They

identify a single noise shock by introducing a real-time output growth data to the VAR

model of Blanchard and Quah (1989). I extend their scheme by introducing the third

assumption to disentangle noise shocks using multiple preliminary data.
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2.3.2 Influence of noise shocks on expectations

I start with a small model with two noisy signals on aggregate long-run productivity

to describe how noise in the signals affects the economy. In the model, agents, indexed

by i ∈ [0, 1], cannot observe the state of aggregate economy in real time. Each agent

learns the current and past fundamental from signals receiving at every period.

At the beginning of the period t, the agent i receives a signal ai,t which is on the

current aggregate long-run productivity at:

ai,t = at + ξi,t (2.1)

at = at−1 + εt, (2.2)

where ξi,t∼iid N(0, σ2
ξ ) is an idiosyncratic shock, and εt∼iid N(0, σ2

ε) is a technology

shock. I assume that each agent cannot separately observe at and ξi,t, and that the

average of the idiosyncratic shock across agents is zero (
∫ 1

0
ξi,tdi = 0).

At the beginning of every period since t + 1, he/she receives a public noisy signal

on the long-run productivity at.4 Let st+j,t denote a public noisy signal on at released

at the beginning of the period t + j for j ≥ 1. I assume that part of noise contained in

the first signal, st+1,t, disappears in the second signal, st+2,t. I further assume that the

third and later signals on at are equal to its true values. The relationship among the

signals st+1,t, st+2,t, and st+3,t is described as:

st+1,t = at + νt+1,t + ωt+1,t, (2.3)

st+2,t = at + νt+1,t, (2.4)

st+3,t = at, (2.5)

where νt+j,t∼iid N(0, σ2
ν) and ωt+j,t∼iid N(0, σ2

ω). νt+j,t and ωt+j,t are supposed to be

uncorrelated with at. Hereafter I call νt+1,t “long-lived” noise, and call ωt+1,t “short-

lived” noise. The long-lived noise exists in both the first and second noisy signals on

4 This assumption is based on the presence of publication lags of major macroeconomic statistics.
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at, while the short-lived noise appears only in the first signal. Due to the presence of

noise in the signals, the agent i does not have perfect information on at until the release

of st+3,t. Accordingly, he/she has to learn at through these signals to make decisions.

I construct a model to describe how the two noise shocks influence the economy. At

the beginning of the period t, the agent i receives an agent-specific signal ai,t defined

by Equation (2.1) and the following three signals:

st,t−1 = at−1 + νt,t−1 + ωt,t−1, (2.6)

st,t−2 = at−2 + νt−1,t−2, (2.7)

st,t−3 = at−3. (2.8)

Suppose he/she then updates expectations on a latent variable at by a Kalman filter:5

Ei,tat = αEi,t−1at−1 + β0(ai,t − Ei,t−1ai,t)

+ β1(st,t−1 − Ei,t−1st,t−1)

+ β2(st,t−2 − Ei,t−1st,t−2)

+ β3(st,t−3 − Ei,t−1st,t−3). (2.9)

Ei,tat reflects its lagged value and realized prediction errors regarding the four signals

(ai,t, st,t−1, st,t−2, and st,t−3).

Noise shocks are contained in the prediction errors regarding public signals. The

prediction error about st,t−1 in Equation (2.9) can be rewritten as:

st,t−1 − Ei,t−1st,t−1 = at−1 + νt,t−1 + ωt,t−1 − Ei,t−1[at−1 + νt,t−1 + ωt,t−1]

= at−1 − Ei,t−1at−1 + νt,t−1 + ωt,t−1. (2.10)

Two noise shocks arriving at the beginning of the period t (νt,t−1 and ωt,t−1) positively

5 This formula of expectations follows the literature on imperfect information including Woodford

(2003) and Lorenzoni (2009). Woodford (2003) discusses that the Kalman filter can describe an agent’s

optimal prediction of the current state.
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influence the agent’s expectations. As for the prediction error term about st,t−2, taking

Equations (2.6) and (2.7) and Ei,t−1st,t−j = st−1,t−j into this term gives:

st,t−2 − Ei,t−1st,t−2 = st,t−2 − st−1,t−2

= (at−2 + νt−1,t−2)− (at−2 + νt−1,t−2 + ωt−1,t−2)

= −ωt−1,t−2. (2.11)

This shows that ωt−1,t−2, which is the short-lived noise contained in st−1,t−2, disappears

when st,t−2 is released. Similarly, the prediction error about st,t−3 can be rewritten as:

st,t−3 − Ei,t−1st,t−3 = st,t−3 − st−1,t−3

= at−3 − (at−3 + νt−2,t−3)

= −νt−2,t−3. (2.12)

This captures deduction of νt−2,t−3, the long-lived noise contained in st−1,t−3 (and st−2,t−3),

by the release of st,t−3 which is equal to at−3. Equations (2.11) and (2.12) show that noise

reduction has a negative impact on expectations. Taking Equations (2.1), (2.10), (2.11)

and (2.12) into Equation (2.9) gives:

Ei,tat = αEi,t−1at−1 + β0(at−1 − Ei,t−1at−1) + β0εt + β0ξi,t

+β1(at−1 − Ei,t−1at−1) + β1νt,t−1 + β1ωt,t−1

−β2ωt−1,t−2 − β3νt−2,t−3.

Rearranging this, I obtain:

Ei,tat = (α− β0 − β1)Ei,t−1at−1 + (β0 + β1)at−1

+β0εt + β1νt,t−1 + β1ωt,t−1 − β2ωt−1,t−2 − β3νt−2,t−3

+β0ξi,t. (2.13)

Equation (2.13) describes Ei,tat as a function of its lagged value, lagged long-run pro-
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ductivity, three structural shocks in current and past periods, and a current idiosyn-

cratic shock. Current noise shocks influence the expectations on current aggregate

productivity. Their impacts may remain in the next period because the current ex-

pectations depend on the past expectations. As noted earlier, noise reduction has a

negative impact on the current expectations (−β2ωt−1,t−2 − β3νt−2,t−3).

Equation (2.13) suggests that Ei,tat can be written as a function of current and past

structural shocks:

Ei,tat =
t−1∑
j=0

αjεt−j +
t−1∑
j=0

γjνt−j,t−j−1 +
t−1∑
j=0

θjωt−j,t−j−1 +
t−1∑
j=0

ψjξi,t−j, (2.14)

where αj , γj , θj , and ψj are coefficients capturing responsiveness of expectations to

corresponding shocks.

After receiving the signals, the agent i determines current level of labor input based

on Ei,tat. Labor input by the agent i, denoted by hi,t, can be written as:

hi,t =
t−1∑
j=0

αh
j εt−j +

t−1∑
j=0

γhj νt−j,t−j−1 +
t−1∑
j=0

θhj ωt−j,t−j−1 +
t−1∑
j=0

ψh
j ξi,t−j, (2.15)

where αh
j , γhj , θhj , and ψh

j are coefficients. The agent also chooses current output qi,t

based on Ei,tat:

qi,t =
t−1∑
j=0

α∗
jεt−j +

t−1∑
j=0

γ∗j νt−j,t−j−1 +
t−1∑
j=0

θ∗jωt−j,t−j−1 +
t−1∑
j=0

ψ∗
j ξi,t−j. (2.16)

Consequently, noise shocks influence current labor input and output of the agent i

by changing expectations on a fundamental variable at. Figure 2.2 summarizes the

timeline of shock arrivals and the agent i’s decisions.

I focus on a symmetric equilibrium where expectations and decisions are symmetric

across all agents. From Equation (2.14), aggregated expectations on at is given by:

Etat =

∫ 1

0

Ei,tatdi =
t−1∑
j=0

αjεt−j +
t−1∑
j=0

γjνt−j,t−j−1 +
t−1∑
j=0

θjωt−j,t−j−1. (2.17)
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To see impacts of noise shocks on the economy, I consider current aggregate labor input

ht and aggregate output qt, where ht =
∫ 1

0
hi,tdi and qt =

∫ 1

0
qi,tdi. Since agents make

decisions based on their expectations, the resulting ht and qt can be expressed as:

ht =
t−1∑
j=0

αh
j εt−j +

t−1∑
j=0

γhj νt−j,t−j−1 +
t−1∑
j=0

θhj ωt−j,t−j−1, (2.18)

qt =
t−1∑
j=0

α∗
jεt−j +

t−1∑
j=0

γ∗j νt−j,t−j−1 +
t−1∑
j=0

θ∗jωt−j,t−j−1. (2.19)

Accordingly, aggregate labor output and output respond to noise shocks as well as a

technology shock.

To sum, noise shocks can influence the economy through expectations because

agents face imperfect information on the economy. By contrast, econometricians have

perfect information on the economy (at in the example presented above) and its noisy

signals in real time. Thus, they can distinguish noise shocks from the signals by recur-

sively solving the system of Equations (2.3) to (2.5). Having identified these shocks,

they can measure influence of noise shocks on the economy.

2.4 An SVAR Model with Two Noise Shocks

To study how noise shocks influence the economy, I extend a bivariate structural VAR

model of Galı́ (1999) by including two public noisy signals on the economy. While Sec-

tion 2.3.2 considers that econometricians can access true data for long-run productiv-

ity, in practice the data is not observable. Due to data availability, my model considers

public signals on aggregate labor productivity instead of those on long-run productiv-

ity. In this section, I am going to describe how to estimate impacts of noise shocks on

the aggregate economy using my SVAR model.

In my model, agents receive public signals on past aggregate labor productivity at

the beginning of every period. Let st+j,t denote a public noisy signal on aggregate pro-

ductivity at released at the beginning of the period t + j. I assume that the first noisy

signal st+1,t contains both short- and long-lived noise components, and that upcoming
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two revisions to official productivity statistics remove the noise components. Specifi-

cally, the short-lived noise ωt+1,t disappears in the first revision at the period t+ k, and

the long-lived noise νt+1,t vanishes in the second (final) revision at the period t + K.

The relationship between true productivity and two noisy signals is given by:

st+1,t = at + νt+1,t + ωt+1,t, (2.20)

st+k,t = at + νt+1,t, (2.21)

st+K,t = at. (2.22)

I introduce a non-technology shock ηt∼iid N(0, σ2
η) as in Galı́ (1999) to capture funda-

mental shocks influencing the level of aggregate productivity on impact in the short

run. Similar to the long-run productivity, the agent i receives ηi,t = ηt + τi,t at the be-

ginning of the period, where τi,t∼iid N(0, σ2
τ ) is an idiosyncratic shock. I note that the

non-technology shock should also have effects on expectations via public signals st+k,t.

Accordingly, aggregate labor input can be described as:

ht =
t−1∑
j=0

αh
j εt−j +

t−1∑
j=0

κhj ηt−j +
t−1∑
j=0

γhj νt−j,t−j−1 +
t−1∑
j=0

θhj ωt−j,t−j−1. (2.23)

Likewise, aggregate output qt is supposed to be expressed as a function of the struc-

tural shocks. The resulting aggregate labor productivity at = qt − ht is given by:

at =
t−1∑
j=0

αa
j εt−j +

t−1∑
j=0

κajηt−j +
t−1∑
j=0

γaj νt−j,t−j−1 +
t−1∑
j=0

θajωt−j,t−j−1. (2.24)

From Equations (2.20), (2.21) and (2.24), two noisy signals on at are expressed as:

st+1,t =
t−1∑
j=0

αa
j εt−j +

t−1∑
j=0

κajηt−j +
t−1∑
j=0

γaj νt−j,t−j−1 +
t−1∑
j=0

θajωt−j,t−j−1 + νt+1,t + ωt+1,t,

(2.25)

st+k,t =
t−1∑
j=0

αa
j εt−j +

t−1∑
j=0

κajηt−j +
t−1∑
j=0

γaj νt−j,t−j−1 +
t−1∑
j=0

θajωt−j,t−j−1 + νt+1,t. (2.26)

Equations (2.23), (2.24), (2.25) and (2.26) can be summarized as a structural moving
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average representation. Its corresponding structural VAR(p) model can be written as:

B0yt = B1yt−1 +B2yt−2 + · · ·+Bpyt−p + ζt, (2.27)

where yt = (at, ht, st+k,t, st+1,t)
′ is a vector of dependent variables in the model, ζt =

(εt, ηt, νt+1,t, ωt+1,t)
′ is a vector of structural shocks, and Bj is a 4× 4 coefficient matrix.

The model contains labor productivity and labor input as in the SVAR model con-

structed by Galı́ (1999). The reduced-form representation of Equation (2.27) is given

by:

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + ut, (2.28)

where Aj = B−1
0 Bj is a 4 × 4 coefficient matrix and ut = B−1

0 is a vector of error

terms having zero means and a covariance matrix Σ. In estimating Equation (2.28),

I use the first difference of logarithm of labor productivity as in Galı́ (1999), hence

yt = (∆at, ht,∆st+k,t,∆st+1,t)
′ , where ∆at = at − at−1 and ∆st+j,t = st+j,t − st+j,t−1.

I restrict the matrix B−1
0 as:

B−1
0 ζt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 0 0

b21 b22 0 0

b31 b32 b33 0

b41 b42 b43 b44

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

εt

ηt

νt+1,t

ωt+1,t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.29)

The second and third assumptions restrict five entries in the matrix to be zero. The

second assumption of information arrival lags imposes restrictions on b13, b14, b23, and

b24 to be zero. Since labor productivity data for the period t becomes first available

at t + 1, agents at the period t do not react to noise contained in the first release of

labor productivity for the period t. As a result, the long- and short-lived noise shocks

do not affect true fluctuations of productivity and labor input on impact. The third

assumption sets b34 to be zero. This assumption is necessary to identify the two noise

shocks. The short-lived noise shock for the period t does not affect the revised data

on impact, since it has disappeared from the data. The long-lived noise shock has
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immediate impacts on both the real-time and revised data, since the long-lived noise

component for the period t still remains in the revised data for the period t.

I note that b11, b12, b21, and b22 take nonzero values. Since agents observe these

shocks in real time, aggregate fundamental shocks influence the economy on impact.

Following the identification method used by Galı́ (1999), I impose a long-run restriction

to identify technology and non-technology shocks. That is, both of the two fundamen-

tal shocks influence all of the variables on impact, while only the technology shock

influences the level of labor productivity in the long run.

While I have so far assumed invertibility of the structural moving average repre-

sentation, it should be empirically tested. If the moving average representation is not

invertible, the representation is called “non-fundamental.” This means that the moving

average representation fails to recover true structural shocks. Recent studies propose

empirical tests for non-fundamentalness in SVAR models.6 To confirm whether my

model can recover structural shocks, I compute a diagnostic for non-fundamentalness

proposed by Beaudry et al. (2019). I will present the results in Section 2.6.

It is noteworthy that data revision is not necessarily equal to noise contained in eco-

nomic data. It is possible that public noisy signals also systematically over- or under-

estimate true dynamics of fundamentals. Consider total revision to labor productivity

data for the period t denoted by revt ≡ at − st+1,t. If the first signal st+1,t systematically

underestimates its true value at, the signal can be defined as:

st+1,t = ϕat + νt+1,t + ωt+1,t, (2.30)

where the parameter ϕ reflects the signal’s tendency of underestimation and ϕ < 1. I

rewrite a structural moving average representation of st+1,1 as:

st+1,t =
t−1∑
j=0

α̃a
j εt−j+

t−1∑
j=0

κ̃ajηt−j+
t−1∑
j=0

γ̃aj νt−j,t−j−1+
t−1∑
j=0

θ̃ajωt−j,t−j−1+νt+1,t+ωt+1,t. (2.31)

6 Majority of non-fundamental tests are based on theoretical conditions of invertibility provided by

Fernández-Villaverde et al. (2007).
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Coefficients in Equation (2.31) are expected to be somewhat smaller from those in

Equation (2.24). Subtracting Equation (2.31) from Equation (2.24) gives:

revt =
t−1∑
j=0

(αa
j − α̃a

j )εt−j +
t−1∑
j=0

(κaj − κ̃aj )ηt−j

+
t−1∑
j=0

(γaj − γ̃aj )νt−j,t−j−1 +
t−1∑
j=0

(θaj − θ̃aj )ωt−j,t−j−1

− νt+1,t − ωt+1,t. (2.32)

The total revision revt comprises (i) noise reduction (−νt+1,t−ωt+1,t) and (ii) adjustment

of over- or under-estimation about dynamics of fundamentals reflected in coefficients

on the structural shocks.

Having identified fundamental shocks, I compare impulse responses to fundamen-

tal and noise shocks, and study how data revisions affect responses to the fundamental

shocks.

2.5 Data

I use the ALFRED of the Federal Reserve Bank of St. Louis to construct a real-time

dataset for nonfarm business sector output per hour of all persons. The first vintage

(the date at which the data are released) of output per hour is May 1968, and the latest

vintage in this study is December 2019. The dataset contains the first, the 25th, and

the latest releases of the labor productivity for each quarter in the sample period. I

choose k = 25 in my baseline case, taking account of facts presented in Section 2.2.

Hereafter I call the first, 25th, and latest releases “real-time,” “heavily-revised,” and

“final” data, respectively. For labor input, I use hours worked per capita obtained by

dividing nonfarm business sector hours worked by population aged 16 and over. The

two series are the latest data taken from the FRED of the Federal Reserve Bank of St.

Louis.7 All of the data are quarterly and seasonally adjusted. Labor productivity data

7 Population data are generally not subject to revision. I do not use preliminary data for hours worked

due to insufficient availability of the data. The real-time data for hours worked are only available
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are expressed in log difference and multiplied by 100. The hours worked per capita

series is in log level and detrended by the Hamilton (2018) filter.8 The sample period is

from 1968Q1 to 2008Q1. The starting date is the date when the first vintage (the date

at which the data are released) of labor productivity data ends. My sample ends in

2008Q1 to have a sufficiently long period after the end of the sample for data revisions.

