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Abstract

In this paper, we develop a new test to detect whether break points are common
in heterogeneous panel data models where the time series dimension T could be large
relative to cross-section dimension N. The error process is assumed to be cross-sectionally
independent. The test is based on the cumulative sum (CUSUM) of ordinary least squares
(OLS) residuals. We derive the asymptotic distribution of the detecting statistic under
the null hypothesis, while proving the consistency of the test under the alternative. Monte
Carlo simulations and an empirical example show good performance of the test.
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1. Introduction

In recent years, panel data models have become increasingly popular in theoretical and

empirical analyses, since richer information from both the cross-section and time series di-

mension leads to more powerful inferences than with a single cross-section or a single time

series. In particular, the modeling and inferences of structural changes in panel frameworks

have attracted significant attention in the literature. Compared to applying the single detec-

tion method for structural changes separately to each series, using cross-sectional datasets

improves break detection power. The detection procedures in panels are often designed to

test for the null hypothesis that the regression parameters in each series are constant over

time against the alternative that at least one series exhibits structural changes. See, for ex-

ample, Horváth and Hušková (2012) in a mean-shift panel model, De Wachter and Tzavalis

(2012) and Hidalgo and Schafgans (2017) in dynamic panels, Pauwels et al. (2012) in panel

data models allowing for heterogeneous coefficients, Chen and Huang (2018) in a time-varying

panel data model, and Antoch et al. (2019) in panels with fixed T and large N, to name a

few. However, the rejection of the null hypothesis leaves the researcher with no information

as to which cross-sectional unit exhibits structural changes. Furthermore, it naturally leads

to the issue of change point estimation in panel data models.

Classical change point estimation methodologies in panel literature often assume that

break point occurred in each series at the same location, referred to as the common break

point. This assumption is particularly attractive, as the common break phenomenon occurs

in many practical applications. The other major advantage of this assumption is the increased

accuracy of the change point estimate, as noted by Bai (2010). It is well known that only the

break fraction (i.e., the break date divided by the sample size) can be consistently estimated

in a single time series. In panel frameworks, however, the failure of the consistency of the

break point in time series models has been overcome under the common break assumption.

This enhanced precision of the common break point estimate has been widely confirmed under

various frameworks in panel data analyses. Kim (2011, 2014) focused on panel deterministic

time trend models and considered a factor structure for the error component. Although

the former study stated that the ordinary least squares break date estimator fails to achieve
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consistency by imposing the factor structure, the latter overcame this problem and developed

a new estimation strategy, where the common break date is estimated jointly with the common

factor to successfully sustain the precision advantage of the common break point estimate in

panels. In addition, Qian and Su (2016) used a panel data model in which the parameters of

interest are homogeneous and errors are assumed to be cross-sectionally independent, while

Baltagi et al. (2016) considered a more general panel framework allowing for heterogeneous

parameters across individuals and multifactor error structure. More related works, including

Li et al. (2016), Baltagi et al. (2017), Horváth et al. (2017), Westerlund (2019), and others,

have documented that the break date estimate obtains increased precision via imposing a

common break assumption in panels.

In practice, however, the common break assumption is restrictive, and some evidence has

verified that the break points are likely to vary significantly across individuals (see Claeys

and Vašíček 2014; Adesanya 2020). To the best of our knowledge, no study has focused on

the validity of the common break assumption in panels. In this paper, we contribute to the

literature in three ways. First, we fill in this gap to introduce a test for the null hypothesis

that the panels exhibit a common break against the alternative that break dates can vary

across units. The closest related work is that of Oka and Perron (2018), who considered

common break detection in maximum likelihood frameworks in multiple equation systems.

We extend their model to a more general framework where both the number of series N and

the number of observations T are sufficiently large, which makes it available using panel or

macroeconomic data in applications.

The second major contribution of this paper is that we investigate the statistical properties

of the estimated common break point when the common break assumption fails. It is verified

that the common break estimate cannot be consistent for each series, but will be restricted

to a specific region. Based on this property, our test has a non-degenerate distribution under

the null hypothesis and achieves consistency under the alternative.

Third, our test delivers monotonic power as the magnitude of the breaks increases. The

statistic is established by the squares of the cumulative sum of the residuals, and we use

a normalization factor to replace the long-run variance estimator to avoid power loss when
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the shift increases under the alternative (the so-called nonmonotonic power problem). Monte

Carlo simulations show good size performance for large T. Moreover, the test can successfully

reject the null hypothesis of a common break against various types of alternatives and has

nontrivial power for large breaks. An empirical example demonstrates that a common break

exists in the mutual fund data during the sub-prime crisis.

From a different perspective, recent clustering literature suggested an estimation method-

ology as an alternative strategy to identify distinct breaks across units in panels. The panel

data are modeled using a grouped pattern, in which the regression coefficients containing

break dates are heterogeneous across groups but homogeneous within a group. In this frame-

work, Okui and Wang (2020) and Lumsdaine et al. (2020) proposed iterative estimation ap-

proaches to jointly estimate the break point, group membership structure, and coefficients.

The consistency of all estimates can be achieved simultaneously within the prior informa-

tion on the number of groups and an appropriate choice of the initial values for iteration.

Researchers can determine whether to conduct a testing procedure, apply an estimation

methodology, or use a hybrid of two approaches depending on their empirical purpose.

The remainder of this paper is organized as follows. Section 2 introduces the model

and necessary assumptions. Section 3 explains the testing strategy for the common break

assumption. Section 4 establishes the asymptotic distribution of the statistic under the null

hypothesis and the consistency of the test under the alternative hypothesis. Monte Carlo

simulations are conducted in Section 5. Section 6 provides an empirical example, and Section

7 provides concluding remarks. The mathematical proofs are relegated to the Appendix.

2. Model and Assumptions

We consider a panel data model allowing for heterogeneous coefficients across units, de-

fined by

yit = x′itβi + x′itδi1{t>k0i }
+ uit, 1 ≤ i ≤ N and 1 ≤ t ≤ T, (1)

where xit = [xit(1), · · · , xit(p)]′ is p-dimensional explanatory variables including a constant

term; thus, the first element is unity for all t. The coefficients βi = [βi1, · · · , βip]′, δi =

[δi1, · · · , δip]′ are p× 1 vectors of fixed parameters, and 1{t>k0i }
is an indicator function that
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takes the value one if t > k0i , and zero otherwise. uit is an unobservable stochastic disturbance.

We assume that the regression parameters in the ith panel change from βi to βi + δi at

unknown time k0i , and we are interested in testing whether the break point in each series

is common against the alternative that the break point varies across individuals. The null

hypothesis is defined as

H0 : k0i = k0, for all i = 1, 2, · · · , N.

Under the alternative of distinct breaks across individuals, we suppose that there exist G

groups, and the regression coefficients share the common break point in each group g =

1, 2, · · · , G. Then, the alternative hypothesis is defined by

HA : k0g1 ̸= k0g2 , for some g1, g2 ∈ {1, 2, · · · , G}.

In this paper, we impose the following assumptions.

Assumption 1 k0i = [Tτ0i ], where τ0i ∈ (0, 1) and [·] is the greatest integer function.

The break point k0i , which is a positive fraction of the total sample size, is assumed to be

bounded away from the end points. This is a conventional assumption in the change point

literature, see Bai (1997).

Assumption 2 Define ϕN =
∑N

i=1 δ
0′
i δ0i . Suppose that

(i) ϕN → ∞ as N → ∞,

(ii) ϕN
N is bounded as N → ∞,

(iii) T
N → ∞, ϕN

√
T

N → ∞ as (T,N) → ∞.

Denote δ0i as the true shift for individual i. Assumptions 2(i)–(ii) are borrowed from As-

sumption A2 in Baltagi et al. (2016). The additional condition T/N → ∞ requires that T

grows at a faster rate than N . This is a significant condition to ensure a non-degenerate

distribution of the statistic under the null hypothesis and consistency of the test under the

alternative.

Assumption 3 (i) For each series i, uit is independent of xit for all i and t;

(ii) uit =
∑∞

j=0 aijϵi,t−j, ϵit ∼ (0, σ2
iϵ) are i.i.d over all i and t;

∑
j j|aij | ≤ M for all i.
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The idiosyncratic errors form a stationary time series, and it is assumed that uit are cross-

sectionally independent, similar to the assumption in Bai (2010). In practice, this assumption

is relatively restrictive, as cross-sectional dependence commonly exists in many panel datasets.

As explained in Sections 3 and 4, the statistic of our test can have a non-degenerate distribu-

tion under the null hypothesis of the common break, crucially depending on the consistency

of the common change point estimate. However, Kim (2011) indicated that imposing a fac-

tor structure on the error component may impede the consistency property. Some additional

techniques are needed if we relax Assumption 3 to allow for cross-sectional dependence.

Assumption 4 (i) For i = 1, · · · , N , the matrices (1/j)
∑j

t=1 xitx
′
it, (1/j)

∑T
t=T−j+1 xitx

′
it

(1/j)
∑k0i

t=k0i−j+1
xitx

′
it, and (1/j)

∑k0i+j

t=k0i+1
xitx

′
it are stochastically bounded and have mini-

mum eigenvalues uniformly bounded away from zero in probability for all large j.

(ii) For each i, (1/T )
∑T

t=1 xitx
′
it converges in probability to a nonrandom and positive defi-

nite p× p matrix Ci as T → ∞.

(iii) For each i, (1/T )
∑T

t=1 xit converges in probability to a p× 1 vector ci1 as T → ∞.

Denote the jth row of Ci by cij for j = 1, · · · , p. That is, C = [ci1, · · · , cip]′. Note that the

vector c′i1 is the first row of Ci.

Assumption 5 (i) For any positive finite integer s, the matrices (1/N)
∑N

i=1

∑k0i
t=k0i−s+1

xitx
′
it

and (1/N)
∑N

i=1

∑k0i+s

t=k0i+1
xitx

′
it are stochastically bounded and have minimum eigenvalues uni-

formly bounded away from zero in probability for all large N .

(ii) For each t, (1/N)
∑N

i=1 xitx
′
it is stochastically bounded as N → ∞.

Assumption 4 is a conventional assumption in time series models, see, for example, Bai

(1997), while Assumption 5 is borrowed from Assumption 5 in Baltagi et al. (2016).

3. Test Statistic

The null hypothesis assumes that the panels exhibit one break occurring at an unknown

common location. We first use the least squares method, as proposed by Baltagi et al. (2016),
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to estimate the common break point. Let

Yi =


yi1
yi2
...

yiT

 , Xi =


x′i1
x′i2
...

x′iT

 , Zi(ki) =



0
...
0

x′i(ki+1)
...

x′iT


, and ui =


ui1
ui2
...

uiT

 .

The model with an unknown break point ki can be rewritten in matrix form as

Yi = Xiβi + Zi(ki)δi + ui

= [Xi, Zi(ki)]

[
βi
δi

]
+ ui

= X̄i(ki)bi + ui, (2)

where X̄i(ki) = [Xi, Zi(ki)], and bi = [β′
i, δ

′
i]
′. Given any k∗ = 1, 2, · · · , T − 1, bi can be

estimated by

b̂i(k
∗) =

[
β̂i(k

∗)

δ̂i(k
∗)

]
= [X̄i(k

∗)′X̄i(k
∗)]−1X̄i(k

∗)′Yi, i = 1, · · · , N.

The sum of squared residuals for ith equation is given by

SSRi(k
∗) = [Yi − X̄i(k

∗)b̂i(k
∗)]′[Yi − X̄i(k

∗)b̂i(k
∗)], i = 1, · · · , N.

The least squares estimator of k∗ is defined as

k̂ = arg min
1≤k∗≤T−1

N∑
i=1

πiSSRi(k
∗). (3)

where weights πi ∈ (0, 1), i = 1, · · · , N ,
∑N

i=1 πi = 1.

Our statistic is composed of ordinary least squares residuals based on the estimated

common break point k̂. We decompose the panels into two regimes using k̂ in the time series

dimension. Then, the OLS residuals are calculated by

ûi =


ûi1
ûi2
...

ûiT

 = Yi − X̄i(k̂)b̂i(k̂), (4)
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and the squares of the partial sum of the OLS residuals ûit are defined by

USNT (k, k̂) =

(
1√
NT

N∑
i=1

k∑
t=1

ûit

)2

, where k = [Tτ ] with τ ∈ (0, 1). (5)

The statistic is a CUSUM-type of residuals, motivated by the consistency of the break point

estimate if the common break assumption holds. Under the null hypothesis that all indi-

viduals are assumed to share a common change point k0 = [Tτ0] with τ0 ∈ (0, 1), Baltagi

et al. (2016) verified that the common break date is consistently estimated. Based on the

consistency of k̂ p−→ k0, the regression parameters corresponding to regimes {xi1, · · · , xik̂},

{xi(k̂+1), · · · , xiT } are asymptotically constant over time. Consequently, the cumulative sums

of the corresponding residuals will not diverge and can have a non-degenerate distribution,

which is derived as follows:

USNT (k, k̂) ⇒

{
σ2[W (τ)− τ

τ0
W (τ0)]2 if τ ≤ τ0

σ2[W (τ)−W (τ0)− τ−τ0

1−τ0
(W (1)−W (τ0))]2 if τ > τ0

,

where W (·) is a one-dimensional Brownian motion, and σ2 is the long-run variance defined

below. Under the alternative of distinct breaks, since the estimated common break point

cannot coincide with the true break point for each series, partial residuals will significantly

deviate from the one under the null hypothesis. Hence, USNT (k, k̂) will diverge to infinity as

N,T → ∞ such that we can successfully reject the null hypothesis.

A traditional approach is to use a consistent estimate to replace the unknown σ2, while

the kernel estimator is commonly applied. Typically, the selection of the bandwidth for the

kernel estimator significantly affects the size and power performance of the test. In time series

analyses, it has been extensively mentioned that the structural change tests suffer from the

so-called non-monotonic power problem; that is, the tests may lose power as the magnitude of

the break increases. See Vogelsang (1999), Deng and Perron (2008), Yamazaki and Kurozumi

(2015), and Jiang and Kurozumi (2019), among others. The main reason is that the long-

run variance estimated under the null hypothesis is consistent but may be severely biased

under the alternative hypothesis. To maintain nontrivial detection power for large breaks,

we extend the self-normalization method proposed by Shao and Zhang (2010) to construct

a normalization factor instead of using the long-run variance estimate. This normalization
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factor VNT (k1, k̂, k2) is required to be proportional to σ2 such that the long-run variance can

be canceled out as

USNT (k, k̂)

VNT (k1, k̂, k2)
⇒ σ2 functional of Brownian motions

σ2 functional of Brownian motions ,

where the long-run variance σ2 is lim(N,T )→∞E
(

1√
NT

∑N
i=1

∑T
t=1 uit

)2
. Furthermore, the

normalization process cannot grow at a faster rate relative to the process USNT (k, k̂) under

the alternative to avoid loss of power. To this end, we separate the panels into four regimes

by flexible points k1, k2 and the estimated break point k̂, where k1 and k2 take values in

the interval 1 ≤ k1 < k̂ < k2 ≤ T − 1. We estimate the model on the basis of four

regimes {xi1, · · · , xik1}, {xi(k1+1), · · · , xik̂}, {xi(k̂+1), · · · , xik2}, and {xi(k2+1), · · · , xiT } for

the ith equation. Denote T × p matrices by

Xji(a, b) = [0, · · · , 0, xi,a+1, · · · , xi,b, 0, · · · , 0]′, j = 1, 2, (6)

X3i(a) = [0, · · · , 0, xi,a+1, · · · , xT ]′, (7)

where the elements of the (a+1)th-bth rows of Xji(a, b) are the same as that of Xi and zero

otherwise, and the elements of the (a + 1)th–T th rows of X3i(a) are the same as that of Xi

and zero otherwise. Then, the model can be represented by

Yi = [Xi, X1i(k1, k̂), X2i(k̂, k2), X3i(k2)]


βi
δ1i
δ2i
δ3i

+ ui

= Xiβi +X1i(k1, k̂)δ1i +X2i(k̂, k2)δ2i +X3i(k2)δ3i + ui

= X̃i(k1, k̂, k2)bi + ui, (8)

where X̃i(k1, k̂, k2) = [Xi, X1i(k1, k̂), X2i(k̂, k2), X3i(k2)]. Using the coefficient estimators β̃i,

δ̃1i, δ̃2i, and δ̃3i, the corresponding residuals are calculated as

ũi =


ũi1
ũi2
...

