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Abstract We propose forward variable selection procedures with a stopping rule
for feature screening in ultra-high dimensional quantile regression models. For such
very large models, penalized methods do not work and some preliminary feature
screening is necessary. We demonstrate the desirable theoretical properties of our
forward procedures by taking care of uniformity w.r.t. subsets of covariates properly.
The necessity of such uniformity is often overlooked in the literature. Our stopping
rule suitably incorporates the model size at each stage. We also present the results
of simulation studies and a real data application to show their good finite sample
performances.
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1 Introduction
Suppose that we have n i.i.d. observations of (¥, X), (Y¥;, X;),i = 1,...,n, and that

this (¥, X)) satisfies the following sparse ultra-high dimensional 7-th quantile regres-
sion model :

Y=X"B8"+e with X =(X,....X,)  eR? (1)
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and

€RP

Ely-(0lX}=0 and B =@G;,....5)" = arg minEfp.(Y - X" B)},  (2)

where X; = 1, = Y, — X/ 8%,
Y()=7-1t<0), and p(t)=Hrt—-1(t<0)}.

Linear quantile regression models are very popular since Koenker and Basset
(1978) (see also Koenker (2005)). We denote the set of relevant covariate indexes by
M={jel[p] IB; # 0} and set m = | M|, where [p] :={1,..., p} and |S| is the number
of the elements of S C [p]. In this paper, we deal with the cases where p can be ultra-
high dimensional like p = O(exp(n“r)) as specified later and m is much smaller than
p with a known upper bound K,,. In such ultra-high dimensional cases, p can be too
large for commonly used penalized methods such as the Lasso (cf. Tibshirani (1996)),
the SCAD (cf. Fan and Li (2001)), and the MCP (cf. Zhang (2010)). Besides, in some
cases, these established penalized methods also miss some of relevant covariates as
shown in our simulation studies in Section 3.

Therefore other feasible procedures for feature screening or variable selection
are necessary and a lot of authors have proposed them. Forward regression has been
recognized as a helpful tool of feature screening for mean regression models since
Wang (2009). Recently we have seen some papers on generalized linear models as
we describe later in this section. See also Chapter 8 of Fan et al. (2020)). However,
there have been only a few papers and no rigorous result on forward feature screening
for quantile regression models. This is because the randomness of the newly selected
variable at each step affects the asymptotics. Therefore we propose novel model-
based forward procedures for quantile regression models and deal with the proposed
procedures rigorously from a theoretical point of view by taking the randomness of
the newly selected variable at each step into account. Hence this paper fills this gap by
offering effective forward feature screening procedures for quantile regression models
with thorough theoretical justification. We also present the results of numerical stud-
ies showing the usefulness of the proposed procedures and our contributions range
from theoretical to methodological aspects.

Our forward procedures are greedy ones and may choose some irrelevant covari-
ates. This means we should carry out some statistical inference or apply penalized
methods like the SCAD after our procedures. As for the penalized procedures like
the Lasso, the adaptive Lasso, and the SCAD for quantile regression models, see e.g.
Belloni and Chernozhukov (2011), Wang et al. (2012), Fan et al. (2014), Zheng et
al. (2015), Sherwood and Wang (2016), and Honda et al. (2019). See also Biihlmann
and van de Geer (2011), Hastie et al. (2015), and Fan et al. (2020) for general results
and recent developments on high-dimensional issues.

There are a lot of feature screening procedures based on marginal models or some
association measure between the dependent variable and an individual covariate, e.g.
Fan and Lv (2008), Fan and Song (2010), He et al. (2013), and Wu and Yin (2015).
It is well known that such procedures may miss some relevant covariates if they are
applied only once and some authors have proposed these procedure iteratively with
no theory. As for forward variable selection procedures, there are Wang (2009), Ing
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and Lai (2011), Luo and Chen (2014)), and Cheng et al. (2016), to name a few. Liu
et al. (2015) is an excellent review paper of feature screening procedures. Feature
screening procedures are also called just screening procedures.

In this paper, we consider forward variable selection procedures for ultra-high
dimensional quantile regression models by minimizing L,(X ST Bs) defined in (7) as
in Wang (2009) and Cheng et al. (2016) for ultra-high dimensional mean regression
models and Pijyan et al. (2020) and Honda and Lin (2021) for ultra-high dimensional
generalized linear models. In addition, we propose simpler forward procedures for
ultra-high dimensional quantile regression models by using a sequentially conditional
approach, not fully minimizing (7), as in Zheng et al. (2020) and Honda and Lin
(2021) for ultra-high dimensional generalized linear models. We examine our forward
procedures together with our stopping rule in a unified way. There are some other
forward quantile regression procedures proposed in Kong et al. (2019) and Tang et
al. (2021+). Our procedures are based on minimizing the loss function and can be
easily extended to varying coefficient quantile regression models as in Cheng et al.
(2016) and Honda and Lin (2021).

When we investigate ultra-high dimensional forward procedures theoretically, we
have to take full care of a kind of uniformity w.r.t. S C [p]. This is because the newly
selected variable at each step is not determined in advance except for an unimaginably
ideal setup. Then we describe the properties of our procedures including screening
consistency in Section 2. As far as we know, no other paper on quantile regression
models has paid attention to this kind of uniformity for high-dimensional quantile
regression. Stopping rules for forward procedures are often constructed from infor-
mation criteria such as EBIC. See Chen and Chen (2008) and Chen and Chen (2012)
about EBIC. Lee et al. (2014) gave some useful related results on quantile regression.
However, their results do not cover the cases where the upper bound K, increases to
infinity. Our proposed stopping rule covers such cases. We also present the results
of our numerical studies in Section 3. Our simulation results demonstrate that our
procedures compete well with the other procedures and show the best performances
in some examples.

This paper is organized as follows. In Section 2, we describe the notation, our
procedures, technical assumptions, and our main results. We present the results of
our numerical studies in Section 3. We prove our main theoretical results in Section 4.
The proofs of technical lemmas are relegated to the supplement. Additional numerical
results are also given in the supplement.

2 Forward selection procedures

In this subsection, we introduce the notation and give the details of our procedures.
Then we state technical assumptions and finally present our theoretical results in a
unified way.
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2.1 Notation

We can assume that E{X;} = 0 and E{ij} = 1 for j > 2 without loss of generality.
Besides, we set p, = p V n and denote the Euclidean norm of a vector v by ||v||.
For § c [p], we define X and 35 by

X5 =(X))jes €RS! and By = (8))jes € R/

from X = (Xi,....X,)" and B8 = (B1,....B,)", respectively. Similarly we define
Xs from X; = (X;1,... ,X,'p)T. Recall that X; = 1.

Next we define the regression coefficient 35 € RI! for a possibly misspecified
S c[p] andhjs e Rfor je S°by

Bs = arg min E{p-(Y — X Bs)) @)
Bs €S|
and
Wi = arg njgn Elo-(Y — X Bs = X;hjs)}, )
js €

respectively. Then we have

E{ Xy (Y - XIB%)

0 (5)
and
E{X (Y - X B5 - Xihis)} = 0. (6)

When M C §, 85 is exactly from 8" as X from X. However, if M ¢ S, 35
is not a subvector of 3*. This is because this model does not include some relevant
covariates and is misspecified.

The sample and population objective functions for S c [p] are defined by

1 n
LiX{Bs) =~ > pel¥i = X[ Bs) @)
i=1

and

Ls(Bs) = E{L.(X{ Bs)} = Elp.(Y = X1 Bs)}, ®)

respectively. We estimate 35 and hj‘s by

Bs = arg min L,(X] Bs) 9)
Bs RS
and
hjs = arg min L,(XJ Bs + X;hjs), (10)
hjs €R

respectively. We repeat that 3 is not a subvector of 3" if M ¢ S.



Forward variable selection 5

We examine the properties of Es in Lemma 2 in Section 4 by taking the unifor-
mity w.r.t. § into account. On the other hand, 45 is an auxiliary tool and we do not
need any properties of /f;js in proving our main theoretical results.

In our procedures, we minimize L,(X ST Bs) in (7) and do not use the sample
version of (15) in Assumption LB below. Therefore extension to more general models
like varying coefficient models are easy and straightforward. Besides, minimizing
L,(X ST Bs) is directly linked to our stopping rule and we can present the theoretical
results for our procedures in a unified way.

2.2 Forward selection procedures

We propose three procedures. We call the first one the full regression procedure (
hereafter called FR ) since it fully minimizes L,(X ST Bs) w.r.t. Bs at each step. This
full regression procedure may take a little longer time if p is extremely large. The
second one minimizes L,(Xg ES + Xjhjs) w.r.t. hjs at each step and will be suitable
for extremely large p. We call the second one SC. The third one is a combination of
the first two procedures, FR and SC, and chooses a set of candidates for full regression
by using the results for L,(Xj Bg +X j’};jS ). Our main theoretical results focus on the
first two procedures. However, the third one enjoys the same properties as the first
two as we state in Corollary 1 at the end of Section 2.3

Hereafter we assume that we have a given upper bound K, for the following
procedures. As for &, in (11) below, almost any &, going to co will work from a
theoretical point of view and we set &, = loglogn in the numerical studies. See (21)
and (22) after Theorem 2 below about the conditions on &, and K.

e Full Regression Procedure (FR ) :

Take So = {1} and begin with k = 1. We stop the procedure if (11) below is not
satisfied or k = K,,.
(a) Set S = S—;. Then define j; by

Jx = arg min min L,,(XSTU[J'},BSUU}).
jese  Bsuii

(b) Check if we have significantly improved L, (X STH,ESH) by adding ji. Specifi-
cally, if we have with § = S_,

Ly(X] Bs) = min min Ly(X],B501) > &S] log pa/n. (11)
S UL}

set Sy = Si-1 U {jx} and go to (a). If not, set M\z S -1 and end this algorithm. Note
that the second term on the LHS of (11) is actually given by j = j; defined in (a). See
Remark 2 at the end of this subsection about the stopping rule defined in (11).

Next we propose a simpler and faster forward selection procedure by following
Zheng et al. (2020) and call it the sequentially conditional procedure ( hereafter called
SC) as in Zheng et al. (2020).
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e Sequentially Conditional Procedure ( SC ) : Replace ji in (a) of FR with

Jk = ar%egrrlinrrlllrsn Ln(ngs + Xhjs) (12)
and
min gslin Lo(X g Bsui) with ﬂr?ﬁ» Ly(X g0 Bsutin) (13)
in (b) of FR.

In (12), we choose only the best index among S and denote it by ji there. As
in Lin et al.(2021), we can choose more indices for (b) based on miny,; L,(X ST ES +
Xihjs) = L,(X ST BS +X j’i;js) for j € §¢. In the next procedure, we choose my indices
for (b) as in (14) below by using L,,(XSTES + Xj’i;,-s) for j € §¢. Then we minimize
Ln(XSTU{j}ﬁsUU}) w.r.t. Bsy; for every jin My defined in (14) and select the best
j € Mg to be added to ;.