2.6 Empirical Evidence

2.6.1 Estimation results of baseline VAR model

First, I present estimation results of the baseline model.9 I select the lag length p = 4 as

in Galı́ (1999). Figure 2.3 plots the estimated responses of the final labor productivity

data, hours worked, and output to the fundamental and noise shocks. The variables

in the figure is expressed in log levels. Solid lines in the figure give the point estimate

response with its 90 percent confidence bands as dotted lines and its 68 percent confi-

dence bands as dashed lines. The confidence bands are made by wild bootstrap using

10,000 bootstrap replications.

The panels in the top two rows in Figure 2.3 show responses to technology shock

and non-technology shock. The results follow those presented in Galı́ (1999). The

technology shock persistently increases productivity and output, and decreases hours

worked in the short run. The non-technology shock increase both productivity, hours

worked, and output in the short run. The bottom two panels present the responses to

the two noise shocks. While I do not impose any sign restrictions on the model, the

long-lived noise shock increases both productivity, hours worked, and output. The

responses to the long-lived noise shock are qualitatively the same as those to a posi-

tive non-technology shock. This result is in line with the finding by Lorenzoni (2009)

from the vintage of August 1999. Although the data for hours worked are subject to revision, the

revisions are much smaller than those to productivity.
8 I compute cyclical component based on 2-year-ahead forecast error of a random walk model.
9 The estimated model includes constant terms so that biases in data revisions are controlled in estima-

tion.
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which documents an expansionary effect of over-estimation about the current produc-

tivity. The short-lived noise shock causes similar responses of the endogenous vari-

ables, though the responses are not statistically significant.

To check if my model sufficiently recovers structural shocks, I use a diagnostic for

non-fundamentalness proposed by Beaudry et al. (2019). The diagnostic is R2 from a

regression of an identified shock on lagged factors representing macroeconomic fluc-

tuations. Beaudry et al. (2019) report that non-fundamentalness does not matter in the

model if R2 is lower than 0.25. I compute the diagnostic for each of four identified

shocks. To this end, I estimate three principal components using 125 quarterly series of

U.S. macroeconomic indicators in the FRED-QD dataset provided by the Federal Re-

serve Bank of St. Louis.10,11 Then, I regress each shock on one and four lags of up to

three principal components over the period from 1968Q1 to 2008Q1. Table 2.3 displays

the diagnostics for non-fundamentalness. All of the reported values of R2 are below

the threshold of 0.25, suggesting that my model sufficiently recovers structural shocks.

I also assess whether the identified noise shocks satisfy the assumptions of normal-

ity and no serial-autocorrelation. Applying the Jarque-Bera test and Ljung-Box Q-test

to the shocks, I confirm that these assumptions are satisfied.12

I turn to comparison of shock responses of real-time, heavily-revised, and final

labor productivity data. Figure 2.4 plot responses of the final, heavily-revised, and

real-time data for labor productivity growth to technology and non-technology shocks.

While the real-time and heavily-revised data show quantitatively the same responses,

their responses are smaller than the final data. The heavily-revised data are more re-

sponsive than the real-time data, though they are still less responsive than the final

data. It implies that data revisions adjust the underestimation about responsiveness of

10 See McCracken and Ng (2020) for details on the FRED-QD. The series in my dataset are used in Stock

and Watson (2012), and the data vintage is December 2019. Current and past vintages of the FRED-

QD can be downloaded at: https://research.stlouisfed.org/econ/mccracken/fred-databases/
11 The number of factors is selected by the criteria proposed by Bai and Ng (2002). The factors in first

difference are used in regressions, as in Beaudry et al. (2019).
12 I include up to eight lags in computing the Ljung-Box Q-test statistics.
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productivity only gradually. This result echoes findings by Amir-Ahmadi et al. (2017)

that differences between responses of real-time and final data are persistent over time.

My result suggests that differences between responses of real-time and final data are

also persistent over different data releases.

To investigate the gradual adjustment by data revisions, I measure changes in re-

sponses of real-time and final data to fundamental shocks over different data releases.

Specifically, I change the value of k in ∆st+k,t from 1 to 80, and estimate Equation (2.28)

for each value of k. I note that the data st+80,t becomes available roughly 10 years

after the first release. Then, I compute impulse responses of st+k,t in levels to technol-

ogy and non-technology shocks at horizon h. I call r(k, h) the response of st+k,t to a

technology shock at horizon h, and s(k, h) the response to a non-technology shock at

horizon h. r(h) and s(h) are the response of the final productivity data to technology

and non-technology shocks at horizon h, respectively.

First, I focus on the difference between immediate responses of each release of pro-

ductivity and those of the final data (r(k, 1) − r(1) and s(k, 1) − s(1)). The difference

takes a negative value if revised labor productivity data responds less to a shock than

the final data. Figure 2.5 presents the point estimates (bold) with 68 (dashed) and 95

(dotted) percentile confidence bands for the difference. I consider the cases of a pos-

itive technology shock and a non-technology shock. The size of each shock is its one

standard deviation. Both panels show negative differences between the responses of

preliminary and final data. The difference is largest when the first signal (k = 1) is

used. It gradually diminishes as data revision proceeds (k increases), and almost van-

ishes after 80 releases. This means that the adjustment of the underestimation takes

about 10 years (80 releases).

To check whether the finding holds the same for longer horizons, I compute the

difference between responses of each release of productivity and those of the final data

at h = 4, that is, r(k, 4)− r(4) and s(k, 4)−s(4). Figure 2.6 plots the results. Both panels

show that the point estimates of the responses for the preliminary data are smaller

than those for the final data. However, the difference between their responses is much
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smaller than the case of h = 1. The 68% confidence bands cover zero, suggesting the

underestimation of impulse responses may be far less severe for longer horizons.

To summarize, the results show that impulse responses of real-time data to fun-

damental shocks are smaller than those of final data. The underestimation about the

responses on impact is substantial, and data revisions adjust it only gradually. The

results shown in Figure 2.5 are a complement to the finding by Amir-Ahmadi et al.

(2017) for a monetary policy shock. They report that difference between responses of

real-time and final data is persistent over time. My results provide evidence that the

difference in their immediate responses is persistent among different vintages.

I turn to impacts of noise on variance of the final data. Table 2.4 reports forecast

error variance decompositions computed from the estimated baseline model. The first

two rows show variance decompositions about the final labor productivity and hours

worked data. The noise shocks explain 6.3% of the variance of labor productivity,

and 22.7% of the variance of hours worked. The long-lived noise shock shows larger

contributions than the short-lived noise shock. It explains 4.6% of the variance of labor

productivity and 18.8% of the variance of hours worked. The next two rows show the

results about heavily-revised and real-time data for labor productivity growth. The

noise shocks explain roughly half of the variances of both the heavily-revised and real-

time data.

The last three rows in Table 2.4 present variance decompositions of the revisions

to productivity data. The noise shocks explain roughly half of the variance of total re-

visions (∆at − ∆st+1,t). This indicates that noise reduction and updating information

on fundamentals are equally important in describing the roles of total revisions to pro-

ductivity data. Looking at components of total revisions, more than 70% of variance

of earlier revisions (∆st+25,t −∆st+1,t) and that of later revisions (∆at −∆st+25,t) are at-

tributed to the noise shocks. The technology shock explains larger (smaller) portion of

later (earlier) revisions than the non-technology shock. This implies that later revisions

reflect richer information on long-term productivity than earlier revisions.

To sum up, a positive noise shock has an expansionary effect, and the long-lived

29



noise which remains in heavily-revised data has a larger impact than the short-lived

noise disappearing during earlier revisions. Responses of productivity to fundamental

shocks are underestimated in real time, and data revisions adjust the underestima-

tion only gradually. Noise reduction and updating information on fundamentals are

equally important in understanding the roles of total revisions to productivity data.

2.6.2 Impacts of noise shocks on professional forecasts

I turn to measuring impacts of the noise shocks on expectations to confirm whether the

findings of the SVAR analyses are supported by actual data for expectations. To this

end, I estimate the following equation:

zt+h|t = ρ0 + ρ1zt+h|t−1 + ϕ1ε̂t + ϕ2η̂t + ϕ3ε̂t−1 + ϕ4η̂t−1 + ϕ5ν̂t,t−1 + ϕ6ω̂t,t−1 + et, (2.33)

where zt+h|t is expectations on the variable z made at the period t for horizon h. ε̂t and

η̂t are identified technology and non-technology shocks at the period t, respectively.

ν̂t,t−1 and ω̂t,t−1 are long-lived and short-lived noise shocks about the productivity for

the period t−1 that forecasters receive at the period t. Agents update their expectations

for the period t + h in response to structural shocks arriving at the period t. If agents

precisely filter out noise, they do not respond to noise shocks, thus ϕ5 = 0 and ϕ6 = 0.

I use the Survey of Professional Forecasters (SPF) as a proxy for agents’ expecta-

tions. The SPF is a quarterly macroeconomic survey currently conducted by the Fed-

eral Reserve Bank of Philadelphia.13, 14 The forecasts considered in this analysis are

median forecasts for real GDP, private consumption, business fixed investment, indus-

13 The respondents of the SPF, mainly forecasters in private firms, submit their forecasts by every Thurs-

day of the second week of February, May, August, and November, which are generally just after first

estimates of labor productivity are released. The SPF had been conducted by the NBER/ASA prior to

1990Q2. Stark (2010) reports that their schedule was basically the same as the current SPF schedule.

The SPF collected real GNP instead of real GDP prior to February 1992.
14 I use ε̂t and η̂t as regressors in Equation (2.33), considering that the SPF respondents may have had

some information on the economy for the first month of quarter t before they post their forecasts.
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trial production, and unemployment rate. All of the forecasts except for those for un-

employment rate are annualized percent change from a quarter ago. The forecast hori-

zons are from current to three quarters ahead.15 Due to data availability, the starting

period is 1981Q4 for real private consumption and business fixed investment, 1975Q1

for the rest of the variables. The sample ends in 2008Q1 for all of the regressions.

I focus on signs of ϕ5 and ϕ6, that is, directions of noise-induced forecast revisions.

If positive noise shocks induce upward forecast revisions to GDP growth and down-

ward forecast revisions to unemployment rate, the noise shocks play a role like non-

technology shocks. Conversely, if forecasts of these three variables are revised upward

in response to positive noise shocks, the shocks have qualitatively the same impacts as

technology shocks.

Table 2.5 summarizes the regression results. A positive long-lived noise shock has

qualitatively the same short-run effects as a positive non-technology shock. It signif-

icantly increases near-term growth forecasts for real GDP, business fixed investment,

and industrial production and decreases forecasts for the unemployment rate. The

impacts of a long-lived noise shock on forecasts for unemployment are statistically sig-

nificant for all the horizons considered. A positive short-lived noise shock has similar

impacts to a positive long-lived noise shock, though the magnitude is smaller and in-

significant in majority of the results. The results confirm the finding from the SVAR

analyses, that is, the noise contained in preliminary productivity data has qualitatively

the same impact as a non-technology shock.

2.6.3 Robustness check

In this subsection, I examine whether my findings are robust to several alternative

specifications. The specifications considered here are (i) using an alternative lag length,

(ii) using an alternative definition of heavily-revised data, and (iii) using first difference

15 My dataset does not contain forecasts of productivity measures due to lack of data availability.
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of hours worked data in log level.16

First, I change the lag length from four to two. The specification of VAR(2) is se-

lected by the Bayesian information criterion. Figure 2.7 presents responses of the fi-

nal labor productivity data and hours worked to two noise shocks using the VAR(2)

model. Although the estimated responses are smaller and peaked a bit earlier possibly

due to the shorter lag length, they are qualitatively the same to those obtained from

the baseline specification.

Second, I change the definition of heavily-revised data from 25th release to ninth

release, which becomes available roughly one year after the first release. In this case,

revisions from initial to heavily-revised data for productivity only reflect early revi-

sions to productivity data occurring before its first annual revision. Figure 2.8 presents

the estimated responses. Although the responses are qualitatively the same as the base-

line results, those to the short-lived noise shock become much smaller. This suggests

that noise disappearing within one year after the first release does not have significant

impacts on business cycles.

Third, I convert the hours worked series to first difference of log levels, which is

employed by Galı́ (1999). Figure 2.9 presents the estimated responses. Again, the

responses are qualitatively the same as the baseline results. The responses of hours

worked and output are more persistent than the baseline.

2.7 Conclusion

This study investigates the role of measurement errors contained in the data about past

productivity in business cycles. I find that noise contained in real-time labor produc-

tivity data significantly affects underlying fundamentals and expectations in the short

run. Responses to noise shocks are qualitatively the same as those to a non-technology

shock. This is particularly evident for the long-lived noise remaining even in heavily-

16 In the Appendix, I show results using an alternative filtering method to hours worked, and those

using an alternative measure of labor productivity. The results confirm that my findings are robust to

the use of these alternative measures.
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revised labor productivity data. I also find that responses of real-time labor produc-

tivity data to fundamental shocks on impact are much smaller than those of the final

data. Data revisions adjust the underestimation only gradually.

My model shows that agents can recognize a positive noise in a public signal as

a positive surprise, and that long-lived noise can have more persistent impacts than

short-lived noise. This may explain why a positive long-lived noise shock particularly

has an expansionary effect by improving expectations on the economy.

The presence of data revisions also indicates possibility of an imperfect information

problem of statistics agencies. If statistics agencies construct public data by filtering

noisy signals on economic variables, the data should contain noise and underestimate

true economic dynamics. If this is indeed the case, imperfect information of statistics

agencies contributes to imperfect knowledge of agents on the past economy. According

to my results, public signals respond less to fundamental shocks compared with true

data. This finding suggests noise-filtering behavior by statistics agencies.

I note that the literature on noisy signals on future productivity assumes perfect

information about the current and past state of the economy. However, in reality, accu-

rate information on the state of the economy becomes available with a very long delay,

and only noisy signals on the past state are observable in real time. In this environ-

ment, a noisy signal on future productivity is not revised to its true value even when

the corresponding period comes. Thus, noise in signals on future productivity is likely

to affect the economy longer than considered in the current literature.

The presence of long-lived noise and underestimation of economic dynamics has

potentially important implications for policymakers. A large literature on monetary

policy has emphasized that noise contained in public information substantially affects

optimal monetary policy. In addition, measurement errors in labor productivity can

amplify uncertainty about measured natural rate of interest, which is a key variable for

decision-making of policymakers. My findings suggest that noise and underestimation

of economic dynamics in real-time data can have sustained effects on monetary policy

conduct, because they remain in the statistics data for a long period of time.
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Figure 2.1: Growth rate of real output per hour for 2008Q1

Note. This figure plots the growth rate of U.S. nonfarm business sector output per hour of all
persons for 2008Q1. The unit is percent change from four quarters ago.
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Figure 2.2: Timeline
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Figure 2.3: Impulse response functions of the baseline VAR(4) model
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Note. Responses of the final, heavily-revised and real-time labor productivity data and hours
worked data to four structural shocks. All of the responses displayed are to one standard
deviation shocks. The 25th release is used in the figure as heavily-revised data. All of the
variables in this figure are in log levels. The hours worked is in per capita and detrended by
the Hamilton filter. The solid lines give the point estimate response with its 68 (90) percentile
confidence bands as dashed (dotted) lines.
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Figure 2.4: Impulse responses of three productivity data from the baseline estimation
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Note. Responses of the final (bold solid), heavily-revised (solid), and real-time data (dashed)
of labor productivity to technology and non-technology shocks. All of the responses displayed
are to one standard deviation shocks. The 25th release is used in the figure as heavily-revised
data. All of the variables in this figure are in log differences (%).
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Figure 2.5: Immediate responses of labor productivity by release
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Note. Responses of the level of labor productivity to technology and non-technology shocks
on impact (h = 1) using the baseline VAR(4) model. All of the responses displayed are to one
standard deviation shocks. A solid bold line in each panel gives the point estimate response of
real-time data with its 68 percentile confidence bands as dashed lines. A solid line with circle
markers gives the point estimate response of final data with its 68 percentile confidence bands
as dotted lines.

38



Figure 2.6: Responses of labor productivity at the fourth quarter by release
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Note. Responses of the level of labor productivity to technology and non-technology shocks
at h = 4 using the baseline VAR(4) model. All of the responses displayed are to one standard
deviation shocks. A solid bold line in each panel gives the point estimate response of real-time
data with its 68 percentile confidence bands as dashed lines. A solid line with circle markers
gives the point estimate response of final data with its 68 percentile confidence bands as dotted
lines.
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Figure 2.7: Impulse response functions of VAR(2) model
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Note. Responses of the final, heavily-revised and real-time labor productivity data and hours
worked data to two noise shocks. All of the responses displayed are to one standard deviation
shocks. The 25th release is used in the figure as heavily-revised data. All of the variables in
this figure are in log levels. The hours worked is in per capita and detrended by the Hamilton
filter. A solid line in each panel gives the point estimate response with its 68 (90) percentile
confidence bands as dashed (dotted) lines. A solid line with circle markers gives the point
estimate response of the baseline VAR(4) model presented in Figure 2.3.
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Figure 2.8: Impulse response functions of VAR(4) using 9th release as heavily-revised
data
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Note. Responses of the final, heavily-revised and real-time labor productivity data and hours
worked data to two noise shocks. All of the responses displayed are to one standard deviation
shocks. The 9th release is used in the figure as heavily-revised data. All of the variables in
this figure are in log levels. The hours worked is in per capita and detrended by the Hamilton
filter. A solid line in each panel gives the point estimate response with its 68 (90) percentile
confidence bands as dashed (dotted) lines. A solid line with circle markers gives the point
estimate response of the baseline VAR(4) model presented in Figure 2.3.
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Figure 2.9: Impulse response functions of VAR(4) using log first difference of hours
worked data
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Note. Responses of the final, heavily-revised and real-time labor productivity data and hours
worked data to two noise shocks. All of the responses displayed are to one standard deviation
shocks. The 9th release is used in the figure as heavily-revised data. All of the variables in this
figure are in log levels. The hours worked is in per capita and converted to first difference of log
levels. A solid line in each panel gives the point estimate response with its 68 (90) percentile
confidence bands as dashed (dotted) lines. A solid line with circle markers gives the point
estimate response of the baseline VAR(4) model presented in Figure 2.3.
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Table 2.1: Schedule and main reasons for revisions to labor productivity data

Revision Timing of revision Reason of revision
First 1 month after the first release More complete information
Second 3 month after the first release More complete information
Annual Every August Annual/comprehensive revision of NIPA

Every March Annual/comprehensive revision of CES

Table 2.2: Summary statistics of revisions to U.S. labor productivity

Revision round Mean Mean absolute Noise-to-signal Corr. with
revision ratio first release

Percent change from four quarters ago
Total revision 0.280∗∗∗ 0.945 0.714 -0.446

Up to 24th -0.158∗ 0.836 0.634 -0.336
25th and later 0.438∗∗∗ 0.710 0.503 -0.207

Percent change from a quarter ago (annualized)
Total revision 0.398∗ 2.135 0.867 -0.279

Up to 24th -0.072 1.664 0.669 -0.210
25th and later 0.470∗∗∗ 1.786 0.717 -0.141

Note. The measure of labor productivity used in the table is nonfarm business sector output
per hour of all persons. The data used to compute percent changes from a quarter ago are
seasonally adjusted. Entries marked with superscripts * and *** are significantly different
from zero at the 10% and 1% levels respectively, using HAC standard errors. The sample
period is from 1968Q1 to 2008Q1, and its corresponding vintages are from May 1968 to May
2008.
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Table 2.3: Beaudry et al. (2019) diagnostics for non-fundamentalness

Tech. shock Non-tech. shock Long-lived noise Short-lived noise
r 1 2 3 1 2 3 1 2 3 1 2 3

1 lag 0.00 0.03 0.04 0.01 0.01 0.02 0.06 0.07 0.07 0.01 0.01 0.02
4 lags 0.01 0.09 0.10 0.02 0.07 0.16 0.06 0.07 0.10 0.02 0.03 0.06

Note. This table reports R2 from regressions of each of four identified structural shocks on
lagged principal components extracted from the FRED-QD of the December 2019 vintage.
r denotes the number of factors used in the regression. “Tech.” is an abbreviation for
“technology”. The sample period is from 1968Q1 to 2008Q1.