ũiT

 = Yi −Xiβ̃i −X1i(k1, k̂)δ̃1i −X2i(k̂, k2)δ̃2i −X3i(k2)δ̃2i. (9)
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Then, we define the process VNT (k1, k̂, k2) based on the residuals ũit as

VNT (k1, k̂, k2)

=
1

T

k1∑
s=1

(
1√
NT

N∑
i=1

s∑
t=1

ũit

)2

+
1

T

k̂∑
s=k1+1

 1√
NT

N∑
i=1

k̂∑
t=s

ũit

2

+
1

T

k2∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

ũit

2

+
1

T

T∑
s=k2+1

(
1√
NT

N∑
i=1

T∑
t=s

ũit

)2

. (10)

Thus, our test statistic is composed of the squared CUSUM of residuals (5) and the normal-

ization factor (10), defined by

SNT (k, k1, k2) = sup
(k,k1,k2)∈Ω(ϵ)

USNT (k, k̂)

VNT (k1, k̂, k2)

= sup
(k,k1,k2)∈Ω(ϵ)

(
1√
NT

N∑
i=1

k∑
t=1

ûit

)2
 1

T

k1∑
s=1

(
1√
NT

N∑
i=1

s∑
t=1

ũit

)2

+
1

T

k̂∑
s=k1+1

 1√
NT

N∑
i=1

k̂∑
t=s

ũit

2

+
1

T

k2∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

ũit

2

+
1

T

T∑
s=k2+1

(
1√
NT

N∑
i=1

T∑
t=s

ũit

)2


−1

,

where Ω(ϵ) = {(k, k1, k2) or (τ, τ1, τ2) : [Tϵ] ≤ k ≤ [T (1− ϵ)], [Tϵ] ≤ k1 ≤ k̂ − [Tϵ], k̂ + [Tϵ] ≤

k2 ≤ [T (1− ϵ)]}. k = [Tτ ], k1 = [Tτ1] and k2 = [Tτ2] with τ, τ1, τ2 ∈ (0, 1).

4. Asymptotic Theory

We next derive the limiting properties of the test statistic.
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Theorem 1 Suppose that Assumptions 1–5 hold. Then, under H0, we have, as N,T → ∞,

SNT (k, k1, k2)

⇒ sup
(τ,τ1,τ2)∈Ω(ϵ)

{
W (τ)− τ

W (τ0)

τ0
− (τ − τ0)

[
W (1)−W (τ0)

1− τ0
− W (τ0)

τ0

]
1{τ>τ0}

}2

{∫ τ1

0

[
W (s)− s

W (τ1)

τ1

]2
ds +

∫ τ0

τ1

[
W (τ0)−W (s)− (τ0 − s)

W (τ0)−W (τ1)

τ0 − τ1

]2
ds

+

∫ τ2

τ0

[
W (s)−W (τ0)− (s− τ0)

W (τ2)−W (τ0)

τ2 − τ0

]2
ds

+

∫ 1

τ2

[
W (1)−W (s)− (1− s)

W (1)−W (τ2)

1− τ2

]2
ds

}−1

,

where W (·) is a standard Brownian motion, k = [Tτ ], k1 = [Tτ1], k
0 = [Tτ0], and k2 = [Tτ2]

with τ, τ0, τ1, τ2,∈ (0, 1).

Under the null hypothesis, the proposed test has a non-standard limit distribution depending

on the true break fraction, which is unknown in practice. We choose τ0 = 0.1, 0.2, · · · , 0.9,

and approximate Brownian motions using 2,000 independent normal random variables with

10,000 replications to obtain the critical values in Table 1. A researcher can calculate an

appropriate critical value based on the value of the estimated break fraction. For example, if

τ̂ ∈ [0.4, 0.5), we obtain the critical value by the interpolation,

c = c0.4 + 10(τ̂ − 0.4)(c0.5 − c0.4),

where cτ0 for τ0 = 0.1, . . . , 0.9 are the critical values given in Table 1. Next, we investigate

the behavior of the proposed test statistic when the breaks vary across individuals. We focus

on the case in which there are two groups, and individuals in the same group share a common

break k0j , j = 1, 2.

H1A : |k01 − k02| ≥ ∆T, for some ∆ > 0.

Assumption 6 Let Nj , j = 1, 2, denote the number of units in group j (N = N1 + N2).

Suppose that Nj/N → πj > 0 for j = 1, 2.

To characterize the limiting properties of the test statistic under the alternative, it is useful

to first state some preliminary results regarding the statistical properties of the estimated
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common break point. Define K(C) = {k : 1 ≤ k < k01 − C1, k
0
2 + C2 < k ≤ T − 1}, where

C1, C2 are finite numbers.

Proposition 1 Suppose that Assumptions 1–6 hold. Then, under H1A, for any given ϵ > 0,

for both large N and T ,

P (k̂ ∈ K(C)) < ϵ.

Proposition 1 states the possible region of the location of the common break date estimator

when the common break assumption fails. This implies that this estimator will be bounded

away from both end points. In other words, the estimated common break point may lie

between the two true break points or be stochastically bounded by either of the true break

dates.

Proposition 2 Suppose that Assumptions 1–6 hold. Under H1A, for both large N and T ,

(i) if k̂ < k01,

sup
k∈Ω(ϵ)

USNT (k, k̂) = Op(NT ),

(ii) if k01 ≤ k̂ ≤ k02,

sup
k∈Ω(ϵ)

USNT (k, k̂) = Op(NT ),

(iii) if k02 < k̂,

sup
k∈Ω(ϵ)

USNT (k, k̂) = Op(NT ),

Proposition 2 derives the divergence rate of the process USNT (k, k̂) under the alternative.

In case (i), Proposition 1 implies that the common change point estimate is bounded by the

true break point k01; that is, k01 − k̂ = Op(1). Since we assume that the two true breaks

are separated by some positive fraction of the sample size, k̂ will become distant from the

other break date k02. Therefore, for individuals in group 2, the regression parameters will be

estimated based on an inconsistent break fraction estimate. Then, we find that the CUSUM

of the corresponding residuals ûit in USNT (k, k̂) will diverge to infinity at a rate of NT . For

the second and third cases, it is shown that the divergence rate of the process USNT (k, k̂) is

the same as that in case (i).
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Proposition 3 Suppose that Assumptions 1–6 hold. Under H1A, for any given ϵ > 0, there

exists a finite M > 0 such that, for both large N and T ,

(i)

P
(

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) > M
∣∣∣k01 − C1 < k̂ ≤ k01

)
< ϵ,

(ii)

P
(

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) > M
∣∣∣k01 < k̂ < k02

)
< ϵ,

(iii)

P
(

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) > M
∣∣∣k02 ≤ k̂ < k02 + C2

)
< ϵ.

Proposition 3 investigates the limiting properties of the normalization process under the

alternative. The results indicate that inf(k1,k2)∈Ω(ϵ) VNT (k1, k̂, k2) is Op(1). Since the model

is estimated based on four subsamples for the normalization factor, we can eventually find

appropriate k1 and k2 such that the minimization will not diverge. The numerator of the

statistic diverges at a rate of NT , and the denominator has a finite limit. Then, we derive

the consistency of the test under the alternative in the following theorem:

Theorem 2 Suppose that Assumptions 1–6 hold. Then, under H1A, we have, as N,T → ∞,

SNT (k, k1, k2) → ∞.

The consistency of this test is achieved under a particular and specified alternative H1A.

Nevertheless, our simulations confirm that this test is valid and powerful against a variety of

alternatives.

5. Finite Sample Properties

In this section, we investigate the finite sample performance of the test considered in the pre-

vious sections. The data-generating process (DGP.1) under the null hypothesis of a common

break is given by

yit = x′itβi + x′itδi1{t>k0} + uit, i = 1, · · · , N, t = 1, · · · , T.
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where xit = [1, zit]
′ includes a constant, each zit has a normal distribution N(1, 1), and is

independent of the errors uit, 1 ≤ t ≤ T, 1 ≤ i ≤ N . We assume that a common break k0 =

[0.5T ] exists in the slopes. The coefficients βi ∼ i.i.d.U(0, 0.8) and δi are the jumps for each

series with δi ∼ i.i.d.U(0, 0.5). We allow for serial correlation in the errors uit = ρui(t−1)+ eit

with eit ∼ i.i.d.N(0, (1 − ρ)2). The trimming parameter ϵ is 0.1, the number of replications

is 2,000, and all computations are conducted using the GAUSS matrix language.

Table 2 summarizes the empirical sizes of the test for the different pairs of (N,T ). In the

case of i.i.d. errors, the nominal rejection rate is close to the corresponding significance level

of the test. When the errors are allowed to be serially correlated with ρ = 0.4, for small N

and T , the size distortion is quite noticeable. The size improves for large T and appears to

be quite close to the nominal level at T = 200.2

In practice, no prior information is available on the form of structural changes for re-

searchers. Therefore, we conduct extensive simulations to explore the empirical power of the

test for various group patterns of structural change and different magnitudes of the break.

We first impose a benchmark case as Assumption 6. There are two groups in panels, and the

break points for individuals are common in the same group but distinct across groups. We

next consider more general circumstances in which there are more than two groups in panels

or the break dates can be distinct across individuals. Moreover, we are interested in the

validity of the test when the break dates are common, but multiple common breaks occurred

in the panels. Then, four types of alternative hypotheses are considered as follows:

• H1A: There are two groups and the series in each group share common break k0j ,

j = 1, 2. Let Nj denote the number of units in group j and N = N1 +N2.

• H2A: There are three groups and the series in each group share common break k0j ,

j = 1, 2, 3. Note that N = N1 +N2 +N3.

• H3A: Suppose that there is no group pattern. The break point for the jth series is

given by k0j , j = 1, 2, · · · , N .
2The size is distorted corresponding to strong serial correlation (ρ = 0.8) but appears to be controlled when

T increases. The results are similar and are thus omitted.
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• H4A: The panel data exhibit multiple common break dates.

The data generating process (DGP.2) under H1A is given by{
yit = x′itβi + x′itδ1i1{t>k01} + uit t = 1, · · · , T, for i in group 1,
yit = x′itβi + x′itδ2i1{t>k02} + uit t = 1, · · · , T, for i in group 2,

which is the same as DGP.1, except that the change point varies across groups. The first group

exhibits one common break at k01 = [0.25T ], and we set the time of change k02 equal to [0.75T ]

in the second group. We assume βi ∼ i.i.d.U(0, 0.8) and the jumps δ1i, δ2i ∼ i.i.d.U(0, 0.5).

The ratio of units among the groups is set to N1 : N2 = 5 : 5. Table 3 shows that the test

is powerful (almost with a rejection probability of more than 80%), except for small N or T.

Table 4 reports the effect of the magnitude of change on power. As expected, the proposed

test delivers monotonic power. When the magnitude of the changes is larger than 0.4, our

test almost perfectly rejects the null hypothesis (power tends to one). We can see that the

test shows good performance in the case of two well-separated groups. We further investigate

the sensitivity of the test when the group characteristics (distance between two change points

or number of units in each group) change. In Table 5, we fix one common break at [0.2T ], and

the other break changes from [0.25T ] to [0.8T ]. If the distance between two breaks exceeds

[0.3T], the rejection probability reaches at least 90% at the 10% significance level. When the

two break dates become quite close (the distance is less than [0.1T]), the power of the test

decreases to 0.325 at the 10% significance level. On the other hand, the power of the test is

sensitive to the number of individuals in each group. Table 6 shows that the test rejects the

null hypothesis with probability over 80% when the number of observations in each group is

sufficiently large (the ratio of units between two groups is larger than 3/7). If the number

of individuals in one group is much less than that in the second group, the heterogeneity

between the two groups cannot be identified. Eventually, it is not easy to reject the null

hypothesis, even if the two break dates are distinct.

We next investigate the power properties of the test under H2A. The results for distinct

change point locations and ratios of units among groups are reported in Table 7. The test can

successfully reject the null of one common break for large N. The close break points among

the three groups will reduce the power.
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The alternative hypothesis H3A considers heterogeneous change points without a group

pattern. The change point for individual j is set to k0j = [Tτ0j ], j = 1, 2, · · · , N , while the

break fraction τ0j is drawn from U(0.15, 0.75). Table 8 shows that the test is still powerful

for large N.

The data generating process (DGP.3) under H4A is given by

yit = x′itβi + x′itδ1i1{k01<t≤k02} + x′itδ2i1{t>k02} + uit, t = 1, · · · , T, i = 1, · · · , N,

where the coefficients change from βi to βi+δ1i in the second regime and change from βi+δ1i

to βi + δ2i in the third regime. The change points are set to k01 = [0.25T ] and k02 = [0.75T ],

while the coefficients βi ∼ i.i.d.U(0, 0.8), δ1i ∼ i.i.d.U(0, 0.5), and δ2i ∼ i.i.d.U(0, 0.2). Table

9 shows the good performance of the test when there exist two common breaks in the panels.

In summary, the size of our test is controlled for large N and T. The test exhibits mono-

tonic power as the magnitude of the break increases and is powerful against various alterna-

tives.

6. Empirical Example

In this section, we apply our approach to detect common breaks in the capital asset pricing

model (CAPM). We use the Fama-French three-factor model augmented with the Carhart

(1997) momentum factor considered in Antoch et al. (2019), which is given by

Rit −Rf
t = αit +

(
RM

t −Rf
t

)
βM
it +RHML

t βHML
it +RSMB

t βSMB
it +RMOM

t βMOM
it + uit,

for 1 ≤ t ≤ T and 1 ≤ i ≤ N , where Rit −Rf
t denotes the excess return on the mutual fund;

the three factors include market risk premium, returns on a high minus low (HML) portfolio,

and returns on a small minus big (SMB) portfolio; the momentum factor RMOM
t describes

the tendency of securities that have outperformed (or underperformed) the market over the

past period to continue to outperform (or underperform) the market.

We test for common breaks in the coefficients for the mutual fund return data around the

sub-prime crisis. Our sample period is from February 2005 to December 2011. Four factors

can be downloaded from Ken French’s data library.3 The monthly return data of mutual funds
3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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are taken from Yahoo Finance. Mutual funds are classified according to their size, growth,

value characteristics, and investment strategies. Using the Yahoo Finance classification, we

focus on the characteristics of blend and growth to select ten categories of mutual funds.

These are Foreign Large Blend, Foreign Small/Mid Blend, Foreign Large Growth, Foreign

Small/Mid Growth, Large Blend, Mid-Cap Blend, Small Blend, Large Growth, Mid-Cap

Growth, and Small Growth.

First, we apply the test to detect common breaks in the whole sample period of 2005M02–

2011M12. The results in panel (a) of Table 10 show that the test rejects the one common

break assumption at the 1% significance level for the nine categories. In this case, there are

several possibilities such that there is no common break and each series (or some groups)

has a distinct one or several breaks, or there are multiple common breaks. To see the overall

tendency, we tentatively apply the Bai-Perron sequential test (Bai and Perron, 1998) to

estimate the number and locations of the breaks for several mutual funds in each group. We

find multiple break points, which are centralized at similar locations (early 2006, early 2008,

and early 2009), even if the mutual funds are from different categories. These results suggest

the possibility of multiple common breaks in mutual fund data.

Based on the above result and because Anotch et al. (2019) indicated that there exist

structural changes in US mutual fund data during the sub-prime crisis period (mid-2008 to

early 2009), we split the whole sample period into (b) the period before the sub-prime crisis

(2005M02–2008M05), and (c) the period during the sub-prime crisis (2008M06–2011M12).

In panel (b) of Table 10, the test rejects the null hypothesis for all categories in the period

before the sub-prime crisis (before the middle of 2008); there still exists the possibility of

distinct breaks in each series or multiple common breaks in this sub-period. On the other

hand, as in panel (c) of Table 10, our test cannot reject the null hypothesis for the period

2008M06–2011M12. This result implies that the mutual fund data exhibit one common break

during the sub-prime crisis.

