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1. Introduction

Nonlinearity matters in the field of behavioral economics generally and in the context of
prospect theory more particularly. Estimating nonlinear functions, which frequently emerge from
applications of prospect theory, requires explanatory variables to be densely continuous. However,
the available variables are often coarsely discrete when using natural experiments. This paper
presents a simple method to estimate the predicted nonlinear function by exploiting the panel data
structure of the discrete measure concerned.

Our method carefully distinguishes between the two types of coarsely discrete explanatory
variables by assuming that if the variable changes between two points in time, it increases
(decreases) marginally from near the upper (lower) bound of the rank below (above). We can then
properly approximate the dynamic behavior at the boundary between two consecutive ranks about
both the lower bound of one rank above and the upper bound of one rank below. The resulting
econometric specification displays the features of nonlinear probability weighting, rank dependence,
and asymmetry between gains and losses, all of which are essential ingredients in prospect theory.
As an application, we estimate the nonlinear relationship between land prices and earthquake risk
using the proposed method when earthquake risk is assessed only on a scale of discrete measures.
We then interpret the estimation results in terms of various dimensions of prospect theory.

According to the nonlinear probability weighting function (an inverted S-shaped function),
frequently adopted as one of the major theoretical devices in prospect theory, including in Tversky
and Kahneman (1992) and Prelec (1998), small-sized risks (measured in terms of the objective
probability of disastrous events) tend to be overweighted in subjective risk assessment, but such
overweighting quickly dissolves as risks approach near-zero. Conversely, medium-sized risks are
likely to be underweighted. However, such underweighting also rapidly disappears as risks become
large.

Let us employ a simple setup where land pricing is linearly decreasing in the subjectively
evaluated earthquake risk, but this subjective risk is not observable. All we can observe is the
objectively evaluated risk. Assuming that the objective probability is distorted by nonlinear
probability weighting, we estimate a nonlinear relationship between land prices and the objective
risk. More concretely, land prices increase rapidly when the overweighting of the underlying risk
dissolves as the risk approaches near-zero. Conversely, land prices are more insensitive to the
objective risk when medium-sized risk is underweighted, and land prices decrease quickly when
underweighting of the underlying risk disappears as the risk becomes large. As depicted by the solid
blue line in Figure 1, a nonlinear function consequently emerges concerning the relationship
between land prices and objective earthquake risk.

Given the densely continuous risk measures available in cross-sectional datasets, it is quite
possible to estimate this nonlinear relationship precisely. However, it is impossible to do this using

only coarsely discrete risk measures at a particular point in time. Suppose that three intervals of



the objective earthquake risk are represented by discrete indexes, 1 (least risky and safest), 2
(intermediate risk and safety), and 3 (most risky and least safe). We approximate the nonlinear
function with the two thick dotted blue lines AB and BC in Figure 1, both of which connect the
midpoints of each interval. However, this approximation is never able to capture precisely the
nonlinear nature of the function in question. Line AB fails to approximate either the right derivative
at point A or the left derivative at point B, while line BC fails in capturing either the right derivative
at point B or the left derivative at point C.

The basic premise of our proposed estimation method is quite simple. We attempt to
compensate for the absence of continuous risk measures in cross-sectional datasets by exploiting
changes in coarsely discrete measures between two points in time in panel datasets. Here, we
assume that if the discrete measure concerned changes over time, then it either decreases from near
the lower bound of the rank above or increases from near the upper bound of the rank below. More
concretely, we can exploit this assumption to approximate the right derivative at point A (B)
indicated by the red arrow DA (EB) using risk-improving observations from Ranks 2 to 1 (3 to 2) at
the border, and the left derivative at point B (C) illustrated by the black arrow DB (EC) using risk-
deteriorating observations from Ranks 1 to 2 (2 to 3) at the border.

For this purpose, we have available a perfect environment for natural experiments from the
Tokyo Metropolitan District (TMD). The Tokyo Metropolitan Government (TMG) evaluates objective
earthquake risks using coarsely discrete indexes from throughout the TMD every five years
(excluding those for its western mountainous region). More specifically, it ranks earthquake risk on
a relative scale of one (safest) to five (riskiest) for every numbered subdivision (cho-mein Japanese)
of all wards, cities, and towns in the TMD in 1998, 2002, 2008, 2013, and 2018. For its part, the
Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) lists land prices
appraised every new year for many fixed points of location in urban areas throughout Japan. For
the TMD, the land prices of about two thousand or more fixed locations are appraised every new
year.l

Given the above research environment, the earthquake risk measures, released publicly by the
TMG and available for our study, are not cardinal/continuous, but ordinal/discrete. Thanks to the
proposed econometric framework, however, we can still exploit the information associated with the
continuous movement of unavailable, but cardinal risk measures at each border between two
consecutive risk ranks. The current specification does not focus on how much earthquake risk differs
among various points of location in a static context, but it considers in which direction the
unobservable risk measure changed marginally at each boundary in a dynamic context. Combining
the panel data of discrete earthquake risk ranks with that of land prices for each fixed place, we

estimate a nonlinear relationship between land prices and earthquake risk. We then explore whether

1 Using cross-sectional data not panel data from the same datasets, Nakagawa et al. (2009) estimate
the linear relationship between earthquake risk and land prices.



the estimated nonlinear function is consistently interpretable considering prospect theory.

As pointed out by Barberis (2013a, 2013b), O’'Donoghue and Sprenger (2018), and others,
prospect theory is characterized by three components, comprising nonlinear probability weighting,
rank dependence (reference dependence), and asymmetry between gains and losses (loss aversion
and diminishing sensitivity), all of which result in a nonlinear relationship between the variables
concerned. While these components are often explored empirically by conducting laboratory
experiments or using questionnaires, they can also be examined using data from natural
experiments, frequently combined with field experiments or questionnaires. The latter empirical
research into nonlinear probability weighting has been carried out intensively in the field of finance
and insurance.2 For example, according to Barberis and Huang (2008), Boyer et al. (2010), and Bali
et al. (2011), positively skewed securities are overpriced and earn low or even negative risk premiums
(expected excess returns) as predicted by nonlinear probability weighting. Barseghyan et al. (2013)
employ data on insurance deductions and reveal the overweighting of small probabilities and
insensitivity to probability changes, both of which arise from nonlinear probability weighting. Botzen
and van den Bergh (2009, 2012) also present evidence consistent with rank dependence and
nonlinear probability weighting using flood insurance data. For instance, they find that the
willingness-to-pay for flood insurance is higher than the expected loss but insensitive to changes in
the underlying probabilities.

In the field of natural disaster risk, the three elements associated with prospect theory are
typically examined using natural experiment data, combined with those from field experiments or
questionnaires. For example, Iwasaki et al. (2019) provide evidence for reference dependence and
loss aversion using the responses of residents to the Fukushima nuclear accident in Japan.
Employing questionnaires about health conditions for those forced to relocate after the accident, they
set the pre-accident situation as the reference point, and find a kinked relationship between health
conditions and household characteristics. Page et al. (2014) present findings on risk-seeking
attitudes following a loss by studying the risk-taking behavior of those experiencing the 2011
Australian floods, finding that flood victims would prefer a lottery to insurance. Botzen et al. (2015)
also provide evidence consistent with nonlinear probability weighting by interviewing those residing
in flood-prone areas in New York, revealing that those that incurred flood damage tend to

overestimate flood risk.3 Lastly, Holden and Quiggin (2017) conclude that farmers in Malawi were

2 In empirical finance, the implications of prospect theory are often examined in terms of the
behavioral impacts of gain/loss asymmetry without any explicit consideration of nonlinear
probability weighting. See Barberis et al. (2001) and Zhang and Semmler (2009), among others.