Table 2.4: Forecast error variance decompositions

Variable Fundamental shock Noise shock
Technology Non-technology Long-lived Short-lived

Productivity
Final 58.8 35.0 4.6 1.7
Heavily-revised 35.5 20.7 41.2 2.6
Real-time 23.5 21.3 14.8 40.4

Hours worked 17.3 60.0 18.8 3.9
Revision

Total revision 31.7 19.7 14.4 34.2
25th and later 14.4 9.6 72.9 3.0
Up to 24th 12.4 8.1 23.9 55.6

Note. Forecast error variance decompositions at infinite horizon. “Heavily-revised” de-
notes variance decompositions for labor productivity data experiencing the first 24 revi-
sions. “Real-time” denotes variance decompositions for the first release of labor productiv-
ity.
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Table 2.5: Regression of forecasts on identified noise shocks

Forecast horizon
h = 0 h = 1 h = 2 h = 3

Real GDP
Long-lived noise 0.350∗∗∗ 0.119 0.088 -0.019

(0.109) (0.078) (0.075) (0.064)
Short-lived noise 0.280∗∗∗ 0.048 0.044 -0.018

(0.098) (0.101) (0.063) (0.056)
Real private consumption

Long-lived noise 0.099 0.029 0.070 0.026
(0.114) (0.063) (0.044) (0.036)

Short-lived noise -0.012 0.051 0.038 -0.008
(0.111) (0.063) (0.042) (0.036)

Real business fixed investment
Long-lived noise 0.724∗∗ 0.705∗∗∗ 0.338∗∗ -0.269

(0.281) (0.203) (0.160) (0.212)
Short-lived noise 0.205 0.419∗ 0.389∗∗ 0.245

(0.297) (0.227) (0.161) (0.184)
Industrial production

Long-lived noise 0.709∗∗∗ 0.087 0.117 -0.096
(0.254) (0.172) (0.151) (0.139)

Short-lived noise 0.629∗∗ 0.107 -0.068 -0.216
(0.292) (0.227) (0.137) (0.148)

Unemployment rate
Long-lived noise -0.090∗∗∗ -0.106∗∗∗ -0.100∗∗∗ -0.109∗∗∗

(0.023) (0.024) (0.025) (0.026)
Short-lived noise -0.009 -0.033 -0.038 -0.036

(0.022) (0.025) (0.025) (0.025)

Note. The variables used in regressions (except for unemployment rate) are annualized
quarterly growth rates. The series of business fixed investment used in regressions is non-
residential. Entries marked with superscripts *, **, and ***, are significantly different from
zero at the 10%, 5%, and 1% levels respectively, using HAC standard errors. The starting
period is 1981Q4 for real private consumption and business fixed investment, and 1975Q1
for the other variables. The sample ends in 2008Q1 for all of the regressions.
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Appendix: Extra results using alternative measures

This appendix examines whether my findings are robust to alternative measures of

hours worked and labor productivity. I consider the following two cases: (i) using an

alternative filtering method to hours worked and (ii) using output per employment as

a measure of labor productivity.

Regarding detrending methods, Fernald (2007) points out that a response of hours

to a technology shock can be considerably different among detrending methods ap-

plied to the hours series. He points out that testing multiple detrending methods is

necessary for researchers to confirm that detrending methods do not affect obtained

results. In this study, I apply the Christiano-Fitzgerald filter to the hours worked per

capita series.17 Figure A1 shows responses of the VAR(4) model with the Christiano-

Fitzgerald filter. The responses to the technology shock are smaller, though all the

variables show qualitatively the same responses as in the baseline model.

As for an alternative labor productivity measure, I use output per employment,

specifically the ratio of real GDP to nonfarm payroll employment. In this case, the em-

ployment series is detrended by the Hamilton filter as in the baseline estimation. My

dataset contains final, heavily-revised and real-time real GDP data and final nonfarm

payroll employment data from the Real-Time Data Set for Macroeconomists provided

by the Federal Reserve Bank of Philadelphia. All of the data are seasonally adjusted

and converted to log levels. I use data in log differences (%) for growth rates. The

heavily-revised data are the data which become available three years after the first re-

lease of real GDP. Figure A2 shows that the alternative productivity measure produces

smaller but qualitatively the same responses as in the baseline model.

17 The Christiano-Fitzgerald filter has frequency band 2–32 quarters to extract components of high- and

business cycle frequencies.
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Figure A1: Impulse response functions of VAR(4) model with labor input detrended
by the Christiano-Fitzgerald filter
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Note. Responses of the final, heavily-revised and real-time labor productivity data and hours
worked data to two noise shocks. The 25th release is used in the figure as heavily-revised
data. All of the variables in this figure are in log levels. The hours worked is in per capita and
detrended by the Christiano-Fitzgerald filter with frequency band of 2–32 quarters. A solid line
in each panel gives the point estimate response with its 68 (90) percentile confidence bands as
dashed (dotted) lines. A solid line with circle markers gives the point estimate response of the
baseline VAR(4) model presented in Figure 2.3.
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Figure A2: Impulse response functions of VAR(4) using real GDP per employment
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Note. Responses of the final, heavily-revised and real-time labor productivity data and em-
ployment data to two noise shocks. Labor productivity in this figure is defined as real GDP per
employment. The data available three years after the first release of real GDP is used in the fig-
ure as heavily-revised data. All of the variables in this figure are in log levels. The employment
series is in per capita and detrended by the Hamilton filter. A solid line in each panel gives the
point estimate response with its 68 (90) percentile confidence bands as dashed (dotted) lines. A
solid line with circle markers gives the point estimate response of the baseline VAR(4) model
presented in Figure 2.3.
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Chapter 3

Negative Interest Rate Policy and the
Influence of Macroeconomic News on
Yields

3.1 Introduction

In recent years, several advanced economies including the euro area and Japan have

deployed negative interest rate policies (NIRPs). NIRP is designed to relaxing the con-

straint of the effective lower bound on policy rates by allowing the policy rates being in

negative territory. However, it is an open question whether monetary policy becomes

less constrained after introducing the NIRP. While policy rates can go negative, deposit

rates and other market rates can be still bounded to zero. Moreover, the effective lower

bound on policy rates in NIRP economies is unobservable in contrast to non-NIRP

economies in which the lower bound is virtually zero. Accordingly, it is more difficult

for NIRP economies to measure to what extent monetary policy is constrained.

Sensitivity of government bond yields to macroeconomic surprises is a widely-used

measure capturing the degree of the effective lower bound constraint on monetary pol-

icy. Swanson and Williams (2014a) theoretically show that bond yields in an economy

facing the zero lower bound are less responsive to macroeconomic news than those in

an economy not constrained by the bound. If the sensitivity of bond yields in a NIRP

economy increases since adopting the NIRP, it indicates that the effective lower bound

becomes less binding.

This chapter examines whether NIRPs have relaxed constraints of the effective
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lower bound. To this end, I attempt to shed light on whether the influence of sur-

prises in macroeconomic announcements is different during the NIRP period com-

pared to during the preceding zero interest rate policy (ZIRP) period. I estimate the

effects of surprises in domestic and U.S. macroeconomic announcements on govern-

ment bond yields over the January 1999 to January 2018 period for four advanced

NIRP economies – Germany, Japan, Sweden, and Switzerland. I focus on the possi-

bility of time-variation in the influence of macroeconomic surprises coinciding with

changes in the country-specific monetary policy regimes.

To provide additional insights on the NIRPs, I conduct the following analyses af-

ter obtaining the baseline results. First, I consider whether forward guidance (FG)

dominates changes in the sensitivity of government bond yields during the NIRP pe-

riod. Forward guidance, often implemented together with the NIRP, may contribute to

reducing the sensitivity of bond yields to economic shocks via commitments on mon-

etary policy. The second analysis is about impacts of macroeconomic uncertainty on

the sensitivity of bond yields. Macroeconomic uncertainty is likely to influence the re-

sponsiveness of bond yields. I examine possible influence of changes in uncertainty on

the sensitivity of bond yields, confirming whether it dominates recent changes in the

sensitivity of bond yields. The third analysis is on the possibility of asymmetric effects

of positive versus negative news. If the NIRP substantially shifts down the effective

lower bound, it creates a margin for nominal interest rates to move downward. In this

case, bond yields will respond more to a recessionary shock than during the pre-NIRP

period, while their response to an expansionary shock will be relatively unchanged.

If such asymmetry is observed in the data, it indicates that monetary policy is less

constrained after the adoption of the NIRP.

I find that the influence of surprises in macroeconomic announcements is for all

of the four NIRP countries either noticeably weaker or non-existent during the NIRP

period than during the preceding ZIRP period. The results suggest that NIRP is as-

sociated with a lower bound that is no less constraining than the ZIRP lower bound.

The finding is robust to the presence of macroeconomic uncertainty. I also find that the

50



sensitivity of bond yields to macroeconomic surprises is symmetric between positive

and negative surprises. These findings suggest that the effective lower bound has been

binding in the NIRP economies during the NIRP period.

This study is firmly related to a vast literature on effects of macroeconomic news

on asset prices. Gürkaynak et al. (2005) provide empirical evidence suggesting that

macroeconomic surprises significantly influence long-term interest rates. Moessner

and Nelson (2008) find an increase in the sensitivity of U.S. interest rate futures to

macroeconomic surprises despite of the FOMC’s guidance about future monetary pol-

icy around the middle of 2000s. Swanson and Williams (2014a) and Swanson and

Williams (2014b) find that the influence of surprises in macroeconomic announcements

on bond yields varies with the monetary policy regimes. Altavilla et al. (2017) find that

macroeconomic surprises explain one third of quarterly variation in bond yields, sug-

gesting that macroeconomic surprises can have persistent impacts on bond yields. My

empirical analysis follows the procedure described in Swanson and Williams (2014a)

and Swanson and Williams (2014b).

Recent studies show that sensitivity of long-term bond yields to macroeconomic

surprises in major advanced economies has fallen after the recent financial crisis. Swan-

son and Williams (2014b) report the decline in the sensitivity for Germany, U.K., and

U.S. during the early 2010s. Moessner et al. (2016) find that in Sweden the sensitivity of

shorter-term interest rates declined around 2010, though the sensitivity of longer-term

rates had been high and stable until the middle of 2015. This chapter is a complement

to these studies, extending the sample period to include the NIRP period.

The recent decrease in the sensitivity of bond yields can also reflect effects of for-

ward guidance policy. If the forward guidance effectively controls expectations, bond

yields may respond less to macroeconomic surprises. Based on this idea, Ehrmann

et al. (2019) study the effectiveness of forward guidance policies using a panel data

containing macroeconomic surprises for several advanced economies. Moessner and

Rungcharoenkitkul (2019) show that forward guidance in the U.S. reduced the sensi-

tivity of shorter maturity bonds even after the policy liftoff from the zero lower bound.
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A growing body of research sheds light on bank lending channel to uncover the role

of the effective lower bound in NIRP economies. Brunnermeier and Koby (2019) pro-

pose a theoretical framework of “reversal interest rate” which determines the effective

lower bound. A policy rate cut below the reversal interest rate is recessionary because

banks reduce lending to keep profitability. Eggertsson et al. (2019) present evidence

suggesting that pass-through of policy rates to deposit rates was muted in Sweden

when the policy rates went below zero. They critically argue that monetary policy in

NIRP economies should be constrained because of zero lower bound on deposit rates.

By contrast, Altavilla et al. (2020) report that the pass-through of policy rates to de-

posit rates in the euro area has increased since the NIRP started. If the sensitivity of

bond yields to macroeconomic surprises has increased since the adoption of NIRP, it

suggests that the pass-through of policy rates has also revived.

The rest of the chapter is organized as follows. Section 3.2 describes institutional as-

pects. Section 3.3 presents characteristics of NIRP. Sections 3.4 and 3.5 describe details

on my empirical methodology and data, respectively. Section 3.6 presents my results.

Section 3.7 concludes.

3.2 Institutional Aspects

The unprecedented era of major central banks pursuing negative interest rate policies

began a few years after the recent financial crisis.1 Denmark was the first advanced

economy to enter the NIRP regime as Denmark lowered its certificate of deposit rate

to -0.20 percent as early as July 5, 2012. On June 11, 2014, the European Central Bank

(ECB) deposit rate was lowered to -0.10 percent. Subsequently, on February 16, 2016,

the second major central bank, the Bank of Japan, lowered its deposit rate to -0.10 per-

cent.2 Between the introduction of NIRP by the ECB and the Bank of Japan, Switzer-

1 Dell’Ariccia et al. (2017) summarize details on NIRP economies, and some early assessments of the

successfulness of NIRP.
2 Prior to the introduction of the Japanese NIRP, the ECB deposit rate had been further lowered and was

at the time of Japan entering NIRP held at -0.30 percent. Shortly after the Bank of Japan announcement
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land and Sweden also went from ultra-low to negative interest rates, and both did so

around the same time. Switzerland lowered its deposit rate (the so-called “sight de-

posit rate”) to -0.75 percent on January 15, 2015, while Sweden lowered its policy rate,

the repo rate, to -0.10 percent on February 12, 2015.3 The salient and common policy

objective of NIRP for all four countries under study is to counter deflationary pres-

sures and raise inflation. For Switzerland, the stated objective of NIRP is dual in that

the policy also aims to reduce or prevent domestic currency appreciation pressures in

order to avoid a stifling of economic growth.

In my analysis, I consider four NIRP economies, namely, Germany, Japan, Sweden,

and Switzerland. I do not include Denmark in my sample because the context and

circumstance of the Danish NIRP are very different from those of the countries under

study. The objective of the Danish NIRP pertains to maintenance of the DKK vis-á-vis

the EUR within the Exchange Rate Mechanism (ERM) II framework.4

3.3 Characteristics of Negative Interest Rate Policy

The move from a zero or positive policy rate to negative policy rate marks at least a

nominally dramatic shift in monetary policy. However, two essential aspects associ-

ated with the ZIRP regime also characterize the NIRP regime.

First, an effective lower bound on nominal interest rates nevertheless remains in

NIRP economies. Brunnermeier and Koby (2019) propose a framework of the reversal

interest rate which determines the effective lower bound in a negative interest rate

environment. Eggertsson et al. (2019) argue that a policy rate cut in a NIRP economy is

rather contractionary because the policy change reduces bank lending due to imperfect

pass-through to deposit rates. These studies suggest the presence of the unobservable

of NIRP the ECB on March 16, 2016, reduced its deposit rate to -0.40 percent. See Wu and Xia (2020)

for details on the ECB’s rate cuts and a careful analysis of their impact on the yield curve.
3 The Swedish deposit rate entered negative territory, at -0.50 percent, on June 7, 2014.
4 While Bulgaria and Hungary have introduced negative policy rates, these countries are not consid-

ered in my analysis primarily due to the limited data availability of macroeconomic surprises.
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effective lower bound in a negative interest rate environment.5

Second, even if monetary policy is constrained at the lower bound, monetary policy

can be effective by influencing expectations about the path of future monetary policy.

Reifschneider and Williams (2000) show that central banks facing the constraint can

influence the economy with credible commitments about monetary policy conduct in

the future when the lower bound becomes no longer binding. While Reifschneider and

Williams (2000) do not directly consider negative interest rate environments, the basic

argument is the same during NIRP periods.

These two essential characteristics of NIRP can be formalized using an illustrative

New Keynesian model presented by Swanson and Williams (2014a). In their model,

the central bank follows a Taylor-type rule with a latent lower bound. The policy rate

it is described as follows:

it = max[̃it, ī], (3.1)

where it denotes the policy rate set by a central bank who faces a given effective lower

bound ī.6 The term ĩt is the notional shadow rate determined by a Taylor-type rule

such that:

ĩt = πt + r∗t + a(πt − π̄) + bŷt, (3.2)

where πt is the inflation rate, r∗t is the natural rate of interest, π̄ is the central bank

inflation target, ŷt is the output gap. The coefficients a and b are non-zero constants

that sum to one.

5 Moreover, negative interest rates are only meaningful when these are above or equate the cost of

holding money. Dong and Wen (2017) note that how far in the negative interest rates can go depends

on the cost to the private sector of holding money.
6 Very recent studies including Brunnermeier and Koby (2019) discuss endogeneity of the latent effec-

tive lower bound in a negative interest rate environment. However, there is yet no consensus on what

factors crucially and quantitatively affect the level of the effective lower bound in a NIRP economy.