7. Conclusion

In this study, we developed a new test based on the OLS residuals to detect whether struc-

tural breaks across individuals occurred at the common location in panel data models. The
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asymptotic properties of the test were investigated under the null and alternative hypothe-

ses. The simulation results indicated that the test is powerful against various alternatives.

In application, we found evidence of the common break phenomenon in mutual fund data

during the sub-prime crisis. Although we assumed cross-sectional independence throughout

the paper, it may be interesting for the cross-sectional dependence in the error component

to be generally taken into account. We leave such an extension for our future research.
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Appendix A. Proof of Theorem 1

Supposing that the structural change occurred at a common location, Baltagi et al. (2016)

showed the consistency of the common break estimator,

lim
(N,T )→∞

P (k̂ = k0) = 1, which implies |k̂ − k0| = op(1). (A.1)

In this Appendix, we derive the asymptotic distribution of the test statistic under the null

hypothesis using this consistency property. We first focus on the limiting properties of the

numerator of the statistic. Model (2) with the true common break k0 is expressed as follows:

Yi = X̄i(k
0)b0i + ui

= X̄i(k̂)b
0
i + ui + [X̄i(k

0)− X̄i(k̂)]b
0
i

= X̄i(k̂)b
0
i + ui + [Zi(k

0)− Zi(k̂)]δ
0
i , (A.2)

where b0i = [β0′
i , δ0

′
i ]′. Replacing Yi with (A.2), the residuals in (4) can be rewritten as

ûi = X̄i(k̂)b
0
i + ui + [Zi(k

0)− Zi(k̂)]δ
0
i − X̄i(k̂)b̂i(k̂)

= ui − X̄i(k̂)[b̂i(k̂)− b0i ] + [Zi(k
0)− Zi(k̂)]δ

0
i

= ui −Xi[β̂i(k̂)− β0
i ]− Zi(k̂)[δ̂i(k̂)− δ0i ] + [Zi(k

0)− Zi(k̂)]δ
0
i , (A.3)

whose vector form is represented by


ûi1
ûi2
...

ûiT

 =


ui1
ui2
...

uiT

−


xi1
x′i2
...

x′iT

 (β̂i(k̂)−β0
i )−



0
...
0

x′
i(k̂+1)

...
x′iT


(δ̂i(k̂)−δ0i )+





0
...
0

x′i(k0+1)
...

x′iT


−



0
...
0

x′
i(k̂+1)

...
x′iT




δ0i

For the sake of simplicity, k̂ is suppressed in β̂i(k̂) and δ̂i(k̂). Then, the cumulative sum of
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the residuals is

1√
NT

N∑
i=1

k∑
t=1

ûit

=
1√
NT

N∑
i=1

k∑
t=1

uit −
1√
NT

N∑
i=1

k∑
t=1

x′it(β̂i − β0
i )−

1√
NT

N∑
i=1

k∑
t=k̂+1

x′it(δ̂i − δ0i )1{k>k̂}

+
1√
NT

N∑
i=1

k∑
t=k0+1

x′itδ
0
i 1{k0<k≤k̂} +

1√
NT

N∑
i=1

k̂∑
t=k0+1

x′itδ
0
i 1{k0<k̂<k}

− 1√
NT

N∑
i=1

k∑
t=k̂+1

x′itδ
0
i 1{k̂<k≤k0} −

1√
NT

N∑
i=1

k0∑
t=k̂+1

x′itδ
0
i 1{k̂<k0<k}

= U1 − U2 − U3 + U4 + U5 − U6 − U7. (A.4)

We can show that the terms U4, U5, U6, and U7 are negligible as N,T → ∞. Since k is

bounded by k0 and k̂ in U4, using the convergence property (A.1),

U4 =
1√
NT

N∑
i=1

k∑
t=k0+1

x′itδ
0
i 1{k0<k≤k̂} =

√
N

T
op(1) = op

(√
N

T

)
. (A.5)

Similarly, it is shown that the orders of terms U5, U6, and U7 are op

(√
N
T

)
, which will vanish

since N/T → 0 in Assumption 2(iii). The asymptotic distributions of the dominating terms

U1, U2, and U3 are derived from Lemma A.1.

Lemma A.1 Suppose that Assumptions 1–5 hold. We have, uniformly in τ ∈ (0, 1),

(i) 1√
NT

N∑
i=1

k∑
t=1

uit ⇒ σW (τ),

(ii) 1√
NT

N∑
i=1

k∑
t=1

x′it(β̂i − β0
i ) ⇒ στ

W (τ0)

τ0
,

(iii) 1√
NT

N∑
i=1

k∑
t=k̂+1

x′it(δ̂i − δ0i )1{k>k̂} ⇒ σ(τ − τ0)

[
W (1)−W (τ0)

1− τ0
− W (τ0)

τ0

]
1{τ>τ0},

where k = [Tτ ], k0 = [Tτ0], W (·) is a standard Brownian motion, and the long-run variance

σ2 is lim(N,T )→∞E

(
1√
NT

N∑
i=1

T∑
t=1

uit

)2

.
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Proof of Lemma A.1. (i) Denote the process

XN,T

(
k

T

)
=

1√
NT

N∑
i=1

k∑
t=1

uit.

It is shown that, for a particular τ ,

1√
NT

N∑
i=1

[Tτ ]∑
t=1

uit
d−→ σW (τ),

as N,T → ∞. It remains to be shown that weak convergence holds uniformly in τ ∈ (0, 1).

To this end, by Billingsley’s (1968) Theorem 12.1, we next show that the moment condition

(A.8) is satisfied such that the process XN,T (τ) is tight. Applying Rosenthal’s inequality, we

have,

E

∣∣∣∣XN,T

(
l

T

)
−XN,T

(
k

T

)∣∣∣∣2γ = E

∣∣∣∣∣ 1√
NT

N∑
i=1

l∑
t=k+1

uit

∣∣∣∣∣
2γ

≤ c1

N∑
i=1

E

∣∣∣∣∣ 1√
NT

l∑
t=k+1

uit

∣∣∣∣∣
2γ

+ c2

 1

N

N∑
i=1

E

(
1√
T

l∑
t=k+1

uit

)2
γ

≤ c1

N∑
i=1

E

∣∣∣∣∣ 1√
NT

l∑
t=k+1

uit

∣∣∣∣∣
2γ

+ c3

(
l − k

T

)γ

, (A.6)

with some constants c1, c2, and c3. According to Phillips and Solo (1992) and p.637 of Horváth

and Hušková (2012), the partial sum of uit is composed of two parts,

k∑
t=1

uit = ai

k∑
t=1

ϵit + ηik,

where ηik = e∗i0−e∗ik, e∗it =
∑∞

l=1 c
∗
ilϵi(t−l), and c∗il =

∑∞
k=l+1 cik. For the term ηik, Horváth and

Hušková (2012, p.640) indicated that E|ηik|γ ≤ cE|ϵi0|γ . Then, using Minkowski’s inequality
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and Rothenthal’s inequality, we show that for γ > 1,

E

∣∣∣∣∣
l∑

t=k+1

uit

∣∣∣∣∣
2γ

= E

∣∣∣∣∣ai
l∑

t=k+1

ϵit + ηil − ηik

∣∣∣∣∣
2γ

≤


E

∣∣∣∣∣ai
l∑

t=k+1

ϵit

∣∣∣∣∣
2γ
 1

2γ

+
(
E |ηil − ηik|2γ

) 1
2γ


2γ

≤


[
c4

l∑
t=k+1

E |ϵit|2γ + c5

(
l∑

t=k+1

E(ϵit)
2

)γ] 1
2γ

+
(
E |ηil − ηik|2γ

) 1
2γ


2γ

≤
{[

c4(l − k)E |ϵi0|2γ + c5(l − k)γ
(
E(ϵi0)

2
)γ] 1

2γ
+
(
E |ηil − ηik|2γ

) 1
2γ

}2γ

≤
{[

c6(l − k)γE |ϵi0|2γ
] 1

2γ
+
(
E |ϵi0|2γ

) 1
2γ

}2γ

≤ c7(l − k)γE |ϵi0|2γ ,

with some constants c4–c7. Then, we have, for γ > 1 ,

N∑
i=1

E

∣∣∣∣∣ 1√
NT

l∑
t=k+1

uit

∣∣∣∣∣
2γ

=
1

(NT )γ

N∑
i=1

E

∣∣∣∣∣
l∑

t=k+1

uit

∣∣∣∣∣
2γ

≤ 1

(NT )γ

N∑
i=1

c7(l − k)γE |ϵi0|2γ

≤ c7

(
l − k

T

)γ 1

N

N∑
i=1

E |ϵi0|2γ

≤ c8

(
l − k

T

)γ

, (A.7)

with a constant c8. Combining (A.6) and (A.7), we can show that there exists constants

γ > 1 and c9 such that

E

∣∣∣∣XN,T

(
l

T

)
−XN,T

(
k

T

)∣∣∣∣2γ ≤ c9

(
l − k

T

)γ

. (A.8)

(ii) By regressing Yi on X̄i(k̂), the coefficient βi is estimated as, if k̂ ≤ k0,

β̂i =

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xityit =

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xit(x
′
itβ

0
i +uit) = β0

i +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit,

24



and if k̂ > k0,

β̂i =

 k̂∑
t=1

xitx
′
it

−1  k0∑
t=1

xit(x
′
itβ

0
i + uit) +

k̂∑
t=k0+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)


= β0

i +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k0+1

xitx
′
itδ

0
i . (A.9)

Then, we can see that,

√
T (β̂i − β0

i ) =

 1

T

k̂∑
t=1

xitx
′
it

−1

1√
T

k̂∑
t=1

xituit +

 1

T

k̂∑
t=1

xitx
′
it

−1

1√
T

k̂∑
t=k0+1

xitx
′
itδ

0
i 1{k̂>k0} (A.10)

=

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit +

 1

T

k̂∑
t=1

xitx
′
it

−1

−

 1

T

k0∑
t=1

xitx
′
it

−1 1√
T

k̂∑
t=1

xituit

+

 1

T

k0∑
t=1

xitx
′
it

−1  1√
T

k̂∑
t=1

xituit −
1√
T

k0∑
t=1

xituit

+

 1

T

k̂∑
t=1

xitx
′
it

−1

1√
T

k̂∑
t=k0+1

xitx
′
itδ

0
i 1{k̂>k0}

=

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit + op

(
1

T

)
Op(1) +Op(1)op

(
1√
T

)
+ op

(
1√
T

)
1{k̂>k0}

=

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit + op

(
1

T

)
+ op

(
1√
T

)
, (A.11)

where we replace k̂ with k0 using the consistency property (A.1) and the following orders: 1

T

k̂∑
t=1

xitx
′
it

−1

−

 1

T

k0∑
t=1

xitx
′
it

−1

=

 1

T

k̂∑
t=1

xitx
′
it

−1 1

T

k0∑
t=1

xitx
′
it −

1

T

k̂∑
t=1

xitx
′
it

 1

T

k0∑
t=1

xitx
′
it

−1

= Op(1)op

(
1

T

)
Op(1) = op

(
1

T

)
,

1√
T

k̂∑
t=1

xituit −
1√
T

k0∑
t=1

xituit = op

(
1√
T

)
,

and  1

T

k̂∑
t=1

xitx
′
it

−1

1

T

k̂∑
t=k0+1

xitx
′
itδ

0
i = Op(1)op

(
1

T

)
= op

(
1

T

)
.
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Substituting (A.11) into the term U2 in (A.4), we have

1√
NT

N∑
i=1

k∑
t=1

x′it(β̂i − β0
i ) =

1√
N

N∑
i=1

1

T

k∑
t=1

x′it
√
T (β̂i − β0

i )

=
1√
N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit +
1√
N

N∑
i=1

1

T

k∑
t=1

x′it

(
op

(
1

T

)
+ op

(
1√
T

))

=
1√
N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit + op

(√
N

T

)
+ op

(√
N

T

)
, (A.12)

where the second and third terms in the last equality vanish since N/T → 0 by Assumption

2(iii). From Assumptions 4(ii)–(iii), we can see that,∥∥∥∥∥1k
k∑

t=1

x′it − c′i1

∥∥∥∥∥ = op(1), and

∥∥∥∥∥∥
(
1

k

k∑
t=1

xitx
′
it

)−1

− C−1
i

∥∥∥∥∥∥ = op(1). (A.13)

Using orders in (A.13) and equality c′i1C
−1
i = [1, 0, · · · , 0], we have,∣∣∣∣∣∣ 1√

N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit −
k

k0
1√
NT

N∑
i=1

k0∑
t=1

uit

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1√
N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit −
k

k0
1√
N

N∑
i=1

c′i1C
−1
i

1√
T

k0∑
t=1

xituit

∣∣∣∣∣∣
≤ 1√

N

N∑
i=1

∥∥∥∥∥∥ 1T
k∑

t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

− k

k0
c′i1C

−1
i

∥∥∥∥∥∥
∥∥∥∥∥∥ 1√

T

k0∑
t=1

xituit

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1√
NT

N∑
i=1

k0∑
t=1

xituit

∥∥∥∥∥∥ op(1) = op(1). (A.14)

Applying the functional central limit theorem (FCLT), we can see that

1√
NT

N∑
i=1

k0∑
t=1

uit ⇒ σW (τ0). (A.15)

Hence, we have, uniformly in τ ,

1√
N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit ⇒ στ
W (τ0)

τ0
, (A.16)
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(iii) The coefficient δi is estimated as, if k̂ < k0,

δ̂i =

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xityit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xityit

=

 T∑
t=k̂+1

xitx
′
it

−1  k0∑
t=k̂+1

xit(x
′
itβ

0
i + uit) +

T∑
t=k0+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)


−

β0
i +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit


=

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xituit −

 k̂∑
t=1
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′
it

−1
k̂∑

t=1

xituit +

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k0+1

xitx
′
itδ

0
i

=

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xituit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit + δ0i −

 T∑
t=k̂+1

xitx
′
it

−1
k0∑

t=k̂+1

xitx
′
itδ

0
i ,

and if k̂ ≥ k0,

δ̂i =

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xityit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xityit

=

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)

−

 k̂∑
t=1

xitx
′
it

−1  k0∑
t=1

xit(x
′
itβ

0
i + uit) +

k̂∑
t=k0+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)


= δ0i +

 T∑
t=k̂+1
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′
it

−1
T∑

t=k̂+1

xituit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k0+1

xitx
′
itδ

0
i .

Using the consistency property (A.1), the term
∑k0

t=k̂+1
xitx

′
itδ

0
i = op(1) is negligible, and we

can see that,

√
T (δ̂i−δ0i ) =

 1

T

T∑
t=k̂+1

xitx
′
it

−1

1√
T

T∑
t=k̂+1

xituit−

 1

T

k̂∑
t=1

xitx
′
it

−1

1√
T

k̂∑
t=1

xituit+op

(
1√
T

)
.

(A.17)

Similar to the proof of (ii), k̂ in (A.17) can be replaced by k0 due to the consistency of
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k̂
p−→ k0. Then, (A.17) is transformed into

√
T (δ̂i−δ0i ) =

 1

T

T∑
t=k0+1

xitx
′
it

−1

1√
T

T∑
t=k0+1

xituit−

 1

T

k0∑
t=1
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′
it

−1

1√
T

k0∑
t=1

xituit+op

(
1

T

)
+op

(
1√
T

)
(A.18)

Thus, we have,

1√
NT

N∑
i=1

k∑
t=k̂+1

x′it(δ̂i − δ0i ) =
1√
N

N∑
i=1

1

T

k∑
t=k̂+1

x′it
√
T (δ̂i − δ0i )

=
1√
N
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i=1

 1

T

k∑
t=k0+1

x′it1{k>k0} + op

(
1

T

)√
T (δ̂i − δ0i )

=
1√
N

N∑
i=1

 1

T

k∑
t=k0+1

x′it1{k>k0}

√
T (δ̂i − δ0i ) + op

(√
N

T

)
Op(1)

=
1√
N

N∑
i=1

 1

T

k∑
t=k0+1

x′it1{k>k0}

 1

T

T∑
t=k0+1

xitx
′
it

−1

1√
T

T∑
t=k0+1

xituit

−

 1

T

k0∑
t=1

xitx
′
it

−1

1√
T

k0∑
t=1

xituit

+ op

(√
N

T

)
+ op

(√
N

T

)
. (A.19)

The terms in the brackets of (A.19) dominate the others. Similar to (A.14)–(A.16), we can

see that, uniformly in τ ∈ (0, 1),

U3 ⇒ σ(τ − τ0)

[
W (1)−W (τ0)

1− τ0
− W (τ0)

τ0

]
1{τ>τ0}.