3 Beron et al. (1997) find that while earthquake risk was initially overestimated, the hedonic price
of earthquake risk fell after the 1989 Loma Prieta earthquake in central California. Gu et al. (2018),
conclude that after a huge fault-driven earthquake (the Great Hanshin-Awaji earthquake) destroyed
the Hanshin area in western Japan in January 1995, prices of land around the Uemachi fault line,
which 1s adjacent to the fault line responsible for the 1995 earthquake, were heavily discounted.
Naoi et al. (2009) show that homeowners and renters revised upward their subjective assessment of
earthquake risks following large-scale earthquakes.



more likely to adopt drought-tolerant maize as they became more risk and loss averse through
overestimating the risk of drought.

Our study differs from the extant literature in the following respects. First, any change in
earthquake risk does not result from a particular large-scale earthquake event, but location-specific
events, which have a potential impact on earthquake risk assessments. These include urban
redevelopment, land improvement projects, deterioration of social and private structures, and newly
revealed local damage. In the TMD, for instance, aging structures in urban and suburban areas, still
heavily crowded by older and more fragile wooden houses, invite caution in terms of earthquake risk.
Second, our estimation concerns not dependence on a single reference point, but on multiple ranks.
Accordingly, the entire shape of the (inverted S-shaped) probability weighting function can be
recovered through our estimations. Third, we employ a 20-year dataset of land prices and
earthquake risk, not just interval datasets from a few years before and after a particular disaster.
In the dataset compiled by the TMG, earthquake risk was assessed systematically every five years
from 1998 through 2018. Finally, we do not rely on questionnaires of individual subjective
assessments of earthquake risk, but instead, assume that these subjective assessments are reflected
in land pricing. That is, we use only publicly available datasets, consisting of objective earthquake
risks and observable land prices.

The remainder of the paper is organized as follows. Section 2 presents the econometric
specifications used to capture nonlinear probability weighting, rank dependence, and the asymmetry
between gains and losses, all essential features of prospect theory. Section 3 describes the datasets
of earthquake risk and land prices for the TMD and Section 4 reports the estimation results. Section

5 discusses the results and provides some brief concluding remarks.

2. Econometric specification

Let us present a simple land pricing model in the presence of earthquake risk. In a standard
setup, land prices are discounted by expected earthquake damage gD, where ¢ and D denote the
objective event probability and the damage from an earthquake, respectively.4 However, in prospect
theory, the subjective not the objective probability is employed. As discussed, the objective

probability is distorted according to the nonlinear probability weighting function m(g), which is

4 More rigorously, in the presence of risk aversion on the consumer’s side, the expected damage
should be further adjusted by the marginal rate of substitution between the current safe state and
a forthcoming disastrous state. Suppose that wealth is equal to W in the current safe state, and W
declines by uninsured damage Z with an earthquake. Given that the utility function U is
v'(w-2)

u'w)
Here, we assume that the curvature of U is quite small, as for the equity premium puzzle (Mehra
and Prescott, 1985). Accordingly, 2 (,W_Z)

u'(w)
specification.

increasing, concave, and differentiable, the expected damage gD should be adjusted by

1s close to one. Thus, we ignore risk aversion in the current



depicted as an inverted S-shape by the solid blue line in Figure 2 (Tversky and Kahneman, 1992;
Prelec, 1998). A small objective probability is overweighted, but such overweighting dissolves as the
probability approaches zero. In contrast, a middle-sized objective probability is underweighted, but
such underweighting disappears as the probability becomes larger.

We slightly modify the above setup of prospect theory. The weighting function m is still applied
to the event probability g. Thus, the expected damage is under or overestimated according to m(q)D.
Then, In[n(q)D] is subtracted from the logarithmic land price (InP) after adjustment by other
important factors in land pricing. Accordingly, the nonlinear land pricing function of the objectively
expected damage (In(gD)) is depicted by the solid blue line in Figure 3, which is a mirror image of
Figure 2 in a vertical direction.

However, we do not have any continuous measure of earthquake risk, In(gD). Instead, all we
have is a discrete measure of earthquake risk on a scale from one (safest) to five (riskiest). We assume
that a smaller (larger) g accompanies a smaller (larger) D, and that the ranks of q¢ and D
correspond to that of gD.

Fortunately, we have panel datasets of this discrete risk rank for every numbered subdivision
of all wards, cities, and towns in the TMD. We also have available land price panel data for more
than two thousand fixed points of location in the TMD. By exploiting these panel datasets of
earthquake risk and land prices, we propose use of the following econometric specification to
estimate the nonlinear land pricing function.

As assumed, the ranks of g and InD correspond with that of In(qD). Then, —[In[r(q)] + InD]
is specified in a rank-dependent manner. To begin, we formulate a stepping function of the discrete
risk rank lrzg a;., where 7, denotes the discrete risk rank, 2, 3, 4, or 5, and a;, represents the
risk sensitivity for each rank of earthquake risk. We then approximate the logarithmic land price of
location n inyear t (InP,,) using this stepping function together with other explanatory variables

for land prices:
Tn’
lnPn,t =Pt (Tn,t' xj,n,tl fn ) = Zi=; ai,t + Z§=1 bjxj,n,t + fn + COTlStt, (1)

where x;,. represents a time-varying factor and f, denotes a fixed factor for location n. Along with
the earthquake risk factor, x;,, and f, play important roles in determining land prices.

We further introduce gain/loss asymmetry into equation (1) as follows. If a land price in
logarithm (InP,) is decreasing in land risks (Tn‘t), then a;, <0 for i = 2,3,4,and 5. As discussed, the
interpretation of parameter a;, in the step function is quite subtle. For example, a,, cannot be
interpreted as either the right derivative for Rank 1 or the left derivative for Rank 2. This is because
without densely continuous risk measures for r,,, it is impossible properly to estimate the
derivatives at different points using cross-sectional data only. However, it is possible to approximate

the two derivatives separately by distinguishing between risk-improving, -deteriorating, and -



invariant observations when using panel data. In other words, the panel data structure allows us to
not only eliminate fixed effects (f,) as is usual but also to differentiate between the two derivatives.
For this purpose, equation (1) is further specified as

Tn,t_l

— J
p;- (rn,tl xj,n,t' fn) - Zi=2 ai,t + a:n,t,t + Zj=1 bj,txj,n,t + fn + COTlStg', (2)

for risk-deteriorating observations (from 7,, — 1 to r,,) that are assumed to deteriorate from near

the upper bound of the rank below. On the other hand, equation (1) is specified as

Tnetl

Pr (rn,t, xj‘n‘t,fn) = Zi:z At~ Ary r1e T Z§:1 bjtXjne + fn + constg, (3)

for risk-improving observations (from 7,; + 1 to 7,,) which we assume improve from near the lower

bound of the rank above. Using the above specifications, we can interpret a} , (a;  ,) as an
nt nt

approximation for the left (right) derivative. Finally, equation (1) is specified as
Tn‘
p?(rn,t' xj,n,t' fn) = Zi=; it + Z§=1 bj,txj,n,t + fn + const , (4)

for risk-invariant observations. Note how equations (2) and (3) are specified in the same gain/loss
asymmetric manner as the probability weight in cumulative prospect theory (Tversky and
Kahneman, 1992).5

To incorporate equations (2), (3), and (4) in a panel data setup, we assume that the risk

sensitivity a;, may change from time t, and t; in a restrictive manner as follows:
Qie, = Ay, +C. (5)

That is, overall risk sensitivity may change over time for equations (2), (3), and (4).6

Let us assume that the land pricing function at time t, follows equation (4) for risk-improving,