Hence, I assume a given effective lower bound in this chapter.
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An m-period zero-coupon government bond yield is described as:

imt = Et
1

m

m−1∑
j=0

it+j + ϕm, (3.3)

where imt denotes the annual bond yield with maturity m, Et is the expectations oper-

ator at time t, and ϕm is the term premium. Equation (3.3) shows that the dynamics

of bond yields reflects current and expected future short-term interest rates. The term

premium in the model is constant over time and is different across maturities as as-

sumed in Swanson and Williams (2014a) and Swanson and Williams (2014b).7

A change in the m-period bond yield at time t is written as:

∆imt =
1

m

m−1∑
j=0

(Etit+j − Et−1it+j) +
1

m

m−1∑
j=0

(Et−1it+j − Et−1it+j−1). (3.4)

When a macroeconomic news arrives, it influences the first term in the right-hand side,

which captures responses of expectations to the news. In Section 3.6, I will study

whether the sensitivity of bond yields to macroeconomic news has changed during

the NIRP period as well as the ZIRP period.

3.4 Empirical Methodology

My approach is an event study setup, following Swanson and Williams (2014a) and

Swanson and Williams (2014b). My primary interest is in the sensitivity of bond yields

to surprises in major macroeconomic announcements. If the effective lower bound is

binding in a NIRP economy, bond yields respond less to surprises than in the economy

not constrained by the lower bound.

I examine how the sensitivity of bond yields to macroeconomic surprises in each

of the ZIRP and NIRP periods differs from the average sensitivity over the pre-ZIRP

7 Swanson and Williams (2014a) point out that a change in term premia can have positive or negative

effects on the sensitivity of yields to macroeconomic news. The direction of the effects depends on

several factors including the degree of risk aversion and the dynamics of demand for safe assets.
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period. To this end, I estimated the following model by nonlinear least squares:

∆ym,t = αP
m + x

′

tβmδ
P
m + εm,t, (3.5)

where ∆ym,t denotes daily changes at the day t in the bond yield with m years to ma-

turity. xt is an S × 1 vector of macroeconomic surprises. εm,t is an error term reflecting

the other news on the day t. αP
m is a constant term for the monetary policy period P .

An S × 1 coefficient vector βm collects the average sensitivity of the yield to individual

macroeconomic surprises over the pre-ZIRP period. I choose the pre-ZIRP period as

my normalization sub-sample, because monetary policy is considered to be less con-

strained in the period compared to during the ZIRP and NIRP periods.

A key coefficient is δPm, which captures the sensitivity of the yield ym,t to macroe-

conomic surprises during the period P relative to the average sensitivity during the

pre-ZIRP period. It takes one for the pre-ZIRP period by construction, δZ for the ZIRP

period, and δN for the NIRP period. If δZ is less than one, the sensitivity of bond yields

to macroeconomic news during the ZIRP period is lower than the sensitivity during

the pre-ZIRP period. If δZ is zero, it means that bond yields were not responsive to

macroeconomic news during the ZIRP period.

While Equation (3.5) focuses on immediate responses of bond yields to macroeco-

nomic news, the macroeconomic surprises are also likely to have persistent impacts on

bond yields. Altavilla et al. (2017) find evidence that the explanatory power of news

surprises with respect to the variation in bond yields increases when they estimate

the model at a lower frequency. To address the persistence of influences of macroeco-

nomic news, I implement this procedure at monthly frequency. The monthly regression

model to be estimated is:

∆ym,τ = αP
m + x

′

τβmδ
P
m + ετ , (3.6)

where ∆ym,τ denotes changes in the bond yield with m years to maturity during the

month τ , and xτ contains the monthly average of macroeconomic surprises. Again, δPm
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is the coefficient of interest capturing the relative sensitivity of the yield to macroeco-

nomic surprises for a month during the period P .

3.5 Data

My news data consists of a comprehensive set of date-stamped Germany, Japan, Swe-

den, Switzerland, and U.S. macroeconomic announcements and preceding professional

forecasts. My full sample spans the 1 January 1999 to 31 January 2018 period. Table 3.1

shows the country-specific monetary policy regime change dates.8 Table 3.2 displays

the list of my news data. The dataset covers five domestic and six U.S. macroeconomic

announcements for each country. As for domestic news, CPI, business survey, and real

GDP are included in the dataset for all of the four countries. The selection of the other

two news depends on data availability. The two series are retail sales and unemploy-

ment series for Germany and Sweden, PPI and unemployment for Switzerland, and

PPI and machinery orders for Japan. The U.S. news are initial jobless claims, CPI, ISM,

capacity utilization, retail sales, and advance estimates of real GDP. The U.S. news se-

ries are included in all of my baseline estimations. For each NIRP country, I consider

the effects of the domestic news pertaining to the country in question alongside the

effects of the U.S. news.

The data on professional forecasts is obtained from Money Market Services (MMS)

provided by Haver Analytics and from Bloomberg News Service. Following the litera-

ture (e.g. Andersen et al. (2003), Andersen et al. (2007)), I construct for each news vari-

able the standardized news surprise as the unexpected component of the announce-

ment divided by the associated sample standard deviation.9 When constructing the

8 For Japan’s case, the beginning of the first adoption of ZIRP coincides with the beginning of my full

sample period. To focus on the sensitivity of yields during the post-crisis period, I set the start date

of the ZIRP period at the day when the Bank of Japan cut the policy rate to virtually zero in response

to the recent financial crisis.
9 Let Ai,t denote the value of an announcement of the variable i on day t. Let Ei,t refer to the me-

dian value of the most recent market expectations, and let σ̂i denote the standard deviation of the
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news data set for each country I account for the difference in timing across U.S. and

domestic macroeconomic announcements. The dataset used in regression analysis cov-

ers non-zero announcement days only, though the results are qualitatively the same if

non-announcement days are also included in the observations.

The interest rates in my dataset are daily zero-coupon government bond yields with

1, 2, and 10 years of maturities. Figure 3.1 shows the evolution of the yields over the full

sample. German, Japanese, and Swiss yields are available from Deutsche Bundesbank,

the Japanese Ministry of Finance, and the Swiss National Bank, respectively. Swedish

yields are provided by Sveriges Riksbank.

3.6 Results

3.6.1 Baseline results

Table 3.3 presents the baseline results for β, δZ , and δN in country-by-country regres-

sion of Equation (3.5) for 1-, 2-, and 10-year bond yields using daily data. The first

eleven rows of the table present the estimated coefficients on individual macroeco-

nomic surprises β. The estimated coefficients on the surprises have signs consistent

with a Taylor-type rule of monetary policy when they are significant. The results show

that macroeconomic surprises influence bond yields during the pre-ZIRP period for all

of the four countries.

Concerning the ZIRP period, the estimates of δZ are significantly different from zero

but lower than one for Germany, Sweden, and Switzerland, except for the sensitivity

of Swedish 10-year bond yield which is larger than one. Table 3.3 also shows a larger

decline in the sensitivity of bond yields with shorter maturities for all the countries.

The results indicate that these countries were partially constrained in the zero lower

bound. By contrast, δZ is not significant for Japan, suggesting that monetary policy in

Japan was constrained during the ZIRP period.

surprises regarding the variable i over the entire sample period. The standardized surprise of the

macroeconomic fundamental announced on day t is then defined as (Ai,t − Ei,t)/σ̂i.
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For all of the four NIRP countries, the sensitivity of the yields has further decreased

during the NIRP period. The estimates of δN for the yields with up to two years to

maturity are not significant for Germany, Switzerland, and Japan, and those for Swiss

and Japanese 10-year bond yields are not significant at the 5% level. The results suggest

that monetary policy is constrained in all the four countries, and that the degree of

constraint has increased in Japan and Switzerland since the adoption of the NIRP.

Turning to the regression results at monthly frequency, Table 3.4 shows the results

of the monthly regressions with Equation (3.6). The most of all the estimates of the

coefficients on individual surprises have signs consistent with a Taylor-type rule of

monetary policy when they are significant. The values of R2 in Table 3.4 are much

larger than the corresponding R2 in Table 3.3, as Altavilla et al. (2017) find in U.S. data.

The results suggest that a macroeconomic surprise influences bond yields not only

within its announcement day but also over the corresponding month. Concerning the

δN , the estimate is much lower than δZ in the most cases, suggesting that the effects of

macroeconomic news has become less persistent during the NIRP period.

To summarize, the baseline results suggest that monetary policy in the NIRP coun-

tries has been further constrained during the NIRP period. However, I note that one

should not jump to the conclusion now. Sensitivity of asset prices can also fall in re-

sponse to decreasing uncertainty about the future policy conducts through forward

guidance and the other unconventional monetary policy measures. In the next subsec-

tion, I will examine whether changes in uncertainty can substantially explain the fall

in the sensitivity of bond yields.

3.6.2 Influence of macroeconomic policy uncertainty

In theory, when agents face higher uncertainty on future policy conducts, they more

rely on public information to learn about future states of the economy. Accordingly,

the sensitivity of asset prices to macroeconomic announcements rises in response to

increasing uncertainty. Forward guidance and other unconventional monetary policy

measures, aiming at stabilizing expectations on future policy conducts, can substan-
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tially contribute to reducing the sensitivity of asset prices to macroeconomic surprise.10

In this sense, the observed decline in the sensitivity of bond yields can be rather mainly

attributed to the effects of these policy measures. To study the influence of changes in

policy uncertainty, I conduct the following two analyses.

The first analysis is to examine the effects of forward guidance on the sensitivity of

bond yields. I estimate Equation (3.5) with splitting the ZIRP period (for Germany and

Sweden) and the NIRP period (for Japan) into pre-FG and FG periods. Switzerland

is not considered in this exercise because the country does not adopt explicit forward

guidance.

The period of forward guidance is from July 4, 2013 for Germany and is from De-

cember 20, 2011 for Sweden. While Japan has a long history of forward guidance, I

focus on the effect of the Bank of Japan’s inflation-overshooting commitment imple-

mented on September 21, 2016.11

Table 3.5 presents the results. The coefficients δZ−PreFG and δZ−FG are the rela-

tive sensitivity of bond yields to macroeconomic news for the pre-FG and FG periods

within the ZIRP period, respectively. Likewise, δN−PreFG and δN−FG are the relative

sensitivity for the pre-FG and FG periods within the NIRP period. The estimates of

δZ−PreFG and δZ−FG are very close for all the maturities of German bonds. The es-

timated δN−PreFG and δN−FG for Japanese bond yields are not significant at the 5%

level.12 The sensitivity of Swedish bond yields rather increases between the pre-FG

and FG periods.13 These results suggest that forward guidance is not the main reason

for the decline in the sensitivity of bond yields for these three NIRP countries.

10 Ehrmann et al. (2019) propose a theoretical model to explain the roles of forward guidance, presenting

how the effects of forward guidance differ across its types.
11 The announcement days of forward guidance are excluded from the observations in regression to

eliminate on-impact effects of the implementation of forward guidance.
12 The Japan’s result is likely to overestimate the effects of forward guidance because the inflation-

overshooting commitment was adopted together with yield curve control, which aims to stabilize

long-term bond yields.
13 Ehrmann et al. (2019) find that time-contingent forward guidance over a short horizon, which Riks-

bank uses, rather increases the sensitivity of bond yields to macroeconomic surprises.
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The second analysis is to examine possible influence of a broad range of policy

uncertainty on the sensitivity of bond yields to macroeconomic surprises. To get di-

rect evidence on this, I include the monthly Economic Policy Uncertainty (EPU) Index,

which is proposed by Baker et al. (2016), in my regressors as a country-level macroeco-

nomic uncertainty measure.14 This index, available at monthly frequency, incorporates

a variety of information on policy-related economic uncertainty including newspaper

articles and disagreement among economic forecasters. Figure 3.2 plots the EPU Index

for Germany, Sweden, and Japan. Since the EPU Index for Switzerland is not available,

my analysis about uncertainty focuses on the three countries.

To measure the influence of policy uncertainty on the sensitivity, I estimate the fol-

lowing model at monthly frequency:

∆ym,τ = αm + γmx̂m,τ + λmuτ + θm(uτ × x̂m,τ ) + εm,τ , (3.7)

where λm and θm are scalar, and both of them capture the effects of policy uncertainty

uτ on the sensitivity of the bond yield ym,τ . If θm is positive and statistically significant,

it indicates that decreasing uncertainty after the financial crisis explains the observed

decline in the sensitivity of bond yields from the ZIRP to NIRP periods. To focus on the

influence of policy uncertainty on the sensitivity, I assume that uncertainty influences

the aggregate sensitivity of bond yields to macroeconomic surprises. This means that a

rise in uncertainty increases the sensitivity of the yield to all of the individual surprises

by θ. I compile the estimated responses of bond yields to macroeconomic surprises

into a single news index x̂m,τ ≡ x
′
τ β̂m. I call it the “news” index. The values of β̂m are

obtained from the baseline monthly regressions presented in Table 3.4.

Table 3.6 reports the results of the regression in which I use the news index and

the cross term of the EPU Index and the news index as the regressors. The estimated

14 The index is normalized to a mean of 100 from 1993 to 2010 for Germany, from 1985 to 2009 for

Sweden, and from 1987 to 2015 for Japan. The value above 100 indicates that the economy faces

above-average uncertainty. All of the data used in this chapter are available at the Economic Policy

Uncertainty Index website: https://www.policyuncertainty.com/
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coefficient value on the news index is positive and significant with no exceptions. By

contrast, the coefficient on the cross term with the EPU Index is not statistically signifi-

cant for all the yields considered, suggesting that policy uncertainty may not dominate

the observed changes in the sensitivity of bond yields to macroeconomic surprises.

3.6.3 Asymmetry in the sensitivity of bond yields

If the NIRP substantially shifts down the effective lower bound, bond yields will re-

spond more to a recessionary shock than during the pre-NIRP period. By contrast, their

response to an expansionary shock will be relatively unchanged. I examine whether

the sensitivity to a recessionary shock has increased since the adoption of the NIRP.15

Table 3.7 shows the regression results from Equation (3.5) with the data only on the

days of negative surprises.16 The estimated relative sensitivity of bond yields is fairly

close to the baseline results in Table 3.3. Focusing on the cases of negative surprises,

the estimates of δN are smaller than δZ for all the cases except for Swedish 10-year

bond yields. Thus, the sensitivity of bond yields to macroeconomic surprises may

be symmetric, suggesting that the effective lower bound has been also binding in the

NIRP countries during the NIRP period. In other words, very low and stable policy

rates are expected in the NIRP countries.

3.7 Conclusion

In this chapter, I have studied the influence of surprises in domestic and U.S. macroe-

conomic announcements on government bond yields for four NIRP countries, namely,

Germany, Japan, Sweden, and Switzerland. I focus on the possibility of time-variation

15 Since an observed surprise may reflect multiple fundamental shocks, structural identifications about

the surprises should facilitate more accurate understanding on the asymmetry in the sensitivity of

bond yields. However, in practice, the number of non-zero surprises in prices is much smaller than

that in real indicators. Due to the data availability, I focus on signs of the surprises rather than funda-

mental sources of the surprises.
16 I collect positive surprises for unemployment indicators.
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in the influence of macroeconomic surprises coinciding with changes in the domes-

tic monetary policy regimes. I find that the sensitivity of bond yields in these NIRP

countries is either noticeably weaker or non-existent during the NIRP period when

compared to the preceding ZIRP period. My empirical results show that decreasing

economic policy uncertainty does not have significant impacts on the sensitivity dur-

ing the NIRP period. These findings suggest that the effective lower bound associated

with the NIRP is no less constraining than the ZIRP lower bound.

While macroeconomic surprises can contribute to the dynamics of bond yields, the

explanatory power of the surprises are small even at monthly frequency. A useful

direction for future research would be to explore what is behind the low power of

macroeconomic news to bond yields. The sensitivity analysis using intra-day data is

also a promising avenue for future research. The use of high-frequency data, which is

less likely to contaminated other shocks, will help better exploit surprises in financial

data to a macroeconomic announcement.

In this chapter, monetary policy regimes are supposed to be firmly linked to struc-

tural changes. However, structural changes and shifts in monetary policy regimes do

not necessarily occur in tandem. Time-varying parameter estimation can provide more

precise evidence about the effective lower bound with the NIRP, and I leave this for fu-

ture research.
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Figure 3.1: Yields for NIRP countries

(a) Germany (left) and Sweden (right)

-2

-1

0

1

2

3

4

5

6

7

99 01 03 05 07 09 11 13 15 17

1-year

2-year

10-year

-2

-1

0

1

2

3

4

5

6

7

99 01 03 05 07 09 11 13 15 17

1-year

2-year

10-year

(b) Switzerland (left) and Japan (right)

-2

-1

0

1

2

3

4

5

6

7

99 01 03 05 07 09 11 13 15 17

1-year

2-year

10-year

-2

-1

0

1

2

3

4

5

6

7

99 01 03 05 07 09 11 13 15 17

1-year

2-year

10-year

64



Figure 3.2: Economic Policy Uncertainty Index
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Note. The index shows the level of uncertainty. It is normalized to a mean of 100 from 1993
to 2010 for Germany, from 1985 to 2009 for Sweden, and from 1987 to 2015 for Japan. The
last observation is January 2018. The source is the Economic Policy Uncertainty Index website
(https://www.policyuncertainty.com/), accessed on September 12, 2020.
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Table 3.1: Monetary policy regime change dates

Germany Sweden Switzerland Japan

ZIRP 10/30/2008 7/13/2009 12/11/2008 12/19/2008

NIRP 6/11/2014 2/18/2015 1/22/2015 1/29/2016
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Table 3.2: Macroeconomic announcements

(a) Germany
Non-zero announcement surprises

Starting date Frequency
Full Pre-ZIRP ZIRP NIRP

Domestic announcements
CPI 152 75 47 30 1/10/2000 Monthly
IFO 222 114 65 43 1/21/1999 Monthly
Retail sales 218 113 62 43 1/13/1999 Monthly
Unemployment 222 115 66 41 1/8/1999 Monthly
Real GDP 61 30 21 10 2/19/1999 Quarterly

U.S. announcements
Initial jobless claims 972 497 288 187 1/7/1999 Weekly
CPI 138 69 40 29 1/14/1999 Monthly
ISM manufacturing 224 115 67 42 1/4/1999 Monthly
Capacity utilization 209 109 61 39 1/15/1999 Monthly
Retail sales 179 82 58 39 6/13/2001 Monthly
Real GDP 74 39 20 15 1/29/1999 Quarterly

(b) Sweden
Non-zero announcement surprises

Starting date Frequency
Full Pre-ZIRP ZIRP NIRP

Domestic announcements
CPI 187 104 54 29 1/19/1999 Monthly
PMI 147 50 65 32 12/1/2004 Monthly
Retail sales 224 123 66 35 1/20/1999 Monthly
Unemployment rate 199 114 59 26 1/20/1999 Monthly
Real GDP 72 41 20 11 3/10/1999 Quarterly

U.S. announcements
Initial jobless claims 972 532 289 151 1/7/1999 Weekly
CPI 138 76 39 23 1/14/1999 Monthly
ISM manufacturing 224 124 66 34 1/4/1999 Monthly
Capacity utilization 209 117 60 32 1/15/1999 Monthly
Retail sales 179 90 58 31 6/13/2001 Monthly
Real GDP 74 42 20 12 1/29/1999 Quarterly
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Table 3.2: Macroeconomic announcements (cont’d.)