Thus, we complete the proof of Lemma A.1. ■
Using (A.4), (A.5), and Lemma A.1, we can show that,

1√
NT

N∑
i=1

[Tτ ]∑
t=1

ûit ⇒ σW (τ)− στ
W (τ0)

τ0
− σ(τ − τ0)

[
W (1)−W (τ0)

1− τ0
− W (τ0)

τ0

]
1{τ>τ0},

uniformly in τ . Applying the continuous mapping theorem, we obtain,

sup
τ∈Ω(ϵ)

∣∣∣∣∣∣ 1√
NT

N∑
i=1

[Tτ ]∑
t=1

ûit

∣∣∣∣∣∣
2

⇒ sup
τ∈Ω(ϵ)

σ2

∣∣∣∣W (τ)− τ
W (τ0)

τ0
− (τ − τ0)

[
W (1)−W (τ0)

1− τ0
− W (τ0)

τ0

]
1{τ>τ0}

∣∣∣∣2 .
(A.20)
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Next, we derive the asymptotic distribution of the normalization process under the null

hypothesis. By definition (10), the normalization factor is based on the residuals ũit, which

are calculated by regressing Yi on X̃it(k1, k̂, k2) in (8). We assume that [Tϵ] ≤ k1 ≤ k̂− [Tϵ],

and k̂ + [Tϵ] ≤ k2 ≤ [T (1 − ϵ)], where k1, k2 are bounded away from endpoints and the

common break estimate k̂. Since k̂ converges in probability to k0, we have |kj − k̂| > |k0 − k̂|

for j = 1, 2. Thus, we only consider the case in which k1 and k2 take values in k1 < k0 < k2.

In this case, the true model with a common break k0 is written as

Yi = [Xi, X1i(k1, k
0), X2i(k

0, k2), X3i(k2)]


β0
i

0
δ0i
δ0i

+ ui

= X̃i(k1, k
0, k2)b

0
1i + ui

= X̃i(k1, k̂, k2)b
0
1i + ui + [X̃i(k1, k

0, k2))− X̃i(k1, k̂, k2)]b
0
1i. (A.21)

The residuals are calculated by

ũi = X̃i(k1, k̂, k2)b
0
1i + ui + [X̃i(k1, k

0, k2)− X̃i(k1, k̂, k2)]b
0
1i − X̃i(k1, k̂, k2)b̃1i(k̂)

= ui + X̃i(k1, k̂, k2)b
0
1i − X̃i(k1, k̂, k2)b̃1i(k̂)

+[0, X1i(k1, k
0)−X1i(k1, k̂), X2i(k

0, k2)−X2i(k̂, k2), 0]


β0
i

0
δ0i
δ0i


= ui − X̃i(k1, k̂, k2)(b̃1i(k̂)− b01i) + [X2i(k

0, k2)−X2i(k̂, k2)]δ
0
i ,
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whose vector form is


ũi1
ũi2
...

ũiT

 =


ui1
ui2
...

uiT

−


x′i1
x′i2
...

x′iT

 (β̃i(k̂)− β0
i )−



0
...
0

x′i(k1+1)
...

x′
ik̂
0
...
...
0



δ̃1i(k̂)−



0
...
...
0

x′
i(k̂+1)

...
x′ik2
0
...
0



(δ̃2i(k̂)− δ0i )

−



0
...
...
...
0

x′i(k2+1)
...

x′iT


(δ̃3i(k̂)− δ0i ) +





0
...
...
0

x′i(k0+1)
...

x′ik2
0
...
0



−



0
...
...
0

x′
i(k̂+1)

...
x′ik2
0
...
0





δ0i . (A.22)

For simplicity, k̂ is suppressed in β̃i(k̂), δ̃1i(k̂), δ̃2i(k̂), and δ̃3i(k̂). The normalization factor

is constructed by four terms V1, V2, V3, and V4, which are defined by

V1 =
1

T

k1∑
s=1

(
1√
NT

N∑
i=1

s∑
t=1

ũit

)2

,

V2 =
1

T

k̂∑
s=k1+1

 1√
NT

N∑
i=1

k̂∑
t=s

ũit

2

,

V3 =
1

T

k2∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

ũit

2

,

V4 =
1

T

T∑
s=k2+1

(
1√
NT

N∑
i=1

T∑
t=s

ũit

)2

.

Lemma A.2 derives the asymptotic distributions of the four terms under the null hypothesis.
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Lemma A.2 Suppose that Assumptions 1–5 hold. We have, as N,T → ∞,

(i) V1 ⇒ σ2

∫ τ1

0

(
W (r)− r

τ1
W (τ1)

)2

dr,

(ii) V2 ⇒ σ2

∫ τ0

τ1

[
W (τ0)−W (r)− τ0 − r

τ0 − τ1
(W (τ0)−W (τ1))

]2
dr,

(iii) V3 ⇒ σ2

∫ τ2

τ0

[
W (r)−W (τ0)− r − τ0

τ2 − τ0
(W (τ2)−W (τ0))

]2
dr,

(iv) V4 ⇒ σ2

∫ 1

τ2

[
W (1)−W (r)− 1− r

1− τ2
(W (1)−W (τ2))

]2
dr.

Proof of Lemma A.2. (i) Using (A.22), the first term V1 can be rewritten as

V1 =
1

T

k1∑
s=1

{
1√
NT

N∑
i=1

[
s∑

t=1

uit −
s∑

t=1

x′it(β̃i − β0
i )

]}2

=
1

T

k1∑
s=1

(V11 − V12)
2 .

Using the FCLT, it is shown that

V11 ⇒ σW (r). (A.23)

By the definition of β̃i, we can see that,

β̃i =

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xityit =

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xit(x
′
itβ

0
i + uit) = β0

i +

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit.

Thus, we have,

V12 =
1√
N

N∑
i=1

1

T

s∑
t=1

x′it

(
1

T

k1∑
t=1

xitx
′
it

)−1
1√
T

k1∑
t=1

xituit

⇒ σ
r

τ1
W (τ1). (A.24)

Combining the results (A.23) and (A.24) and using the continuous mapping theorem, we can

derive the asymptotic distribution of the first term V1 as follows:

V1 ⇒ σ2

∫ τ1

0

(
W (r)− r

τ1
W (τ1)

)2

dr.
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(ii) The second term V2 can be rewritten as

V2 =
1

T

k̂∑
s=k1+1

 1√
NT

N∑
i=1

 k̂∑
t=s

uit −
k̂∑

t=s

x′it(β̃i − β0
i )−

k̂∑
t=s

x′itδ̃1i +

k̂∑
t=s

x′itδ
0
i 1{k0<s<k̂}


2

=
1

T

k̂∑
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 1√
NT

N∑
i=1

k̂∑
t=s

uit −
1√
NT

N∑
i=1

k̂∑
t=s

x′it(β̃i − β0
i )−

1√
NT

N∑
i=1

k̂∑
t=s

x′itδ̃1i + op

(√
N

T

)
2

=
1

T

k̂∑
s=k1+1

(
V21 − V22 − V23 + op

(√
N

T

))2

.

Since k̂ coincides asymptotically with the true break date from (A.1), k̂ in V21, V22, V23 can

be replaced by k0. Then, we can show that

V21 =
1√
NT

N∑
i=1

k̂∑
t=1

uit −
1√
NT

N∑
i=1

s−1∑
t=1

uit ⇒ σ(W (τ0)−W (r)). (A.25)

V22 =
1√
N

N∑
i=1

1

T

k̂∑
t=s

x′it
√
T (β̃i − β0

i )

=
1√
N

N∑
i=1

 1

T

k0∑
t=s

x′it + op

(
1

T

)( 1

T

k1∑
t=1

xitx
′
it

)−1
1√
T

k1∑
t=1

xituit

⇒ σ(τ0 − r)
W (τ1)

τ1
. (A.26)

The coefficient estimator δ̃1i in V23 can be calculated as

δ̃1i =

 k̂∑
t=k1+1

xitx
′
it

−1
k̂∑

t=k1+1

xityit −

(
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it

)−1 k1∑
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xitx
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xit(x
′
itβ

0
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0
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+
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xit(x
′
itβ

0
i + x′itδ

0
i + uit)
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−

β0
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(
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xitx
′
it

)−1 k1∑
t=1

xituit


=

 k̂∑
t=k1+1

xitx
′
it

−1
k̂∑

t=k1+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit +

 k̂∑
t=k1+1

xitx
′
it

−1
k̂∑

t=k0+1

xitx
′
itδ

0
i 1{k̂>k0}

=

 k̂∑
t=k1+1

xitx
′
it

−1
k̂∑

t=k1+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit + op

(
1

T

)
.
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Then, the third term V23 becomes, as N,T → ∞,

V23 =
1√
N

N∑
i=1

1

T

k̂∑
t=s

x′it
√
T δ̃1i

=
1√
N

N∑
i=1

 1

T

k0∑
t=s

x′it + op

(
1

T

)√T

 k0∑
t=k1+1

xitx
′
it

−1
k0∑

t=k1+1

xituit −
√
T

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit

+ op

(
1

T

)
+ op

(
1√
T

)
+ op

(
1√
T

)]

=
1√
N

N∑
i=1

1

T

k0∑
t=s

x′it

√T

 k0∑
t=k1+1

xitx
′
it

−1
k0∑

t=k1+1

xituit −
√
T

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


+op

(√
N√
T

)
+ op

(√
N

T

)
+ op

(√
N

T 3/2

)
+ op

(√
N

T 2

)

⇒ σ(τ0 − r)

(
W (τ0)−W (τ1)

τ0 − τ1
− W (τ1)

τ1

)
, (A.27)

since N/T → 0. Combining results (A.25), (A.26), and (A.27), we have

V2 ⇒
∫ τ0

τ1

[
σ(W (τ0)−W (r))− σ(τ0 − r)

W (τ1)

τ1
− σ(τ0 − r)

(
W (τ0)−W (τ1)

τ0 − τ1
− W (τ1)

τ1

)]2
dr

= σ2

∫ τ0

τ1

(
W (τ0)−W (r)− (τ0 − r)

W (τ0)−W (τ1)

τ0 − τ1

)2

dr.

(iii) The third term V3 can be rewritten as

V3 =
1

T

k2∑
s=k̂+1

 1√
NT

N∑
i=1

 s∑
t=k̂+1

uit −
s∑

t=k̂+1

x′it(β̃i − β0
i )−

s∑
t=k̂+1

x′it(δ̃2i − δ0i )

−
k0∑

t=k̂+1

x′itδ
0
i 1{k̂<k0<s} −

s∑
t=k̂+1

x′itδ
0
i 1{s≤k0}


2

=
1

T

k2∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

uit −
1√
NT

N∑
i=1

s∑
t=k̂+1

x′it(β̃i − β0
i )−

1√
NT

N∑
i=1

s∑
t=k̂+1

x′it(δ̃2i − δ0i )

− op

(√
N

T

)]2

=
1

T

k2∑
s=k̂+1

(
V31 − V32 − V33 − op

(√
N

T

))2

.
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Similar to (A.25) and (A.27), we can find that

V31 ⇒ σ(W (r)−W (τ0)), (A.28)

V32 =
1√
N

N∑
i=1

 1

T

s∑
t=k0+1

x′it + op

(
1

T

)( 1

T

k1∑
t=1

xitx
′
it

)−1
1√
T

k1∑
t=1

xituit

⇒ σ(r − τ0)
W (τ1)

τ1
. (A.29)

The coefficient δ2i is estimated as

δ̃2i =

 k2∑
t=k̂+1

xitx
′
it

−1
k2∑

t=k̂+1

xityit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xityit

=

 k2∑
t=k̂+1

xitx
′
it

−1
k2∑

t=k̂+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)1{k0≤k̂} +

 k0∑
t=k̂+1

xit(x
′
itβ

0
i + uit)

+

k2∑
t=k0+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)

 1{k0<k̂}

−

β0
i +

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


= δ0i +

 k2∑
t=k̂+1

xitx
′
it

−1
k2∑

t=k̂+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit − op

(
1

T

)
.

Then, similar to V23, the term V33 becomes, as N,T → ∞,

1√
N

N∑
i=1

1

T

s∑
t=k̂+1

x′it
√
T (δ̃2i − δ0i )

=
1√
N

N∑
i=1

 1

T

s∑
t=k0+1

x′it + op

(
1

T

)√T

 k2∑
t=k0+1

xitx
′
it

−1
k2∑

t=k0+1

xituit −
√
T

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit

+ op

(
1

T

)
+ op

(
1√
T

)
+ op

(
1√
T

)]

=
1√
N

N∑
i=1

1

T

s∑
t=k0+1

x′it

√T

 k2∑
t=k0+1

xitx
′
it

−1
k2∑

t=k0+1

xituit −
√
T

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


+op

(√
N√
T

)
+ op

(√
N

T

)
+ op

(√
N

T 3/2

)
+ op

(√
N

T 2

)

⇒ σ(r − τ0)

(
W (τ2)−W (τ0)

τ2 − τ0
− W (τ1)

τ1

)
, (A.30)
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since N/T → 0. Combining results (A.28), (A.29), and (A.30), we have

V3 ⇒ σ2

∫ τ2

τ0

(
W (r)−W (τ0)− (r − τ0)

W (τ2)−W (τ0)

τ2 − τ0

)2

dr.

(iv) The fourth term V4 can be rewritten as

V4 =
1

T

T∑
s=k2+1

{
1√
NT

N∑
i=1

[
T∑
t=s

uit −
T∑
t=s

x′it(β̃i − β0
i )−

T∑
t=s

x′it(δ̃3i − δ0i )

]}2

=
1

T

T∑
s=k2+1

[
1√
NT

N∑
i=1

T∑
t=s

uit −
1√
NT

N∑
i=1

T∑
t=s

uitx
′
it(β̃i − β0

i )−
1√
NT

N∑
i=1

T∑
t=s

uitx
′
it(δ̃3i − δ0i )

]2

=
1

T

T∑
s=k2+1

(V41 − V42 − V43)
2 .

It is easily seen that

V41 ⇒ σ(W (1)−W (r)), (A.31)

V42 =
1√
N

N∑
i=1

(
1

T

T∑
t=s

x′it

)(
1

T

k1∑
t=1

xitx
′
it

)−1
1√
T

k1∑
t=1

xituit

⇒ σ(1− r)
W (τ1)

τ1
. (A.32)

The coefficient estimator δ̃3i can be written as

δ̃3i =

 T∑
t=k2+1

xitx
′
it

−1
T∑

t=k2+1

xityit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xityit

=

 T∑
t=k2+1

xitx
′
it

−1  T∑
t=k2+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)

−

β0
i +

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


= δ0i +

 T∑
t=k2+1

xitx
′
it

−1
T∑

t=k2+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit.

Then, it is shown that, as N,T → ∞,

V43 =
1√
N

N∑
i=1

1

T

T∑
t=s

x′it
√
T (δ̃3i − δ0i )

=
1√
N

N∑
i=1

(
1

T

T∑
t=s

x′it

)
√
T

 T∑
t=k2+1

xitx
′
it

−1
T∑

t=k2+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


⇒ σ(1− r)

(
W (1)−W (τ2)

1− τ2
− W (τ1)

τ1

)
, (A.33)
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since N/T → 0. From (A.31), (A.32), and (A.33), we have

V4 ⇒ σ2

∫ 1

τ2

[
W (1)−W (r)− 1− r

1− τ2
(W (1)−W (τ2))

]2
dr.

The proof of Lemma A.2 is complete. ■
Proof of Theorem 1. Combining the asymptotic distributions in (A.20) and Lemma A.2,

we can complete the proof.■

Appendix B. Proof of Theorem 2

We first investigate the statistical properties of the common break estimator k̂ under the

alternative hypothesis in Proposition 1. The proof follows the proof of Lemmas 1–2 and

Theorem 1 in Baltagi et al. (2016). Suppose that there are two groups and the individuals

in the same group share a common break date. These groups are denoted by G1 = {i :

individuals in group 1 with a common break k01} and G2 = {i : individuals in group 2 with

common break k02}. The model under the alternative can be specified as{
yit = x′itβ

0
i + x′itδ

0
i 1(t>k01)

+ uit t = 1, · · · , T, for i ∈ G1,

yit = x′itβ
0
i + x′itδ

0
i 1(t>k02)

+ uit t = 1, · · · , T, for i ∈ G2.