We can also say that before full minimization w.r.t. gy, forall j € §¢, we apply
some preliminary screening to S¢ in FR by using the results of L, (X Tﬁs +X; n is)-
Namely, we choose Mg in (14) from S ¢ with a kind of conditional SIS procedure as
in Barut et al. (2016). Then we apply the same procedure as FR with S “ replaced with
M. This is our greedier variant of SC (hereafter called gSC). See Remark 1 below
about more details of this procedure.

e A greedier variant of SC ( gSC ): First we fix an positive integer m and denote gSC
with this mg by gSC(my). Specifically, we construct the index set Mg for S by

Mg ={jeS| Ln(XSTES + Xj’ﬂjs) is among the smallest my (14)
ofall L,(XIBs + Xches), £ €S}

Then we replace S ¢ with this My in (a) and (b) of FR. Note that |Mg| = = my. We repeat
that L (XTﬁS +X; hJS) is among the smallest m of {L (XT,BS + Xohgs) | € € S¢) if
Jj € Mg and that |[Mg| =

Two remarks are in place. Remark 1 is about our motivation to gSC(m) and my
and Remark 2 is about our stopping rule in (11).

Remark 1 SC, namely gSC(1), carries out 1-dimensional quantile regression (p —k —
1) times and only one (k+ 1)-dimensional quantile regression for ji as in (13) at the k-
th step. This is desirable in terms of computational time. However, in some situations,
the second or third best index in (12) can actually be better in terms of full (k + 1)-
dimensional quantile regression. Or the variable minimizing L, (X ST Bsuyyy) for je S¢
will be very highly ranked in (a) of SC even if it is not j; there and will be found in
My for some reasonably large mg. Thus, gSC(my) serves as a desirable combination
of FR and SC in terms of computational time and minimization of L,(X ST Bsugjp)- As
we stated, selecting Mg from S € is a kind of conditional SIS procedure as in Barut et
al. (2016) instead of carrying out full minimization w.r.t. Bsyy; for all j € S¢. There
seems to be no optimality theory as to how many covariates should be selected for
SIS (this is my here) and m,, = [n/logn] is one of widely used practical choices for
the number of selected covariates. See also a few lines after Steps (1)-(3) on p. 438
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in Kong et al. (2019). The authors of Kong et al. (2019) cited three papers on SIS and
introduced this choice. In addition, our numerical studies demonstrated that the idea
of gSC(my) with my = m,, worked well numerically. From a theoretical point of view,
this gSC(my) enjoys the same properties as the other two as we prove in Corollary 1
at the end of Section 2.3.

Remark 2 Note that |S| on the RHS in (11) is the cost for dealing with the uniformity
w.rt. S as K, — oo. This kind of uniformity w.r.t. S is necessary to dealing with
sequential procedures rigorously and is often overlooked in the literature. When we
consider mean regression models, estimators like ES are explicitly available and we
can establish the similar uniformity much more easily without |S|in (11). If the upper
bound K, is bounded, we can remove this |S| on the RHS in (11) from a theoretical
point of view. In our numerical studies, our stopping rule tend to stop a little too early
and we used some practical remedies to this early termination problem as described
in Section 3.

2.3 Assumptions

Next we present our assumptions before we describe our theoretical results. For quan-
tile regression models, explicit expressions of 35 and Eg are unavailable and we need
assumptions like Assumption LB below. Hereafter we consider only S satisfying
IST < K.

We write Cy, C», . . . for generic positive constants and their values may vary from
place to place. Contrary to Cy, Cy, ..., we use Di, D,,... in a similar way with their
values fixed, namely, their values don’t change from place to place. All of these con-
stants are independent of n. We use a,, ~ b, for {a,} and {b,} when a, < C| < b,, and
b, < Cy < a,.

The following assumption is similar to Assumption (E) in Zheng et al. (2020) and
this is our basic assumption. It stipulates how large the signal is when M ¢ S If the
LHS of (15) below is small for any j € S¢, the remaining signal is negligible and there
will be no need of adding new covariates. In Theorem 1 below, we relate the LHS of
(15) in Assumption LB to our Ln(XST’ﬁ\S), L,,(XSTES + Xﬁz}s ), and Ln(XSTU{j}BSU{j}).

Assumption LB : There is a uniform lower bound «; g such that

[E{X (Y — X3& B > kip (15)

for some j € M N S°if M ¢ S. Note that we allow k. p to decreases to 0 while
satisfying the conditions in Theorems 1-3 below.

We prove in Lemma 1 in Section 4 that we can improve Lg(3;) sufficiently by
adding some j € S¢if M ¢ S. Then we use the above assumption together with some
technical assumptions given below. This is because theoretical analysis of quantile
regression models needs assumptions on conditional density functions and we also
have to consider the uniformity in S. In the literature on screening procedures for
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high-dimensional models, results such as (ii) in Lemma 1 in Section 4 are often as-
sumed.

We describe the other technical assumptions for our theoretical results here. We
decided to present simpler assumptions and avoid complicated assumptions and these
assumptions can be relaxed to some extent as we make comments in the proofs. Since
the boundedness of hj'.s X is necessary in Assumption FY and the proof of Lemma 1,
we state an assumption on this boundedness before Assumption FY on conditional
density functions.

Assumption B :
(1) IX;| < Xp uniformly in j € [p] for some positive constant Xy,.
2) |h75| < Dj, uniformly in S (M ¢ S) and j € S for some positive constant Dj,.

(1) of Assumption B can be relaxed a little. See Remark 3 after the proof of
Lemma 1 in the supplement.

Assumption FY below is about conditional density functions of Y. This kind of
assumption is common in the literature on quantile regression. We denote the condi-
tional density function of ¥ on some random vector W by fy(y|W).

Assumption FY :
(1) There are positive constants C; and C, and a small positive §; such that

Ci < frOIX$ XPT) <Cy on (X85 — DXy — 61, X2 Bs + DipXy +61) (16)

uniformly in S (M ¢ S)and j € S°.
(2) There are positive constants C3 and C4 and a small positive ¢, such that

Cs < fr(1Xs) <Cs on (XIBs -2, X4 B85 +6) (17)

uniformly in § (M C S). Recall that we have X7 3; = X7 3" for such S. This
assumption holds automatically if we have (17) with § = [p]. As for S such that
M ¢ S, inequalities in (17) for such S follow from those in (16).
(3) For S (M c §), fr(y|Xs) is uniformly Lipshitz continuous in y on (XSTﬁé -
02, XSTﬁgi + 0,), where 65 is the same as in (17) above.

We write 4,,(A) and A3,(A) for the minimum and maximum eigenvalues of a sym-
metric matrix A, respectively. The next assumption is closely related to eigenvalues
of XX ST /n and inevitable to linear regression models.

Assumption X :
(1) There are positive constants C; and C, such that

C1 < 4n(B{ X5 X)) < An(B{ X5 X)) < Ca

uniformly in S.
(2) There are positive constants C3 and C4 such that

C3 < 4u(B{Xs X5 fr(Xg B51 X)) < Am(E(Xs X fr( X B5|Xs))) < Ca

uniformly in S (M C §).

We can prove by using the standard arguments that the sample versions of As-
sumptions X(1)(2) hold with probability tending to 1 under Assumptions X(1)(2).
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Therefore we also assume that the sample versions hold with probability tending to 1
for simplicity of presentation. We know Assumption X(2) follows from Assumptions
FY(2) and X(1). However, we make Assumption X(2) an independent assumption for
better understanding of the proof of Theorem 2.

2.4 Theoretical results

In this subsection, we state Theorems 1-3 which cover both FR and SC in a unified
way. We deal with the theoretical properties of gSC(my) in Corollary 1 at the end of
this subsection.

In the literature on non-iterative feature screening, authors usually take an asso-
ciation measure between Y and X;, which we denote it by p(Y, X;) here. This p(Y, X;)
often comes from marginal models like SIS. Then those authors make an assumption
that p(Y, X;) > n, if j € M for some suitable 77,. Then they carry out feature screening
or variable selection by estimating p(Y, X;) by some estimator denoted by p,(Y, X;)
here. They establish the screening consistency by proving that p,(Y,X;) > 7, for
J € M with probability tending to 1. In practical situations, we have no idea about 7,
and there is no optimality theory as to the number of selected covariates. Therefore
practical rules as in Remark 1 are often used as to how many covariates are selected
for SIS-type feature screening. We can say choosing Mg from S¢ in gSC(my) is a
kind of SIS-type feature screening.

If M ¢ S, Theorem 1 relates Assumption LB to a sufficiently large improvement
on L, (X ST 55). Since we deal with forward procedures for quantile regression models
rigorously, there should be S in (15) of Assumption LB. Some technical assumptions
are also necessary. Recall that the true coefficient is given by minimizing Lg (3s) for
McS.

Theorem 1 Suppose that Assumptions LB, B(1)(2), FY(1)(2), and X(1) hold. Besides,
setting S = Sy-1 for k < K,,, we assume that

Dy pk? 2
LBKT B > DU]( [1S|log py N S| IOan)+DU2|S| loan, (18)
2 n n n

where Dy g, Dy1, and Dy, are given in Lemmas 1, 3, and 4 in Section 4, respectively.
Then with probability tending to 1, we have uniformly in k smaller than K,

— — Dy ks
T . T LB
L, (X Bs) _I}E%I}Ln(XSUU]IBSUU}) > )
and
D3,

Ly(X{ Bs) = min L(X{ Bs + X jhjs) >

with S = S l.fM(ZSk_l.
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The condition in (18) looks complicated. However, (19) is a simple sufficient
condition for (18) and it allows ultra-high dimensional cases.

log p,
K4/ ip = o(k1 ). (19)

Since we propose forward procedures, we need a suitable stopping rule to save
computational time and avoid large |S|. Even if K,, < cn for some ¢ € (0, 1), large
dimensional quantile regression may cause some computational problems. As our nu-
merical studies demonstrate, we obtain models of reasonable size due to our stopping
rule. In Theorem 2, we establish the theoretical validity of our stopping rule for FR
and SC : our procedures do not stop until M C S, and our procedures stop once

MCSk.

Theorem 2 Suppose that Assumptions LB, B(1)(2), FY(1)(2)(3), and X(1)(2) and
(18) hold. As long as DLBK%B > &,|Skllog py/n and |Sy| < K, our algorithms FR
and SC do not stop while M ¢ S with probability tending to 1. Besides, assume

K, (logn)’"? ,/k’gT”" = o(1). (20)

Then once M C Sy and |Si| < K, our FR and SC procedures stop at this step with
probability tending to 1.

The first inequality in Theorem 2 is less restrictive than the inequality in (19). The
inequality in (20) is similar to (19). Assuming that log p, ~ n”* and ;g ~ n=2 for
some positive y; and y,, we give some upper bounds on K,, and &, here. Considering
all of (18)-(20) and inequalities in Theorem 2, we obtain this sufficient condition :

K, = o(n'*™/2722)  with 1/2 —y1/2 =2y, > 0 (21)
and

&K, = o(n'™722)  with &, — . (22)

In our procedures, we choose only one variable at each step and we need an
argument different from many other papers on feature screening to establish screening
consistency. Reduction in L, (X ST Es) at each step should be large enough to find all
the members in M before we reach the upper limit K,,. According to Theorem 3, both
FR and SC enjoy the screening consistency if «zz in (15) is not very small. Recall
that So = {1}.