(c) Switzerland
Non-zero announcement surprises

Starting date Frequency
Full Pre-ZIRP ZIRP NIRP

Domestic announcements
CPI 169 88 57 24 2/4/1999 Monthly
PPI 185 97 59 29 2/15/1999 Monthly
PMI 170 64 72 34 4/1/2003 Monthly
Unemployment rate 79 48 24 7 1/7/1999 Monthly
Real GDP 61 28 22 11 6/8/2000 Quarterly

U.S. announcements
Initial jobless claims 972 503 314 155 1/7/1999 Weekly
CPI 138 70 45 23 1/14/1999 Monthly
ISM manufacturing 224 117 72 35 1/4/1999 Monthly
Capacity utilization 209 110 67 32 1/15/1999 Monthly
Retail sales 179 83 64 32 6/13/2001 Monthly
Real GDP 74 40 21 13 1/29/1999 Quarterly

(d) Japan
Non-zero announcement surprises

Starting date Frequency
Full Pre-ZIRP ZIRP NIRP

Domestic announcements
CPI 122 51 53 18 9/28/2001 Monthly
PPI 131 46 68 17 10/14/2003 Monthly
Tankan 57 30 22 5 4/5/1999 Monthly
Machinery orders 215 107 84 24 2/10/2000 Monthly
Real GDP 48 15 26 7 2/16/2005 Quarterly

U.S. announcements
Initial jobless claims 972 504 364 104 1/7/1999 Weekly
CPI 138 71 51 16 1/14/1999 Monthly
ISM manufacturing 224 117 84 23 1/4/1999 Monthly
Capacity utilization 209 111 76 22 1/15/1999 Monthly
Retail sales 179 84 74 21 6/13/2001 Monthly
Real GDP 74 40 25 9 1/29/1999 Quarterly

Note. Starting dates are in local time.
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Table 3.3: Baseline results: daily frequency

(a) Germany

1-year 2-year 10-year

CPI 0.518 (0.362) 0.546 (0.454) 0.914∗∗∗ (0.340)
IFO 1.341∗∗∗ (0.311) 2.285∗∗∗ (0.398) 1.461∗∗∗ (0.335)
Real retail sales 0.467 (0.348) 0.461 (0.418) 0.367 (0.387)
Unemployment change -0.137 (0.243) -0.440 (0.285) 0.037 (0.275)
Real GDP 0.966∗ (0.520) 1.476 (1.002) 1.377∗∗ (0.559)
U.S. capacity utilization 0.532∗ (0.290) 1.254∗∗∗ (0.383) 0.988∗∗ (0.389)
U.S. CPI 0.745∗ (0.411) 0.954∗ (0.529) 0.917∗∗ (0.425)
U.S. real GDP 1.341∗∗ (0.668) 1.955∗∗ (0.891) 0.644 (0.673)
U.S. initial jobless claims -0.785∗∗∗ (0.210) -1.165∗∗∗ (0.234) -0.969∗∗∗ (0.183)
U.S. ISM manufacturing 1.944∗∗∗ (0.430) 1.971∗∗∗ (0.444) 1.539∗∗∗ (0.352)
U.S. retail sales 1.220∗∗∗ (0.437) 1.716∗∗∗ (0.553) 1.279∗∗∗ (0.494)

δZ 0.324∗∗ (0.133) 0.365∗∗∗ (0.123) 0.717∗∗∗ (0.193)
δN 0.019 (0.087) 0.030 (0.077) 0.494∗∗ (0.230)

R2 0.052 0.070 0.048

(b) Sweden

1-year 2-year 10-year

CPI 2.564∗∗∗ (0.351) 3.078∗∗∗ (0.425) 0.850∗∗∗ (0.297)
PMI 1.453∗∗∗ (0.503) 1.118∗∗∗ (0.393) 0.186 (0.311)
Retail sales 0.564∗∗ (0.223) 0.651∗∗ (0.262) 0.093 (0.212)
Unemployment rate -0.032 (0.383) -0.395 (0.443) -0.590∗ (0.307)
Real GDP 0.715 (0.826) 1.705 (1.086) 0.900 (0.653)
U.S. capacity utilization 1.138∗∗ (0.457) 0.965∗∗ (0.423) -0.009 (0.295)
U.S. CPI -0.136 (0.250) 0.070 (0.288) 0.215 (0.265)
U.S. real GDP 0.533 (0.423) 0.231 (0.421) -0.155 (0.458)
U.S. initial jobless claims -0.446∗∗∗ (0.146) -0.627∗∗∗ (0.166) -0.583∗∗∗ (0.155)
U.S. ISM manufacturing 1.216∗∗∗ (0.253) 1.414∗∗∗ (0.324) 1.450∗∗∗ (0.327)
U.S. retail sales 1.064∗∗∗ (0.289) 1.144∗∗∗ (0.333) 1.044∗∗∗ (0.375)

δZ 0.577∗∗∗ (0.128) 0.743∗∗∗ (0.152) 1.271∗∗∗ (0.315)
δN 0.369∗∗∗ (0.111) 0.583∗∗∗ (0.109) 1.261∗∗∗ (0.437)

R2 0.094 0.101 0.041
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Table 3.3: Baseline results: daily frequency (cont’d)

(c) Switzerland

1-year 2-year 10-year

CPI 0.570∗ (0.315) 1.011∗∗∗ (0.357) 0.171 (0.267)
PPI -0.205 (0.400) -0.120 (0.444) 0.306 (0.407)
PMI 0.178 (0.435) 0.061 (0.627) 0.454 (0.323)
Unemployment rate 0.062 (0.476) -0.162 (0.378) -0.138 (0.338)
Real GDP 0.567 (0.428) 0.338 (0.428) 0.251 (0.195)
U.S. capacity utilization 0.224 (0.306) -0.063 (0.329) 0.250 (0.298)
U.S. CPI 0.005 (0.460) 0.919 (0.635) 0.596 (0.379)
U.S. real GDP 0.726 (0.483) 0.378 (0.619) 0.353 (0.551)
U.S. initial jobless claims -0.658∗ (0.375) -0.889∗∗∗ (0.263) -0.749∗∗∗ (0.154)
U.S. ISM manufacturing 1.864∗∗∗ (0.446) 1.851∗∗∗ (0.473) 0.880∗∗∗ (0.312)
U.S. retail sales 0.906∗∗ (0.448) 1.061∗∗ (0.521) 1.109∗∗∗ (0.383)

δZ 0.300∗ (0.154) 0.268∗∗ (0.126) 0.551∗∗ (0.234)
δN 0.000 (0.243) -0.024 (0.242) 0.219 (0.265)

R2 0.030 0.044 0.032

(d) Japan

1-year 2-year 10-year

CPI 0.464∗∗ (0.232) 0.774∗∗ (0.309) 1.007∗∗∗ (0.335)
PPI 0.373∗∗ (0.180) 0.531∗∗ (0.258) 0.572∗ (0.344)
Tankan -0.043 (0.112) -0.214 (0.224) -0.064 (0.598)
Machinery orders 0.033 (0.116) 0.232 (0.170) 0.408 (0.291)
Real GDP 0.949∗ (0.501) 1.592∗∗∗ (0.614) 1.373∗ (0.776)
U.S. capacity utilization 0.127 (0.088) 0.083 (0.140) 0.539∗∗ (0.241)
U.S. CPI 0.051 (0.086) -0.018 (0.113) 0.062 (0.292)
U.S. real GDP 0.056 (0.099) 0.185 (0.183) 0.549 (0.335)
U.S. initial jobless claims -0.066∗ (0.040) -0.167∗∗ (0.071) -0.215∗ (0.127)
U.S. ISM manufacturing 0.119 (0.075) 0.169 (0.130) 0.756∗ (0.399)
U.S. retail sales 0.116 (0.079) 0.219∗∗ (0.109) 0.662∗∗∗ (0.256)

δZ -0.011 (0.049) 0.019 (0.035) 0.198 (0.120)
δN -0.502 (0.305) -0.168 (0.229) -0.387∗ (0.201)

R2 0.035 0.041 0.026

Note. Heteroscedasticity-corrected standard errors are reported in parenthesis. Constant
terms are included in all estimations but associated coefficient estimates and standard er-
rors are not reported for reasons of brevity. ***, **, and * represent statistical significance at
1%, 5%, and 10% levels, respectively.
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Table 3.4: Baseline results: monthly frequency

(a) Germany

1-year 2-year 10-year

CPI -0.082 (0.100) -0.089∗ (0.119) -0.023 (0.098)
IFO 0.260∗∗ (0.102) 0.304 (0.114) 0.159∗∗ (0.076)
Real retail sales -0.107 (0.071) -0.109 (0.096) -0.066 (0.097)
Unemployment change 0.048 (0.089) 0.092 (0.108) 0.032 (0.090)
Real GDP 0.329∗∗ (0.138) 0.337∗ (0.178) -0.308∗ (0.170)
U.S. capacity utilization 0.085 (0.102) 0.073 (0.124) -0.064 (0.081)
U.S. CPI 0.043 (0.075) 0.040 (0.098) -0.035 (0.080)
U.S. real GDP 0.047 (0.145) 0.165 (0.188) 0.140 (0.159)
U.S. initial jobless claims -0.078∗ (0.043) -0.147∗∗ (0.057) -0.089∗∗ (0.037)
U.S. ISM manufacturing 0.168∗ (0.101) 0.274∗∗ (0.129) 0.252∗∗∗ (0.091)
U.S. retail sales 0.278∗∗∗ (0.106) 0.369∗∗∗ (0.123) 0.233∗∗ (0.102)

δZ 1.139∗∗ (0.469) 0.940∗∗ (0.416) 1.409∗∗∗ (0.496)
δN -0.019 (0.166) 0.010 (0.136) 0.601 (0.374)

R2 0.165 0.177 0.136

(b) Sweden

1-year 2-year 10-year

CPI 0.138 (0.128) 0.194 (0.129) 0.213∗ (0.121)
PMI 0.845∗∗ (0.362) 0.750∗∗∗ (0.264) 0.400∗ (0.238)
Retail sales 0.081 (0.125) 0.139 (0.130) 0.110 (0.117)
Unemployment rate 0.037 (0.117) 0.026 (0.125) 0.018 (0.108)
Real GDP 0.114 (0.176) -0.045 (0.215) -0.227 (0.202)
U.S. capacity utilization 0.431∗∗ (0.168) 0.363∗∗ (0.152) -0.067 (0.107)
U.S. CPI -0.004 (0.116) -0.020 (0.123) 0.075 (0.114)
U.S. real GDP 0.080 (0.166) 0.189 (0.199) 0.295 (0.217)
U.S. initial jobless claims -0.149∗∗∗ (0.056) -0.203∗∗∗ (0.061) -0.139∗∗∗ (0.047)
U.S. ISM manufacturing 0.182 (0.121) 0.217∗ (0.121) 0.219∗∗ (0.090)
U.S. retail sales 0.323∗∗ (0.130) 0.369∗∗ (0.128) 0.170 (0.109)

δZ 0.136 (0.092) 0.211∗ (0.115) 0.499 (0.336)
δN 0.069 (0.052) 0.036 (0.053) 0.183 (0.261)

R2 0.257 0.234 0.131
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Table 3.4: Baseline results: monthly frequency (cont’d)

(c) Switzerland

1-year 2-year 10-year

CPI 0.081 (0.115) 0.152 (0.115) 0.113 (0.088)
PPI 0.310∗∗∗ (0.106) 0.423∗∗∗ (0.118) 0.256 (0.100)
PMI -0.099 (0.111) 0.018 (0.118) -0.135∗ (0.167)
Unemployment rate -0.077 (0.107) -0.060 (0.097) -0.075 (0.075)
Real GDP -0.073 (0.107) -0.172 (0.108) -0.188 (0.073)
U.S. capacity utilization 0.087 (0.103) 0.156 (0.122) 0.073 (0.078)
U.S. CPI 0.115 (0.090) 0.057 (0.090) 0.061 (0.087)
U.S. real GDP -0.121 (0.140) -0.178 (0.145) -0.040 (0.116)
U.S. initial jobless claims -0.093∗∗∗ (0.056) -0.088∗∗∗ (0.050) -0.099∗∗ (0.044)
U.S. ISM manufacturing 0.307 (0.115) 0.342 (0.118) 0.195∗∗ (0.084)
U.S. retail sales 0.385∗∗ (0.140) 0.321 (0.108) 0.249∗∗ (0.096)

δZ 0.444∗ (0.202) 0.502∗∗ (0.183) 0.247 (0.326)
δN -0.162 (0.072) -0.196 (0.101) -0.445∗∗ (0.199)

R2 0.198 0.237 0.141

(d) Japan

1-year 2-year 10-year

CPI -0.002 (0.005) -0.002 (0.012) 0.079 (0.061)
PPI 0.010 (0.011) 0.006 (0.012) -0.074 (0.069)
Tankan 0.012 (0.013) 0.040 (0.024) 0.169 (0.152)
Machinery orders 0.007 (0.008) 0.014 (0.012) 0.090 (0.068)
Real GDP -0.008 (0.009) 0.000 (0.021) 0.182 (0.160)
U.S. capacity utilization -0.007 (0.008) -0.016 (0.013) -0.061∗ (0.062)
U.S. CPI -0.014 (0.016) -0.037 (0.023) -0.031 (0.079)
U.S. real GDP -0.037 (0.039) -0.103∗ (0.054) 0.175 (0.097)
U.S. initial jobless claims 0.002 (0.004) 0.013 (0.012) -0.008 (0.025)
U.S. ISM manufacturing 0.001 (0.004) 0.002 (0.013) 0.134∗ (0.077)
U.S. retail sales 0.010 (0.012) 0.035 (0.024) 0.169∗∗∗ (0.056)

δZ 0.087 (0.763) 0.421 (0.434) 0.430∗ (0.219)
δN 18.50 (19.62) 7.440∗ (3.913) -0.475 (0.440)

R2 0.102 0.093 0.098

Note. For details on the statistical test used in the table, see notes to Table 3.3.
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Table 3.5: Effects of forward guidance on the sensitivity of bond yields

(a) Germany

1-year 2-year 10-year

δZ−PreFG 0.325∗∗ (0.150) 0.374∗∗∗ (0.137) 0.715∗∗∗ (0.211)

δZ−FG 0.309∗∗ (0.130) 0.290∗ (0.169) 0.728∗ (0.375)

δN 0.019 (0.087) 0.030 (0.077) 0.494∗∗ (0.230)

R2 0.052 0.070 0.048

(b) Sweden

1-year 2-year 10-year

δZ−PreFG 0.372∗∗∗ (0.144) 0.541∗∗ (0.216) 1.062∗∗∗ (0.360)

δZ−FG 0.757∗∗∗ (0.180) 0.923∗∗∗ (0.175) 1.532∗∗∗ (0.429)

δN 0.363∗∗∗ (0.111) 0.576∗∗∗ (0.109) 1.207∗∗∗ (0.431)

R2 0.097 0.102 0.042

(c) Japan

1-year 2-year 10-year

δZ -0.014 (0.050) 0.019 (0.035) 0.205∗ (0.122)

δN−PreFG -1.238∗ (0.731) -0.720 (0.554) -0.876 (0.533)

δN−FG -0.211 (0.307) 0.033 (0.250) -0.186 (0.182)

R2 0.037 0.043 0.026

Note. The coefficient δ captures relative sensitivity of bond yields to news during a specific
period. If δ is less than one, bond yields during the period respond less to macroeconomic
news than during pre-ZIRP period. In the panels (a) and (b), δZ−PreFG and δZ−FG are for
the ZIRP period before and after the introduction of forward guidance, respectively, and δN

is for the NIRP period. In the panel (c), δZ is for the ZIRP period, and δN−PreFG and δN−FG

are for the NIRP period before and after the introduction of the Bank of Japan’s inflation-
overshooting commitment, respectively. For details on the statistical test used in the table,
see notes to Table 3.3.
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Table 3.6: Influence of macroeconomic uncertainty

(a) Germany

1-year 2-year 10-year

News index 1.082∗∗∗ (0.209) 0.988∗∗∗ (0.165) 1.154∗∗∗ (0.181)

EPU -0.056∗∗∗ (0.013) -0.051∗∗∗ (0.011) -0.032∗∗∗ (0.011)

News index × EPU 0.541 (0.380) 0.232 (0.211) -0.002 (0.200)

R2 0.285 0.248 0.153

(b) Sweden

1-year 2-year 10-year

News index 0.448∗∗∗ (0.13) 0.539∗∗∗ (0.117) 0.854∗∗∗ (0.168)

EPU -0.036∗∗∗ (0.009) -0.035∗∗∗ (0.011) -0.023∗∗ (0.012)