5 Using equations (2) and (3), the change in the land price, AP, ;, from a change in the risk index is
determined by the increment in the probability weighting —A[In[n(g)] + InD]. In turn, —A[In[r(q)] +
InD] depends on whether the underlying risk worsens or improves. For a risk deterioration from

_ vt 4+ me=l + _ v5 + 5 + _ ot :
The—1 to 1, APy, = Zi=2 Aie — Zi=2 Ait = Li=ry, Git — Zi:rn,t+1 it = Apy it > and for a risk
. Tnetl _— e — — . .
improvement from 7, +1 to 1,,, APy, = — (Zi’;'; it 2y ai't) = —a,, ,4+1¢- By comparison, in

cumulative prospect theory, the probability weight w; is defined by the change in the weighting
function, An(q). In turn, Am(g) depends on whether outcome x;, paired with probability g;,
increases or decreases. Suppose Xx; < - <Xz <7 < Xppq <+ <xy. For outcome gains from a
reference point r, w,=n"(I¥,q)-n"(EX,,1q), and for outcome losses from 7, w,=
n~ (Ol q) — 7 (ZE 40)-

6 An alternative specification is (a) a;, = a;,, for i =2,3,4, and 5, or (b) a;, =a;, +c for i =3
and 4, and a;; =a;, for i =2 and 5. However, estimation results do not depend that much on
which specification is adopted.



deteriorating, and invariant observations. Thus, for an observation whose risk rank increases from

Tnt, tO Tne, With one rank, the first difference in land prices is expressed as

Tn’tl—l

+ _ 0 — i — . + +
lan1 lnPn_tO— z (al,t1 al,t0)+arn,t1:t1 z i ta Xty — Z i toXjmto +(constt1 constto)

i=2

=c(ry, —2) + a;“n’tl_tl + Z?:l(bj,ti bjty)Xjne, + ZJ 1bjee (Xjne, — Xjme,) + (constd — const,,). 6)

For an observation whose risk rank decreases from r,. to 7,. with one rank,

T'n't1+1

—_ 0 — -
lnPM1 — lnPn_tO = z (ai,t1 — ai‘to) — Tnt 1 T z i ta Xty — Z i toXimte | T (constt1 — constto)

i=2

=y — a;n,t1+1rt1 + Z§=1(b]'.f1 J to)x]nt1 + Z] 1 ] to (x] nty xj,n,to) + (ConStf; - ConStto)‘ (7)

Lastly, for an observation without any change in the risk rank,

™ty

J
InPy, —InPp, = Z (aie, —aie,) + Z it Xty — Z it Xjme, | + (const,, — const,,)
= C(rn.f1 - 1) + Z§=1(b]'.f1 ) to)x]nt1 + Z] 1 ] to (x] nty xj,n,to) + (ConStf1 - ConStto)' (8)

Combining equations (6), (7), and (8), the empirical specification takes the following form for

observation n where the risk rank changes from r,. by one rank in year t;, or never changes.

+ 0 - - -
InP,, —1InP,, = c(rn,t1 - Z)D + c(rnt - 1)D +cry, D+ a;rn,tl,tlDJr - arn’t1+1,t1D

Z§=1(b]'rt1 s fo)x] nty + Z} 1 ',to (xj,n,t1 - x]'rn'fo) + const, (9)

where Dt (D™, D°) is a dummy variable denoting a deteriorating (improving, invariant)
observation.” Note that a negative sign appears in front of Aryp 416,07 We exclude observations
whose risk index changes by more than one rank from the estimation.

The above econometric specification shares the features of nonlinear probability weighting,
rank dependence, and gain/loss asymmetry, all of which are essential parts of prospect theory. The
specification can be described graphically using Figure 3, where the nonlinear land pricing function

at time t; is depicted by the solid blue line. Equation (6) for risk-deteriorating observations is then

7 It is assumed that const/ — const, in equation 6, const;, — const, in equation (7), and
const, — const;, in equation (8) are equal to one another. Once a difference among the three
constant terms is admitted, some of a:n,tlttl and ar,, t, are unidentifiable because of strong multi-
collinearity of D*, D™, or D° with these constant terms.



represented by the black arrow, while equation (7) for risk-improving observations is depicted by the

red arrow. From this, we anticipate the following findings:

L. If strong nonlinearity exists at Ranks 2 and 4, then a;, <a3, , and ag, >ai, are
predicted. If nonlinearity is weak except between Ranks 1 and 2 and between Ranks 4 and
5, then a3, =~ a3, and a;, =~ aj, are likely to hold.

1. If strong nonlinearity exists at Ranks 3 and 4, then the result changes to a3, < a; ¢, and
ase, > ai, . In addition, az, =~ a3, and ay, =~aj, tend to hold for weakly nonlinear
sections.

1ii. If strong nonlinearity exists at Ranks 2 and 3, then the result is revised as a;, < aj, and
aze, > i, . In addition, a3, ~aj, and ag, =~ad, tend to hold for weakly nonlinear

sections.

We impose a3, =az, , a3, =az., , and aj, =as, as additional restrictions. These
restrictions imply that within the same rank (Tn‘tl), the marginal effect from the lower bound (a:-n,tlttl)
is the same as that from the upper bound (ar_n' - 1_t1). Thanks to these restrictions, the black and red
arrows connect at the boundaries between Ranks 1 and 2, Ranks 2 and 3, Ranks 3 and 4, and Ranks
4 and 5.

We make a final remark on the above econometric framework. As explained in Section 3, the
earthquake risk rank, which is released publicly by the TMG, is not cardinal/continuous, but
ordinal/discrete. But we still exploit the information associated with the continuous movement of
the cardinal risk measure, unavailable for researchers, at each border between the two consecutive
risk ranks. That is, the current specification does not focus on how much earthquake risk differs
among various points of location in a static context, but it considers in which direction the
unobservable measure changes marginally at the risk boundary in a dynamic context. For this
reason, we can identify the estimates of a;, and af,, or two-way risk sensitivities from the identical

boundary between Ranks i —1 and i (i = 2,3,4,and 5).

3. Data
3.1. On the Community Earthquake Risk Assessment Study conducted by the TMG

In this section, we describe the two major datasets employed, that is, the Community
Earthquake Risk Assessment Study (CERAS) released by the TMG, and the land prices listed by the
MLIT. The TMG initiated the CERAS in 1975 and releases it about every five years. In the first

three editions, the areas covered and how subdivisions are defined differ substantially,8 but the most

8 In the 1st and 2nd editions, the Tokyo 23 wards (the eastern urban areas) and the Tama area (the
western suburban areas) were assessed separately. In the 1st (2nd) edition, the former was assessed
in 1975 (1984) and the latter in 1980 (1987). Up until the 3d edition (the 1993 CERAS), each division
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recent five editions starting from 1998 are more consistent, systematically expanding coverage to
every numbered subdivision (cho-me in Japanese) of all wards, cities, and towns in the TMD, except
in its western mountainous region. We thus employ the five most recent editions of the CERAS in
this study (Bureau of Urban Development, TMG, 1998, 2002, 2008, 2013, and 2018).

The CERAS evaluates earthquake risk for each numbered subdivision in terms of building
collapse (BC) risk and fire risk. We choose the former measure for this analysis because it is a more
direct measure of geological and construction vulnerability to earthquake hazards. The CERAS does
not assume any earthquake occurring at any specific location. It instead assesses earthquake risk
on the assumption that a hypothetical earthquake occurs at the same seismic intensity throughout
the TMD.