Theorem 3 Suppose that Assumptions LB, B(1)(2), FY(1)(2), and X(1) and (18) hold
and set

4= Ls,(Bs,) — Lin(B")
Then M C Sy, for some k < K,, with probability tending to 1 if
24

2
DLBKLB

<K,-2. (23)
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Finally we deal with gSC(my). For any mg, gSC(mg) has the same desirable prop-
erties as FR and SC as we show in Corollary 1. We prove Corollary 1 by exploiting
the fact that gSC(my) is between FR and SC in terms of minimization.

Corollary 1 We have the same results for gSC(mg) as in Theorem 2 under the as-
sumptions of Theorem 2. We also have the same results for gSC(myg) as in Theorem 3
under the assumptions of Theorem 3.

3 Numerical studies

In this section, we evaluate the finite sample performances of the proposed procedures
through simulation studies and an application to a real gene expression data set. We
carried out all the computations by using R.

3.1 Simulation studies

In this subsection, we assess the finite sample performances of gSC(1), gSC(my),
and FR with or without the stopping rule (11). As mentioned in Remark 1, a larger
value of my will borrow more strength from FR at the cost of additional computation;
thus, aside from gSC(1), we consider gSC(25) and gSC(m,,) with m, = [n/logn]
for comparison. This m,, is commonly used in the literature of feature screening, and
seems moderate under the setting n = 400 (so that m, = 67) considered in this
subsection.

To terminate the proposed algorithms, we adopt the following rules:

We terminate the algorithm if (11) is not satisfied i times consecutively or the itera-
tion number achieves K,,. The former criterion based on (11) is denoted as T}, and the
proposed algorithms using 7; are denoted as gSC(1)+7;, gSC(25)+T;, gSC(m,)+T;,
and FR+T;. On the other hand, the algorithms achieving K,, iterations with no stop-
ping rule are denoted as just gSC(1), gSC(25), gSC(m,,), and FR. We tried i = 1,2,
and 3 for T;. Note that FR+7| means exactly the full regression procedure in Section
2.2, and T, and T3 are our remedies for preventing the early stopping or termination.
The same kind of practical rule is also adopted in Cheng et al. (2016) for the same
purpose.

The proposed procedures are compared to the penalized quantile regression mod-
els with the Lasso penalty (Belloni and Chernozhukov 2011), the adaptive Lasso
(ALasso) penalty, and the non-convex SCAD and MCP penalties. Their tuning pa-
rameter A is chosen by minimizing the BIC for penalized quantile regression (QBIC(1))
(Lee et al. 2014)

log(L,(X T B1)) + |BAIC, log n/(2n), (24)

where B\A is the penalized quantile regression estimator with respect to A. In Lee et
al. (2014), the authors suggest using C,, = log p,, for the purpose of variable selection
consistency. Since the goal of this study is to choose a small set of variables with the
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sure screening property, we use C,, = 1/logn for Lasso and use C,, = loglog p,, for
SCAD, MCP and ALasso. Note that the weight of ALasso is determined by Lasso.

In addition to the penalized regression methods, we also compare with the marginal
screening method using the conditional quantile utility (CQU) of Wu and Yin (2015)
and the associated forward regression using the partial quantile utility (FR-PQU) of
Kong et al. (2019). The number of variables selected by CQU is set as [n/log(n)]
following the recommendation of the authors, and the number of iteration for FR-
PQU is set as K, to make a fair comparison with our proposed ones without applying
the stopping rule. In addition to FR-PQU, we also choose the model with minimum
QBIC(S) from the K, nested models generated by FR-PQU as suggested in Section
3.2.1. of Kong et al. (2019). This QBIC(S') is defined by

10g(Lu(X{ Bs)) + IS|C, log n/(2n).

We take C,, = loglog p,, so that the criterion QBIC(S) is comparable to QBIC(A) for
penalized regression models, and denote such combination as FR-PQU+QBIC. It is
expected that FR-PQU+QBIC can largely reduce the false positives from FR-PQU
but remains containing all relevant variables, so we can say that this FR-PQU+QBIC
is the counterpart of our proposed procedures using the stopping rule (11). Note that
FR-PQU and FR-PQU+QBIC considered in this subsection correspond to QFR and
QFR+QBIC3 in Kong et al. (2019), respectively.

For implementation, we use the package quantreg of Koenker (2021) to solve (12)
and (13) for our proposed methods, and the package rqPen (Sherwood and Maidman
2020) for penalized regression methods.

We deal with three examples, each of which has three different levels of quan-
tile: 7 = 0.3,0.5 and 0.7. A total of 100 simulation replications are carried out with
(n, p) = (400, 1000), and, taken from n = 400, the maximum iteration number K,, for
the forward-type algorithms is set as 30. The detailed settings for the design matrix
X, the coefficient vector 3%, and the error distribution of € are listed below.
Example 1. The response Y is obtained by

Y=1+ 15X7 + 0.7X|3 + X]() — 0.5X21 + (1 +’}/)X2€,

where € follows the t-distribution with degree of freedom 3 and the parameter y mea-
sures the heteroscedasticity. The predictor vector (Xi,...,Xp.1) is set as X; = 1
and X; = X; for j > 2, where (X,,...,X,41) follows the multivariate t-distribution
N,(0,%) with degree of freedom 3 and X = 0.5V7%. The y is set as y = 0.5 so that
the quantile coeflicient of X, is around -0.292 at v = 0.3, exactly 0 at 7 = 0.5, and
around 0.292 at 7 = 0.7, respectively. Thus, we have M = {7,13, 16,21} for 7 = 0.5
and M = {2,7,13,16,21} for 7 # 0.5. In this example, we deal with unbounded X,
weak signals on regression coefficients, and the heteroscedastic error terms to check
the numerical robustness of our procedures .

Example 2. Adopted from Wu and Yin (2015), the response Y is obtained by

Y=X+ X5+ X4+ X5+ Xg+ exp(X21)E,

where € follows from a Cauchy distribution. The predictor vector (X, ..., X ) is
set to X, and {X}};»» follow the multivariate normal distribution N,(0,2) with X =
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0.5 for j # kand Xj; = 1 for jk = 2,...,p+ 1. In this example, we have M =
{2,3,4,5,6} fort = 0.5 but M =1{2,3,4,5,6,21} for r # 0.5.
Example 3. The response Y is obtained from

Y=2X, +2X3+2X4 + €,

where € follows the t-distribution with degrees of freedom 3. The predictor vector
is generated as follows: X; = 1,Xy = W — W3 — Wy, X5 = W3 — Wy, Xy = 2Wy,
and X; = W, + U; for j > 5, where variables in {W»,..., Wy, Us,..., U, } are
independently generated from N(0, 1). Given this specification, both X3 and X, are
uncorrelated with the response Y, but are correlated with irrelevant variables {X} j>5
through Wy (with Cor(X3,X;) = —0.5 and Cor(X4,X;) = 0.707). Both X3 and X,
are called marginally weak variables since they are almost impossible to be detected
by marginal screening methods like CQU; in addition, the interference of correlation
made by irrelevant variables also adds the difficulty in variable screening.

In order to evaluate the performances of each screening procedure, we write M®
for the index set constructed by one particular method in the b-th simulation repli-
cation. Note that we exclude the intercept term {1} from M® when evaluating its
performance. Based on {M®} 190 and M, we measure the frequency of sure screen-
ing (Sure), the averaged number of true positives (TP) and the averaged number of
false positives (FP) defined by

100 100 100
Sure = 3" M MPL,TP = 1007 )" [M[ | M®P|and FP = 1007 > |Me () M?)]
b=1 b=1 b=1

respectively. Additionally, the averaged computing time (Time) in seconds of each
procedure is also recorded.

The simulation results of Example 1-3 are summarized in Tables 1-3, from which
we make the following observations:

(i) In Tables 1-3, gSC(25)+T;, gSC(m,)+T;, and FR+T; with i = 2,3 give quite
satisfactory performances in the balance of high Sure and low FP among all the pro-
posed methods. Especially, gSC(m,)+T5 and FR+T5 compare favorably to CQU,
ALasso, SCAD and MCP because gSC(m,,)+T5 and FR+T73 have both higher Sure
values and lower FP values. Note that only gSC(m,,)+T; and FR+T; with i = 2,3 de-
tect X4 in Table 3 satisfactorily. Besides, just FR+T773 has perfect Sure values in Table
3.

(i) FR-PQU+QBIC performs similarly to gSC(m,)+7T; and FR+T; with i = 2,3
in Table 1. However, its performances deteriorate seriously in Tables 2 and 3. It seems
that QBIC(S) does not work well in Tables 2 and 3 while our 7, and T3 work reason-
ably well. As for FR-PQU, which has no model selection or stopping rule, it works
slightly better for X, in Table 1 and shows similar performances to gSC(m,,)+73 and
FR+T35 in the other results except for Xy in Table 3. Note that FR-PQU fails to de-
tect X4 in Table 3 and that it has much higher FP values because it selects exactly
K, covariates. The most significant difference between FR-PQU and our { gSC(m,,),
FR} is whether we carry out full minimization w.r.t. Bgyy;. We think that the differ-
ences in the results for X4 in Table 3 come from this full minimization w.r.t. Bsyj) in
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gSC(m,)+T5 and FR+T3. As we describe in (iii) below, increasing m, improves the
performances of gSC(myg)+T7; significantly. Recall that we carry out full minimization
w.r.t. Bsugjy mo times at each step.

(iii) As for my, the performances of gSC(25)+7; are better than those of gSC(1)+7;
in Tables 2 and 3 and almost the same as those of gSC(m,,)+7; and FR+T; in Tables
1 and 2. In Table 3, gSC(m,,)+T; outperforms gSC(25)+T; and gSC(m,)+T3 works
as well as FR+T7, and FR+T3. Increasing m, improves the performances of gSC(my)
largely and the commonly used practical rule for mg, m, = [n/logn], seems to be a
reasonable choice.

All of (i)—(iii) above and the columns of computational time imply that both
gSC(m,)+T; and FR+T; with i = 2,3 work well in terms of performances and com-
putational time. Therefore we recommend them and gSC(m,,)+T; may be suitable for
extremely p. We present additional simulation results for (n, p) = (400,4000) in the
supplement and those results also confirm this conclusion. Our remedies for prevent-
ing early stopping and the commonly used practical rule for m also show good finite
sample properties in the additional simulation results.

3.2 Real data analysis

In this subsection, we consider a gene expression dataset reported in Biihlmann et
al. (2014) to illustrate the performances of the proposed methods. The data contains
71 independent samples (n = 71), from which the logarithm of 4088 gene expression
levels (p = 4088) and of a response variable riboflavin (vitamin B2) production rate in
Bacillus subtilis are measured. This dataset is available in R package hdi. Apart from
the fact that the number of variables greatly exceeds the number of observations, there
are 5.17% out of (40288) pairs whose correlation is greater than 0.7 in absolute value.
Thus, the main objective is now to select predictive genes for different quantiles of
the riboflavin production rate using the methods considered in Section 3.1, where
a small part out of high-dimensional gene expressions are possibly co-expressed.
Before analysis, all the genes are rescaled to have mean 0 and variance 1.