News index × EPU 0.265 (0.173) 0.196 (0.149) 0.179 (0.183)

R2 0.205 0.188 0.122

(c) Japan

1-year 2-year 10-year

News index 0.316 (0.217) 0.581∗∗∗ (0.156) 0.660∗∗∗ (0.170)

EPU -0.012∗∗∗ (0.004) -0.015∗∗∗ (0.003) -0.019∗∗∗ (0.005)

News index × EPU 0.106 (0.232) 0.178 (0.183) -0.097 (0.126)

R2 0.081 0.116 0.100

Note. The news index is a sum of the responses of bond yields to individual surprises. The
index is computed using the estimated average sensitivity of bond yields to the surprises
during the pre-ZIRP period. The EPU is the Economic Policy Uncertainty (EPU) Index
proposed by Baker et al. (2016) which is used in this table as the country-level macroeco-
nomic uncertainty measures. For details on the statistical test used in the table, see notes to
Table 3.3.
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Table 3.7: The sensitivity of bond yields to negative surprises

(a) Germany

1-year 2-year 10-year

δZ 0.394∗∗ (0.189) 0.393∗∗ (0.157) 0.931∗∗∗ (0.307)

δN 0.013 (0.104) 0.003 (0.088) 0.725∗ (0.375)

R2 0.030 0.043 0.024

(b) Sweden

1-year 2-year 10-year

δZ 0.343∗∗∗ (0.123) 0.482∗∗∗ (0.145) 1.094∗∗∗ (0.400)

δN 0.312∗ (0.166) 0.452∗∗∗ (0.138) 2.107∗∗∗ (0.762)

R2 0.061 0.067 0.025

(c) Switzerland

1-year 2-year 10-year

δZ 0.343 (0.210) 0.305∗∗ (0.138) 0.419∗ (0.222)

δN -0.197 (0.224) -0.208 (0.201) -0.224 (0.274)

R2 0.027 0.045 0.029

(d) Japan

1-year 2-year 10-year

δZ -0.047 (0.045) 0.001 (0.028) 0.020 (0.058)

δN -0.866 (0.534) -0.403 (0.249) -0.343∗∗∗ (0.125)

R2 0.017 0.023 0.024

Note. For details on the statistical test used in the table, see notes to Table 3.3.
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Chapter 4

The Effects of Asset Purchases and
Normalization of U.S. Monetary Policy

4.1 Introduction

After the global financial crisis (GFC) erupted and short-term interest rates fell close to

zero, central banks in advanced economies, most notably in the United States, adopted

large-scale asset purchases (LSAPs) as an unconventional policy tool to stabilize the

financial system and spur economic recovery. Such asset purchase programs are typ-

ically called “quantitative easing (QE),” and the Bank of England, the Bank of Japan,

and the European Central Bank all followed a similar approach in providing ample

monetary accommodation. A policy of adjusting the size and composition of their

balance sheets appears to have been added to the toolkit of major central banks.

But how well the balance sheet policy works, particularly in normal economic con-

ditions, remains an open question despite its heavy use during the crisis and reces-

sion. Critics argue that these measures have significant effects only when financial

markets are under severe stress and that their effectiveness may diminish when eco-

nomic and financial conditions move from crisis to normal conditions (e.g., Borio and

Zabai (2018); Goodhart and Ashworth (2012)). The policy transmission mechanism

could also be weaker in an economic recovery when interest rates are persistently low,

partly due to post-crisis headwinds such as substantial deleveraging and heightened

uncertainty (e.g., Borio and Hofmann (2017); Hesse et al. (2018)). Meanwhile, policy-

makers tend to offer a more positive assessment of the efficacy of LSAPs as a policy tool
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to respond to future economic downturns (e.g., Bernanke (2017); Yellen (2016)). In ad-

dition, based on simulations, Kiley (2018) suggests that active QE improves economic

performance given that equilibrium real interest rates become lower and that interest

rates are near their effective lower bound. Now that the post-crisis headwinds have

dissipated and normalization of monetary policy is well underway, it is an opportune

time to reinvestigate the macroeconomic effects of LSAPs and possible shifts in their

effects in the United States.

Against this background, this chapter empirically examines changes in the effects

of unconventional monetary policies (UMPs) in the United States. To this end, I build

on a benchmark vector autoregression (VAR) analysis with a combination of zero and

sign restrictions, based on Weale and Wieladek (2016) and Hesse et al. (2018), and esti-

mate a Markov-switching VAR (MSVAR) model with absorbing states to capture pos-

sible structural changes.1 This is relevant because the Federal Reserve (Fed) undertook

the LSAPs starting in December 2008 and expanded or modified the program several

times thereafter. Partly because of these LSAPs, the U.S. economy experienced not only

a quick recovery but also solid growth, forcing the Fed to consider tapering the LSAPs.

In speeches given in May and June 2013, former Fed Chair Ben Bernanke hinted at

reducing the size of the third-round of the LSAP, causing the taper tantrum, and this

may have altered market expectations of aggressive monetary accommodation in the

future (i.e., a possible beginning of monetary policy normalization). Indeed, the Fed

ended the LSAPs in December 2014 and started raising the federal funds (FF) rates in

December 2015. Given these evolutions of the U.S. unconventional monetary policies,

the MSVAR model with absorbing regimes is reasonable and attractive, since it allows

me to examine the existence and timing of possible permanent regime changes in the

effects of U.S. unconventional monetary policies.2 Thus, my regime-shift analysis in-

1 This type of models is called change-point models in the literature of Bayesian time series models. For

example, Chib (1998) proposes a Bayesian estimation method for models with multiple change points.

The name MSVAR is widely used in the macroeconomics literature including Hara et al. (2020).
2 An alternative, popular VAR model to assess changes in the effects of structural shocks is a time-

varying parameter VAR (TPVAR) model. However, the coefficients of the TPVAR model are typically
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corporates the developments of the U.S. unconventional monetary policies in assessing

their efficacy.

One of the challenges of estimating an MSVAR model is that there may be no single

monetary policy measure that can capture the full range of U.S. unconventional mon-

etary policies over the last decade. I employ the shadow rate of Wu and Xia (2016) as a

single monetary policy measure to deal with this issue. Since the shadow rate compiles

information on expectations on future policy actions from short- and long-term inter-

est rates, the use of the shadow rate matches what unconventional monetary policy

aims at, that is, to influence the expectations at the zero lower bound. Moreover, the

shadow rate is free from the zero lower bound.3 Having these advantages, the shadow

rate can arguably capture the easing of monetary policy during QE, decreasing signif-

icantly between 2009 and 2014, even when the FF rate remained at the effective lower

bound. In addition, the shadow rate was mostly increasing after early 2014, indicating

a movement towards the normalization of U.S. monetary policy. Therefore, it is not

unreasonable to assume that the shadow rate can describe the monetary policy stance

of the Fed over the last decade.

My model has at least three notable features. First, the analysis allows me to de-

tect the timing of breaks in the policy effects formally. Either two or three regimes

are assumed for the period of January 2009–September 2018 to accommodate multi-

ple regime changes. Second, two primary regimes–corresponding to before and after

the middle of 2013–emerge from the Markov-switching model and I interpret them as

an “LSAP regime” and a “monetary policy normalization regime” respectively. For

modeled as a random walk, making it hard to capture the sudden changes along with the monetary

policy regime changes. I might also be able to extend my model by modeling the transition proba-

bilities based on financial conditions or the business cycle to explicitly model endogenous monetary

policy regime changes, depending on the economic conditions. However, given the relatively small

sample size, it is not easy to do so. Therefore, the use of the MSVAR with exogenous switching is best

suited for my purpose.
3 These advantages, not explicitly addressed in Hara et al. (2020), are pointed out by the literature on

shadow rates including Wu and Xia (2016).
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each regime, the macroeconomic effects are further investigated with relevant policy

measures. Third, I examine components of GDP (nondurable, service, and durable

consumption, as well as capital investment) as alternative indicators of real economic

activity to discuss possible factors that generate different policy effects for each regime.

The main findings of this chapter can be summarized as follows. The MSVAR anal-

ysis detects regime changes around the beginning of 2011 and the middle of 2013.

Before 2011, the LSAPs had relatively large impacts on the real economy and prices,

but after the middle of 2013, their effects were weaker and less-persistent. In addition,

during the monetary policy normalization regime after the middle of 2013, the asset

purchase or balance sheet shocks had slightly weaker effects than during the early

stage of the LSAPs but stronger effects than during the late stage of the LSAPs. This

suggests that asset purchases can be used at least as a secondary tool to respond to

future downturns. On the other hand, interest rate shocks had insignificant impacts

on the real economy and prices. Finally, my results using the components of GDP in-

dicate that a positive response of durable and capital goods expenditures to interest

rate shocks weakened the negative impacts of an interest rate hike during the period

of monetary policy normalization.

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews

the U.S. unconventional monetary policies and the related literature, while Section 4.3

introduces my empirical methodology. Section 4.4 summarizes the empirical results

based on the MSVAR model using the shadow rate as a policy measure. Section 4.5 an-

alyzes each regime in detail using more appropriate policy measures for each regime.

Finally, Section 4.6 concludes the paper.

4.2 Related Literature

There is a vast literature on the LSAPs since the GFC. Various papers propose theo-

retical frameworks to explain the effectiveness of asset purchases by the central bank.

They suggest that asset purchases are particularly effective when financial markets are
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disrupted. In other words, their effectiveness may become weaker as financial markets

return to normal. For example, Cúrdia and Woodford (2011) construct a New Keyne-

sian model with imperfect financial intermediation and lending to the private sector

by the central bank and find that asset purchases targeted at specific types of assets can

be stimulative, particularly during a period of financial market turmoil. Gertler and

Karadi (2013) extend a New Keynesian framework to introduce a central bank that

purchases government bonds as well as private securities and compare the effective-

ness of different QE programs. They find that a purchase of private securities is more

stimulative than that of government bonds. Moreover, they find that the LSAP is more

effective the longer the time expected at the effective lower bound. Bauer and Rude-

busch (2014) find evidence of signaling effects from asset purchases that effectively

lower expectations on future short-term interest rates.

In contrast, there seems to be no conclusive empirical evidence of changes in the

effectiveness of the LSAPs on the macroeconomy. Many studies find a decline in the

effect of monetary policy on financial markets during the zero lower bound (ZLB) pe-

riod (e.g., D’Amico and King (2013); Krishnamurthy and Vissing-Jorgensen (2011); Kr-

ishnamurthy and Vissing-Jorgensen (2013)), although some studies also find that the

announcement of an LSAP has significant effects on the financial markets (Ihrig et al.

(2018); Swanson (2018)). As for the macroeconomic effects, Haldane et al. (2016) find

that an increase in asset purchases can be more stimulative when financial markets are

disrupted. In a similar vein, Hesse et al. (2018) report that the stimulative effects of the

LSAPs have been declining in the post-GFC period. They also argue that anticipated

asset purchases can have substantial stimulative effects even in the later stages of an

LSAP.

Since the LSAPs and the zero interest rate policy were conducted simultaneously,

a growing number of studies devote much attention to evaluating the effectiveness

of multiple monetary policy measures in a unified way. Against this background,

shadow rate term structure models have been developed to deal with the ZLB by

a number of studies, including Ichiue and Ueno (2013), Krippner (2013), Bauer and
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Rudebusch (2016), and Wu and Xia (2016). More specifically, Bullard (2012), Kripp-

ner (2013), and Wu and Xia (2016) claim that the shadow rate can be used as a single

measure of both conventional and unconventional monetary policy stances. For exam-

ple, Wu and Xia (2016) estimate the effectiveness of monetary policy from 1990 to 2013

using their shadow rate and find an expansionary monetary policy shock is highly

stimulative during the ZLB period. Furthermore, Bauer and Rudebusch (2016) suggest

that the shadow rate can capture monetary policy expectations. In this study, I use the

shadow rate data computed according to the method of Wu and Xia (2016), and extend

the existing empirical studies in a few ways.4 First, by expanding the sample period

up to September 2018, I analyze the effectiveness of the U.S. unconventional monetary

policies over both LSAP and normalization periods. Second, I consider regime changes

in the effects of the U.S. unconventional monetary policies, allowing for the possibil-

ity of a difference in the effects of unconventional monetary policies during the LSAP

and normalization regimes. Third, I use the estimated SVAR model to compare the

effectiveness of the policy rate and LSAPs during both the LSAP and normalization

regimes, as detected by the model.

Other studies related to this study include those on the state-dependence of mon-

etary policy effectiveness. For example, Lo and Piger (2005) find that policy shocks

are more stimulative in recessions and that the asymmetry may not be caused by

either the direction or size of the policy shock. In contrast, Tenreyro and Thwaites

(2016) provide empirical evidence that a change in the FF rate is less effective in re-

cessions, particularly for durable goods consumption and business investment. Berger

and Vavra (2015) extend a standard incomplete market model to incorporate fixed costs

into households’ durable goods consumption adjustment. They find that durable ex-

penditures are less responsive to economic shocks during recessions in the presence

of adjustment costs to households’ durable purchases. In other words, durable expen-

ditures can be more sensitive to shocks in an economic recovery. Suzuki (2016) pro-

vides empirical evidence of this by using the U.S. Consumer Expenditure Survey. He

4 The data are available at https://sites.google.com/view/jingcynthiawu/shadow-rates

81



reports that the fixed costs of adjustment on households’ durable goods consumption

are larger than those on nondurable goods consumption. In this study, I investigate the

state-dependence of policy effectiveness potentially arising from households’ durables

consumption adjustment. Specifically, I introduce durable and nondurable goods as

well as services into my VAR model and analyze changes in the policy effects on these

types of goods before and after the start of U.S. monetary policy normalization.

4.3 Methodology

This study employs an MSVAR model with absorbing regimes to examine possible per-

manent regime changes in the effects of U.S. unconventional monetary policies. This

is relevant because the U.S. unconventional monetary policies have evolved signifi-

cantly over the last decade, as I briefly discussed in the introduction. In this section, I

introduce my baseline model, followed by the MSVAR model and its estimation.

4.3.1 Baseline model

The baseline model is taken from Weale and Wieladek (2016) and Hesse et al. (2018).

Both studies employ the following VAR model estimated on monthly data:

Yt = α+
L∑

k=1

AkYt−k + εt, εt∼iid N(0,Σ) (4.1)

where Yt is a vector of endogenous variables, α is a vector of constants, Ak is the array

of coefficients associated with the corresponding vector of variables for lag k. The en-

dogenous variables comprise the logarithm of monthly (seasonally adjusted) real gross

domestic product (GDP), the logarithm of the (seasonally adjusted) consumer price in-

dex (CPI), a measure of the policy instrument which is discussed in detail below, the

yield on the 10-year government bond and the logarithm of the real stock price index

(deflated by the CPI). For my empirical analysis, L is set to two, following Weale and

Wieladek (2016) and Hesse et al. (2018).
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One of the difficulties with assessing the effects of the U.S. unconventional mone-

tary policies over the last decade is that there may be no single variable which can cap-

ture the U.S. unconventional monetary policies during this period. During the GFC

the Fed lowered the FF rate effectively to zero and introduced the LSAP program in

December 2008. Since then, the Fed has been using asset purchases as one of its pol-

icy instruments. Because of this, Weale and Wieladek (2016) and Hesse et al. (2018)

use the announcement of asset purchases as a policy measure. In addition, the Fed

started raising the FF rate in December 2015, making it an active policy tool during

the normalization of U.S. monetary policy. The dynamics of these two policy measures

are displayed in Figure 4.1. As can be seen, the cumulative amount of asset purchases

announced has been constant since 2014, while the FF rate was essentially at its lower

bound with little fluctuation before December 2015. As a consequence, econometri-

cally it might not be appropriate to use either of them as a policy measure throughout

the entire sample period.

To overcome this problem, I adopt the shadow rate of Wu and Xia (2016) as a single

monetary policy measure over the last decade. Figure 4.1 also plots the shadow rate

along with the two other policy measures. As can be seen, even though the FF rate was

almost constant at the effective lower bound until the end of 2015, the shadow rate de-

creased significantly between 2009 and 2014, reflecting the increase in the cumulative

amount of asset purchases announced. On the other hand, the shadow rate was mostly

increasing after early 2014, indicating a movement towards the normalization of U.S.

monetary policy. Thus, it seems not unreasonable to assume that the shadow rate can

describe the monetary policy stance of the Fed over the last decade as discussed by

Krippner (2013) and Wu and Xia (2016). Therefore, I will use the shadow rate as a

single policy instrument for my analysis in the next section.

Another issue for the VAR analysis is how to identify monetary policy shocks. In

this study, following Hesse et al. (2018), I use a combination of zero and sign restric-

tions to identify monetary policy shocks. More specifically, I assume that outputs and

prices do not respond contemporaneously to any shocks, including monetary policy
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shocks, other than aggregate demand and supply shocks. This is a classical assump-

tion used in the block-recursive identification of Christiano et al. (1999) and not un-

reasonable given the sticky nature of output and prices. In addition, I assume that a

contractionary monetary policy shock increases the shadow rate and long-term bond

yield and reduces real stock prices.5 My identification assumptions are essentially the

same as those of Hesse et al. (2018) and similar to one of the identification schemes

of Weale and Wieladek (2016). All sign restrictions are imposed upon impact and 1

month thereafter.

4.3.2 MSVAR model

The U.S. unconventional monetary policies have evolved greatly over the last decade,

including the introduction of the LSAP and the start of monetary policy normalization.

Therefore, it is important to consider possible regime changes to assess the effects of

the unconventional monetary policies. To this end, I incorporate Markov-switching

into the baseline model, following Sims and Zha (2006), among others.

My baseline VAR model (4.1) is extended as:

Yt = α(st) +
L∑

k=1

Ak(st)Yt−k + εt, εt∼iid N(0,Σ(st)) (4.2)

where st is a latent variable that takes a value from 1, 2, . . . , K, with K being the

number of regimes. In other words, this model allows me to specify different VAR

models for different regimes.