The BC risk is evaluated for each numbered subdivision as follows. First, the number of
buildings (not the number of housing units) are tallied according to structural type, building date,
and the number of floors. Second, the topographical and geological conditions are assessed across 12
categories. Third, the CERAS computes how many buildings would collapse because of the
occurrence of the hypothetical earthquake. For this purpose, shaking at the ground surface, the
impacts of liquefaction, and differences between filling and cutting sites are particularly taken into
consideration. Fourth, the number of buildings that would collapse is standardized per hectare for
each subdivision. Fifth, the number of collapsed buildings per hectare for each subdivision is ordered
from high to low. Finally, the ranking is determined by rating the first 1.6% of all subdivisions as
Rank 5, the next 5.6% as Rank 4, the next 15.8% as Rank 3, the next 31.8% as Rank 2, and the final
45.2% as Rank 1.

For land prices, the MLIT lists the land prices appraised each new year for many fixed points
of location in mostly urban areas throughout Japan. For the TMD, the land prices of more than two
thousand fixed places are appraised each year, with 2,917 location points in 1999, 3,254 in 2004,
2,853 in 2009, 2,162 in 2014, and 2,602 in 2019.

We combine the assessed land prices with the earthquake risk rank reported by the CERAS by
assuming that the earthquake risk rank compiled by the CERAS is reflected in land prices listed
one year after its release. That is, the 1998 (2003, 2008, 2013, and 2018) editions of the CERAS are
paired with the land prices listed in 1999 (2004, 2009, 2014, and 2019), respectively. We use only
fixed points of location, in which (1) the land prices were listed at both ends of the interval 1999—
2004, 2004-2009, 2009—-2014, and 2014-2019,10 and (2) the risk rank changed by only one rank.
Under these conditions, we obtain 2,586, 2,653, 1,835, and 1,962 fixed places across the four intervals

was defined in terms of a 500-meter mesh unit not the numbered subdivision.

9 The 4th, 5th 6th, 7Tth and 8th editions were released in March 1998, December 2002, February 2008,
September 2013, and February 2018, respectively. In the main text, however, the 5th edition is
referred to as the 2003 CERAS to maintain a five-year interval among the five editions.

10 Because the panel of the fixed points of location rotated irregularly, the number of fixed places for
which listed land prices are available at both ends of the interval is less than for all points of location
in which land prices are listed each year.
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1999-2004, 2004—-2009, 2009-2014, and 2014-2019, respectively. 1! As shown in Table 1, the
earthquake risk rank improved or deteriorated for 32.3% of the fixed places in the interval 1999—
2004, 24.3% in 2004-2009, 15.1% in 2009-2014, and 10.8% in 2014-2019. Given the nature of
relative ranking with a fixed share of each rank, the number of fixed points exhibiting a risk
improvement is almost equal to that of those showing a risk deterioration.

Any change in the CERAS earthquake risk rank is driven by three main factors. First, the BC
risk reduced because of an improvement in the urban environment. For example, in the urban parts
of the TMD, many urban reconstruction plans were implemented in the 2000s. In 2002, the Japanese
Government enacted its Act on Special Measures concerning Urban Reconstruction (Urban
Reconstruction Act). This allowed the TMG to deregulate restrictions in terms of urban
reconstruction, including relaxed floor area ratios together with strict building coverage ratios,
private initiatives for urban planning, financial aid, and tax reductions for private urban
reconstruction projects. Under the large-scale private projects supported by this act, older more
fragile buildings and houses were replaced by newer more resilient buildings in both commercial
and residential areas in central and western parts of the Tokyo 23 wards (the eastern urban area in
the TMD). Consequently, the BC risk diminished in these areas during the 2000s and 2010s. While
the cardinal BC risk measures are not released publicly, a change in the measure, driven by the
above factor, is expected to be not discontinuous, but continuous, when only a part of a numbered
subdivision is reconstructed by such private projects.

Second, the BC risk increased in areas where many buildings and houses deteriorated,
particularly in western parts of the Tama area (the western suburban area in the TMD) as well as
eastern parts of the Tokyo 23 wards.!2 In the former where transportation was inconvenient, aging
houses and condominiums were seldom reconstructed. In the latter, the area was congested heavily
by aging wooden houses, which served as rental houses for low-income earners. However, the TMG
developed reconstruction projects for disaster prevention in them.!3 Such public projects, though
often small-scale, contributed to a decrease in the BC risk in these risky areas.

Third, the assessment of BC risk is influenced by revisions in the information associated with

earthquake risk. In particular, the following revisions in earthquake risk information were

11 Given that the land price was listed at both ends of the interval, the risk measure changed by
more than one rank for nine of 2,595 subdivisions in the interval 1994-2004, and for seven of 1,842
subdivisions in the interval 2009—2014.

12 According to the Housing and Land Survey conducted by the Statistics Bureau of Japan, average
building/house age decreased by 1.7 years in the Tokyo 23 wards in the interval 1998-2008 and by
4.6 years in its central part (Chiyoda, Chuo, Minato, Shinjuku, and Shibuya). In contrast, the
average building/house age increased by 0.2 years in the Tama area during the same interval.
However, after most areas with quite old buildings and houses were renovated under large-scale
urban projects in the 2010s, the average ages increased by 2.3 years, even in the Tokyo 23 wards, in
the interval 2008—2018. However, they increased by more than 4.0 years in the Tama area over the
same interval.

13 These public projects were established under the Act on Promotion of Improvement of Disaster
Control in Populated Urban Districts, which was enacted in 2003, and amended majorly in 2003.
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incorporated into the 2013 CERAS in light of information newly made available by the Great
Hanshin-Awaji earthquake in January 1995, the Chuetsu-oki earthquake in July 2007, and
especially the Great East Japan earthquake in March 2011. In particular, the earthquake risks
associated with shaking at the ground surface, liquefaction, the age of buildings and houses, and
aseismic retrofit treatments were thoroughly revised.

However, note that changes in the urban environment and every risk revision do not
necessarily appear as changes in the BC risk rank. For example, if such changes and revisions alter
the order of the number of collapsed buildings per hectare only among the numbered subdivisions
belonging to the same rank, then the change in rank never shows up in the BC risk compiled by the
CERAS. Only if a risk improvement is around the lower bound of a particular rank (other than Rank
1), or risk deterioration is around the upper bound of a specific rank (except Rank 5), does a rank-
down or rank-up arise in BC risk. Among the subdivisions whose BC risk is similar at the boundary
between the two consecutive ranks, some subdivisions with a risk improvement at a higher rank
trade ranks with other subdivisions maintaining the status quo at a lower rank. Or, some
subdivisions with a risk deterioration at a lower rank swap ranks with other subdivisions
maintaining the status quo at a higher rank. Consequently, subdivisions with rank-down experience
exhibit either a decrease or no change in BC risk, while those with rank-up experience reveal either
an increase or no change in BC risk. Here, notice that the declining tendency of BC risk between two
points in time among the five ranks is excluded as aggregate effects.

None of the various CERAS editions report the full dataset of BC risk, as measured for every
numbered subdivision in terms of the number of collapsed buildings per hectare. But the 2018
CERAS does report some useful statistics. On average, BC risk declined from 3.51 in 2013 to 2.79 in
2018 across the TMD, from 4.97 to 3.85 in the Tokyo 23 wards, and from 1.22 to 1.15 in the Tama
area. On this basis, earthquake risk tended to improve more in the Tokyo 23 wards than in the Tama
area. Of the 5,128 subdivisions, BC risk changed within +0.1 and —2.0 in 4,245 subdivisions,
increased by more than 0.1 in 362 subdivisions, and decreased by more than 2.0 in 521 subdivisions.
Thus, after adjusted by overall improvement in BC risk, changes in ranks include both rank-down
changes driven by risk improvement, and rank-up changes driven by risk deterioration.