To evaluate the prediction performance, we randomly partitioned the 71 samples
into two disjoint sets: the training set of size 50 and the testing set of size 21. Under
this n << p circumstance, we adopt a two-stage procedure to select relevant genes
based on the training set: a screening method in {CQU, gSC(1)+7T3, gSC(m,)+T3,
FR+T3, FR-PQU+QBIC} followed by a regularization method in {Lasso, SCAD,
MCP}. The proposed procedures gSC(1)+73, gSC(m,)+T3, and FR+T3 all have the
sure screening property under the assumptions of our Theorems 1-3 as shown in
Section 2, but they showed different behaviors in our simulation studies and can have
their own advantages as screening procedures. Thus we further consider the method
called “Hybrid”, which is defined as the union of variable sets selected by gSC(1)+73,
gSC(m,)+T5, and FR+T3. We call the screening-regularization pairs CQU+Lasso,
CQU+SCAD, CQU+MCEP, and so on. We also present the results of screening only,
namely just gSC(1)+73, gCS(m,)+T3, FR+T3, Hybrid, and FR-PQU+QBIC for ref-
erence in Table 4. Table 9 in the supplementary material is the counterpart of Table
4 for screening methods with no stopping rule or model selection, namely gSC(1),
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Table 1 Simulation results for Example 1 with (n, p) = (400, 1000).

X X7 X]3 X16 Xo1 Sure TP FP Time

=03, M=1{2,7,13,16,21}

CQU 5 100 100 100 83 5 388 63.12 3.82
Lasso 54 100 100 100 100 54 4.54 4932 23.62
ALasso 21 100 99 100 100 21 420 0.66 2395
SCAD 18 100 99 99 100 18 4.16 035 30.80
MCP 28 100 99 100 99 28 426 0.63 31.66
gSC()+T, 8 100 98 100 97 8 403 0.12 459
gSC()+T> 48 100 100 100 100 48 4.48 0.67 5.71
gSC(1)+T3 52 100 100 100 100 52 452 1.63  6.77
gSC(1) 58 100 100 100 100 58 4.58 2542 25.75
gSC(25)+T 8 100 98 100 97 8 403 0.12 470

gSC(25)+T> 52 100 99 100 99 52 450 065 585
gSC(25)+T3 58 100 100 100 100 58 458 1.57 697
gSC(25) 59 100 100 100 100 59 4.59 2541 28.36
gSC(my)+T 8 100 98 100 97 8 403 0.12 493
gSC(my)+T> 52 100 99 100 99 52 450 0.65 6.11
gSC(m,)+T3 58 100 100 100 100 58 4.58 157 733

gSC(my) 63 100 100 100 100 63 4.63 2537 36.53
FR+T) 8 100 98 100 97 8 403 0.12 533
FR+T» 52 100 99 100 99 52 450 0.65 6.77
FR+T3 59 100 100 100 100 59 459 156 835
FR 61 100 100 100 100 61 4.61 2539 57.43
FR-PQU+QBIC 63 100 100 100 100 63 4.63 0.63 114.38
FR-PQU 81 100 100 100 100 81 4.81 25.19 114.38

7=05M=1{7,13,16,21}

CQU 5 100 100 100 81 81 3.81 63.19 3.84
Lasso 8 100 100 100 100 100 4.00 3491 11.94
ALasso 0 100 100 100 100 100 4.00 0.05 12.21
SCAD 0 100 100 100 100 100 4.00 0.01 13.65
MCP 0 100 100 100 100 100 4.00 0.06 1590
gSC()+T, 1 100 100 100 99 99 399 049 5.02
gSC()+T> 1 100 100 100 100 100 4.00 1.48  6.07
gSC(1)+T3 2 100 100 100 100 100 4.00 248 7.21
gSC(1) 6 100 100 100 100 100 4.00 26.00 25.66
gSC(25)+T 2 100 100 100 99 99 399 049 5.16
gSC(25)+T> 3 100 100 100 100 100 4.00 1.48  6.33
gSC(25)+T3 5 100 100 100 100 100 4.00 248 747
gSC(25) 8 100 100 100 100 100 4.00 26.00 28.55
gSC(my)+T 2 100 100 100 99 99 399 049 542
gSCmy)+T> 3 100 100 100 100 100 4.00 1.48  6.63
gSC(m,)+T3 5 100 100 100 100 100 4.00 248 7.82
gSC(my,) 7 100 100 100 100 100 4.00 26.00 37.03
FR+T) 2 100 100 100 99 99 399 049 6.07
FR+T» 3 100 100 100 100 100 4.00 1.48  7.69
FR+T3 5 100 100 100 100 100 4.00 248  9.39
FR 8 100 100 100 100 100 4.00 26.00 58.49
FR-PQU+QBIC 2 100 100 100 100 100 4.00 0.27 115.05
FR-PQU 9 100 100 100 100 100 4.00 26.00 115.05
=07, M=1{2,7,13,16,21}
CQU 16 100 100 100 80 13 3.96 63.04 3.76
Lasso 62 100 100 100 99 62 4.61 50.13 25.88
ALasso 20 100 100 100 99 20 4.19 037 26.20
SCAD 16 100 100 100 100 16 4.16 0.22 2991
MCP 26 100 100 100 100 26 426 031 33.96
gSC()+T, 5 100 99 100 98 5 402 0.06 444
gSC()+T> 40 100 100 100 100 40 440 0.68 556
gSC(1)+T3 47 100 100 100 100 47 447 1.61 6.65
gSC(1) 61 100 100 100 100 61 4.61 2539 25.13
gSC(25)+T 6 100 99 100 97 5 402 0.06 4.62

gSC(25)+T> 48 100 100 100 100 48 448 0.60 5.70
gSC(25)+T3 55 100 100 100 100 55 4.55 153  6.85
gSC(25) 64 100 100 100 100 64 4.64 2536 27.75
gSC(my,)+T 6 100 99 100 97 5 402 0.06 482
gSC(my)+T> 48 100 100 100 100 48 448 0.60 599
2SC(my,)+T3 55 100 100 100 100 55 455 153 7.14

gSC(my,) 63 100 100 100 100 63 4.63 2537 35.45
FR+T 6 100 99 100 97 5 402 006 538
FR+T> 48 100 100 100 100 48 448 0.60 692
FR+T3 55 100 100 100 100 55 4.55 153 851
FR 64 100 100 100 100 64 4.64 2536 57.64

FR-PQU+QBIC 67 100 100 100 100 67 4.67 0.63 111.59
FR-PQU 85 100 100 100 100 85 4.85 25.15 111.59
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Table 2 Simulation results for Example 2 with (n, p) = (400, 1000).

X2 X3 X4 X5 X6 X2| Sure TP FP Time
=03, M=1{2,3,4,5,6,21}
1

CQU 84 79 81 88 82 1 4.15 6285  3.77
Lasso 94 92 93 95 93 6 6 473 1943 22.68
ALasso 72 69 70 76 68 O 0 355 0.10 2332
SCAD 55 59 54 62 54 2 1 286 030 49.94
MCP 55 59 57 60 56 2 2 289 028 65.04
gSC()+T, 67 61 63 76 54 1 0 322 040 322
gSC(1)+T> 82 75 80 80 79 11 0 407 055 412
gSC(1)+T3 8 84 8 88 87 35 20 4.65 097 499
gSC(1) 98 97 94 97 98 73 65 557 2443 26.10
gSC(25)+T 70 63 74 74 70 1 0 352 013 335
gSC(25)+T> 8 8 87 8 92 7 0 448 0.17 425
gSC(25)+T3 93 92 93 95 96 56 44 525 040 5.17
gSC(25) 99 99 98 100 100 80 79 5.776 24.24 27.49
gSC(my)+T 70 63 74 74 70 1 0 352 013 350
gSC(my)+T> 8 8 87 8 92 7 0 448 0.17 446
gSC(m,)+T3 93 92 93 95 96 56 44 525 040 543
gSC(my) 99 99 98 100 100 81 80 5.77 2423 35.49
FR+T} 70 63 74 74 70 1 0 352 013 378
FR+T» 89 8 87 8 92 7 0 448 0.17 497
FR+T3 93 92 93 95 96 56 44 525 040 6.18
FR 99 99 98 100 100 82 80 5.78 24.22 59.49
FR-PQU+QBIC 54 50 49 58 51 2 1 264 059 113.97
FR-PQU 9 97 95 98 98 76 68 5.60 24.40 113.97

T=05M=1{2,3,4,5,6}

CQuU 87 84 84 8 87 48 431 62.69  3.37
Lasso 99 99 99 99 98 98 494 2253 16.63
ALasso 91 89 90 92 90 86 4.52 0.01 16.78
SCAD 84 81 77 83 8l 68 4.06 0.02 28.15
MCP 83 83 77 84 83 67 4.10 0.03 41.12
gSC()+T, 83 81 80 8 80 12 409 0.03 3.70
gSC()+T> 100 100 100 99 98 97 497 015 4.59
eSC(1)+T3 100 100 100 100 100 100 5.00 1.12 548
gSC(1) 100 100 100 100 100 100 5.00 25.00 25.96
gSC(25)+T 83 75 81 86 77 5 402 0.03 374

gSC(25)+T> 100 99 99 100 99
gSC(25)+T3 100 100 100 100 100
gSC(25) 100 100 100 100 100
gSC(my)+T, 83 75 81 86 77
eSC(my)+T> 100 99 99 100 99
gSC(m,)+T3 100 100 100 100 100

97 497 0.08 4.64
100 5.00 1.05 5.5
100 5.00 25.00 27.09
5 402 0.03 390
97 497 0.08 489
100 5.00 1.05 5.85

PO UNODODODUNDODODDODRNODODODUNODODODODODOO WM

eSC(my) 100 100 100 100 100 100 5.00 25.00 31.34
FR+T} 8 75 81 86 77 5 402 0.03 417
FR+T, 100 99 99 100 99 97 497 0.08 537
FR+T3 100 100 100 100 100 100 5.00 1.05  6.65
FR 100 100 100 100 100 100 5.00 25.00 58.93
FR-PQU+QBIC 83 78 75 77 176 60 3.89 0.35 120.00
FR-PQU 100 100 100 100 100 100 5.00 25.00 120.00
=07, M={2,3,4,5,6,21}
CQuU 77 63 72 75 72 25 2 384 63.16 322
Lasso 9 97 95 96 97 72 71 553 3452 21.82
ALasso 86 78 82 82 84 12 8 424 003 2213
SCAD 67 61 66 71 65 9 5 339 037 48.04
MCP 69 59 65 71 62 7 2 333 059 63.61
gSC()+T, 79 63 68 78 71 8 0 3.67 032 357
gSC(1)+T> 92 84 87 93 87 9 0 452 047 446
gSC(1)+T3 93 91 94 96 96 34 27 504 095 534
gSC(1) 98 96 99 99 98 54 52 544 2456 25.58
gSC(25)+T 82 69 73 80 78 7 0 3.89 0.11 3.67
gSC(25)+T> 9% 89 94 99 9 8 0 482 0.18 459
gSC(25)+T3 98 97 100 100 99 62 59 556 044 551
2SC(25) 100 99 100 100 100 72 71 5.71 2429 26.79
gSC(m,)+T 82 69 73 80 78 7 0 389 0.11 3.84

eSC(my)+T> 9 89 94 99 96 8 0 482 0.18 483
gSC(m,)+T3 98 97 100 100 99 62 59 556 044 577

eSC(my) 100 99 100 100 100 73 72 5772 2428 34.83
FR+T, 82 69 73 8 78 7 0 389 0.11 4.18
FR+T» 9 89 94 99 96 8 0 482 0.18 537
FR+T3 98 97 100 100 99 62 59 556 044  6.62
FR 100 99 100 100 100 72 71 5.71 2429 57.85

FR-PQU+QBIC 60 55 59 60 58 6 1 298 1.03 110.50
FR-PQU 96 97 96 97 97 53 50 536 24.64 110.50
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Table 3 Simulation results for Example 3 with (n, p) = (400, 1000).