The vector form can be rewritten as

Yi = [Xi, Zi(k
0
j )]b

0
i + ui, for i ∈ Gj , j = 1, 2.

The common break point is estimated in (3) by minimizing the total sum of the squared OLS

residuals. Let SSRi denote the sum of the squared residuals of regression Yi on Xi (no break

case). Using the equality on page 185 of Baltagi et al. (2016),

SSRi − SSRi(k
∗) = δ̂i(k

∗)′[Zi(k
∗)′MiZi(k

∗)]δ̂i(k
∗),
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estimation (3) can be transformed into

k̂ = arg min
1≤k∗≤T−1

N∑
i=1

SSRi(k
∗)

= arg max
1≤k∗≤T−1

N∑
i=1

(SSRi − SSRi(k
∗))

= arg max
1≤k∗≤T−1

N∑
i=1

SVi(k
∗)

= arg max
1≤k∗≤T−1

∑
i∈G1

(SVi(k
∗)− SVi(k

0
1)) +

∑
i∈G2

(SVi(k
∗)− SVi(k

0
1))

 , (B.1)

where

Mi = I −Xi(X
′
iXi)

−1X ′
i,

SVi(k
∗) = δ̂i(k

∗)′[Zi(k
∗)′MiZi(k

∗)]δ̂i(k
∗),

SVi(k
0
j ) = δ̂i(k

0
j )

′[Zi(k
0
j )

′MiZi(k
0
j )]δ̂i(k

0
j ), for, j = 1, 2.

For individuals in group 1, we can see that the coefficient estimators are given by

δ̂i(k
∗) = [Zi(k

∗)′MiZi(k
∗)]−1Zi(k

∗)MiYi,

δ̂i(k
0
1) = [Zi(k

0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)MiYi.

Replacing Yi with

Yi = Xiβ
0
i + Zi(k

0
1)δ

0
i + ui,

we have

δ̂i(k
∗) = [Zi(k

∗)′MiZi(k
∗)]−1Zi(k

∗)′Mi[Xiβ
0
i + Zi(k

0
1)δ

0
i + ui]

= [Zi(k
∗)′MiZi(k

∗)]−1Zi(k
∗)′MiZi(k

0
1)δ

0
i + [Zi(k

∗)′MiZi(k
∗)]−1Zi(k

∗)′Miui,

δ̂i(k
0
1) = [Zi(k

0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)

′Mi[Xiβ
0
i + Zi(k

0
1)δ

0
i + ui]

= δ0i + [Zi(k
0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)

′Miui.

Similarly, for individuals in group 2, by replacing Yi with

Yi = Xiβ
0
i + Zi(k

0
2)δ

0
i + ui,
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the coefficients estimators are rewritten as

δ̂i(k
∗) = [Zi(k

∗)′MiZi(k
∗)]−1Zi(k

∗)′Mi[Xiβ
0
i + Zi(k

0
2)δ

0
i + ui]

= [Zi(k
∗)′MiZi(k

∗)]−1Zi(k
∗)′MiZi(k

0
2)δ

0
i + [Zi(k

∗)′MiZi(k
∗)]−1Zi(k

∗)′Miui,

δ̂i(k
0
1) = [Zi(k

0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)

′Mi[Xiβ
0
i + Zi(k

0
2)δ

0
i + ui]

= [Zi(k
0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)

′MiZi(k
0
2)δ

0
i + [Zi(k

0
1)

′MiZi(k
0
1)]

−1Zi(k
0
1)

′Miui.

To simplify the notations, we use Zi, Z
0
1i, Z

0
2i to replace Zi(k

∗), Zi(k
0
1), Zi(k

0
2). For the indi-

viduals in group 1, we have

SVi(k
∗) = δ0i

′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
1iδ

0
i + 2δ0i

′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui

+u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui, (B.2)

SVi(k
0
1) = δ0i

′
Z0
1i
′
MiZ

0
1iδ

0
i + 2δ0i

′
Z0
1i
′
Miui + u′iMiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui. (B.3)

Using (B.2) and (B.3), SVi(k
∗)− SVi(k

0
1) becomes

SVi(k
∗)− SVi(k

0
1) = −δ0i

′
[
Z0
1i
′
MiZ

0
1i − Z0

1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
1i

]
δ0i

+2δ0i
′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − 2δ0i

′
Z0
1i
′
Miui

+u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui − u′iMiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui,

and can be decomposed into the term defined by

J1i(k
∗) = δ0i

′
[
Z0
1i
′
MiZ

0
1i − Z0

1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
1i

]
δ0i (B.4)

and the term related to disturbance ui defined by

H1i(k
∗) = 2δ0i

′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − 2δ0i

′
Z0
1i
′
Miui

+u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui − u′iMiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui. (B.5)

Then, we have SVi(k
∗)− SVi(k

0
1) = −J1i(k

∗) +H1i(k
∗) for i ∈ G1. A similar transformation

for individuals in group 2 shows that

SVi(k
∗) = δ0i

′
Z0
2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
2iδ

0
i + 2δ0i

′
Z0
2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui

+u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui, (B.6)

SVi(k
0
1) = δ0i

′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiZ

0
2iδ

0
i + 2δ0i

′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiui

+u′iMiZ
0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui. (B.7)
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Using (B.6) and (B.7), we can see that, for i ∈ G2,

SVi(k
∗)− SVi(k

0
1) = −J2i(k

∗) +H2i(k
∗),

where the term J2i(k
∗) is denoted by

J2i(k
∗) = δ0i

′
[
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiZ

0
2i − Z0

2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
2i

]
δ0i (B.8)

and the term H2i(k
∗) related to disturbance is denoted by

H2i(k
∗) = 2δ0i

′
Z0
2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − 2δ0i

′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiui

+u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui − u′iMiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui. (B.9)

Thus, (B.1) can be rewritten as

k̂ = arg max
1≤k∗≤T−1

∑
i∈G1

(−J1i(k
∗) +H1i(k

∗)) +
∑
i∈G2

(−J2i(k
∗) +H2i(k

∗))

 .

Define the sets K(C1) = {k : 1 ≤ k < k01 − C1}, K(C2) = {k : k02 + C2 < k ≤ T}, and

K(C) = K(C1)∪K(C2) = {k : 1 ≤ k < k01 −C1 or k02 +C2 < k ≤ T} with positive constants

C1, C2. Next, we show that the common break estimator cannot appear in the set K(C1) by

Lemmas B.1–B.2. A similar result can be obtained for the set K(C2) by symmetry; thus, the

details are omitted. Define

Z∆
1i =

{
Zi(k

∗)− Zi(k
0
1) if k∗ < k01

−(Zi(k
∗)− Zi(k

0
1)) if k∗ ≥ k01

and Z∆
2i =

{
Zi(k

∗)− Zi(k
0
2) if k∗ < k02

−(Zi(k
∗)− Zi(k

0
2)) if k∗ ≥ k02

.

Lemma B.1 Under Assumptions 1–6, for all large N and T , with probability tending to 1,

inf
k∗∈K(C1)

1

k01 − k∗

∑
i∈G1

J1i(k
∗) +

∑
i∈G2

J2i(k
∗)

 ≥ λϕN .

Proof of Lemma B.1. We first show that the summation of part J1i(k∗) has a lower bound

in the case of k∗ ∈ K(C1). From Lemma A.2 in Bai(1997), if k∗ < k01,

J1i(k
∗) = δ0i

′
[
Z0
1i
′
MiZ

0
1i − Z0

1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
1i

]
δ0i

= δ0i
′
Z∆
1i

′
Z∆
1i

(
Z ′
iZi

)−1
Z0
1i
′
Z0
1iδ

0
i . (B.10)
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Since the matrix
Z∆
1i

′
Z∆
1i

k01 − k∗

(
Z ′
iZi

T

)−1 Z0
1i
′
Z0
1i

T
(B.11)

is symmetric and positive definite from Assumption 4, we have

1

k01 − k∗

∑
i∈G1

J1i(k
∗) =

∑
i∈G1

δ0i
′
S′
iΛiSiδ

0
i =

∑
i∈G1

δ̃0
′

i Λiδ̃
0
i ≥

∑
i∈G1

λiδ̃
0′
i δ̃0i , (B.12)

where Λi is a diagonal matrix comprising of the eigenvalues of matrix (B.11), δ̃0i = Siδ
0
i , and

λi is the minimum eigenvalue of (B.11). Since δ̃0
′

i δ̃0i = δ0
′

i S′
iSiδ

0
i = δ0

′
i δ0i , with probability

tending to one for large N and T, we show that

1

k01 − k∗

∑
i∈G1

J1i(k
∗) ≥ λ1

∑
i∈G1

δ0
′

i δ0i = λ1ϕN1 , (B.13)

where λ1 = mini∈G1{λi}. Next, we investigate the lower bound of J2i(k∗) for individuals in

group 2. Denote

Vi(a, b) =


x′i(a+1)

x′i(a+2)
...
x′ib

 , V 0
i (a, b, c) =


0(b−a)×p

x′i(b+1)

x′i(b+2)
...
x′ic

 , and S =

[
I 0
−I I

]
,

where Vi(a, b) is a (b− a) × p matrix whose jth row is the same as the (a + j)th row of Xi,

V 0
i (a, b, c) is a (c− a)× p matrix whose first b− a rows are zeros and the jth row is the same

as the (a + j)th row of Xi for j > b − a, and S is a 2p × 2p matrix constructed by p × p

identity matrix I. The second term J2i(k) can be transformed into

J2i(k
∗) = δ0i

′
[
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiZ

0
2i − Z0

2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiZ

0
2i

]
δ0i

= δ0i
′
Z0
2i
′
[
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMi −MiZi(Z

′
iMiZi)

−1Z ′
iMi

]
Z0
2iδ

0
i

= δ0i
′
Z0
2i
′
[
Mi −MiZi(Z

′
iMiZi)

−1Z ′
iMi −

(
Mi −MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMi

)]
Z0
2iδ

0
i

= δ0i
′
Z0
2i
′
(
MW −MW 0

1

)
Z0
2iδ

0
i

= δ0i
′
Z0
2i
′
(
MW̄ −MW̄ 0

1

)
Z0
2iδ

0
i , (B.14)
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where

W = [Xi, Zi(k
∗)] =

[
Vi(0, k

∗) 0
Vi(k

∗, T ) Vi(k
∗, T )

]
, W 0

1 = [Xi, Zi(k
0
1)] =

[
Vi(0, k

0
1) 0

Vi(k
0
1, T

0
1 ) Vi(k

0
1, T )

]
,

W̄ =

[
Vi(0, k

∗) 0
0 Vi(k

∗, T )

]
, W̄ 0

1 =

[
Vi(0, k

0
1) 0

0 Vi(k
0
1, T )

]
,

MX = I −X(X ′X)−1X ′, for matrixX.

The final equality (B.14) holds because

MW = I −W (W ′W )−1W ′ = I −WS(S′W ′WS)−1S′W ′ = I − W̄
(
W̄ ′W̄

)−1
W̄ = MW̄ ,

MW 0
1
= I −W 0

1 (W
0
1
′
W 0

1 )
−1W 0

1
′
= I −W 0

1 S(S
′W 0

1
′
W 0

1 S)
−1S′W 0

1
′
= I − W̄ 0

1

(
W̄ 0′

1 W̄ 0
1

)−1
W̄ 0′

1 = MW̄ 0
1
.

Since W̄ and W̄ 0
1 are block matrices, it follows that

Z0
2i
′
MW̄Z0

2i

= Z0
2i
′
[
I − W̄

(
W̄ ′W̄

)−1
W̄
]
Z0
2i

= [0, V 0
i (k

∗, k02, T )]
′
[
I − W̄

(
W̄ ′W̄

)−1
W̄
] [ 0

V 0
i (k

∗, k02, T )

]
= V 0

i (k
∗, k02, T )

′V 0
i (k

∗, k02, T )− V 0
i (k

∗, k02, T )
′Vi(k

∗, T )
(
Vi(k

∗, T )′Vi(k
∗, T )

)−1
Vi(k

∗, T )V 0
i (k

∗, k02, T )

= Vi(k
0
2, T )

′
Vi(k

0
2, T )− Vi(k

0
2, T )

′
Vi(k

0
2, T )

(
Vi(k

∗, T )′Vi(k
∗, T )

)−1
Vi(k

0
2, T )

′
Vi(k

0
2, T )

= Vi(k
0
2, T )

′
Vi(k

0
2, T )

[(
Vi(k

0
2, T )

′
Vi(k

0
2, T )

)−1
−
(
Vi(k

∗, T )′Vi(k
∗, T )

)−1
]
Vi(k

0
2, T )

′
Vi(k

0
2, T ), (B.15)

Z0
2i
′
MW̄ 0

1
Z0
2i

= Z0
2i
′
[
I − W̄ 0

1

(
W̄ 0′

1 W̄ 0
1

)−1
W̄ 0′

1

]
Z0
2i

= [0, V 0
i (k

0
1, k

0
2, T )]

′
[
I − W̄ 0

1

(
W̄ 0′

1 W̄ 0
1

)−1
W̄ 0′

1

] [
0

V 0
i (k

0
1, k

0
2, T )

]
= V 0

i (k
0
1, k

0
2, T )

′V 0
i (k

0
1, k

0
2, T )− V 0

i (k
0
1, k

0
2, T )

′Vi(k
0
1, T )

(
Vi(k

0
1, T )

′
Vi(k

0
1, T )

)−1
Vi(k

0
1, T )V

0
i (k

0
1, k

0
2, T )

= Vi(k
0
2, T )

′
Vi(k

0
2, T )

[(
Vi(k

0
2, T )

′
Vi(k

0
2, T )

)−1
−
(
Vi(k

0
1, T )

′
Vi(k

0
1, T )

)−1
]
Vi(k

0
2, T )

′
Vi(k

0
2, T ). (B.16)
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Substituting (B.15) and (B.16) into (B.14), we have

J2i(k
∗) = δ0

′
i Vi(k

0
2, T )

′
Vi(k

0
2, T )

[(
Vi(k

0
1, T )

′
Vi(k

0
1, T )

)−1
−
(
Vi(k

∗, T )′Vi(k
∗, T )

)−1
]
Vi(k

0
2, T )

′
Vi(k

0
2, T )δ

0
i

= δ0
′

i Z0
2i
′
Z0
2i

[(
Z0
1i
′
Z0
1i

)−1
−
(
Z ′
iZi

)−1
]
Z0
2i
′
Z0
2iδ

0
i

= δ0
′

i Z0
2i
′
Z0
2i

(
Z ′
iZi

)−1
(
Z ′
iZi − Z0

1i
′
Z0
1i

)(
Z0
1i
′
Z0
1i

)−1
Z0
2i
′
Z0
2iδ

0
i

= δ0
′

i Z0
2i
′
Z0
2i

(
Z ′
iZi

)−1
Z∆
1i

′
Z∆
1i

(
Z0
1i
′
Z0
1i

)−1
Z0
2i
′
Z0
2iδ

0
i , (B.17)

which is symmetric from the first equality. Hence, under Assumptions 4 and 5,

Z0
2i
′
Z0
2i

T

(
Z ′
iZi

T

)−1 Z∆
1i

′
Z∆
1i

k01 − k∗

(
Z0
1i
′
Z0
1i

T

)−1
Z0
2i
′
Z0
2i

T
(B.18)

is positive definite. Then, we have

1

k01 − k∗

∑
i∈G2

J2i(k
∗) ≥ λ2

∑
i∈G2

δ0
′

i δ0i = λ2ϕN2 , (B.19)

where λ2 = mini∈G2{λi}, and λi is the minimum eigenvalue of matrix (B.18). From inequal-

ities (B.13) and (B.19), the proof of Lemma B.1 is complete.■
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Lemma B.2 Under Assumptions 1–6, uniformly on k∗ ∈ K(C1),

(i)
∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
ui = Op(

√
ϕN1),

(ii)
∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
Xi

(
X ′

iXi

)−1
X ′

iui = Op

(√
ϕN1

T

)
,

(iii)
∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
MiZi

(
Z ′
iMiZi

)−1
Z ′
iMiui = Op

(√
ϕN1

T

)
,

∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

∆
1i

(
Z ′
iMiZi

)−1
Z ′
iMiui = Op

(√
ϕN2

T

)
,

∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
Miui = Op

(√
ϕN2

)
+Op

(√
ϕN2

T

)
,

∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

[(
Zi

′MiZi

)−1 −
(
Z0
1i
′
MiZ

0
1i

)−1
]
Z0
1i
′
Miui = Op

(√
ϕN2

T

)
,

(iv)
N∑
i=1

1

k01 − k∗
u′iMiZ

∆
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
Miui = Op

(
N

T

)
,

(v)
N∑
i=1

1

k01 − k∗
u′iMiZ

∆
1i

(
Z ′
iMiZi

)−1
Z0
1i
′
Miui = Op

(
N

T

)
+Op

(
N√
T

)
,

(vi)
N∑
i=1

1

k01 − k∗
u′iMiZ

0
1i

[(
Z ′
iMiZi

)−1 −
(
Z0
1i
′
MiZ

0
1i

)−1
]
Z0
1i
′
Miui = Op

(
N

T

)
.