Given the nature of the CERAS, we make the following assumptions on the cardinal BC risk
measures, which are not released publicly by the TMG. First, the BC risk measure, assessed for
every numbered subdivision, changes only continuously and never jumps within five years partly
because not the entire subdivision, but only its part is reconstructed by private and public urban
development, and partly because buildings, houses, and social infrastructures deteriorate slowly.
Second, the BC risk measure changes marginally at the same border by similar magnitudes in either

direction of risk improvement or deterioration.

3.2. How did the discrete risk index change in the CERAS?
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Let us look more closely at how the BC risk index changed across the four intervals, 1998-2003,
2003-2008, 2008-2013, and 2013-2018. In Figures 4-5, the borders of the Tokyo 23 wards, as
opposed to the Tama area, are drawn using a bold black line. Numbered subdivisions where the risk
index decreased (increased) in each 5-year interval are marked by a blue (red) polygon. Crosses (risk
deterioration) and black circles (risk improvement) identify the points of location for which officially
listed land prices are available at both ends of the intervals 1999-2004, 2004—-2009, 2009-2014, and
2014-2019.

Figures 4-A—4-D depict how the BC risk index changed between Ranks 1 and 2 across the four
intervals. In the interval 1998-2003 (Figure 4-A), the risk rank decreased from Rank 2 to Rank 1 in
the western part of the Tokyo 23 wards (Nerima, Suginami, and Setagaya) as well as Fuchu city in
the Tama area, primarily from private urban reconstruction in the former and residential
development in the latter. In the interval 2003—2008 (Figure 4-B), rank change from Rank 2 to Rank
1 took place in the central part of the Tokyo 23 wards (Chiyoda, Minato, and Shinjuku) following
enactment of the Act on Special Measures concerning Urban Reconstruction in 2002. Conversely, the
risk rank increased from Rank 1 to Rank 2 in the western suburban area, reflecting the increase in
older houses and buildings. In the interval 2013-2018 (Figure 4-D), the risk rank decreased from
Rank 2 to Rank 1 in the central and western parts of the Tokyo 23 wards because of private urban
reconstruction. However, the numbered subdivisions with rank-downs contracted substantially,
probably because urban reconstructions were initiated in areas that had already been classified as
Rank 1. In this interval, suburban areas were also subject to rank-ups (risk deterioration).

In the interval 2008-2013 (Figure 4-C), urban reconstruction and suburban deterioration
continued as in the intervals 1996-2003, 2003—2008, and 2013—-2018. Nevertheless, how the risk
rank changed between Ranks 1 and 2 differs during this interval from the other three. That is, rank-
downs were often observed in the Tama area, whereas rank-ups were more frequent in the Tokyo 23
wards. A major reason for this is that as mentioned, the 2013 CERAS included a revised risk
assessment criterion given information newly available from the Great Hanshin-Awaji earthquake
in January 1995, the Chuetsu-oki earthquake in July 2007, and the Great East Japan earthquake
in March 2011. In particular, serious consideration of liquefaction risks acted against coastal and
riverside urban areas in the Tokyo 23 wards but worked in favor of hilly suburban parts of the Tama
area.

How the risk index changed between Ranks 2 and 3 across the four intervals almost follows
the same pattern as those for Ranks 1 and 2. Thus, we move to explore how the risk rank changed
among Ranks 3, 4, and 5 across the four intervals. Figure 5 depicts how the BC risk changed in the
interval 1998-2003. As shown, a change in the risk index among the lower three ranks took place in
the eastern part of the Tokyo 23 wards. As mentioned, many blocks in these areas were heavily
congested by aging wooden houses. Therefore, BC risk increased with further building/house

deterioration and decreased through public reconstruction projects for disaster control. The same
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pattern as the interval 1998-2003 is observed in the three intervals that follow.

4. Estimation results
4.1. Choice of dependent and explanatory variables

For estimation purposes, we respecify equation (9) as follows:

5 5
InP,; —InP,, = c(rM1 - Z)DJr + c(rM1 - 1)D0 +cry, DT+ Z a;_rtlD;'_Li - Z it Diioa
=2 i=2
+Z§:1(bj,t1 - bj,to)xj.n,tl + 25:1 bj.fo (xj,n,tl — xj,n,to) + +const + &En, (11)

where D;",; takes a value of one if the risk rank increases from Rank i—1 by one rank, zero
otherwise. Similarly, D;;_, takes a value of one if the risk rank decreases from Rank i by one rank,
zero otherwise. g, is the error term. In addition, equation (11) is estimated under alternative
restrictions on coefficients, including the set of a3, = a3, aj, = as.,and ai, = as;,.

In the estimation, InP,, and InP,. are adjusted by the yearly average. Thus, the dependent
variable in equation (11) denotes a relative not absolute change in land prices. The time-varying
variable x;,. includes population density for j = 1, the distance to the nearest railway station for
j = 2, and the floor area ratio for j = 3. Here, x,,, isavailable as a 1-kilometer mesh from the 2000,
2005, 2010, and 2015 digital versions of the population census,!* while both x,,, and x3,. are
obtainable from the dataset of listed land prices. We assume that other potentially important
variables are incorporated as fixed effects, an assumption requiring some qualification in Section
4.3.

As described in Section 3, the TMG released earthquake risk ranks for every numbered
subdivision of all wards, cities, and towns in the TMD in 1998, 2003, 2008, 2013, and 2018. The
appraised land prices for the approximately two thousand fixed points of location in the TMD as
listed by the MLIT are for the new year. Thus, a change in relative land prices in the period 1999 to
2004 is associated with a change in the BC risk rank in the period 1998 to 2003. A similar pair is
constructed for changes in relative land prices between 2004 and 2009, 2009 and 2014, and 2014 and
2019.

The number of observations in which the land prices are available at both ends of the interval
is 2,595 in 1999-2004, 2,653 in 2004—2009, 1,842 in 2009-2014, and 1,962 in 2014-2019. We exclude
observations where the BC risk rank changes by two or more ranks (nine observations in 1999—2004
and seven observations in 2009-2014). In addition, the number of observations employed for the
estimation further reduces because population density data are not available for some listed points
adjacent to the coast (five points in 1999-2004, two in 2004—2009, and one in 2009—-2014). Table 1

14 The 2020 digital version of the population census was unavailable at the time of this research.
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reports descriptive statistics for the changes in relative land prices, given the changes in the BC risk
ranks, and Table 2 provides descriptive statistics for the changes in the explanatory variables during

each interval and at the end of each interval.

4.2. Estimation results under alternative restrictions on coefficients

Table 3-1 provides ordinary least squares estimation results for equation (11) without any
restrictions on the coefficients. Heteroskedasticity-robust standard deviations are in parentheses.
Let us first explore the nonlinearity predicted by prospect theory at the lower tails of the BC risk
ranks. In the intervals 1999-2004 and 2004—2009, we detect nonlinearity between Ranks 1 and 2.
As implied by a;; < az t,» the regression slope is steeper moving from Rank 2 to 1 and less
downward moving from Rank 1 to 2. More precisely, a;, is negative in both intervals. However,
az, is significantly positive in the interval 1999-2004, whereas aj, = 0 cannot be rejected for the
interval 2004—2009. In the interval 2014-2019, we identify nonlinearity between not Ranks 1 and 2
(az;, = a3y, < 0), but Ranks 2 and 3 (a3, <0 < a3, ).