X, X3 X4 Sure TP FP  Time

=03, M=1{2,3,4)

CQuU 100 7 1 0 1.08 6592  3.63
Lasso 100 100 53 53 2.53 90.64 26.80
ALasso 100 100 40 40 240 11.55 27.78
SCAD 100 94 36 36 230 7.36 64.65
MCP 100 100 6 6 2.06 1031 73.44
gSC()+T, 100 46 4 4 1.50 1.54 271
gSC(1)+T> 100 99 4 4 203 201 3.59
gSC()+T3 100 100 4 4 204 300 447
gSC(1) 100 100 4 4 204 2796 25.75
gSC(25)+T, 100 84 47 47 231 1.16  3.16

gSC(25)+T> 100 100 57 57 257 210 427
gSC(25)+T3 100 100 58 58 2.58  3.12 520
gSC(25) 100 100 58 58 2.58 2742 2692
gSC(m,)+T, 100 8 51 51 236 .15 3.35
gSC(my)+T> 100 100 80 80 2.80 229 490
gSC(m,)+T3 100 100 85 8 2.85 339 599

eSC(my,) 100 100 85 85 2.85 27.15 3025
FR+T) 100 85 51 51 236 1.15 3.6l
FR+T> 100 100 85 8 2.85 234 560
FR+T3 100 100 100 100 3.00 3.64  7.48
FR 100 100 100 100 3.00 27.00 58.88
FR-PQU+QBIC 100 100 1 1 201 1291 115.77
FR-PQU 100 100 5 5 205 2795 115.77
T=05M=(2,3,4)
CQuU 100 2 O 0 1.02 6598 3.37
Lasso 100 100 88 88 2.88 103.71 27.93
ALasso 100 100 79 79 279  6.64 29.34
SCAD 100 96 74 74 270 392 52.88
MCP 100 100 19 19 2.19 8.86 66.53
gSC()+T, 100 41 5 5 146 1.59 273
gSC()+T> 100 98 5 5 203 202 361
eSC(1)+T3 100 100 5 5 205 3.00 450
gSC(1) 100 100 5 5 205 2795 2572
gSC(25)+T 100 86 64 64 2.50 1.14 333

gSC(25)+T> 100 100 65 65 2.65 201 4.27
gSC(25)+T3 100 100 69 69 2.69 3.09 530
gSC(25) 100 100 69 69 2.69 2731 26.81
gSC(m,)+T, 100 88 68 68 2.56 1.12 354
eSC(my)+T> 100 100 86 86 2.86 2.18 4.86
gSC(my)+T3 100 100 93 93 293 332 6.02

eSC(my) 100 100 95 95 295 27.05 29.79
FR+T} 100 88 68 68 2.56 1.12  3.75
FR+T> 100 100 88 88 2.88 220 539
FR+T3 100 100 100 100 3.00 344 7.12
FR 100 100 100 100 3.00 27.00 58.10
FR-PQU+QBIC 100 100 O 0 2.00 1325 116.58
FR-PQU 100 100 8 8 2.08 27.92 116.58
T=07,M=(2,3,4)
CcQuU 100 4 O 0 1.04 6596  3.22
Lasso 100 100 54 54 254 9155 3034
ALasso 100 100 38 38 2.38 12.00 3141
SCAD 100 96 40 40 236 871 67.03
MCP 100 100 6 6 206 1029 77.78
gSC()+T, 100 38 7 7 145 1.62 276
gSC(1)+T> 100 100 7 7 207 200 3.66
gSC(1)+T3 100 100 7 7 207 3.00 459
gSC(1) 100 100 7 7 207 2793 2549
gSC(25)+T 100 56 34 34 1.90 144 3.1

gSC(25)+T> 100 100 41 41 241 207 417
gSC(25)+T3 100 100 45 45 245 3.5 519
gSC(25) 100 100 46 46 246 27.54 26.64
gSC(m,)+T 100 67 47 47 2.14 133 336
gSC(my)+T> 100 100 62 62 2.62 215 463
gSC(m,)+T3 100 100 79 79 279 349  6.12

eSC(my) 100 100 81 81 2.81 27.19 29.95
FR+T, 100 68 48 48 2.16 132 3.6l
FR+T> 100 100 68 68 2.68 220 527
FR+T3 100 100 100 100 3.00  3.81 7.80
FR 100 100 100 100 3.00 27.00 57.99

FR-PQU+QBIC 100 100 O 0 2.00 1322 119.53
FR-PQU 100 100 8 8 2.08 27.92 119.53
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gSC(m,), FR, and FR-PQU. In Table 9, SC(1), gSC(m,), FR, and FR-PQU are fol-
lowed by regularization methods like Lasso. In addition, we implement Lasso and
ALasso, where the weight in ALasso is determined by Lasso. The testing set is ap-
plied to evaluate the prediction error (PE) of the 7-th conditional quantile, defined by
CHT'IH oy - XI.TE), where /3 is the estimator of 3 obtained from the training
set. This procedure is repeated for 50 times, and the median of PE as well as the
median model size (Size) are reported in Table 4.

We first observe that, at each level of 7,7 € {0.3,0.5,0.7}, the proposed method
in {gSC(1)+T3, gSC(m,)+T3, FR+T3} has lower PE than FR-PQU+QBIC, and FR-
PQU+QBIC have lower PE than CQU, CQU+Lasso, CQU+SCAD, and CQU+MCP.
The comparatively high PE values for CQU-based methods partly result from the
requirement of independence assumption, which is not satisfied in this dataset. Sec-
ond, by taking m, = [50/1og(50)] = 13, both PE and Size values of gSC(m,)+73
is close to that of FR+T3, and is comparable to that of gSC(1)+75: the PE value of
gSC(m,)+T; is lower (higher) than that of gSC(1)+75 at 7 = 0.3 and 0.7 (at 7 = 0.5).
We further observe that the results of screening only do not seem to be significantly
different from those combined with a regularization method in terms of PE and Size.
Finally, the Hybrid+Lasso method has the smallest PE value at T = 0.3, the ALasso
method has the smallest PE value at 7 = 0.5, and the Hybrid method has the small-
est PE value at 7 = 0.7. Note that Hybrid has slightly larger Size values but has
apparently smaller PE values than those of gSC(1)+73, gSC(m,,)+T3, or FR+T3. It
means the methods in {gSC(1)+T3, gSC(m,)+T3, FR+T3} yield similar results, and
the predictive genes missed by one can be selected by the others.

Next, we proceed our analysis by comparing genes selected from methods in
Table 4 based on the full data (n = 71). Note that the follow-up regularization
step in {Lasso, SCAD, MCP} to the forward-type screening method in {gSC(1)+T3,
gSC(m,)+T5, FR+T3, FR-PQU+QBIC} does not remove any gene, so we only present
their screening results in Table 5. Since the genes YXLC, YXLD and YXLE are lo-
cated in the same operon and they are highly correlated with the gene YXLJ, the genes
in set {YXLC, YXLD, YXLE, YXLJ} are likely to be co-expressed and involved in a
similar cellular functions. We denote that the set {YXLC, YXLD, YXLE, YXLIJ} is
selected if at least one gene within this set is selected by a specific method. The gene
sets {XHLA ,XHLB, XTRA} and {ARGF,ARGIJ} are denoted in a similar manner.
We present the correlation in Table 10 and the complete result in table 5, and refer
the readers to SubtiWiki at http://www.subtiwiki.uni-goettingen.de/ for more details
about the annotation of genes and operon in Bacillus subtilis.

As shown in Table 5, the genes sets {YXLC, YXLD, YXLE, YXLJ} and {XHLA
,XHLB, XTRA} are selected by all the methods except for FR-PQU at all considered
levels of 7, the gene set {ARGF, ARGJ} is selected by gSC(m,,)+T5 and FR+T3 at
7 = 0.3. The importance of these gene sets have been certified in Biihlmann et al.
(2014) and Das et al. (2019) based on mean regression models, where the gene YXLD
and the gene ARGF have been discovered associated with the riboflavin production
rate directly, and the gene XHLA has been identified as a stable gene (potentially)
having a causal effect on the riboflavin production rate. We also observe that the gene
YCGN is selected by ALasso at 7 = 0.3, by CQU_SCAD and CQU_MCP at r = 0.5,
and by our methods at 7 = 0.7; the gene IOLA is only identified by our methods at
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Table 4 Prediction analysis for the gene expression dataset. Values in parentheses are estimated standard
deviation.

Screen Regularization 7=03 7=05 7=0.7
PE Size PE Size PE Size
Lasso ALasso 0.226(0.060) 4(1.7) 0.225(0.047) 4(1.7) 0.217(0.056) 4(1.7)
CQU Lasso 0.278(0.067) 5(2.5) 0.264(0.075) 5(2.5) 0.243(0.048) 5(2.5)
SCAD 0.275(0.057) 3(1.6) 0.263(0.054) 3(1.6) 0.241(0.044) 3(1.6)
MCP 0.281(0.058) 3(1.3) 0.259(0.056) 3(1.3) 0.241(0.042) 3(1.3)
gSC(1)+T3 - 0.251(0.049) 4(0.0) 0.239(0.054) 4(0.0) 0.211(0.038) 4(0.0)
Lasso 0.249(0.049) 4(0.0) 0.238(0.054) 4(0.0) 0.211(0.038) 4(0.0)
SCAD 0.248(0.049) 4(0.0) 0.240(0.054) 4(0.1) 0.211(0.038) 4(0.1)
MCP 0.249(0.049) 4(0.1) 0.240(0.054) 4(0.1) 0.211(0.039) 4(0.1)
gSC(my)+T3 - 0.235(0.067) 4(0.0) 0.247(0.052) 4(0.0) 0.200(0.048) 4(0.0)
Lasso 0.237(0.067) 4(0.0) 0.244(0.051) 4(0.0) 0.202(0.048) 4(0.0)
SCAD 0.237(0.066) 4(0.0) 0.245(0.051) 4(0.1) 0.199(0.048) 4(0.1)
MCP 0.238(0.067) 4(0.1) 0.245(0.051) 4(0.1) 0.200(0.048) 4(0.1)
FR+T3 - 0.238(0.070) 4(0.0) 0.247(0.047) 4(0.0) 0.202(0.047) 4(0.0)
Lasso 0.238(0.070) 4(0.1) 0.244(0.047) 4(0.1) 0.204(0.047) 4(0.1)
SCAD 0.238(0.070) 4(0.1) 0.245(0.047) 4(0.1) 0.201(0.047) 4(0.1)
MCP 0.238(0.070) 4(0.1) 0.246(0.047) 4(0.1) 0.202(0.047) 4(0.1)
Hybrid - 0.218(0.059) 7(1.1) 0.237(0.050) 7(1.1) 0.187(0.040) 7(1.1)
Lasso 0.216(0.060) 6(1.2) 0.239(0.049) 6(1.2) 0.191(0.041) 6(1.2)
SCAD 0.217(0.058) 5(1.1) 0.241(0.047) 5(1.1) 0.200(0.041) 5(1.1)
MCP 0.216(0.059) 5(1.1) 0.240(0.047) 5(1.1) 0.200(0.041) 5(1.1)
FR-PQU+QBIC - 0.278(0.066) 6(2.7) 0.253(0.050) 6(2.7) 0.220(0.039) 6(2.7)
Lasso 0.277(0.066) 6(2.6) 0.255(0.050) 6(2.6) 0.218(0.039) 6(2.6)
SCAD 0.276(0.067) 6(2.5) 0.254(0.048) 6(2.5) 0.217(0.040) 6(2.5)
MCP 0.275(0.065) 6(2.5) 0.257(0.050) 6(2.5) 0.217(0.040) 6(2.5)

7 = 0.5 and 7 = 0.7. These genes have been overlooked in the literature of using
the mean regression models to analyze the riboflavin dataset and may deserve more
attention for further study.