The Markov chain is a simple model that describes the dynamics of a discrete ran-

dom variable. Hamilton (1989) proposes modeling the stochastic process of st using a

Markov chain. The law of regime evolution is governed by the transition probability

5 While I follow the approach used in Hara et al. (2020), I note that the identified LSAP shock might

also reflect a forward guidance shock which may have qualitatively the same effects. It is hard to

separately identify the LSAP and forward guidance shocks because they tend to be simultaneously

implemented. This approach implicitly assumes that a forward guidance shock is contained in a

shock to the long-term interest rate.
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matrix P, where the (i, j) element of P, pij , indicates Pr[st = i|st−1 = j]. The expected

duration of each regime and inferences about st can be calculated based on this ma-

trix. Although the Markov chain is a simple model, it can describe various patterns of

regime transitions. Specifically, I can capture permanent structural changes by impos-

ing zero restrictions on the elements of matrix P. Below is an example of a transition

matrix of a three-regime model with absorbing regimes:

P =

⎡⎢⎢⎢⎢⎣
p11 0 0

1− p11 p22 0

0 1− p22 1

⎤⎥⎥⎥⎥⎦ . (4.3)

With this transition probability matrix, the regime dynamics are assumed to start from

Regime 1. The regime can shift from Regime 1 to Regime 2 but not to Regime 3, due

to the restriction that p31 = 0. Once the regime moves from Regime 1 to Regime 2, it

can shift to Regime 3 but it will never return to Regime 1 because p12 = 0. Finally, once

the model reaches Regime 3, it will stay in Regime 3 for the remainder of the sample

period, since the zero restrictions on p13 and p23 prevent a regime change from Regime

3 to Regime 1 or Regime 2. Therefore, by imposing restrictions on P in this manner, I

can model two permanent structural changes within the sample period.

I will use the transition matrix (4.3) for the three-regime model in Section 4.4. The

restrictions are reasonable for my purpose of studying the changes in the effects of the

U.S. unconventional monetary policies, corresponding to their evolution over the last

decade. In other words, I assume that there are permanent regime shifts along with

changes in the U.S. unconventional monetary policies employed.6

As will be discussed in the next section, Regimes 1 and 2 are identified with the

periods corresponding to the early and late stages of the LSAPs and Regime 3 with the

6 Uncertainty measures seem to support this assumption originally employed by Hara et al. (2020). For

example, the VIX had been stable until shortly before the onset of the global financial crisis in the late

2000s. This suggests that agents might recognize risk of a financial crisis only shortly before the crisis

actually occurs. Since agents seem to not presume a future crisis in making decisions, my model does

not assume the economy going back to the previous crisis state in the future.
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period corresponding to the normalization of monetary policy. Note that this does not

necessarily mean that the policy effects have to be very different in each regime, since I

do not impose any restrictions on the VAR parameters and they could be similar across

regimes. I will examine the differences in the policy effects systematically based on the

impulse response functions in the following two sections.

MSVAR models are most commonly estimated by the Bayesian Markov chain Monte

Carlo (MCMC) approach, or more specifically a Gibbs sampler, which is what I em-

ploy in this study. In Bayesian statistics, parameters are random variables and data are

fixed, while parameters are fixed and data are random variables in frequentist statis-

tics. In a Bayesian setup, we set a prior distribution for parameters, and estimate them

using the posterior distribution. Applying the MCMC to MSVAR models enables us to

sample regime change points and impulse response functions as well as the parame-

ters from the posterior distribution. The samples of regime change points and impulse

response functions can be used for the calculation of posterior probabilities of regime

shifts and credible intervals of impulse response functions taking account of parame-

ter uncertainty.7 Appendix of this chapter provides details on the estimation procedure

including the prior and full conditional posterior distributions of the VAR parameters

and the multi-move sampler for sampling the latent variables (s1,. . . ,sT ) jointly from

the full conditional posterior distribution.

4.4 Results with the Shadow Rate as a Policy Measure

In this and the following section, I discuss my empirical results. In this section, I use

the entire sample to observe possible changes in the effects of monetary policy over

the last decade. For this purpose, I use the shadow rate as a single monetary policy

measure. Based on the results of this section, I will analyze each regime more carefully

using more direct monetary policy measures in the following section.

7 As a reason for employing the MCMC, Hara et al. (2020) address practical concerns about the use of

maximum likelihood estimation for a model with many parameters.
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4.4.1 Data

My empirical analysis is based on monthly data of real GDP, the CPI, the shadow rate,

the U.S. 10-year government bond yield and real stock prices, with the sample period

lasting from January 2009 to September 2018. Monthly real GDP data were obtained

from Macroeconomic Advisors, while the shadow rate was taken from Wu's website. I

also obtained 12-month FF futures data from Bloomberg. Other data were downloaded

from the Federal Reserve Economic Data database.

The cumulative asset purchases announced series was constructed in a similar man-

ner to Weale and Wieladek (2016) and Hesse et al. (2018). Specifically, I calculated the

cumulative sum of asset purchase announcements by adding up the Fed's announced

purchases of Treasuries, mortgage-backed securities and agency debt under the three

LSAPs (LSAP1, LSAP2, and LSAP3). In addition, I included asset purchases associ-

ated with the maturity extension program. Finally, I divided the cumulative sum of

asset purchase announced by the nominal GDP of the previous quarter to mitigate the

possible endogeneity problem.8

4.4.2 Results of the two-regime model

I start by estimating the two-regime MSVAR model, assuming one permanent struc-

tural change. I use 30,000 Gibbs iterations discarding the first 20,000 as burn-in. To

examine whether introducing the regime switching improves the model or not, I com-

pare the values of the Bayesian Information Criterion (BIC) between the VAR and two-

regime MSVAR models. The BIC of each model is 3.83 and 3.54, meaning that the

two-regime MSVAR model is a better model.

Figure 4.2 plots the posterior probabilities of Regime 2.9 As can be seen, the two-

regime model detects a structural change around July 2013, immediately after speeches

by former Fed Chair Ben Bernanke about a possible end to QE in the United States on

8 For this calculation, I used monthly nominal GDP obtained by linearly interpolating quarterly nomi-

nal GDP.
9 See the Appendix for details on computation of the posterior probabilities.
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May 22 and June 19, 2013. At that time, financial markets appeared not to be prepared

for the tapering of QE. As a consequence, the U.S. Treasury yields surged and more

than two trillion dollars was lost on international stock markets within 4 weeks, an

event which is sometimes called the taper tantrum. In other words, my results suggest

that after the taper tantrum, the economic regime might have shifted to a new regime

as the market became aware of the possible termination of massive monetary easing.10

In order to see the change in the effects of monetary policy that occurred along

with this regime change, Figure 4.3 plots the impulse responses of each variable to a

contractionary monetary policy shock, defined as a one-standard-deviation increase

in the shadow rate along with 68% Bayesian credible intervals for each regime.11 The

results of Regime 1, shown in the first column of the figure, indicate fairly standard

responses of each variable to a contractionary monetary policy shock. Specifically, a

contractionary monetary policy shock significantly reduces real output and prices and

its effects are relatively persistent. On the other hand, as can be seen from the second

column of Figure 4.3, the impacts of the same shock on the real economy and prices

during Regime 2 are somewhat weaker and less persistent. In other words, my results

suggest that the normalization of U.S. monetary policy has had only marginal effects

on the real economy and inflation.

To confirm convergence of the Markov chain, I use the Geweke (1992) convergence

diagnostic.12 This diagnostic for a model parameter tests equality of means of the first

10 While it is not explicitly addressed in Hara et al. (2020), I note that the timing of the detected change

is much earlier than that of the actual liftoff in the late 2015. The shadow rate can reflect a substantial

shift in expectations on future monetary policy actions triggered by the Bernanke’s speech, which

may not be incorporated in the actual FF rate.
11 See the Appendix for details on computation of the impulse responses and credible intervals.
12 The convergence diagnostics and basic statistics for selected parameters in this chapter are supple-

mental analyses for Hara et al. (2020).
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nA and last nB draws from the corresponding posterior distribution.13,14 If the sequence

of the MCMC sampling is stationary, this statistic has an asymptotically standard nor-

mal distribution. I use nA = 0.1N and nB = 0.5N as suggested by Geweke (1992),

where N = 10, 000.15 To consider autocorrelation across draws, I compute the stan-

dard errors of θ̄A and θ̄B using a Parzen window with the bandwidth of 0.1nA and

0.1nB respectively, following Nakajima et al. (2011). Panel (a) of Table 4.1 presents the

estimates for posterior means, standard deviations, 95% Bayesian credible intervals,

and the Geweke’s convergence diagnostics for selected parameters in the model.16 The

convergence diagnostic for the transition probability p11 is 1.356, suggesting that the

null hypothesis of convergence is not rejected, and the statistics for the other parame-

ters are not significant at the 1% significance level. These results confirm convergence

of the Markov chain in my estimation with the burn-in period.

4.4.3 Results of the three-regime model

There is controversy about whether the effects of LSAPs have declined or not. For

example, while Weale and Wieladek (2016) confirm that including LSAP1 or not does

not change the effectiveness of LSAPs, Hesse et al. (2018) suggest that the effects of the

later LSAP seem to be weaker. Therefore, it might be instructive to consider multiple

regime shifts to examine a possible change in the effects of the LSAPs. In addition,

the actual FF rate hikes started in December 2015, which might have shifted the econ-

omy to a new regime, giving us another motivation to accommodate multiple regime

13 Let θ(n) denote the n-th draw of a parameter to be tested. The means of the first nA and last

nB draws are expressed as θ̄A = 1
nA

∑nA

n=1 θ
(n) and θ̄B = 1

nB

∑N
n=N−nB+1 θ

(n), where N is the

number of total draws discarding the burn-in samples. The Geweke’s statistic for θ is defined as

(θ̄A− θ̄B)
/√

[SE(θ̄A)]2 + [SE(θ̄B)]2, where SE(θ̄A) and SE(θ̄B) denote the standard errors of θ̄A and

θ̄B , respectively.
14 I note that an insignificant Geweke’s diagnostic is a necessary but not a sufficient condition for con-

vergence of the Markov chain.
15 I place an interval of 0.4N between the two groups to assure independence between them.
16 To compute a 95% credible interval for a parameter, I sort draws of the parameter after the burn-in

period in ascending order and take the 2.5 and 97.5 percentiles.
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changes. To see when an additional regime shift can be observed and examine the

possible changes in the effects of unconventional monetary policies along with regime

changes, I report the results of the three-regime MSVAR model in this subsection.

At first, I compare the BIC to see an additional regime shift can give a better de-

scription of the data. The BIC of the three regime model turns out to be 2.62, indicating

the three-regime model is the best model among three models with the smallest BIC

value.

Figure 4.4 plots the posterior probabilities of Regimes 2 (solid line) and 3 (broken

line). The results indicate an additional regime shift around the beginning of 2011 in

addition to a break in July 2013. Thus, the three-regime model detects some changes

during the LSAPs rather than during the normalization period after the middle of 2013.

I note that the beginning of the second regime is fairly close to the start of the second

subsample of Hesse et al. (2018). To assess convergence of the Markov chain in the

three-regime model, Panel (b) of Table 4.1 presents the estimates for the convergence

diagnostics and several key statistics for selected parameters in the model. The statis-

tics for the most parameters are not significant at the 1% significance level, suggesting

that the burn-in period is sufficiently long for convergence of the Markov chain.17

To visualize the variations in the effects of unconventional monetary policies that

occur along with these regime changes, Figure 4.5 summarizes the impulse responses

of each variable to a contractionary monetary policy shock for each regime. The im-

pulse responses of Regime 1, shown in the first column of the figure, are standard,

persistently depressing real output and prices. On the other hand, as shown in the sec-

ond column, the same shock in Regime 2 seems to have a larger impact on output and

a similar impact on prices in the short-run, but the effects disappear quickly, within 6

months. Thus, my findings are consistent with those of Weale and Wieladek (2016) in

the short-run and similar to those of Hesse et al. (2018) in the long run. Finally, and not

surprisingly, the responses of Regime 3, shown in the last column, are essentially the

17 Only an exception is the variance of residuals of the equation for output in Regime 1 labelled σy,1

with the statistic of -3.646.
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same as those of Regime 2 of the two-regime model.

4.5 Analysis of Each Regime with More Relevant Policy

Measures

The results of the previous section provide clear evidence of a regime shift around

the middle of 2013. In this section, I conduct further analyses of each regime. More

specifically, given the results of the previous section, I divide the sample into two sub-

samples: January 2009 to June 2013 (LSAP regime) and September 2013 to September

2018 (normalization regime).18 One advantage in considering subsamples separately

is that I can use more relevant measures of monetary policy for each regime instead of

the shadow rate, enabling a more precise assessment of the effects of the U.S. uncon-

ventional monetary policies based on similar VAR models, but with more appropriate

policy measures.

4.5.1 Results of LSAP regime

I start by estimating the two-regime MSVAR model using the first subsample, since

the results of the three-regime MSVAR model detected a regime shift around the be-

ginning of 2011. For this period, the asset purchases can be considered as the unique

active monetary policy instrument, since the FF rate was essentially at the lower bound

with little fluctuation during the entire period. More specifically, following Weale and

Wieladek (2016) and Hesse et al. (2018), I use the cumulative amount of asset pur-

chases announced divided by the nominal GDP of the previous quarter as the policy

instrument.

Figure 4.6 plots the posterior probabilities of Regime 2, showing a similar regime

shift around the beginning of 2011 to the one found in the previous section. Thus,

there may have been some change in the propagation mechanism of monetary policy

18 The second subsample starts from September 2013, since I use the first 2 months of data for the lags

of the VAR model.
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shocks around this period.19 To investigate this point more closely, Figure 4.7 depicts

the impulse responses along with 68% credible intervals of each regime. As can be

seen, the impulse responses of Regime 1 shown in the first column exhibit the proper

responses to monetary policy shocks, while those of Regime 2 in the second column

suggest that the effects of monetary policy shocks became weaker and less persistent.

These findings are partially consistent with those of Weale and Wieladek (2016) in the

short-run and similar to those of Hesse et al. (2018) in the long-run.

These findings might reflect the state-dependence of the effectiveness of monetary

policy. Berger and Vavra (2015) prove that expenditures on durable goods are less

responsive to economic shocks during recessions in the presence of adjustment costs

on durable goods consumption. This implies that durable expenditures respond to

shocks more in an economic recovery. Against that background, I examine the state-

dependence of policy effectiveness potentially arising from households’ durable con-

sumption adjustments. To this end, I replace GDP with nondurable consumption, ser-

vice consumption, durable consumption and capital goods new orders, and estimate

the same two-regime MSVAR model.20

The impulse response of each variable for the first and second regimes is illustrated

in the first and second columns of Figure 4.8, respectively. As can be seen from the first

column, each GDP component responds significantly and persistently negatively to a

monetary policy shock in Regime 1. In contrast, a monetary policy shock in Regime 2

has smaller and less persistent effects on each GDP component, with the exception of

the effect on durable consumption, which is larger but still less persistent in Regime 2

than in Regime 1. In other words, my results indicate that the monetary policy effects in

Regime 2 seem to be smaller for a wide range of consumption types. The larger but less

persistent responsiveness of durable consumption might imply the state-dependence

of monetary policy effectiveness arising from adjustment costs on durable goods con-

19 I confirm that the Geweke’s convergence diagnostics for the most parameters in the model are not

significant at the 1% significance level.
20 More specifically, I use the manufacturers’ new orders for non-defense capital goods excluding air-

craft.
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sumption.

4.5.2 Results of normalization regime

In this subsection, I document the results of the second subsample from September

2013 to September 2018. In this regime, there are arguably two active policy instru-

ments: the Fed’s asset purchases, or balance sheet, and the FF rate. Therefore, I extend

the benchmark 5-variate VAR model to 6-variate VAR model to incorporate both mon-

etary policy measures. For the balance sheet, I use the Fed’s total assets divided by the

nominal GDP of the previous quarter. This policy instrument is slightly different from

the cumulative amount of asset purchases announced used in the previous subsection,

as there were not many announcements of changes in the Fed’s balance sheet during

this regime. For the FF rate, I use the implied FF rate based on 12-month FF futures

price data, since the actual FF rate exhibited little fluctuation before the Fed started

raising the FF rate in December 2015. To identify a monetary shock for each measure,

I use the same sign restrictions as above. More specifically, I assume that a contrac-

tionary balance sheet policy shock reduces the Fed’s total assets and real stock prices

and increases long-term bond yields, while the interest rate policy shock increases the

FF rates and long-term bond yields and reduces real stock prices.

Figure 4.9 summarizes the impulse responses of each variable to each contrac-

tionary monetary policy shock based on the 6-variate VAR model.21 Specifically, the

first column plots the impulse responses of each variable to an unexpected decrease in

the size of the Fed’s balance sheet. The results indicate that real output responds signif-

icantly negatively to quantitative tightening. Although the effects are slightly smaller

than those of Regime 1 of the LSAP regime, as can be seen in Figure 4.7, they are still

larger and more persistent than those of Regime 2 of the LSAP regime. In contrast, the

second column of Figure 4.9 suggests that neither real output nor the price level shows

a strong response to an unexpected increase in the FF rate. In other words, my results

21 The Geweke’s statistics for all of the selected parameters are not significant at the 1% significance

level, suggesting convergence of the Markov chain.
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indicate that during the normalization regime FF rate hikes had only marginal effects.

As for the size of the balance sheet, Bullard (2019) points out that unanticipated an-

nouncements of a balance sheet reduction during 2017 seem to have had a smaller eco-

nomic impact than earlier balance sheet expansions. Based on this fact, he concludes

that the signaling effects from the asset purchases suggested by Bauer and Rudebusch

(2014) can induce asymmetric effects between an expansion and a reduction of the

central bank’s balance sheet. My findings suggest that a decline in the signaling ef-

fect might be less obvious if I look at the whole normalization period after the taper

tantrum triggered by Bernanke’s speeches in 2013. Regarding the policy rates, the re-

sults are consistent with Lo and Piger (2005), who find that policy shocks are more

stimulative in recessions.