Proof of Lemma B.2. (i) It is shown that

1√
k01 − k∗

Z∆
1i

′
ui = Op(1), since V ar

(
1√

k01 − k∗
Z∆
1i

′
ui

)
< ∞.

Then, we have ∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
ui = Op(

√
ϕN1).

(ii) We can show that

∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
Xi

(
X ′

iXi

)−1
X ′

iui =
1√
T

∑
i∈G1

δ0i
′ Z∆

1i
′
Xi

k01 − k∗

(
X ′

iXi

T

)−1 1√
T
X ′

iui = Op

(√
ϕN1

T

)
,

since for large T
1√
T
Xi

′ui = Op(1).
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(iii) By expanding Mi, we can show that

∑
i∈G1

1

k01 − k∗
δ0i

′
Z∆
1i

′
MiZi

(
Z ′
iMiZi

)−1
Z ′
iMiui

=
1√
T

∑
i∈G1

δ0i
′ Z∆

1i
′
Zi

k01 − k∗

(
Z ′
iMiZi

T

)−1 1√
T
Z ′
iMiui

− 1√
T

∑
i∈G1

δ0i
′ Z∆

1i
′
Xi

k01 − k∗

(
X ′

iXi

T

)−1 X ′
iZi

T

(
Z ′
iMiZi

T

)−1 1√
T
Z ′
iMiui

= Op

(√
ϕN1

T

)
.

To prove the second order, since Z0
2i
′
Z∆
1i = 0, we have

∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

∆
1i

(
Z ′
iMiZi

)−1
Z ′
iMiui

=
∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
Z∆
1i

(
Z ′
iMiZi

)−1
Z ′
iMiui

− 1√
T

∑
i∈G2

δ0i
′Z0

2i
′
Xi

T

(
X ′

iXi

T

)−1 X ′
iZ

∆
1i

k01 − k∗

(
Z ′
iMiZi

T

)−1 1√
T
Z ′
iMiui

= Op

(√
ϕN2

T

)
.

Considering the third order, we can show that

∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
Miui

=
∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
ui

−
∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
Xi(X

′
iXi)

−1X ′
iui

=
1√

k01 − k∗
Op

(√
ϕN2

)
+Op

(√
ϕN2

T

)

= Op

(√
ϕN2

)
+Op

(√
ϕN2

T

)
.
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The last term can be transformed into∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Zi

′MiZi

)−1
(
Z0
1i
′
MiZ

0
1i − Zi

′MiZi

)(
Z0
1i
′
MiZ

0
1i

)−1
Z0
1i
′
Miui

=
∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Zi

′MiZi

)−1
(
−Z∆

1i
′
Z∆
1i − Z∆

1i
′
MiZ

0
1i − Z0

1i
′
MiZ

∆
1i

)(
Z0
1i
′
MiZ

0
1i

)−1
Z0
1i
′
Miui

+
∑
i∈G2

1

k01 − k∗
δ0i

′
Z0
2i
′
MiZ

0
1i

(
Zi

′MiZi

)−1
(
Z∆
1i

′
Xi(X

′
iXi)

−1X ′
iZ

∆
1i

)(
Z0
1i
′
MiZ

0
1i

)−1
Z0
1i
′
Miui

= Op

(√
ϕN2

T

)
+Op

(√
ϕN2

T

)
.

(iv) The term
∑N

i=1
1

T (k01−k∗)
u′iMiZ

∆
1i

(
Z′
iMiZi

T

)−1
Z∆
1i

′
Miui has the same order as that of∑N

i=1
1

T (k01−k∗)
u′iMiZ

∆
1iZ

∆
1i

′
Miui since the matrix Z′

iMiZi

T = Op(1) for large T. Expanding

matrix Mi, we have
N∑
i=1

1

T (k01 − k∗)
u′iMiZ

∆
1iZ

∆
1i

′
Miui

=
1

T (k01 − k∗)

N∑
i=1

u′iZ
∆
1iZ

∆
1i

′
ui −

2

T (k01 − k∗)

N∑
i=1

u′iXi(X
′
iXi)

−1X ′
iZ

∆
1iZ

∆
1i

′
ui

+
1

T (k01 − k∗)

N∑
i=1

u′iXi(X
′
iXi)

−1X ′
iZ

∆
1iZ

∆
1i

′
Xi(X

′
iXi)

−1X ′
iui (B.20)

Consider the first term in (B.20),

1

T (k01 − k∗)

N∑
i=1

u′iZ
∆
1iZ

∆
1i

′
ui = Op

(
N

T

)
.

Similarly, it can be shown that the second term,

1

T (k01 − k∗)

N∑
i=1

u′iXi(X
′
iXi)

−1X ′
iZ

∆
1iZ

∆
1i

′
ui

=

√
k01 − k∗

T

1

T

N∑
i=1

u′iXi√
T

(
X ′

iXi

T

)−1 X ′
iZ

∆
1i

k01 − k∗
Z∆
1i

′
ui√

k01 − k∗
= Op

(
N

T

)
,

and the third term,

1

T (k01 − k∗)

N∑
i=1

u′iXi(X
′
iXi)

−1X ′
iZ

∆
1iZ

∆
1i

′
Xi(X

′
iXi)

−1X ′
iui

=
k01 − k∗

T

1

T

N∑
i=1

u′iXi√
T

(
X ′

iXi

T

)−1 X ′
iZ

∆
1i

k01 − k∗
Z∆
1i

′
Xi

k01 − k∗

(
X ′

iXi

T

)−1 X ′
iui√
T

= Op

(
N

T

)
.
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Thus, we have

N∑
i=1

1

k01 − k∗
u′iMiZ

∆
1i

(
Z ′
iMiZi

)−1
Z∆
1i

′
Miui = Op

(
N

T

)
.

(v) By expanding Mi, we show that

N∑
i=1

1

k01 − k∗
u′iMiZ

∆
1i

(
Z ′
iMiZi

)−1
Z0
1i
′
Miui

=
N∑
i=1

1

k01 − k∗
u′iZ

∆
1i

(
Z ′
iMiZi

)−1
Z0
1i
′
Miui −

N∑
i=1

1

k01 − k∗
u′iXi(X

′
iXi)

−1X ′
iZ

∆
1i

(
Z ′
iMiZi

)−1
Z0
1i
′
Miui

= Op

(
N√
T

)
+Op

(
N

T

)
.

(vi) We show that

N∑
i=1

1

k01 − k∗
ui

′MiZ
0
1i

(
Zi

′MiZi

)−1
(
Z0
1i
′
MiZ

0
1i − Zi

′MiZi

)(
Z0
1i
′
MiZ

0
1i

)−1
Z0
1i
′
Miui

=
N∑
i=1

1

k01 − k∗
ui

′MiZ
0
1i

(
Zi

′MiZi

)−1
(
−Z∆

1i
′
MiZ

∆
1i − Z∆

1i
′
MiZ

0
1i − Z0

1i
′
MiZ

∆
1i

)(
Z0
1i
′
MiZ

0
1i

)−1
Z0
1i
′
Miui

= Op

(
N

T

)
.

The proof of Lemma B.2 is complete.■
Proof of Proposition 1. We first show that for any given ϵ > 0,

P

 sup
K(C1)

∣∣∣∣∣∣∣
∑
i∈G1

H1i(k
∗) +

∑
i∈G2

H2i(k
∗)

k01 − k∗

∣∣∣∣∣∣∣ ≥ λϕN

 < ϵ. (B.21)

Using (B.5) and (B.9), we see that the sum of H1i(k
∗) + H2i(k

∗) can be decomposed into
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three parts:

1

k01 − k∗

∑
i∈G1

H1i(k
∗) +

∑
i∈G2

H2i(k
∗)


=

1

k01 − k∗

∑
i∈G1

2δ0i
′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui −

∑
i∈G1

2δ0i
′
Z0
1i
′
Miui


+

1

k01 − k∗

∑
i∈G2

2δ0i
′
Z0
2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui −

∑
i∈G2

2δ0i
′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiui


+

1

k01 − k∗

[
N∑
i=1

u′iMiZ
′
i(Z

′
iMiZi)

−1Z ′
iMiui −

N∑
i=1

u′iMiZ
0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui

]
= H1 +H2 +H3.

Consider the first term by replacing Z0
1i with Zi − Z∆

1i ,

|H1| = 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

[
δ0i

′
Z0
1i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − δ0i

′
Z0
1i
′
Miui

]∣∣∣∣∣∣
= 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

[
δ0i

′
Z ′
iMiui − δ0i

′
Z∆
1i

′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − δ0i

′
Zi

′Miui + δ0i
′
Z∆
1i

′
Miui

]∣∣∣∣∣∣
= 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

[
δ0i

′
Z∆
1i

′
Miui − δ0i

′
Z∆
1i

′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui

]∣∣∣∣∣∣
≤ 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

δ0i
′
Z∆
1i

′
ui

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

δ0i
′
Z∆
1i

′
Xi(X

′
iXi)

−1X ′
iui

∣∣∣∣∣∣
+2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G1

δ0i
′
Z∆
1i

′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui

∣∣∣∣∣∣
= Op(

√
ϕN1) +Op

(√
ϕN1

T

)
+Op

(√
ϕN1

T

)
, (B.22)

where the inequality is obtained by expanding Mi, and the final equality uses the orders in

(i)–(iii) of Lemma B.2.
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For the second term H2, replacing Zi with Z∆
1i + Z0

1i, and using (iii) of Lemma B.2,

|H2| = 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G2

[
2δ0i

′
Z0
2i
′
MiZi(Z

′
iMiZi)

−1Z ′
iMiui − 2δ0i

′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui

]∣∣∣∣∣∣
= 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G2

[
δ0i

′
Z0
2i
′
MiZ

∆
1i(Z

′
iMiZi)

−1Z ′
iMiui + δ0i

′
Z0
2i
′
MiZ

0
1i(Z

′
iMiZi)

−1Z ′
iMiui

−δ0i
′
Z0
2i
′
MiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1iMiui

]∣∣∣
= 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G2

[
δ0i

′
Z0
2i
′
MiZ

∆
1i(Z

′
iMiZi)

−1Z ′
iMiui + δ0i

′
Z0
2i
′
MiZ

0
1i(Z

′
iMiZi)

−1Z∆
1i

′
Miui

+δ0i
′
Z0
2i
′
MiZ

0
1i

[(
Zi

′MiZi

)−1 −
(
Z0
1i
′
MiZ

0
1i

)−1
]
Z0
1i
′
Miui

]∣∣∣∣
≤ 2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G2

δ0i
′
Z0
2i
′
MiZ

∆
1i(Z

′
iMiZi)

−1Z ′
iMiui

∣∣∣∣∣∣
+2

∣∣∣∣∣∣ 1

k01 − k

∑
i∈G2

δ0i
′
Z0
2i
′
MiZ

0
1i(Z

′
iMiZi)

−1Z∆
1i

′
Miui

∣∣∣∣∣∣ (B.23)

+2

∣∣∣∣∣∣ 1

k01 − k∗

∑
i∈G2

δ0i
′
Z0
2i
′
MiZ

0
1i

[(
Zi

′MiZi

)−1 −
(
Z0
1i
′
MiZ

0
1i

)−1
]
Z0
1i
′
Miui

∣∣∣∣∣∣
= Op

(√
ϕN2

T

)
+Op(

√
ϕN2) +Op

(√
ϕN2

T

)
+Op

(√
ϕN2

T

)
. (B.24)

By (iv)–(vi) of Lemma B.2, the order of the third term is

|H3| =

∣∣∣∣∣ 1

k01 − k∗

N∑
i=1

[
u′iMiZ

′
i(Z

′
iMiZi)

−1Z ′
iMiui − u′iMiZ

0
1i(Z

0
1i
′
MiZ

0
1i)

−1Z0
1i
′
Miui

]∣∣∣∣∣
≤

∣∣∣∣∣ 1

k01 − k∗

N∑
i=1

u′iMiZ
∆
1i

′
(Z ′

iMiZi)
−1Z∆

1i
′
Miui

∣∣∣∣∣+
∣∣∣∣∣ 2

k01 − k∗

N∑
i=1

u′iMiZ
∆
1i

′
(Z ′

iMiZi)
−1Z0

1i
′
Miui

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

1

k01 − k∗
u′iMiZ

0
1i

[(
Z ′
iMiZi

)−1 −
(
Z0
1i
′
MiZ

0
1i

)−1
]
Z0
1i
′
Miui

∣∣∣∣∣
= Op

(
N

T

)
+Op

(
N

T

)
+Op

(
N√
T

)
+Op

(
N

T

)
. (B.25)
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Combining (B.22), (B.24), and (B.25) under Assumption 2, the term,

1

ϕN

∣∣∣∣∣∣∣
∑
i∈G1

H1i(k
∗) +

∑
i∈G2

H2i(k
∗)

k01 − k∗

∣∣∣∣∣∣∣
=

1

ϕN

∣∣∣∣∣
[
Op(

√
ϕN1) +Op(

√
ϕN2) +Op

(√
ϕN1

T

)
+Op

(√
ϕN2

T

)
+Op

(
N√
T

)
+Op

(
N

T

)]∣∣∣∣∣
→ 0,

will vanish for any k∗ ∈ K(C1). On the other hand, the part ϕ−1
N (k01 − k∗)−1∣∣∣∣∣ ∑i∈G1

J1i(k
∗) +

∑
i∈G2

J2i(k
∗)

∣∣∣∣∣ has a lower bound from Lemma B.1. Hence, for any ϵ > 0,

P

 sup
K(C1)

∣∣∣∣∣∣∣
∑
i∈G1

H1i(k
∗) +

∑
i∈G2

H2i(k
∗)

k01 − k∗

∣∣∣∣∣∣∣ ≥ sup
K(C1)

∣∣∣∣∣∣∣
∑
i∈G1

J1i(k
∗) +

∑
i∈G2

J2i(k
∗)

k01 − k∗

∣∣∣∣∣∣∣
 < ϵ,

which implies that

P

 sup
K(C1)

∑
i∈G1

−J1i(k
∗) +H1i(k

∗) +
∑
i∈G2

−J2i(k
∗) +H2i(k

∗) ≥ 0

 < ϵ,

P

(
sup

K(C1)

N∑
i=1

[
SVi(k

∗)− SVi(k
0
1)
]
≥ 0

)
< ϵ.

Finally, we obtain that for any given ϵ > 0, and both large N and T ,

P (k̂ ∈ K(C1)) < ϵ.

In other words, the total sum of squared residuals cannot be maximized in the case of k∗ ∈

K(C1). By symmetry, the estimation of the common break point (3) can be transformed into

k̂ = arg max
1≤k∗≤T−1

∑
i∈G1

(SVi(k
∗)− SVi(k

0
2)) +

∑
i∈G2

(SVi(k
∗)− SVi(k

0
2))

 .