4 Assumptions and proofs

In this section, we prove Theorems 1-3 and Corollary 1. Before the proofs, we present
technical lemmas for the proofs of Theorems 1-3 and Corollary 1. The technical
lemmas are verified in the supplement.

Recall that |S| and |S U {j}| are less than or equal to K,, in this section and the
supplement, too.

4.1 Technical lemmas

In this subsection, we state technical lemmas for the proofs of Theorems 1-3 and
Corollary 1. The proofs of these lemmas are given in the supplement.

Lemma 1 relates Assumption LB in Section 2 to the improvement in Lg (35 ) when
MgS.

Lemma 1 Suppose that Assumptions LB, B(1)(2), and FY(1) hold. Then there are
positive constants Dy, D,, and Dy for (i) and (ii) below.
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Table 5 A comparison of genes selected by various methods.

Gene ALasso CQU+SCAD CQU+MCP gSC(1)+7T3 gSC(m)+T3 FR+T73 FR-PQU+QBIC
7=03

ARGJ v v

PHRLr v

YCGN v

YHZA v
YKOC v v

YTRP
YOAB
YXLC
YXLD Vv v v v
YXLE v

YXLJ
XHLA N N v
XHLB | +

<<

=05
IOLA
XHLB v
XTRA
YCGN
YDDR
YTGB vV

YTOQ vV

YVNB vV
YWFO v vV

YXLD | v v v v

YXLJ vV

7=0.7

DPPC v
IOLA
XKDM v
XTRA
YCGN
YCKE Vv vV
YDAO v

YKUH vV

YTGB
YXLD Vv

YXLE v vV

YXLIJ N v N

<<
<<
<<

(i) If M ¢ S, we have for some j € MNS¢,
|hs| > Dikpp.
(it) f M ¢ S, we have for some j € MNSC,
Elp(Y - X 85)} — Elp:(Y = X B5 — X;hs)} = Dalls* > Dypii .

In Lemma 2 below, we consider the uniform convergence rate of ES in (9). Note
that |S|'/? in (25) is the cost for the uniformity in S . The proof of this lemma is based
on the standard arguments in the literature on quantile regression. For example, see
the proofs of Theorem 1 in Fan et al. (2014), Proposition 1 in Honda et al. (2019), and
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Lemma C in Kong et al. (2019). However, none of them deals with the uniformity in
S for |S| < K, or gives the rate such as given in (25) for quantile regression models.

Lemma 2 Suppose that Assumptions B(1)(2), FY(1)(2), and X(1) hold. Then we have
for some positive constant Dy,

- . S|log px
1Bs ~ G511 < Dals|1 [ P12 25)

uniformly in S with probability tending to 1.

In Lemma 3 below, we evaluate the difference between Lg(35) and its estimator
uniformly in S such that M ¢ S. Lemma 4 deals with a similar problem. The rate in
Lemma 4 dominates that in Lemma 3.

Lemma 3 Suppose that Assumptions B(1)(2) and FY(1) hold. Then we have for some
positive constant Dy,

— S11 . ISP n
LKL Bo) ~ Ly (35)] < Dun(yf g Le o BEIOE Py 26)

uniformly in S (M ¢ S) with probability tending to 1.

As we mentioned earlier, the properties of /ﬁjs are not necessary to the proofs of
Theorems 1-3 and Corollary 1 and we deal with hj.s in Lemma 4.

Lemma 4 Suppose that Assumptions B(1)(2), FY(1), and X(1) hold. Then we have
for some positive constant Dy,

a * * * 10 n
ILo(X1Bs + X;h's) = Ls (35T 1)) < DualS| 4/ % 27)

uniformly in S (M ¢ S) and j € S€ with probability tending to 1.

4.2 Proofs of Theorems 1-3

We prove Theorems 1-3 by using Lemmas 1-4. We put the proof of Theorem 2 after
that of Theorem 3 because that of Theorem 2 is long and complicated. We verify
Theorem 2 by following the proof of Theorem 2 of Honda et al. (2019) and the proof
of Theorem 2 of Honda and Lin (2021). The former deals with the cases where K,
is bounded and the uniformity in S is trivial. The latter is about generalized varying
coefficient models, not quantile regression models.

Corollary 1 follows from the proofs of Theorems 2 and 3 by just noting two
inequalities and the uniformity w.r.t. S. We give the proof at the end of this subsection.

Proof of Theorem 1. Recall that M ¢ S in this theorem. Then by the definitions of
Bs and hjs, we have

La(X3 o 3,Bsuii) < La(X] Bs + X;hys) < Ly(X3 Bs + X;h's) (28)
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uniformly in j € S€and S.
By Lemma 4, we have with probability tending to 1,

L(X1Bs + X;h's) < Lsui (B3 His)T) + DualS|

log pn
ogp (29)
n

uniformly in j € S€and S.
By Lemma 1, we have for some j € M NS¢,

Lsu((B5", ie)") < Ls(B5) — DigKi . (30)

With probability tending to 1, we have for that j,

— — -~ \ log py
Lo Bsuip) < Lu(XE Bs + Xjhis) < Ls(85) = Duanty + DunlS |y =22
— log p,
< L,(X{Bs) = Dupilp + DunlS |y =2 31)
S|logp, IS]1
+DU1( /IS |log p LBl ogn).
n n
We used (28)-(30) and Lemma 3 here.
By combining (31) and the assumption in (18), we obtain
T 3 'y i T3 Dy
Ln(XSUU}ﬁSU{j}) < Ln(XS ﬁS + thjS) < Ln(XS 5S) - ) . (32)

Hence the proof is complete.

Proof of Theorem 3. Notice that if k < K,, and M ¢ S, we have by Lemma 3,

« Dppig T T ; DyKi g
Ls,(Bs,) — < Ly(Xg,Bs,) < Ln(X,Bs,) < Ls,(Bs,) + — (33)
and
T3 T3 Dyskip
L(X5,Bs,) — Ln(X5,Bs,) 2 kT (34)
By (33) and (34), we have
(k=2 =5+ < Ls,(B5,) - L5, (Bs,) < 4 (35)

if k < K, and M ¢ S;. If k = K, this contradicts the assumption in (23). Then
Mc S, for somel < K,,.
Hence the proof is complete.

Proof of Theorem 2.
The result for S such that M ¢ S follows from Theorem 1 straightforwardly.
We concentrate on the cases where M C S and we prove that our algorithms
stop once M C S. The proof consists of two steps.
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Hereafter we drop the subscript k since we have to consider all the S containing
M. Then 35 is exactly a subvector of 3* and we have for such §,

XIB;=X"3" and e=Y-XIp;. (36)

Step 1 : First we derive an explicit expression of L,(X] Bs) — Ly(X I35 in (50)
below and we prove the desired result for S such that M c S by exploiting the
expression.

To get the expression in (50), we closely examine

- ZG(X Bs) = L(X{ Bs) - Lu(X{B;) + = ZX (Bs - B;)ir - 16 < 0))
(37)
Ee{Ln(XgﬁS) - Ln(X§,3§)}

where G(-) is clearly defined, E.{-} is the conditional expectation of {ef,...,¢€,} on
{(X1,..., X5}, and [|Bs — B5ll < +/malS|log p,/n. We specify 17, going to co later in

this proof. Note that /17,15 |log p,,/n is large enough here although this can be smaller
than the rate in Lemma 2. Notice that

G(X5Bs) = G(XsBs) — EAG(X s Bs)}, (38)
where b; = XL (8s — 3;) and

G(X%Bs) = p(Yi = X5 Bs) - p(Yi = X5 B%) + bilt — I(& < 0)}
=—(& - b){l(e < b)) — I(; < 0)}.

We evaluate n~! G(X Bs) by repeated use of Bernstein’s inequality. Before
we apply the inequallty, note
max || X || < IS1"2 X, (39)
max [G(Xs Bs)| < 2lbil < 218 1Xn(n™'n, log pn)'%, (40)
and
D EG(X[Bs)) ]<c12|b| (41)

< ColS [Xp(n ", log pu)''* x n(n™'n,IS | log p,)
< C3IS PXyn~ 2 (log p,)* /03,

where C;, C,, and C3 are suitable positive constants. We used Assumption FY(2) in
evaluating E.[{ G(X Bs)}*] and Assumption X(1) in evaluating I 1bi.

By (40), (41), and Bernstein’s inequality (Lemma 2.2.9 of van der Vaart and Well-
ner (1996)), we have for any fixed 3 satisfying ||3s — 35|l < \/n.lS|log p,/n,

|S|103Pn (log py)'*n'/?
)_2exp{— 327 32y

ZG(X Bs)| = (42)
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where P.(-) is the conditional probability of {e(, ..., €,} on {X,..., X} and we spec-
ify £, going to oo later in the proof.

Recall that in Assumption X(1), we also assume that the sample version holds
uniformly with probability tending to 1. This means that (42) is true when the sample
version of Assumption X(1) holds and that we have (42) uniformly with probability
tending to 1.

To establish the uniformity in Bs and S, we exploit the small-block argument
and divide the region {35 € RS!|||8s — Bl < \/n.lS|log p,/n} into sufficient small
blocks. Then the number of such small blocks are less than nPs#5! for some large
fixed Dgp. If

(10 )1/2 1/2
> expl(Dsp + 1glog paexp | - b2

-0, 3)
s 32Xy !

we can establish a uniform evaluation of (37) in both S and 3s. A sufficient condition
of (43) is
Ku(log p)' 253X = o(n'’?). (44)

This is satisfied with n,, = ¢, = logn due to (20). Hereafter we take 1, = £, = logn.
Hence we have uniformly in both 3 and S,

1 n
Ly(X{Bs) - Lo(X§ B5) = —(Bs - 5§)T; Z Xis{t - 1(e; < 0)} (45)
i1

p(lSIZ’f:’pn).