To obtain some insight into the possible reasons for the differences in the effects

of monetary tightening between the two instruments, I conduct a similar exercise to

that performed earlier and replace GDP with nondurable consumption, service con-

sumption, durable consumption and capital goods new orders, and estimate the same

6-variate VAR model with two monetary policy instruments. Figure 4.10 plots the im-

pulse responses of each variable for each instrument. As can be seen, regardless of the

policy measure, a monetary policy tightening shock significantly reduces nondurable

and service consumption in the long-run, although the effects are not statistically sig-

nificant. In addition, both measures significantly dampen capital goods new orders in

the short-run. On the other hand, durable consumption responds significantly posi-

tively to an FF rate shock in the short-run, raising durable consumption even in the

long-run, although the positive responses are insignificant in the long-run. One possi-

ble explanation for these unusual responses is that in the normalization regime the

tightening of monetary policy produces an expectation of further monetary policy

tightening with future interest rate hikes, inducing consumers to buy durables before

the interest rate rise occurs. In fact, in January 2012 the Fed publicly started to report a

“dot plot,” which shows the Federal Open Market Committee (FOMC) member’s pro-

jections for future interest rates in subsequent years and in the longer run, making it
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easier to predict the future interest rate hikes. For example, as of March 2014, FOMC

participants largely anticipated several interest rates hikes both in 2015 and 2016, lead-

ing the median target federal funds rate to 2.25% by the end of 2016. Since the dot

plots usually show diversified projections, particularly in the monetary normalization

regime, an interest rate hike could reduce the uncertainty about the future path of the

FF rates, yielding stronger anticipation of future interest rate hikes. As a consequence,

in the case of FF rate shocks, the positive effects on durables offset the negative effects

on other goods, rendering the responses on GDP insignificant.

What do the findings of this study imply for the conduct of monetary policy going

forward? The empirical results indicate that unexpected expansions or reductions in

the size of the Fed’s balance sheet had relatively clear macroeconomic effects not just

in the early stage of the LSAP but also in the period from September 2013 to September

2018, including the period of monetary policy normalization. Given that the present

economic structure remains essentially unchanged, this suggests that the balance sheet

policy is likely to remain in the policy toolkit for the Fed to use in response to future

economic downturns, as Yellen (2016) anticipates. My results also support an argu-

ment by Kiley (2018) that QE can play a useful role in offsetting the adverse effects of

the effective lower bound when the equilibrium real interest rate is low. In sum, the

findings of this study generally support the case for an active balance sheet policy, at

least as a secondary tool in ordinary times.22

4.6 Conclusion

Over the last decade, U.S. monetary policy has evolved significantly. In response to

the GFC, the Fed lowered the policy rate to the effective lower bound, introduced the

LSAP in December 2008 and expanded the LSAP on two occasions. With the help of

these policy initiatives, the U.S. economy recovered and grew steadily, causing former

22 This view seems consistent with a recent announcement by the Fed. In January 2019 Fed Chair Jerome

Powell announced publicly at the American Economic Association Meetings that the Fed would not

hesitate to make changes to the balance sheet reduction plan if necessary.
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Fed Chair Ben Bernanke to suggest a possible tapering of the LSAPs and the begin-

ning of monetary policy normalization in May and June 2013, which induced the taper

tantrum. The Fed eventually ended the LSAPs in December 2014 and started raising

the FF rate in December 2015.

Against this background, this study empirically assessed the effects of the U.S. un-

conventional monetary policies over the last decade. Given the evolution of the U.S.

unconventional monetary policies, it is crucial to consider possible regime shifts. To

this end, I estimated a MSVAR model by incorporating Markov-switching into the

benchmark VAR model based on Weale and Wieladek (2016) and Hesse et al. (2018).

To overcome the problem that there may be no single monetary policy measure dur-

ing this period, I adopted the shadow rate of Wu and Xia (2016) as an appropriate

monetary policy indicator over the last decade.

My estimation of the MSVAR model detected a regime shift around the middle

of 2013, immediately after the taper tantrum triggered by Bernanke’s speeches. In

other words, my results demonstrate that there were two distinct regimes over the last

decade of U.S. monetary policy: the LSAP regime before the middle of 2013 and the

monetary normalization regime after the middle of 2013. In addition, the three-regime

MSVAR model detected an additional regime change around the beginning of 2011,

suggesting a possible change in the effects of the LSAPs.

I further investigated the details of each regime with relevant policy measures

based on subsamples before and after the middle of 2013. My analysis indicated that

in the early stage of LSAPs, that is, before 2011, the U.S. LSAPs had relatively large

impacts on the real economy and prices, but their effects during the late stage of the

LSAPs were weaker and less persistent. My results also suggest that the effects of the

asset purchase or balance sheet shocks were slightly weaker during the monetary nor-

malization regime after the middle of 2013 than during the early stage of the LSAPs,

but stronger than during the late stage of the LSAPs. In contrast, the real economy and

prices showed no significant responses to interest rate shocks. Additional analysis us-

ing GDP components demonstrated that negative responses of nondurable and service
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consumption and capital goods expenditure to interest rate shocks were somewhat off-

set by the positive impacts of the interest rate hike on durable consumptions after the

middle of 2013. These findings seem to support the view that LSAPs will retain a use-

ful role for central banks to use in responding to future economic downturns, at least

as a secondary tool.

97



Figure 4.1: Cumulative Sum of Asset Purchases Announced, Federal Funds Rate, and
the Wu-Xia Shadow Rate from January 2009 to September 2018
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Figure 4.2: Posterior Probabilities of Regime 2 from Equation (4.2) with K = 2
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Figure 4.3: Impulse Responses of GDP, the CPI, the Long-Term Interest Rate and Stock
Prices to a Contractionary Monetary Policy Shock under Regimes 1 (Left) and 2 (Right)
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Note: The results are obtained from estimating Equation (4.2) with K = 2. The sample period is
January 2009 to September 2018. All of the responses displayed are to a one standard deviation
shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Figure 4.4: Posterior Probabilities of Regimes 2 and 3 from Equation (4.2) with K = 3
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Figure 4.5: Impulse Responses of GDP, the CPI, the Long-Term Interest Rate and Stock
Prices to a Contractionary Monetary Policy Shock under Regimes 1 (Left), 2 (Center),
and 3 (Right)

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

GDP

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0 3 6 9 12 15 18 21 24

Long Rate

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

0 3 6 9 12 15 18 21 24

Stock Price

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

CPI

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

GDP

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0 3 6 9 12 15 18 21 24

Long Rate

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

0 3 6 9 12 15 18 21 24

Stock Price

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

CPI

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

GDP

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0 3 6 9 12 15 18 21 24

Long Rate

-1.8

-1.2

-0.6

0.0

0.6

1.2

1.8

0 3 6 9 12 15 18 21 24

Stock Price

-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15

0 3 6 9 12 15 18 21 24

CPI

Note: The results are obtained from estimating Equation (4.2) with K = 3. The sample period is
January 2009 to September 2018. All of the responses displayed are to a one standard deviation
shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Figure 4.6: Posterior Probabilities of Regime 2 from Equation (4.2) with K = 2
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Figure 4.7: Impulse Responses of GDP, the CPI, the Long-Term Interest Rate and Stock
Prices to a Contractionary Monetary Policy Shock under Regimes 1 (Left) and 2 (Right)
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Note: The results are obtained from estimating Equation (4.2) with K = 2. The sample period
is January 2009 to June 2013. All of the responses displayed are to a one standard deviation
shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Figure 4.8: Impulse Responses of Nondurable Consumption, Service Consumption,
Durable Consumption and Capital Goods New Orders to a Contractionary Monetary
Policy Shock under Regimes 1 (Left) and 2 (Right)
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Note: The results are obtained from estimating Equation (4.2) with K = 2. The sample period
is January 2009 to June 2013. All of the responses displayed are to a one standard deviation
shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Figure 4.9: Impulse Responses of GDP, the CPI, the Long-Term Interest Rate and Stock
Prices to an Unexpected Decrease in the Fed’s Total Assets (Left) and those to an Un-
expected Increase in the FF Rate (Right)
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Note: The results are obtained from estimating Equation (4.2) with K = 1. The sample period
is September 2013 to September 2018. All of the responses displayed are to a one standard
deviation shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Figure 4.10: Impulse Responses of Nondurable Consumption, Service Consumption,
Durable Consumption and Capital Goods New Orders to an Unexpected Decrease in
the Fed’s Total Assets (Left) and those to an Unexpected Increase in the FF Rate (Right)
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Note: The results are obtained from estimating Equation (4.2) with K = 1. The sample period
is September 2013 to September 2018. All of the responses displayed are to a one standard
deviation shock. Dashed lines represent the 68% credible intervals of the impulse responses.
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Table 4.1: Estimation results for selected parameters in the MSVAR models

Parameter Mean St. dev. 95 % interval CD

(a) Two-regime model

p11 0.965 0.024 [ 0.906, 0.996] 1.356

ay,1 0.327 0.141 [ 0.050, 0.605] -1.061

ay,2 0.433 0.120 [ 0.196, 0.673] -0.858

ap,1 -0.456 0.347 [-1.140, 0.218] 0.058

ap,2 -0.373 0.263 [-0.887, 0.142] 2.087

σy,1 0.232 0.048 [ 0.156, 0.344] -0.809

σy,2 0.105 0.020 [ 0.073, 0.150] -0.533

σp,1 0.041 0.009 [ 0.028, 0.061] -1.268

σp,2 0.026 0.005 [ 0.018, 0.037] -0.202

(b) Three-regime model

p11 0.931 0.047 [ 0.817, 0.991] 0.707

p22 0.936 0.043 [ 0.828, 0.992] -1.423

ay,1 0.695 0.197 [ 0.307, 1.092] -0.810

ay,2 -0.003 0.192 [-0.386, 0.374] -0.494

ay,3 0.436 0.118 [ 0.203, 0.663] -1.388

ap,1 -0.377 0.681 [-1.729, 0.964] 2.132

ap,2 -0.187 0.547 [-1.275, 0.901] -0.453

ap,3 -0.377 0.261 [-0.883, 0.135] -1.587

σy,1 0.172 0.058 [ 0.092, 0.315] -3.646

σy,2 0.225 0.071 [ 0.126, 0.397] -0.119

σy,3 0.105 0.020 [ 0.073, 0.151] -1.020

σp,1 0.023 0.007 [ 0.012, 0.041] -0.128

σp,2 0.029 0.010 [ 0.016, 0.053] -0.941

σp,3 0.026 0.005 [ 0.018, 0.038] 1.048

Note. “CD” denotes the Geweke’s convergence diagnostic. ay,j and ap,j denote coefficients
on one-period lagged output and price in Regime j, respectively. σy,j is the variance of
residuals of the equation for output in Regime j, and σp,j is the variance of residuals of the
equation for price in Regime j.
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Appendix: Gibbs sampling procedure for two-regime MSVAR

models

This appendix describes how the Gibbs sampling procedure is implemented to my

two-regime MSVAR model with absorbing regimes.23

I start by rewriting the VAR(L) model of Equation (4.2) as:

Yt = Xtβ(st) + εt, εt∼iid N(0,Σ(st)), (A1)

where Yt = (y1,t, . . . , yn,t)
′ and Xt = In ⊗ [1,Y

′

t−1, . . . ,Y
′

t−L]. The VAR coefficients are

expressed as β(st) = vec([α(st),A1(st), . . . ,AL(st)]
′
). For convenience, I define β =

[β(1)
′
,β(2)

′
], Σ = [vech(Σ(1))

′
,vech(Σ(2))

′
]
′ , ỸT = [Y1, . . . ,YT ]

′ , and s̃T = [s1, . . . , sT ]
′ ,

where T is the number of total observations.

Suppose I have run the Gibbs sampler r times. The Gibbs sampling for the (r+1)-th

iteration takes the following steps:

1. Generate s̃(r+1)
T conditional on p(r)11 , Σ(r), β(r), and ỸT

I use a multi-move sampler proposed by Kim and Nelson (1998).24 The full con-

ditional posterior distribution is given by:

g(s̃T |p11,Σ,β, ỸT ) = g(sT |p11,Σ,β, ỸT )
T−1∏
t=1

g(st|st+1, p11,Σ,β, Ỹt), (A2)

where g denotes a probability distribution function, and g(st|st+1, p11,Σ,β, Ỹt) is

defined as:

g(st = s|st+1, p11,Σ,β, Ỹt+1) =
g(st = s|p11,Σ,β, Ỹt)g(st+1|st = s)∑2
i=1 g(st = i|p11,Σ,β, Ỹt)g(st+1|st = i)

, (A3)

for s = 1, 2. I note that g(st+1|st) is the transition probability with a transition

23 This appendix is an extended version of the appendix in Hara et al. (2020).
24 Chib (1996) provides detailed descriptions for the procedure.
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matrix of: ⎡⎢⎣ p11 0

1− p11 1

⎤⎥⎦ .
To sample s̃T from its posterior distribution, I start with g(s1 = 1|p11,Σ,β, Ỹ1) = 1

and compute g(st|p11,Σ,β, Ỹt) for t = 2, . . . , T−1 by running the Hamilton (1989)

filter. Next, starting with sT = 2, I recursively draw st from g(st|st+1, p11,Σ,β, Ỹt)

for t = T − 1, . . . , 2, and set s1 = 1.

2. Generate p(r+1)
11 conditional on s̃(r+1)

T

I give a non-informative Beta prior for the transition probability, p11∼beta(u11, u12)

where u11 = u12 = 1, which is a uniform distribution. The posterior distribution

from which I draw p
(r+1)
11 is given by p11∼beta(u11+n11, u12+n12), where nij is the

number of observations that satisfy st = i and st+1 = j which is given by s̃(r+1)
T .

3. Generate Σ(r+1) conditional on s̃
(r+1)
T , p(r+1)

11 , β(r), and ỸT , and generate β(r+1)

conditional on s̃(r+1)
T , p(r+1)

11 , Σ(r+1), and ỸT

I assume a Normal Wishart prior for the VAR coefficients and the error covari-

ance. The prior is described by β(s)∼N(β̄(s),Σ(s)⊗V̄ (s)) and Σ(s)∼IW(S̄(s), τ(s))

for s = 1, 2, where β̄(s), V̄ (s), S̄(s), and τ(s) are hyperparameters. Uhlig (2005)

shows that, given a weak prior such that V̄0(s) = 0 and τ0(s) = 0 with arbitrary

values for β̄(s) and S̄(s), the full conditional posterior distribution is given by

β(s)∼N(β̂(s), Σ̂(s)⊗(X
′

tXt)
−1) and Σ(s)∼IW(Ŝ(s), T (s)), where Ŝ(s) = U(s)′U(s),

U(s) is the residual matrix and T (s) is the number of observations for the regime

s. β̂(s), Σ̂(s), and U(s) are obtained by estimating Equation (A1) with given s̃T .

I sample Σ(r+1) from its posterior distribution first, then generate β(r+1) from its

posterior distribution using Σ(r+1) together with s̃(r+1)
T , p(r+1)

11 , and ỸT .

I repeat the steps 30,000 times, discarding the first 20,000 as burn-in. Figures showing

posterior probabilities of st = i plot the ratios of the number of draws of st = i after the

burn-in period to the total number of draws after the burn-in period, that is 10,000.25

25 The term “smoothed probabilities” is used in Hara et al. (2020) instead of “posterior probabilities”.
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Figures presenting impulse responses of a model plot the median of the impulse re-

sponses across the 10,000 draws after the burn-in period. The 68% Bayesian credible

intervals in the figures are computed by sorting the sampled impulse responses in as-

cending order and taking the 16 and 84 percentiles.

A three-regime MSVAR model with absorbing states has another transition proba-

bility p22 as shown in Equation (4.3). In this case, I add p22 to the information set in the

steps 1, 3, and 4, and give a non-informative Beta prior for p22. I sample p(r+1)
22 from the

posterior distribution p22∼beta(u22 + n22, u23 + n23), where u22 = u23 = 1.
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Chapter 5

Concluding Remarks

My dissertation uncovers how data uncertainty about current and past state of the

economy influences business cycles. I shed light on the effects of data uncertainty

about labor productivity, which is obviously a key variable in monetary policy deci-

sions. Then I investigate changes in effectiveness of unconventional monetary policies

in recent years. I focus on two popular measures of unconventional monetary policy,

namely, negative interest rate policies and asset purchase programs.

This dissertation provides several important findings on economic policy conducts.

A key finding from my real-time data analysis is that noise contained in real-time data

significantly affects underlying fundamentals and expectations. Another important

finding is that responsiveness of productivity to fundamental shocks observed in real-

time data tends to be underestimated, and data revisions adjust the underestimation

only gradually. My findings suggest that the noise and underestimation contained in

the realized data can have sustained effects on monetary policy conduct, because they

remain in the statistics data for a long period of time.

As for unconventional monetary policies, I find that NIRP is associated with a lower

bound that is no less constraining than the ZIRP lower bound. The finding is robust

even if macroeconomic policy uncertainty is considered. Bond yields symmetrically

respond to positive and negative macroeconomic surprises, suggesting that very low

and stable policy rates are expected in the NIRP countries. Concerning monetary pol-

icy normalization, I find that the LSAPs by the Fed had slightly weaker effects than

during the early stage of the LSAPs but stronger effects than during the late stage of
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the LSAPs. On the other hand, interest rate shocks had insignificant impacts on the real

economy and prices. Hence, asset purchase programs like LSAPs will retain a useful

role for central banks to use in responding to future economic downturns, at least as a

secondary tool.

Several avenues for future research are worth considering. Noisy signals on the

past state should play important roles in monetary and fiscal policies. Applying the

identification method proposed in Chapter 2 to New Keynesian models will provide

insights on optimal policy conducts. While macroeconomic surprises can contribute to

the dynamics of bond yields, the explanatory power of the surprises are small even at

monthly frequency. A useful direction for future research would be to explore what is

behind the low power of macroeconomic news to bond yields. The sensitivity analysis

using intra-day data is also a promising avenue for future research. There seems yet

no consensus on the macroeconomic effects of monetary policy normalization. An

optimal combination of policy measures during a liftoff may be different from that

when monetary policy is strongly constrained. Studying this issue will lead to deeper

understanding on optimal monetary policy in a low interest rate environment.
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