Moving to the upper tail of the BC risk ranks, we identify nonlinearity between Ranks 4 and 5
in the intervals 1999-2004 and 2014-2019. As implied by as, > a;to, the regression slope is less
downward from Ranks 5 to 4 and steeper from Ranks 4 to 5. More precisely, a;:to 1s significantly
negative in both intervals, whereas ag, = 0 cannot be rejected in the interval 1999-2004, and ag,
is significantly positive in the interval 2014-2019. As implied by ay, > a; t,» We detect nonlinearity
between Ranks 3 and 4 in the interval 2004—2009. In these three intervals (1999-2004, 2004—2009,
and 2014-2019), risk sensitivity is sometimes estimated to be not negative, but positive among
Ranks 2, 3, and 4. One interpretation is that the inverse S-shaped probability weighting function
may be slightly downward- not slightly upward-sloping at intermediate levels of risk.

What is puzzling is that no theoretically consistent nonlinearity is detected in the interval
2009-2014. That is, we can identify neither a;, < a3 nor as. > ad, .An obvious explanation is
that the 2013 CERAS substantially revised the criteria for risk assessment. As discussed in Section
3.2, BC risk increased in coastal and riverside urban parts of the Tokyo 23 wards but decreased in
hilly suburban parts in the Tama area. However, such changes in earthquake risks might have
already been reflected in the appraisal of the listed land prices.

Let us then examine the estimated coefficients for the other explanatory variables. The
significantly positive ¢ for the intervals 1999-2004, 2004—2009, and 2014-2019 suggests that
overall risk sensitivity is becoming smaller over time. As shown by the estimations of b;, and
by, — by ¢,, the impact of population density on land prices is more positive in the interval 1999—
2004, remains positive in 2004-2009, and becomes negative in 2009—-2014. Note that population
density data are not available for the interval 2014-2019. As implied by the negative b, , although
not necessarily significant, land prices rise as the distance to the nearest station becomes shorter.

As the significantly negative b, — b,,, suggests, this tendency becomes stronger over time. The
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impact of the floor area ratio (bgyto) is mixed. In the interval 1999-2004, land prices increase with
the floor area ratio, but in the remaining three intervals, land prices are fairly insensitive to the
floor area ratio. As for the estimation of by, — b3, , bs;, increases in the intervals 2004-2009 and
20142019 but decreases in the interval 2009—2014. According to the estimated coefficient on a
dummy variable of residential land use, land prices increase more for observations of residential use
in all intervals except 2009-2014.

We now impose parameter restrictions on equation (11) to make the estimation results more
visual. First, Table 3-2 reports estimation results with parameter restrictions a3, =az, , a3, =
az:,, and ag, = as, . Given these restrictions, the land pricing function connects between Ranks 2
and 3 and Ranks 3 and 4. According to Figure 6-1, nonlinearity appears between Ranks 1 and 2 and
between Ranks 3 and 4 in the interval 1999-2004, between Ranks 1 and 2 and Ranks 3 and 4 in
2004—-2009, and between Ranks 2 and 3 and Ranks 4 and 5 in 2014-2019. However, in the interval
2009-2014, no theoretically consistent nonlinearity appears.

The estimation results with two sets of more severe parameter restrictions are reported except
for the interval 2009-2014 in Table 3-3. Figure 6-2 plots the land pricing function where
az., =03y =0aj, = Az = ai, = as, in Spec. Ain Table 3-3. In this case, nonlinearity is imposed
between Ranks 1 and 2, and between Ranks 4 and 5. In Figure 6-3 based on Spec. B in Table 3-3,
nonlinearity is imposed between Ranks 1 and 2 and between Ranks 3 and 4 in the intervals 1999—
2004 and 2004-2009 (a3, = a3, = a3, =az, and aj, = as. ), and between Ranks 2 and 3 and

Ranks 4 and 5 in 2014-2019 (a3, = a3, and a3, = ay, =aj, =as;).

4.3. On the potential correlation between the BC risk measure and economic activity

One potential problem associated with the above econometric exercise is that the BC risk
measure may be correlated with economic activity and that the estimations of risk sensitivity a;;
and a;’tl are then likely to be biased, depending on whether proxies for economic activity are
included as explanatory variables. For example, people and firms may move into (out of) earthquake
risk-improved (-deteriorated) areas. Accordingly, the BC risk measure is correlated negatively with
regional population density and community income in terms of both levels at a particular point in
time and changes between two points in time.

However, the current estimation results are almost free from possible missing-variable bias.
Here, population density as an explanatory variable x;,, is expected to be correlated with the
cardinal BC risk measure, although the latter is never fully disclosed in any edition of the CERAS.
However, the estimation of risk sensitivity a;, and a;’tl scarcely changes, even if both x;,, and
Xint, — X1nt, areomitted from the explanatory variables in the three intervals. For example, Figure
6-4 compares estimation results between with and without population density following the

econometric specification used in Table 3-2. According to this figure, excluding population density
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has no impact on the basic pattern of risk sensitivity in the intervals 1999-2004, 2004—2009 and
2009-2014.

Two reasons may be responsible for the absence of missing-variable bias. First, the current
estimation focuses on not all, but some of the listed points of location, for which the BC risk measure
changes over time at the border between the two consecutive ranks. In only 32.3% (24.3%, 15.1%,
and 10.8%) of all points was the BC risk rank revised at the border in the interval 1999-2004 (2004—
2009, 2009-2014, and 2014—2019). The correlation between the BC risk measure and population
density may then be strong among observations in the same rank, but weak among observations at
the border between the two consecutive ranks. Second, the BC risk measure may be correlated with
population density strongly at levels, but weakly in changes. Population increases (decreases) may
not immediately follow risk improvement (deterioration). Overall, because of our focus on dynamic

not static behavior, the estimation results appear free from missing-variable bias.

5. Conclusion

Using the newly proposed econometric framework, this paper addresses land pricing behavior
at the border between the two consecutive risk ranks over a five-year interval and reveals a
nonlinear relationship in the changes between land prices and earthquake risk. This framework
employs only the available ordinal risk measure in panel data, but it allows us to exploit the
information associated with the continuous movement of the unavailable cardinal risk measure at
the border between the two consecutive risk ranks. The empirical findings, in particular the risk
improvement/deterioration asymmetry, are consistent with the implications of prospect theory. In
all intervals except for 2009—2014, risk improvement was reflected in a substantial increase in land
prices at the border between Ranks 1 and 2 and Ranks 2 and 3, but risk deterioration was less
evident in a decrease in land prices at the same borders. In contrast, risk deterioration appeared as
a noticeable decrease in land prices at the borders between Ranks 4 and 5 and Ranks 3 and 4, but
risk improvement did not result in a considerable increase in land prices at the same borders.

The finding of the improvement/deterioration asymmetry suggests several policy implications.
First, earthquake risk is improved by urban/suburban development and reconstruction in safer areas
(those in Ranks 1 and 2), and this manifests itself as marked increases in land prices. For this reason,
private projects drive regional development in safer areas. Thus, even large-scale property projects
in the central part of the Tokyo 23 wards and transportation-convenient parts of the Tama area could
be left to private initiatives or market mechanisms.

Second, earthquake risk deterioration through aging buildings, houses, and social
infrastructure is reflected in only minor decreases in land prices in safer areas, but quite substantial
decreases in riskier areas (those in Ranks 5 and 4). For these riskier areas, private developers would

not expect any benefits from reconstruction-induced increases in land prices. Consequently, without
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public intervention, risky areas, particularly those heavily congested with aging wooden houses in
the eastern part of the Tokyo 23 wards, could suffer from a serious decline in land prices. In extreme
cases, these areas could become slums. The reconstruction projects for disaster control initiated by
the TMG, though often small-scale, indeed prevented land prices from slumping sharply in these
areas.