We calculate the conditional expectation in (45) by employing Knight’s identity
(see (59) in the supplement) with u = Y; — XTBS andv = Xzs (Bs — B5) there. Then
by following the standard argument in the quantile regression literature and also using
Assumption FY(2)(3), we obtain uniformly in both 3y and S,

B L,(Xg Bs) — Lu(Xg B5)}

EdL.(X§ Bs) — L. X1 B} (46)

ZX (Bs - B < 0) - 7]

X1 (Bs—-B)
+E [ Zf (Y - X585 < 5)— 1Y, - X535 < 0)}ds]
_ w\T 3 * |S| 10g Pn
= E(ﬁs - B5) 25 (Bs — By) + Op(T),
where
me,s 51X is) Xis X
Define ag by

1 n
5= > Xistr - (e < 0))
i=1
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By applying Bernstein’s inequality componentwise, we have

|S|log pn) @7

lasI? = 0,
uniformly in S . We define B¢ by

Bs = B +§§1a5

and consider s satisfying

_ IS Tog p
1B + 85 — B3l < \/""#. (48)

Note that 5 = 0 satisfies (48) due to (47) and Assumption X(2).
We put 3¢ + d5 and (46) into (45) and then we obtain uniformly in S,

Lu(XT(Bs +85)) - Li(X 1By (49)
1 — 1 - |S| log Pn
= — Eagzslas + 55?25(% + OP(T)

By the optimality of Es, the convexity of L,(X ST Bs), and (49), we obtain uni-
formly in S,

1 n
IS|log p ) (50)

Lin

Step 2 : By exploiting the expression in (50), we can proceed as in Step 3 of the proof
of Theorem 2 in Honda and Lin (2021) although the paper deals with generalized
varying coefficient models. We borrow the notation from the paper.

Hereafter we write S, = S U{j} for § and jsuchthat M C S, |S| < K,,and j ¢ S.
Then we evaluate Ln(ES+) - L,,(ES) by using (50). Here note that L, (X ST+ ﬁ;) =
L.(XI3;)since MCS.

We write
. =T
s, =(fs ZJS) and ag, =(as). (51)
ojs Ojj 4aj

— i |
L(XIBs) - L{(XIB;) = -Eagzs las + 0,(

Note that &/;; € R and 7 € RS
The expression in (50) shows we have only to closely examine

T -1 Ty-1 _ = 31 2=~jj _ A= -1 =JjJ 2—=jj
ag X as, —ag2s as = (0525 as) oy 20525 asa;oy +a;0g (52)

where Eéj = (6:]']' - Ejsfgla\};)_].

If we show that the RHS of (52) has the stochastic order of |S IOP(n‘l log pn)
uniformly in S and j, Theorem 2 for S; containing M follows from this fact and
(50). This is because the RHS of (11) is stochastically larger than (52).

Assumption X(2) implies that

77 =0,(1) and |[Ekll = 0,(1) (53)
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uniformly in jand S.

Besides, we recall that a? = 0,(n"" log p,) uniformly in j as in (47). This and (53)
imply that the third term of the RHS of (52) has the stochastic order of OP(n’l log p,)
uniformly in S and j.

Next we deal with the first and second terms of the RHS of (52). Then we should
evaluate o jsf S lag, which is rewritten as

= I~ =
Fis2s as = ;ZU]'SZSIX,-S{T—I(E,' < 0)). (54)
i=1

Since by Assumption X(1)(2) we have for some positive constants Cy4, Cs, and
Cs,

— -1 —T 1/2
7525 Xis| < CaXpllasllIS1"

and
1 n
-~ -1 2 =T |12
D55 Z5 Xis < Csllgs P < C
i=1

uniformly in i, j, and S with probability tending to 1, we employ the standard argu-
ment based on Bernstein’s inequality conditionally on & jSES’IX ;s and obtain

= o = .
75525 as =~ > T2 Xislr ~ (e < 0)) = Op((n” IS log pu)') (59)
i=1

uniformly in m, S, and j. N

Note that [S| in O,({(nL)™"|S|log p,}'/*) above is necessary because 7 ;s 2¢" X;s
depends on i, j, and S and we have to take into account all S and j satisfying M C S,
IS| < Ky, and j ¢ S. The same kind of argument is also given in the proof of Lemma
2 in the supplement.

It follows from (55) that the first and second terms of the RHS of (52) has the
stochastic order of |S |0p(n‘l log p,,) uniformly in S and j.

Hence the proof of Theorem 2 is complete.

Proof of Corollary 1. If S = S4_; is common to FR, SC, and gSC(my), we have at
the k-th step :

min min L,(X 7 ,.Bsu;) < min min L,(X! , .Bsuy) and (56)
7eS< Bsuyy n SU{j}ﬁ uij JeMs Bsoy n sw,]ﬁ Ui}

min min L,l(Xgu{j}ﬁSU{j}) < min Ln(ng-U{jk}/BSU[jk}) < Ln(XSTES + Xjk’ﬁjks), (57)

JEMs Bsuy) S ULig)
where ji in (57) is from SC. Recall the definition of My in (14) and the uniformity
w.r.t. § in the proofs of the lemmas and theorems.
In the proof of Theorem 2, we have proved that if S ¢ M, we have uniformly in
JjeSse,
IS | 10g Pn )

0< Ln(XSTBS) - Ln(XSTU{j]ESU[j]) = Op( "
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This and (56) imply the latter half of Theorem 2.
In the proof of Theorem 1, we have proved that if S ¢ M,

— —~ — Dy pK?
Ly(Xg Bs) - min Ly(X{Bs + Xjhjs) = %
Jjese
for SC. This and (57) imply the former half of Theorem 2 and Theorem 3.

Hence the proof of Corollary 1 is complete.

5 Conclusions

In this paper, we proposed three forward variable selection procedures with a stop-
ping rule for ultra-high dimensional sparse quantile regression models. We estab-
lished their desirable properties such as screening consistency by taking care of nec-
essary uniformity w.r.t. covariate index sets in Section 2. Such uniformity has been
often overlooked in the literature on forward variable selection procedures for high-
dimensional models. As we noted before, our procedures are greedy ones and statis-
tical inference or some other procedures should follow our procedures.

We also carried out some numerical studies in Section 3. In Section 3.1, we com-
pared our procedures with the Lasso, adaptive Lasso, SCAD, and MCP and some
other procedures. Our procedures worked very well compared to all the other proce-
dures as variable selection and screening procedures in our three examples. In Section
3.2, we applied our procedures and the other procedures to the riboflavin data set in
Biihlmann et al. (2014).

In conclusion, we recommend gSC(m,)+T; and FR+7; with i = 2,3. As our
numerical studies also show, there seems to be no perfect variable selection procedure
in high-dimensional setups. Researchers should try several procedures for ultra-high
dimensional sparse quantile regression model including ours if necessary.
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6 Proofs of technical lemmas

Recall that S| and |S U {j}| are less than or equal to K.
Proof of Lemma 1. First note that Assumption FY (1) implies that
C1 < frGI(Xg Bs, X)) < C2 on (X By — DiXy = 61, X Bs + DXy +61) (58)

uniformly in S (M ¢ §) and j € S°. This is sufficient in this lemma.
(i) We have for some positive constant C,

EX 0 (Y=X 5 B5) = Xjthe(Y = X5 B5 — XM
= [EXUIY < X{ 85 + Xhig) - 1Y < X{ BN
< ClE(XG )| = Cilks|.
We used (58) here. Hence the desired result follows from Assumption LB.
(ii) We employ Knight’s identify :
pr(u=v) = pr(u) = = (u) + fov{l(u <s)—I(u < 0)}ds. (59)

Withu =Y - XSTﬁé - th’;s and v = —th’;s in (59), we have for some positive
constant Cy, ' '
Elo-(Y — X{85) - p:(Y = X{ B5 — Xjh))

= B{X;hisue(Y — X{ By — X;h'5))

_X/hjs
+ E[fo (1Y = X¢ B — Xjhig < ) = 1(Y = X B5 — Xkl < O)}ds]
> Calh's PE(X2) = Callg .
The first term in the second line is 0 and we used (58) to evaluate the second term in

the second line. Hence the desired result follows from (i) and Assumption LB.

Remark 3 We can relax Assumption B on the boundedness of X; a little by strength-
ening some other assumptions. For example, in (i) of Lemma 1,

FOIXEBs, X)T) < Cy

is sufficient and we do not have to use the boundedness of X;. In (ii) of Lemma 1, we
could do with (58) in the proof of Lemma 1 and

ELGHIX)| < Xy}l > C,

uniformly in j. We used the boundedness of X; in the proofs of Lemma 2 and Theo-
rem 2. However, we can let Xj; go to oo slowly enough there. Therefore we could use
an assumption like

IXj<Xyu1  and  E[X;HIX)| < Xy}l > C3

uniformly in j, where Xy, is fixed and we allow X, to go to co slowly enough. If we
do so, Xy will appear in Lemmas 2-4 and some other assumptions. However, there
will be no essential change in our main results.
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Proof of Lemma 2. The proof consists of three steps and Lemma 5 at the end of this
section.
First define Bg(5) € RIS and 45 (6) for § € R by

Bs(0) = {Bs € RS'[||Bs - B;l < 6}

and

4s5(0) = 5 Sl;p(é) HLa(X Bs) = Lu(Xg B5)} = {Ls(Bs) = Ls (B5)),

where ¢ is to be specified later in this proof.
(1) We prove that we have for some positive constant Dy,

Ls(Bs) - Ls(B3) = D)lIBs - BsII* (60)

if Xy K 8s — Bsll < yu — 0, where {y,} is a suitable sequence tending to 0 slowly
enough.
Applying Knight's identity in (59) with u = ¥ — X! 8¢ and v = X! (8s — B%),
we have for some positive constants C; and D),
Ls(Bs) — Ls(By)
= B{X{ (B5 — Bs)yr(Y — X5 B5))

XI(Bs-B5)
+E[f (1Y - X{ B < ) - 1(Y - X{ B} < 0)lds]
0

> C1(Bs - B5) E{Xs X{ WBs — B%)
> D)liBs — Bi I

We used Assumptions FY(1)(2) and X(1) here. Note that Assumption FY(1) in a
neighborhood of X ST B; is sufficient here.

(2) We prove that
P(I1Bs - Bill > 6) < PUs(8) = D1y6*/4), (61)
where
165|172
o= W(l +77S) and ns =D(1)(1 +XM \/3|S|10gpn )
)

Define 3,5 by
Bas = afs + (1 —a)Bs,
where a = 6/(6 + 1|85 — B;I). Then we have

1Bas — Bsll = ellBs — Bsll < 6. (62)
By the convexity of L, (X ST Bs) w.r.t. Bs, we have

Ly(X{ Bas) < aLy(X{ Bs) + (1 — )Ly(X{ B5) < Lu(X{ B3). (63)



32 Toshio Honda, Chien-Tong Lin

We will exploit (63) to give an upper bound of Ls(B,s) — Ls(35). Note that it is
written as

Ls(Bas) — Ls (B%) = UL(X§ B%) — Lu(X Bas)} = {Ls (B%) — Ls (Bas))]
+{L(X{ Bas) — Lu( X1 B9))
< 45(5) (64)

We used (62) and (63) here.
Now notice that

1Bus - Bill < 2 S = 11Bs - Bsll < 6.