Similarly, we can show that, for any given ϵ > 0,

P (k̂ ∈ K(C2)) < ϵ.

The common break point estimator is obtained in set K(C2) with probability tending to zero.

Thus, we complete the proof of Proposition 1. ■
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Proposition 1 indicates that the estimated common break is stochastically bounded by either

true break points or located between k01 and k02. Then, we can say that

k01 − k̂

T
= Op

(
1

T

)
, if k̂ ≤ k01, (B.26)

k̂ − k02
T

= Op

(
1

T

)
, if k̂ ≥ k02. (B.27)

Using this property of the common break estimator under the alternative, we next show that

the numerator of the statistic will diverge under H1A.

Proof of Proposition 2. Under the alternative, from (A.4), the CUSUM of the residuals

for individuals in group j (j = 1, 2) are calculated as

1√
NT

∑
i∈Gj

k∑
t=1

ûit

=
1√
NT

∑
i∈Gj

k∑
t=1

uit −
1√
NT

∑
i∈Gj

k∑
t=1

x′it(β̂i − β0
i )−

1√
NT

∑
i∈Gj

k∑
t=k̂+1

x′it(δ̂i − δ0i )1{k>k̂}

+
1√
NT

∑
i∈Gj

k∑
t=k0j+1

x′itδ
0
i 1{k0j<k≤k̂} +

1√
NT

∑
i∈Gj

k̂∑
t=k0j+1

x′itδ
0
i 1{k0j<k̂<k}

− 1√
NT

∑
i∈Gj

k∑
t=k̂+1

x′itδ
0
i 1{k̂<k≤k0j }

− 1√
NT

∑
i∈Gj

k0j∑
t=k̂+1

x′itδ
0
i 1{k̂<k0j<k}.
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Then, the total sum of the squared residuals 1√
NT

∑N
i=1

∑k
t=1 ûit is expressed as

1√
NT

N∑
i=1

k∑
t=1

uit −
1√
NT

N∑
i=1

k∑
t=1

x′it(β̂i(k̂)− β0
i )−

1√
NT

N∑
i=1

k∑
t=k̂+1

x′it(δ̂i(k̂)− δ0i )1{k>k̂}

+
1√
NT

∑
i∈G1

k∑
t=k01+1

x′itδ
0
i 1{k01<k≤k̂} +

1√
NT

∑
i∈G1

k̂∑
t=k01+1

x′itδ
0
i 1{k01<k̂<k}

− 1√
NT

∑
i∈G1

k∑
t=k̂+1

x′itδ
0
i 1{k̂<k≤k01}

− 1√
NT

∑
i∈G1

k01∑
t=k̂+1

x′itδ
0
i 1{k̂<k01<k}

+
1√
NT

∑
i∈G2

k∑
t=k02+1

x′itδ
0
i 1{k02<k≤k̂} +

1√
NT

∑
i∈G2

k̂∑
t=k02+1

x′itδ
0
i 1{k02<k̂<k}

− 1√
NT

∑
i∈G2

k∑
t=k̂+1

x′itδ
0
i 1{k̂<k≤k02}

− 1√
NT

∑
i∈G2

k02∑
t=k̂+1

x′itδ
0
i 1{k̂<k02<k}

= UH1
1 − UH1

2 − UH1
3 + UH1

4 + UH1
5 − UH1

6 − UH1
7 + UH1

8 + UH1
9 − UH1

10 − UH1
11 . (B.28)

Since k̂ < k01 in UH1
6 , UH1

7 , and k̂ > k02 in UH1
8 , UH1

9 , using the orders (B.26) and (B.27), we

have

UH1
6 = Op

(√
N

T

)
, UH1

7 = Op

(√
N

T

)
, UH1

8 = Op

(√
N

T

)
, UH1

9 = Op

(√
N

T

)
. (B.29)

From (A.10), we know that for i ∈ Gj , j = 1, 2,

√
T (β̂i − β0

i ) =
√
T

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit +
√
T

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k0j+1

xitx
′
itδ

0
i 1{k̂>k0j }

=


√
T

(
k̂∑

t=1
xitx

′
it

)−1
k̂∑

t=1
xituit +

√
T

(
k̂∑

t=1
xitx

′
it

)−1
k̂∑

t=k01+1

xitx
′
itδ

0
i 1{k̂>k01}

if j = 1,

√
T

(
k̂∑

t=1
xitx

′
it

)−1
k̂∑

t=1
xituit +Op

(
1√
T

)
if j = 2,
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using order (B.27). Then, the second term UH1
2 becomes

1√
N

∑
i∈G1

1

T

k∑
t=1

x′it
√
T

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k01+1

xitx
′
itδ

0
i 1{k̂>k01}


+

1√
N

∑
i∈G2

1

T

k∑
t=1

x′it

√T

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit +Op

(
1√
T

)
= Op(1) +

1√
N

∑
i∈G1

1

T

k∑
t=1

x′it

 1

T

k̂∑
t=1

xitx
′
it

−1

1√
T

k̂∑
t=k01+1

xitx
′
itδ

0
i 1{k̂>k01}

+Op(1) +Op

(√
N

T

)

= Op(1) + UH1
21 1{k̂>k01}

+Op(1) +Op

(√
N

T

)
. (B.30)

Considering the third term UH1
3 , for individuals i ∈ Gj , the coefficient estimator is

δ̂i =

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xityit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xityit

=

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)1{k̂≥k0j }

+

 k0j∑
t=k̂+1

xit(x
′
itβ

0
i + uit) +

T∑
t=k0j+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)

 1{k̂<k0j }


−

β0
i +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit +

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k0j+1

xitx
′
itδ

0
i 1{k̂>k0j }


= δ0i +

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xituit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit

−

 T∑
t=k̂+1

xitx
′
it

−1 k0j∑
t=k̂+1

xitx
′
itδ

0
i 1{k̂<k0j }

−

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k0j+1

xitx
′
itδ

0
i 1{k̂>k0j }

,

where the fourth term in the final equality is Op(1/T ) for individuals in group 1 using order

(B.26), while the fifth term is Op(1/T ) for individuals in group 2 using order (B.27). Then,
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the third term UH1
3 can be rewritten as 1√

N

N∑
i=1

1

T

k∑
t=k̂+1

x′it
√
T

 T∑
t=k̂+1

xitx
′
it

−1
T∑

t=k̂+1

xituit −

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=1

xituit


−Op

(√
N

T

)
− 1√

N

∑
i∈G1

1

T

k∑
t=k̂+1

x′it

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k01+1

xitx
′
itδ

0
i 1{k̂>k01}

− 1√
N

∑
i∈G2

1

T

k∑
t=k̂+1

x′it

 1

T

T∑
t=k̂+1

xitx
′
it

−1

1√
T

k02∑
t=k̂+1

xitx
′
itδ

0
i 1{k̂<k02}

−Op

(√
N

T

) 1{k>k̂}

=

[
Op(1)−Op

(√
N

T

)
− UH1

31 1{k̂>k01}
− UH1

32 1{k̂<k02}
−Op

(√
N

T

)]
1{k>k̂}. (B.31)

Thus, from (B.29), (B.30), and (B.31), (B.28) can be rewritten as

1√
NT

N∑
i=1

k∑
t=1

ûit

= Op(1)−

[
Op(1) + UH1

21 1{k̂>k01}
+Op(1) +Op

(√
N

T

)]

−

[
Op(1)−Op

(√
N

T

)
− UH1

31 1{k̂>k01}
− UH1

32 1{k̂<k02}
−Op

(√
N

T

)]
1{k>k̂}

+UH1
4 + UH1

5 +Op

(√
N

T

)
− UH1

10 − UH1
11

= −UH1
21 1{k̂>k01}

+
[
UH1
31 1{k̂>k01}

+ UH1
32 1{k̂<k02}

]
1{k>k̂} + UH1

4 + UH1
5 − UH1

10 − UH1
11

+Op(1) +Op

(√
N

T

)
. (B.32)

Next, we show that (B.32) diverges at the rate of
√
NT under the alternative in the following

three cases.

Case (i). Suppose that k̂ < k01 < k02, we have

UH1
21 1{k̂>k01}

= 0, UH1
31 1{k̂>k01}

= 0, UH1
4 = 0, UH1

5 = 0.
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Choosing k ∈ (k01 + C1, k
0
2], we can see that UH1

11 = 0, and

−UH1
10 + UH1

32 1{k̂<k02}
1{k>k̂}

= − 1√
NT

∑
i∈G2

k∑
t=k̂+1

x′itδ
0
i +

1√
NT

∑
i∈G2

k∑
t=k̂+1

x′it

 T∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xitx
′
itδ

0
i

= −
√

T

N

∑
i∈G2

1

T

k∑
t=k̂+1

x′it

 1

T

T∑
t=k̂+1

xitx
′
it

−1

1

T

T∑
t=k02+1

xitx
′
itδ

0
i

= Op(
√
NT ).

Thus, we have

sup
k∈[1,T−1]

USNT (k, k̂) ≥ sup
k∈(k01+C1,k02 ]

USNT (k, k̂)

= sup
k∈(k01+C1,k02 ]

(
UH1
32 − UH1

10 +Op(1) +Op

(√
N

T

))2

= Op(NT ).

Case (ii). Suppose that k01 ≤ k̂ ≤ k02. If k̂ ∈ (k01 + C1, k
0
2], choosing k ∈ [k01, k

0
1 + C1], we

have

UH1
31 1{k>k̂} = 0, UH1

32 1{k>k̂} = 0, UH1
5 = 0, UH1

10 = 0, UH1
11 = 0,

UH1
4 =

1√
NT

∑
i∈G1

k∑
t=k01+1

x′itδ
0
i = Op

(√
N

T

)
,

since k < k̂, and

UH1
21 =

√
T

N

∑
i∈G1

1

T

k∑
t=1

x′it

 1

T

k̂∑
t=1

xitx
′
it

−1

1

T

k̂∑
t=k01+1

xitx
′
itδ

0
i = Op(

√
NT ).

Thus, we have

sup
k∈[1,T−1]

USNT (k, k̂) ≥ sup
k∈[k01 ,k01+C1]

USNT (k, k̂)

= sup
k∈[k01 ,k01+C1]

(
UH1
21 +Op(1) +Op

(√
N

T

))2

= Op(NT ).

If k̂ ∈ [k01, k
0
1 + C1], since (k̂ − k01)/T = Op(1/T ),

UH1
21 1{k̂>k01}

= Op

(√
N

T

)
, UH1

31 1{k̂>k01}
= Op

(√
N

T

)
, UH1

4 = Op

(√
N

T

)
, UH1

5 = Op

(√
N

T

)
.
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Choosing k = k02, we have UH1
11 = 0, and

UH1
32 1{k̂<k02}

− UH1
10

=
1√
NT

∑
i∈G2

k02∑
t=k̂+1

x′it

 T∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xitx
′
itδ

0
i −

1√
NT

∑
i∈G2

k02∑
t=k̂+1

x′itδ
0
i

= −
√

T

N

∑
i∈G2

1

T

k02∑
t=k̂+1

x′it

 1

T

T∑
t=k̂+1

xitx
′
it

−1

1

T

T∑
t=k02+1

xitx
′
itδ

0
i

= Op

(√
NT

)
.

Thus, we have

sup
k∈[1,T−1]

USNT (k, k̂) ≥ USNT (k
0
2, k̂) =

(
UH1
32 − UH1

10 +Op(1) +Op

(√
N

T

))2

= Op(NT ).

Case (iii). Suppose that k01 < k02 < k̂, then we have

UH1
32 1{k̂<k02}

= 0, UH1
10 = 0, UH1

11 = 0.

Choosing k ∈ (k01, k
0
1 + C1], we can see that UH1

31 1{k>k̂} = 0, UH1
5 = 0, UH1

4 = Op

(√
N/T

)
,

and

UH1
21 1{k̂>k01}

=
1√
NT

N∑
i=1

k∑
t=1

x′it

 k̂∑
t=1

xitx
′
it

−1
k̂∑

t=k01+1

xitx
′
itδ

0
i

=

√
T

N

N∑
i=1

1

T

k∑
t=1

x′it

 1

T

k̂∑
t=1

xitx
′
it

−1

1

T

k̂∑
t=k01+1

xitx
′
itδ

0
i

= Op(
√
NT ).

Thus, we have

sup
k∈[1,T−1]

USNT (k, k̂) ≥ sup
k∈(k01 ,k01+C1]

USNT (k, k̂)

= sup
k∈(k01 ,k01+C1]

(
UH1
21 +Op(1) +Op

(√
N

T

))2

= Op(NT ).

The proof of Proposition 2 is complete. ■
Proof of Proposition 3. From Proposition 1, under the alternative H1A, the estimated

55



common break k̂ takes a value in [k01 − C1, k
0
2 + C2] with probability approaching one, for

arbitrary positive constants C1, C2. Thus, we investigate the limiting properties of the nor-

malization factor in three cases that k01 − C1 ≤ k̂ < k01, k01 ≤ k̂ ≤ k02, and k02 < k̂ ≤ k02 + C2.

Case (i). Suppose that k01 − C1 ≤ k̂ < k01, we have,

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) ≤ VNT (k1, k̂, k
0
2), for k1 ∈ Ω(ϵ).

To show that the minimum value of VNT (k1, k̂, k2) is stochastically bounded, it is sufficient

to show that for any k1 ∈ Ω(ϵ),

VNT (k1, k̂, k
0
2) = Op(1).

In this case, the model is estimated by regressing Yi on [Xi, X1i(k1, k̂), X2i(k̂, k
0
2), X3i(k

0
2)],

which is expressed as

Yi = [Xi, X1i(k1, k̂), X2i(k̂, k
0
2), X3i(k

0
2)]


βi
δ1i
δ2i
δ3i

+ ui

= X̃i(k1, k̂, k
0
2)b1i + ui, (B.33)

while the true model with distinct common breaks is defined by

Yi = [Xi, X1i(k̂, k
0
1), X2i(k

0
1, k

0
2), X3i(k

0
2)]b

0
1i + ui

= X̃i(k̂, k
0
1, k

0
2)b

0
1i + ui (B.34)

b01i =

{
[β0

i
′
, 0, δ0i

′
, δ0i

′
]′ if i ∈ G1,

[β0
i
′
, 0, 0, δ0i

′
]′ if i ∈ G2.

Replacing Yi in (B.33) by (B.34), the residuals can be written by, for individuals in group 1,

ũi = X̃i(k̂, k
0
1, k

0
2)b

0
1i + ui − X̃i(k1, k̂, k

0
2)b̃1i(k̂)

= ui − X̃i(k1, k̂, k
0
2)[b̃1i(k̂)− b01i] + [X̃i(k̂, k

0
1, k

0
2)− X̃i(k1, k̂, k

0
2)]b

0
1i

= ui − X̃i(k1, k̂, k
0
2)


β̃i − β0

i

δ̃1i
δ̃2i − δ0i
δ̃3i − δ0i

+ [0, X1i(k̂, k
0
1)−X1i(k1, k̂), X2i(k

0
1, k

0
2)−X2i(k̂, k

0
2), 0]


β0
i

0
δ0i
δ0i


= ui −Xi(β̃i − β0

i )−X1i(k1, k̂)δ̃1i −X2i(k̂, k
0
2)(δ̃2i − δ0i )−X3i(k

0
2)(δ̃3i − δ0i )

+[X2i(k
0
1, k

0
2)−X2i(k̂, k

0
2)]δ

0
i . (B.35)
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For individuals in group 2, we have

ũi = ui − X̃i(k1, k̂, k
0
2)


β̃i − β0

i

δ̃1i
δ̃2i

δ̃3i − δ0i

+ [0, X1i(k̂, k
0
1)−X1i(k1, k̂), X2i(k

0
1, k

0
2)−X2i(k̂, k

0
2), 0]


β0
i

0
0
δ0i


= ui −Xi(β̃i − β0

i )−X1i(k1, k̂)δ̃1i −X2i(k̂, k
0
2)δ̃2i −X3i(k

0
2)(δ̃3i − δ0i ). (B.36)

By the definition of the denominator, VNT (k1, k̂, k
0
2) can be decomposed into four parts V H1

1 ,

V H1
2 , V H1

3 , and V H1
4 , defined by

V H1
1 =

1

T

k1∑
s=1

(
1√
NT

N∑
i=1

s∑
t=1

ũit

)2

, V H1
2 =

1

T

k̂∑
s=k1+1

 1√
NT

N∑
i=1

k̂∑
t=s

ũit

2

,

V H1
3 =

1

T

k02∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

ũit

2

, V H1
4 =

1

T

T∑
s=k02+1

(
1√
NT

N∑
i=1

T∑
t=s

ũit

)2

.