Finally, a proper combination of private development projects in safer areas and public
reconstruction projects in riskier areas could contribute to both promoting urban/suburban
intensification and preventing more fragile urban areas from collapsing into slums and being
severely segregated. In the gentrification process in risky areas, however, the central and local
governments need to provide largish housing allowances for low-income earners who cannot live in

expensive rental houses.15
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Table 1: Descriptive statistics of changes in relative land prices dependent on changes in risk rank

20

Zofobs.  Mean Std. Dev. Min Max Obs  Mean Std. Dev. Min MMax
1999 —2004 =il 893 03334 01662 -13981 01916 2004—2009 =il 938 02670 01095 -1.1064 02306
=il 270 02379 01166 06308 -0.0347 21 159 00383 02006 04248 035621
1=2 205 02711 01768 08366 011353 =5 165 02395 00630 03870 00282
22 531 02082 01204 08048 01238 i 675 01575 01343 03797 06624
320 136 02284 01378 07465 00604 3—=1 117 01339 01164 02886 04430
1—3 114 02211 01141 05266 00364 1—3 111 01621 01095 03560 00951
3—3 241 02418 01113 05359 00327 3—3 266 01616 00953 03200 01721
4—3 37 02718 01342 05165 000335 4—3 37 -0.1682 00830 03044 00021
3—4 30 -D2643 00203 035117 00718 3—4 38 -0.1690 00838 02932 00008
4—4 63 02395 00944 04737 00348 4—4 81 -0.1886¢ 00774 03097 00234
5—4 8 02202 00097 03734 01234 5—d4 10 02024 00735 02557 00015
45 15 02530 01030 05151 00993 4—5 0 01903 00999 03395 00305
5—5 23 02136 00867 04252 00880 55 27 01921 00765 02862 00432
total 2386 total 2633

siske improvemsnt 451 174% risk improvement 323 122%

rislc deterioration 384 148% risk daterioration 323 122%

changes in risk 833 323% changes in risk 646  243%
Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max
2000—2014 1—1 7. 00348 00335 03802 00685 2014—2019 1—1 802 01697 01210 04135 02992
i | 65 00544 00730 03511 00652 2==1 58 007 01026 02634 01397
=44 65 00320 00441 01971  0.0265 =44 65 01964 00803 04026 01077
21 549 00385 00341 035683 00887 =i 627 00984 01106 03610 03374
322 34 00328 00336 -0.1279 00300 322 29 00150 01016 -0.1430 04183
=3 46 00564 00567 02887  0.0006 =3 25 00954 00809 -02259 01026
S=2 207 00367 00477 02365 01404 si=2 231 00820 00847 02244 01404
4—3 19 003579 00357 01369 00035 4—3 10 006290 003533 01383 00249
3—4 22 00087 00535 01310 0.1013 3—4 14 00698 01074 01874 01728
4—4 56 00212 00448 01108 01375 4—4 66 00832 01065 02066 03982
S 1 000923 00925 00923 S 6 00682 00841 01651 00473
4—5 6 00164 00205 00411 00102 4—5 5 01181 00808 01853 00047
5—5 22 00321 00333 0.1007 0.0284 55 24 00808 00353 01734 00019

total 1833 total 1962

sisk improvement 139 76% rigk improvement 103 32%

rizk deterioration 139 T 6% rizk deterioration 109 3 6%

chang=s in risk 278 151% changes in riske 212 10.8%




Table 2: Basic statistics of time-varying explanatory variables
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1999-2004 change and 2004 level Obs Mean  Std. Dev. Min Max
Apopulation density (thousand) 2,581 0.540 0.882 -1.576 5.309
population density (thousand) 2,581 13.245 6.067 0.004 31.123
Adistance to the nearest station (km) 2.581 -0.010 0.131 -1.650 2480
distance to the nearest station (km) 2,581 0.969 0.995 0.000 10.600
residential use (0 or 1) 2,581 0.683
Afloor area ratio (%) 2,581 0.8% 14.7% -20.0% 400.0%
floor area ratio (%) 2581  2208% 172.5% 0.0%  1000.0%

2004-2009 change and 2009 level
Apopulation density (thousand) 2,651 0.648 0.903 -1.933 7.607
population density (thousand) 2,651 13.916 6.513 0.002 32.079
Adistance to the nearest station (km) 2.651 -0.028 0.231 -6.000 1.300
distance to the nearest station (km) 2,651 0.873 0.950 0.000 10.600
residential use (0 or 1) 2,651
Afloor area ratio (%) 2651 0.8% 159%  -320.0% 300.0%
floor area ratio (%) 2661  260.2%  193.7% 0.0%  1300.0%

2009-2014 change and 2014 level
Apopulation density (thousand) 1.834 0.498 0.942 -5.046 5.330
population density (thousand) 1.834 14 237 6.832 0.144 31.203
Adistance to the nearest station (km) 1,834 -0.005 0.137 -3.600 2.800
distance to the nearest station (km) 1.834 0.830 0.811 0.000 2.000
residential use (0 or 1) 1.834
Afloor area ratio (%) 1.834 0.1% 3.3% 0.0% 100.0%
floor area ratio (%) 1834 279.7%  203.2% 50.0%  1300.0%

2014-2019 change and 2019 level
Adistance to the nearest station (km) 1.962 -0.001 0.055 -0.560 0.500
distance to the nearest station (km) 1,962 0.838 0.909 0.000 7.900
residential use (0 or 1) 1.962
Afloor area ratio (%) 1.962 0.1% 2.6% 0.0% 100.0%
floor area ratio (%) 1962  2764%  202.7% 50.0%  1300.0%

Note

1. The floor area ratio is set at zero in urbanization control areas.



Table 3-1: Estimation results without parameter restrictions
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1999 to 2004 2004 to 2009 2009 to 2014 2014 to 2019
Coefficient on risk rank at the end 0.017*** 0.011%*** -0.001 0.013***
Year, vy — 2, Ty, — 1,00 10 (€) (0.004) (0.002) (0.001) (0.002)
Risk sensitivity, a;, -0.010 -0.095*** 0.008 -0.022**
ot (0.007) (0.014) (0.007) (0.009)
- 0.020* -0.023** -0.004 -0.031**
¥h (0.011) (0.011) (0.004) (0.013)
- 0.082*** 0.033** 0.016*** 0.045***
i (0.020) (0.013) (0.006) (0.010)
0, 0.034 0.084*** 0.064*** 0.042***
ot (0.036) (0.015) (0.005) (0.012)
. e . 0.048*** 0.003 0.001 -0.026***
Risk sensitivity, a;., (0.010) (0.005) (0.004) (0.009)
ot 0.037*** 0.004 -0.022*** 0.023**
¥4 (0.009) (0.007) (0.005) (0.010)
at, -0.033** -0.035*** 0.032*** 0.001
ot (0.014) (0.012) (0.0112) (0.013)
ot -0.065** -0.024 0.021** -0.036**
4 (0.028) (0.023) (0.009) (0.018)
Coefficient on a change in logarithmic 0.035 0.051 -0.099***
population density, X1, — X1ne, (b1e,) (0.043) (0.039) (0.020)
Coefficient on logarithmic population density 0.065*** 0.003 0.026***
attheendyear, x; ¢, (b1e, — bas,) (0.011) (0.005) (0.003)
Coefficient on a change in distance to the -0.006 -0.045** 0.000 -0.011
nearest station, Xz, — X2, (bat,) (0.023) (0.018) (0.004) (0.027)
Coefficient on distance to the nearest station at -0.065*** -0.033*** -0.005*** -0.026***
theend year, xyn¢, (b2, — bayr,) (0.004) (0.002) (0.001) (0.002)
Coefficient on a change in a floor area 0.118*** -0.020* -0.005 -0.002
ratio, xsn, — X3, (bat,) (0.028) (0.012) (0.005) (0.021)
Coefficient on a floor area ratio at the end 0.003 0.044%*** -0.014*** 0.040%**
year, xsne, (b3, — bag,) (0.003) (0.002) (0.001) (0.002)
Coefficient on a dummy of residential 0.100*** 0.057*** 0.000 0.017***
USe, X4n (0.009) (0.007) (0.003) (0.006)
Constant term (const) -0.912*** -0.365*** -0.231*** -0.235***
(0.103) (0.046) (0.025) (0.009)
Number of observations 2,581 2,651 1,834 1,962
R-squared 0.394 0.531 0.391 0.626
Notes:
1. Heteroskedasticity-robust standard errors in parentheses.

2.

*kk k%

, **, and * denote p-values less than .01, .05, and .10, respectively.



Table 3-2: Estimation results with parameter restrictions (a3, = az,,,

+ - + o=
A3 = Qay,s and Agr, = a5,t1)

23

1999 to 2004 2004 to 2009 2009 to 2014 2014 to 2019
Coefficient on risk rank at the end 0.014*** 0.007*** -0.002 0.013***
Year, vy — 2, Ty, — 1,00 10 (€) (0.004) (0.002) (0.001) (0.002)
Risk sensitivity, a;, -0.010 -0.096*** 0.007 -0.022**
ot (0.007) (0.014) (0.007) (0.009)
ot = g- 0.034*** -0.011* -0.002 -0.028***
20 (0.008) (0.006) (0.003) (0.007)
ot =az, 0.046*** 0.010 -0.011** 0.029***
ot ot (0.009) (0.006) (0.005) (0.008)
ot =az, -0.023* -0.009 0.035*** 0.013
ot ot (0.013) (0.012) (0.010) (0.010)
ot -0.059** -0.018 0.024*** -0.035*
4 (0.028) (0.023) (0.009) (0.018)
Coefficient on a change in logarithmic 0.036 0.048 -0.100***
population density, X1, — X1ne, (b1e,) (0.043) (0.039) (0.019)
Coefficient on logarithmic population density 0.067*** 0.004 0.026***
attheendyear, xy ¢, (b1, — bas,) (0.011) (0.005) (0.003)
Coefficient on a change in distance to the -0.004 -0.045** -0.000 -0.012
nearest station, Xz, — X2, (bar,) (0.023) (0.018) (0.004) (0.026)
Coefficient on distance to the nearest station at -0.065*** -0.034*** -0.005*** -0.026***
theend year, xyn¢, (b2, — bayr,) (0.004) (0.002) (0.001) (0.002)
Coefficient on a change in a floor area 0.117%** -0.020* -0.003 -0.001
ratio, xsn, — X3, (bat,) (0.028) (0.012) (0.005) (0.022)
Coefficient on a floor area ratio at the end 0.004 0.044%*** -0.014*** 0.040%**
year, xsne, (b3, — bag,) (0.003) (0.002) (0.001) (0.002)
Coefficient on a dummy of residential 0.101*** 0.057*** 0.000 0.017***
USe, X4n (0.009) (0.007) (0.003) (0.006)
-0.922*** -0.373*** -0.231*** -0.234***
Constant term (const) (0.103) (0.046) (0.025) (0.009)
Number of observations 2,581 2,651 1,834 1,962

Notes:

1.
2.

*kk k%

Heteroskedasticity-robust standard errors in parentheses.

, **, and * denote p-values less than .01, .05, and .10, respectively.
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Table 3-3: Estimation results for alternative parameter restrictions

1999 to 2004 2004 to 2009 2014 to 2019
Spec. A Spec. B Spec. A Spec. B Spec. A Spec. B
Coefficientonriskrank attheend | 0.012*** 0.015%** 0.008*** 0.008*** 0.013*** 0.013***
Zejr (Cr;“l o T O G 60a) (0.004) (0.002) (0.002) (0.002) (0.002)
Risk sensitivity, a3, -0.011 -0.010 -0.095*** -0.095*** -0.022** -0.022**
ot (0.007) (0.007) (0.014) (0.014) (0.009) (0.009)
a3y, = a3y, = G, = G4y, = 0.030*** -0.004 -0.008
e, = As, (0.006) (0.004) (0.006)
6 = ai, = ab, = ai, 0.038*** -0.003
ST (0.006) (0.004)
ot =az, -0.023* -0.010
o i (0.013) (0.012)
af, =az, -0.028***
- '1 (0.007)
o, = ai, = ab, = ai, 0.023***
oo (0.006)
at, -0.054** -0.060** -0.018 -0.019 -0.036** -0.034*
ot (0.028) (0.028) (0.023) (0.023) (0.018) (0.018)
Onachange in logarithmic population 0.037 0.036 0.050 0.050
density, x1 e, = X1ne, (Brey) (0.043) (0.043) (0.039) (0.039)
On logarithmic population density at | 0.067*** 0.067*** 0.004 0.004
theend year, x, ¢, (byr, = bag,) (0.011) (0.0112) (0.005) (0.005)
On a change in distance to the nearest -0.005 -0.004 -0.046*** -0.046** -0.017 -0.012
station, Xxpne, = Xane, (b2t,) (0.023) (0.023) (0.018) (0.018) (0.026) (0.026)
On a distance to the nearest stationat | -0.065%** -0.065*** -0.033*** -0.033*** -0.027*** -0.026***
theend year, x,5¢, (bar, — bay,) (0.004) (0.004) (0.002) (0.002) (0.002) (0.002)
On a change in a floor area ratio, | Q.117*** 0.118*** -0.020 -0.020 -0.002 -0.001
X3ty ~ Xant, (Bag,) (0.028) (0.028) (0.012) (0.012) (0.022) (0.022)
On a floor area ratio at the end year, 0.004 0.003 0.045*** 0.045*** 0.040*** 0.040***
X3ty (bar, — bag,) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002)
On a dumimy of residential use, .. 0.101%** 0.101%** 0.057*** 0.057*** 0.016*** 0.017***
' (0.009) (0.009) (0.007) (0.007) (0.006) (0.006)
Constant term (const) -0.927*** -0.925*** -0.376*** -0.376*** -0.234*** -0.234***
(0.103) (0.103) (0.045) (0.045) (0.009) (0.009)
Number of observations 2,581 2,651 1,962

Notes:

1. Heteroskedasticity-robust standard errors in parentheses.
2. F** ** and * denote p-values less than .01, .05, and .10, respectively.




Figure 1: A nonlinear relationship between land prices and objective earthquake risk
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Figure 3: Estimation of a nonlinear land pricing function by discrete earthquake risk measures
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Figure 4-A: Numbered subdivisions and officially appraised points of location, where the risk rank changed
between Rank 1 and Rank 2 in the period 1998-2003
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Figure 4-B: Numbered subdivisions and officially appraised points of location, where the risk rank changed
between Rank 1 and Rank 2 in the period 20032008
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Figure 4-C: Numbered subdivisions and officially appraised points of location, where the risk rank changed
between Rank 1 and Rank 2 in the period 2008-2013
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Figure 4-D: Numbered subdivisions and officially appraised points of location, where the risk rank changed
between Rank 1 and Rank 2 in the period 2013-2018
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Figure 5: Numbered subdivisions and officially appraised points of location, where the risk rank changed
between Rank 4 and Rank 5 or Rank 3 and Rank 4 in the period 1998-2003
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Figure 6-1: Land pricing at the border of two consecutive risk ranks,
standardized at the border between Ranks 1 and 2
(based on estimation results reported by Table 3-2)
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Figure 6-3: Land pricing at the border of two consecutive risk ranks,
standardized at the border between Ranks 1 and 2
(based on estimation results reported by Spec. B in Table 3-3)
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Figure 6-4: A comparison between with and without population density of land pricing
at the border of two consecutive risk ranks,
standardized at the border between Ranks 1 and 2
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