From (B.35) and (B.36), for t ≤ k̂, the residuals ũit are calculated on the basis of subsamples

{xi1, · · · , xik1}, and {xi(k1+1), · · · , xik̂}, which are the same as those in (A.22) under the null

hypothesis. Using the asymptotic distribution of (A.23)–(A.27) and k01 − k̂ = Op(1), we can

derive the limiting distributions of the terms V H1
1 and V H1

2 as follows:

V H1
1 +V H1

2 ⇒ σ2

∫ τ1

0

(
W (r)− r

τ1
W (τ1)

)2

dr+σ2

∫ τ01

τ1

[
W (τ01 )−W (r)− τ01 − r

τ01 − τ1
(W (τ01 )−W (τ1))

]2
.

We next consider the third term, which can be rewritten as

V H1
3 =

1

T

k02∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

uit −
1√
NT

N∑
i=1

s∑
t=k̂+1

x′it(β̃i − β0
i )−

1√
NT

∑
i∈G1

s∑
t=k̂+1

x′it(δ̃2i − δ0i )

− 1√
NT

∑
i∈G1

 s∑
t=k̂+1

x′itδ
0
i 1{s≤k01} +

k01∑
t=k̂+1

x′itδ
0
i 1{s>k01}

− 1√
NT

∑
i∈G2

s∑
t=k̂+1

x′itδ̃2i

2

(B.37)

=
1

T

k02∑
s=k̂+1

 1√
NT

N∑
i=1

s∑
t=k̂+1

uit −
1√
NT

N∑
i=1

s∑
t=k̂+1

x′it(β̃i − β0
i )−

1√
NT

∑
i∈G1

s∑
t=k̂+1

x′it(δ̃2i − δ0i )

− Op

(√
N

T

)
− 1√

NT

∑
i∈G2

s∑
t=k̂+1

x′itδ̃2i

2

=
1

T

k02∑
s=k̂+1

(
V H1
31 − V H1

32 − V H1
33 −Op

(√
N

T

)
− V H1

34

)2

.
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Since k01 − k̂ = Op(1), the terms in parentheses in (B.37) are op(1) and will vanish as N,T →

∞. Similar to V31 and V32, we have

V H1
31 ⇒ σ(W (r)−W (τ01 )), (B.38)

V H1
32 ⇒ σ(r − τ01 )

W (τ1)

τ1
. (B.39)

The coefficient estimator δ̃2i is calculated by, for i ∈ G1,

δ̃2i =

 k02∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xityit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xityit

=

 k02∑
t=k̂+1

xitx
′
it

−1  k01∑
t=k̂+1

xit(x
′
itβ

0
i + uit) +

k02∑
t=k01+1

xit(x
′
itβ

0
i + x′itδ

0
i + uit)


−

β0
i +

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


= δ0i +

 k02∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit −Op

(
1

T

)
,

for i ∈ G2,

δ̃2i =

 k02∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xit(x
′
itβ

0
i + uit)−

β0
i +

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit


=

 k02∑
t=k̂+1

xitx
′
it

−1
k02∑

t=k̂+1

xituit −

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit.

Then, we have

V H1
33 + V H1

34 =
1√
N

N∑
i=1

 1

T

s∑
t=k01+1

x′it +Op

(
1

T

)√
T


 k02∑

t=k01+1

xitx
′
it

−1
k02∑

t=k01+1

xituit

−

(
k1∑
t=1

xitx
′
it

)−1 k1∑
t=1

xituit + Op

(
1

T

)
+Op

(
1√
T

)
+Op

(
1

T

)]
⇒ σ(r − τ01 )

(
W (τ02 )−W (τ01 )

τ02 − τ01
− W (τ1)

τ1

)
.
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Thus, we can find that the limiting distribution of V H1
3 is

σ2

∫ τ02

τ01

[
W (r)−W (τ01 )−

r − τ01
τ02 − τ01

(W (τ02 )−W (τ01 ))

]2
dr.

Since the coefficient estimator δ̂3i remains the same in groups 1 and 2, we have

V H1
4 =

1

T

T∑
s=k02+1

{
1√
NT

N∑
i=1

[
T∑
t=s

uit −
T∑
t=s

x′it(β̂1i − β0
i )−

T∑
t=s

x′it(δ̂3i − δ0i )

]}2

⇒ σ2

∫ 1

τ02

[
W (1)−W (r)− 1− r

1− τ02

(
W (1)−W (τ02 )

)]2
dr.

Thus, we can say that

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) ≤ VNT (k1, k̂, k
0
2) = V H1

1 + V H1
2 + V H1

3 + V H1
4 = Op(1).

The proof of Proposition 2(i) is complete.

Case (ii) Suppose that k01 ≤ k̂ ≤ k02. In this case, we have

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) ≤ VNT (k
0
1, k̂, k

0
2).

We can easily find that the term VNT (k
0
1, k̂, k

0
2) estimated using true break points will have

a finite limiting distribution.

Case (iii) Suppose that k02 < k̂ ≤ k02+C2. In this case, from (B.27), we have k̂−k02 = Op(1).

Similar to the proof of case (i), we can show that

inf
(k1,k2)∈Ω(ϵ)

VNT (k1, k̂, k2) ≤ VNT (k
0
1, k̂, k2) = Op(1), for any k2 ∈ Ω(ϵ).

Thus, we complete the proof of Proposition 3. ■
Proof of Theorem 2. From Proposition 1, we show that P (k̂ ∈ [k01 − C1, k

0
2 + C2]) → 1.

Furthermore, for any k̂ ∈ [k01 − C1, k
0
2 + C2],

sup
k∈Ω(ϵ)

USNT (k, k̂) = Op(NT ),

sup
(k1,k2)∈Ω(ϵ)

V −1
NT (k1, k̂, k2) = Op(1) (or ∞),

from Propositions 2 and 3. Thus, the proof of Theorem 2 is complete. ■
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Table 1: Critical values

cτ0 10% 5% 1%

c0.1 43.425 56.822 92.840
c0.2 43.912 57.249 92.341
c0.3 45.501 57.962 93.689
c0.4 45.427 57.997 90.335
c0.5 45.540 57.842 85.984
c0.6 45.250 57.276 90.397
c0.7 46.489 59.175 93.728
c0.8 45.201 59.248 94.886
c0.9 43.515 57.203 92.908
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Table 2: Size of the test DGP.1

T N 10% 5% 1%

(a) ρ = 0
20 10 0.145 0.089 0.034

50 0.136 0.074 0.026
100 0.098 0.053 0.015

50 10 0.086 0.048 0.011
50 0.076 0.036 0.009
100 0.063 0.027 0.006

100 10 0.073 0.032 0.005
50 0.072 0.034 0.006
100 0.064 0.033 0.004

200 10 0.083 0.037 0.008
50 0.075 0.032 0.006
100 0.086 0.041 0.008

(b) ρ = 0.4
20 10 0.226 0.146 0.060

50 0.234 0.153 0.069
100 0.231 0.143 0.058

50 10 0.134 0.068 0.022
50 0.151 0.084 0.028
100 0.145 0.084 0.024

100 10 0.113 0.063 0.017
50 0.105 0.058 0.016
100 0.101 0.055 0.016

200 10 0.107 0.048 0.013
50 0.091 0.043 0.009
100 0.091 0.050 0.013
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Table 3: Power of the test DGP.2 (under H1A)

T N 10% 5% 1%

(a) ρ = 0
20 10 0.149 0.088 0.021

50 0.586 0.455 0.222
100 0.846 0.741 0.474

50 10 0.281 0.174 0.046
50 0.918 0.847 0.614
100 0.993 0.982 0.911

100 10 0.561 0.425 0.190
50 0.996 0.980 0.916
100 1.000 1.000 0.992

(b) ρ = 0.4
20 10 0.304 0.216 0.100

50 0.803 0.722 0.519
100 0.965 0.929 0.789

50 10 0.390 0.276 0.121
50 0.950 0.901 0.742
100 0.997 0.991 0.946

100 10 0.611 0.491 0.258
50 0.994 0.985 0.932
100 1.000 1.000 0.994

1 k0
1 = [T/4], k0

2 = [3T/4],
N1 : N2 = 5 : 5.

62



Table 4: Power of the test DGP.2 (under H1A)

ρ δ1i, δ2i 10% 5% 1%

0 U(0,0.1) 0.130 0.064 0.012
U(0.1,0.2) 0.538 0.401 0.167
U(0.2,0.3) 0.918 0.850 0.611
U(0.3,0.4) 0.995 0.984 0.919
U(0.4,0.5) 1.000 0.999 0.986
U(0.5,0.6) 1.000 1.000 0.998
U(0.6,0.7) 1.000 1.000 1.000
U(0.7,0.8) 1.000 1.000 1.000
U(0.8,0.9) 1.000 1.000 1.000
U(0.9,1.0) 1.000 1.000 1.000
U(1.4,1.5) 1.000 1.000 1.000

0.4 U(0,0.1) 0.206 0.138 0.037
U(0.1,0.2) 0.652 0.540 0.292
U(0.2,0.3) 0.955 0.913 0.750
U(0.3,0.4) 0.997 0.992 0.949
U(0.4,0.5) 1.000 1.000 0.993
U(0.5,0.6) 1.000 1.000 1.000
U(0.6,0.7) 1.000 1.000 1.000
U(0.7,0.8) 1.000 1.000 1.000
U(0.8,0.9) 1.000 1.000 1.000
U(0.9,1.0) 1.000 1.000 1.000
U(1.4,1.5) 1.000 1.000 1.000

1 T = 50, N = 50.
2 k0

1 = [T/4], k0
2 = [3T/4], N1 : N2 = 5 : 5.
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Table 5: Power of the test DGP.2 (under H1A)

k01 k02 10% 5% 1%

[0.2T] [0.25T] 0.120 0.066 0.018
[0.3T] 0.325 0.225 0.070
[0.4T] 0.801 0.695 0.465
[0.5T] 0.941 0.891 0.734
[0.6T] 0.955 0.918 0.764
[0.7T] 0.925 0.875 0.692
[0.8T] 0.859 0.771 0.558

1 N = T = 50, ρ = 0.4, N1 : N2 = 5 : 5.
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Table 6: Power of the test DGP.2 (under H1A)

N1 : N2 10% 5% 1%

2:N-2 0.168 0.105 0.037
1:9 0.262 0.187 0.073
2:8 0.546 0.447 0.241
3:7 0.811 0.719 0.500
4:6 0.938 0.888 0.737
5:5 0.978 0.950 0.840
1 N = T = 50, ρ = 0.4.
2 k0

1 = [0.3T ], k0
2 = [0.7T ].
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Table 7: Power of the test (ρ = 0.4 under H2A)

k01 k02 k03 N1 : N2 : N3 T N 10% 5% 1%

[T/6] [3T/6] [4T/6] 3:3:4 50 10 0.296 0.204 0.080
50 0.646 0.522 0.284
100 0.740 0.642 0.445

[0.4T] [0.5T] [0.6T] 3:3:4 50 10 0.248 0.165 0.058
50 0.485 0.381 0.211
100 0.629 0.506 0.296

[0.2T] [0.25T] [0.5T] 3:3:4 50 10 0.342 0.239 0.109
50 0.835 0.750 0.562
100 0.964 0.923 0.809

[0.2T] [0.3T] [0.8T] 3:3:4 50 10 0.334 0.235 0.087
50 0.704 0.591 0.363
100 0.851 0.772 0.583

[0.2T] [0.5T] [0.8T] 1:4:5 50 10 0.334 0.224 0.087
50 0.851 0.758 0.566
100 0.925 0.866 0.725
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Table 8: Power of the test (under H3A)

T N 10% 5% 1%

(a) ρ = 0
20 10 0.147 0.089 0.022

50 0.548 0.412 0.191
100 0.654 0.497 0.255

50 10 0.281 0.173 0.050
50 0.688 0.515 0.247
100 0.884 0.770 0.474

100 10 0.468 0.329 0.129
50 0.908 0.815 0.541
100 0.969 0.895 0.637

(b) ρ = 0.4
20 10 0.344 0.243 0.109

50 0.725 0.584 0.352
100 0.842 0.740 0.493

50 10 0.300 0.204 0.076
50 0.842 0.730 0.477
100 0.903 0.810 0.538

100 10 0.517 0.392 0.183
50 0.942 0.874 0.642
100 0.879 0.761 0.438
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Table 9: Power of the test DGP.3 (under H4A)

T N 10% 5% 1%

(a) ρ = 0
20 10 0.316 0.219 0.087

50 0.701 0.600 0.374
100 0.876 0.831 0.685

50 10 0.555 0.428 0.218
50 0.964 0.939 0.807
100 0.996 0.994 0.973

100 10 0.771 0.676 0.448
50 0.999 0.995 0.981
100 1.000 1.000 1.000

(b) ρ = 0.4
20 10 0.552 0.447 0.267

50 0.920 0.867 0.706
100 0.991 0.975 0.914

50 10 0.684 0.571 0.351
50 0.994 0.984 0.908
100 0.999 0.999 0.987

100 10 0.815 0.728 0.531
50 0.999 0.998 0.984
100 1.000 1.000 1.000

1 k0
1 = [T/4], k0

2 = [3T/4].
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Table 10: Detection of common break dates during the period 2005M02 – 2011M12

Category N T Statistic SNT (k, k1, k2) Estimated common break date
(a) 2005M02 – 2011M12
Foreign Large Blend 58 83 270.2507∗∗∗ 2008M01
Foreign Small/Mid Blend 7 83 98.1177∗∗∗ 2008M02
Foreign Large Growth 39 83 299.1527∗∗∗ 2008M01
Foreign Small/Mid Growth 11 83 8.5283 2008M11
Large Blend 205 83 278.6359∗∗∗ 2008M01
Mid-Cap Blend 54 83 305.5441∗∗∗ 2008M01
Small Blend 76 83 240.9046∗∗∗ 2008M01
Large Growth 186 83 100.4435∗∗∗ 2008M02
Mid-Cap Growth 88 83 103.6767∗∗∗ 2008M02
Small Growth 92 83 110.178∗∗∗ 2008M02
(b) 2005M02 – 2008M05
Foreign Large Blend 58 40 146.0774∗∗∗ 2007M12
Foreign Small/Mid Blend 7 40 146.2134∗∗∗ 2007M12
Foreign Large Growth 39 40 145.7293∗∗∗ 2007M12
Foreign Small/Mid Growth 11 40 116.7004∗∗∗ 2007M12
Large Blend 205 40 150.0121∗∗∗ 2007M12
Mid-Cap Blend 54 40 146.7684∗∗∗ 2007M12
Small Blend 76 40 137.2884∗∗∗ 2007M12
Large Growth 186 40 157.4825∗∗∗ 2007M12
Mid-Cap Growth 88 40 151.1206∗∗∗ 2007M12
Small Growth 92 40 136.7168∗∗∗ 2007M12
(c) 2008M06 – 2011M12
Foreign Large Blend 58 43 52.1541∗ 2008M12
Foreign Small/Mid Blend 7 43 26.9158 2008M12
Foreign Large Growth 39 43 31.5376 2008M12
Foreign Small/Mid Growth 11 43 34.1773 2008M12
Large Blend 205 43 10.6933 2008M12
Mid-Cap Blend 54 43 9.4507 2008M12
Small Blend 76 43 13.8338 2008M12
Large Growth 186 43 16.8967 2008M12
Mid-Cap Growth 88 43 20.9836 2008M12
Small Growth 92 43 9.853 2008M12
1 * reject at the 10% significance level.
2 ** reject at the 5% significance level.
3 *** reject at the 1% significance level

69


	表紙
	HIAS-E-107
	A new test for common breaks
	in heterogeneous panel data models
	Peiyun Jiang(a) , Eiji Kurozumi(b)
	May 2021
	Hitotsubashi Institute for Advanced Study, Hitotsubashi University


	p210520jiang