Hence we have

— 0
1Bs — B5ll > 6 = |Bas — Bsll > > (65)
(65), (60) with Bg = B,s, (62), and (64) imply (61).
(3) We verity
Z P(4s(8) = D1)6°/4) < Z n, (66)
S g=1

The RHS of (66) goes to 0 as n — 0. We should obtain a suitable upper bound of
P(45(8) = D1)6%/4).

By Massart’s concentration theorem (see Theorem 14.2 of Biihlmann and van de
Geer (2011)) and Lemma 5 at the end of this section, we have with R? = 4X? N 162,

P[5 (6) = E{4s(8)} + R \/% < exp(—t) (67)

and

{AS@“R\/ST 4o 4 2 (B2 2 v

2

('S|) (1+XM\/_)<D(1)6Z. (68)

In (68), we took r = 3|S|log p, and used the definition of ¢ in (61).
Finally we have by (67) and (68),

D Pls(8) 2 D1yd* 4} < ) pitexp(=3glog p,) < ) n
S g=1 g=1

Hence we have established (66).
The desired result follows from (61) and (66) and the proof of Lemma 2 is com-
plete.

Proof of Lemma 3. We have

L(X1Bs) - Ls(B}) = Lu(XE Bs) = Lu(XE B} + (Lu(XIB5) — Ls (B0))
= A+ B.
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First we deal with A. Then

A = [{L(X ] Bs) - Lu(XEB5)) = {Ls (Bs) — Ls (BN + {Ls (Bs) — Ls (85))
=A + Aj.

As in the proof of Lemma 2 , we have
|A1] < 45(5)

with the same ¢ as in Lemma 2 if IIES — B%ll < 4, which holds uniformly in § with
probability tending to 1. Thus as we have evaluated 4g(9) in the proof of Lemma 2,
we have for some positive constant Cy,

A1 < €167 (69)

uniformly in S with probability tending to 1.
As in the proof of Lemma 2, we have for some positive constant C»,

A < 11Bs — BiIP? < €82 (70)

uniformly in S with probability tending to 1.
As for B, repeated use of Bernstein’s inequality yields

S11
Bl < Cy | D18 L 1

uniformly in S with probability tending to 1 for some positive constant Cs.
The desired result follows from (69)-(71).

Proof of Lemma 4. We have
Ly(X{ Bs+X;hs) = Lo (B5T )T
= Ln(XSTﬁS +Xh') - L (X ¢ B + X h*S)}
+{Lu(X{ B + X;h) — Ls (B3 . Hig)
=A+B.
First we deal with A, which is written as
= [{L (XSTﬁs + X;hg) = Lo(X{ B5 + X;hs))
J(BE KT = Ly (B3 i )N

((/Bsahjs)) Ls (85", His)D)
=A +A2

As in the proof of Lemmas 2 and 3, we have

IA1] < Asu(6) < €16 (72)
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uniformly in § and j € §¢ with probability tending to 1. When we verify (72), we
should take (,8§T, hj.s )T as the center of By u(;3(6) in the proof of Lemma 2 and we

compare it with (B; h T
Next we evaluate A,. We apply Knight’s identity withu = ¥ - X ST Bs—-X jh’s and
V= XSTEST - X35 and obtain

Ay = E{XST(:@;‘ - Bs W (Y - X;,@; - thjS)H,@s:ES

X7 (Bs-B5) - .
+E| f (Y = X[ B5 - X;h's < )= I(Y = X1 B5 — X'y < 0)}ds] -
0 =35

= A21 + A22.

By Assumption X(1) and the Cauchy-Schwarz inequality, we have

lAz1| < ColIBs — B (73)

uniformly in S and j € S for some positive constant C,.
By Assumptions FY(1) and X(1), we have

Azl < C311Bs — Bil? (74)

uniformly in S and j € S for some positive constant C3.
As for B, repeated use of Bernstein’s inequality yields

S11 "
Bl < Cy | DLEL: (75)

uniformly in S and j € S with probability tending to 1 for some positive constant
Cs.
Hence the desired result follows from Lemma 2 and (72)-(75).

Lemma 5 is employed in the proof of Lemma 2 and the same result is proved
in the proof of lemma C of Kong et al. (2019). The proof is based on the standard
symmetrization and contraction argument. See Sections 14.7-8 of Biihlmann and van
de Geer (2011). Thus we omit the proof.

Lemma 5 Under the same assumptions as in Lemma 2, we have

|S|)1/2.

n

E{45(6)} < 45(
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7 Additional results for simulations and data analysis

This section contains simulation results under (n, p) = (400, 4000) for Examples 1-3
in Section 3.1. The simulation results are presented in Tables 6—8 and a correlation of
selected genes is demonstrated in Table 10. From Tables 6-8, it can be seen that all
results deteriorates due to the increasing of p, but the pattern is almost same as that
we concluded in Section 3.1.
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Table 6 Simulation results for Example 1 with (n, p) = (400, 4000).

X, X7 X135 Xi6 X1 Sure TP FP time
=03, M=1{2,7,13,16,21}

CQU 1 100 99 100 69 0 3.69 6331 11.87
Lasso 24 100 99 100 100 24 423 4344 55.82
ALasso 11 100 99 100 100 11 4.10 028 56.26
SCAD 4 100 99 100 99 4 402 0.05 62.09
MCP 12 100 99 100 99 12 4.10 0.11 79.69
gSC()+T, 0 100 98 100 94 0 392 0.04 1458
gSC()+T> 32 100 100 100 100 32 432 0.64 18.14
gSC(1)+T3 41 100 100 100 100 41 441 155 21.68
gSC(1) 46 100 100 100 100 100 4.00 26.00 116.47
gSC(25)+T 1 100 99 100 93 1 393 0.03 1450

gSC(25)+T> 41 100 100 100 100 41 441 055 18.14
gSC(25)+T3 51 100 100 100 100 51 4.51 145 2175
gSC(25) 59 100 100 100 100 100 4.00 26.00 118.44
gSC(my)+T 1 100 99 100 93 1 393 0.03 14.62
gSC(my)+T> 41 100 100 100 100 41 4.41 0.55 1831
gSC(m,)+T3 51 100 100 100 100 51 451 145 2191

gSC(my) 59 100 100 100 100 100 4.00 26.00 123.89
FR+T} 1 100 99 100 93 1 393 0.03 1644
FR+T» 41 100 100 100 100 41 441 055 21.27
FR+T3 51 100 100 100 100 51 451 1.45 26.29
FR 58 100 100 100 100 100 4.00 26.00 271.30
FR-PQU+QBIC 55 100 100 100 100 55 4.55 1.09 355.28
FR-PQU 69 100 100 100 100 100 4.00 26.00 355.28

7=05M=1{7,13,16,21}

CQU 1 100 100 100 71 71 3.71 6329 11.87
Lasso 3 100 99 100 100 99 3.99 33.42 30.00
ALasso 0 100 99 100 100 99 3.99 0.05 30.44
SCAD 0 100 99 100 100 99 3.99 0.06 34.07
MCP 0 100 99 100 100 99 3.99 0.03 41.03
gSC()+T, 0 100 100 100 97 97 397 0.19 1534
gSC()+T> 0 100 100 100 100 100 4.00 1.16 18.86
gSC(1)+T3 1 100 100 100 100 100 4.00 2.16 2244
gSC(1) 1 100 100 100 100 100 3.00 27.00 119.25
gSC(25)+T 0 100 100 100 97 97 397 0.19 1523
gSC(25)+T> 0 100 100 100 100 100 4.00 1.16 18.95
gSC(25)+T3 0 100 100 100 100 100 4.00 2.16 22.58
gSC(25) 3 100 100 100 100 100 3.00 27.00 121.22
gSC(my)+T 0 100 100 100 97 97 397 0.19 1542
gSCmy)+T> 0 100 100 100 100 100 4.00 1.16 19.04
gSC(m,)+T3 0 100 100 100 100 100 4.00 2.16 22.81
gSC(my,) 1 100 100 100 100 100 3.00 27.00 125.50
FR+T 0 100 100 100 97 97 397 0.19 1798
FR+T» 0 100 100 100 100 100 4.00 1.16 23.01
FR+T3 1 100 100 100 100 100 4.00 2.16 28.45
FR 2 100 100 100 100 100 3.00 27.00 286.11
FR-PQU+QBIC 1 100 100 100 100 100 4.00 0.26 359.46
FR-PQU 3 100 100 100 100 100 3.00 27.00 359.46
=07, M={2,7,13,16,21}
CQU 7 100 100 100 65 65 3.65 6335 11.85
Lasso 27 100 99 100 100 99 3.99 4485 68.73
ALasso 16 100 99 100 100 99 3.99 0.66 69.18
SCAD 11 100 99 100 99 98 398 035 74.00
MCP 16 100 99 100 99 98 398 036 84.29
gSC()+T, 1 100 100 100 91 91 391 0.03 14.57
gSC()+T> 30 100 100 100 100 100 4.00 0.94 18.09
gSC(1)+T3 39 100 100 100 100 100 4.00 194 21.61
gSC(1) 42 100 100 100 100 100 4.00 26.00 112.51
gSC(25)+T 2 100 100 100 91 91 391 0.03 14.55

gSC(25)+T> 37 100 100 100 100 100 4.00 094 18.13
gSC(25)+T3 44 100 100 100 100 100 4.00 1.94 21.76
gSC(25) 53 100 100 100 100 100 4.00 26.00 113.98
gSC(my,)+T 2 100 100 100 91 91 391 0.03 14.55
gSC(my)+T> 38 100 100 100 100 100 4.00 0.94 18.28
2SC(my,)+T3 44 100 100 100 100 100 4.00 1.94 2198

gSC(my,) 54 100 100 100 100 100 4.00 26.00 118.66
FR+T 2 100 100 100 91 91 391 0.03 17.02
FR+T> 38 100 100 100 100 100 4.00 094 21.98
FR+T3 44 100 100 100 100 100 4.00 194 27.16
FR 53 100 100 100 100 100 4.00 26.00 268.49

FR-PQU+QBIC 50 100 100 100 100 100 4.00 1.61 352.10
FR-PQU 61 100 100 100 100 100 4.00 26.00 352.10




Forward variable selection

Table 7 Simulation results for Example 2 with (n, p) = (400, 4000).

X X3 X4 X5 Xe¢ X1 Sure TP FP time

=03, M=1{2,3,4,5,6,21}

CQU 64 64 64 59 67 O 0 3.18 63.82 1230
Lasso 91 92 89 91 87 3 3 453 3297 7541
ALasso 69 69 73 64 65 O 0 3.40 0.09 76.90
SCAD 50 41 44 47 47 O 0 229 0.56 131.50
MCP 46 50 53 44 50 1 1 244 0.61 193.96
gSC()+T, 52 45 49 49 53 0 0 248 0.84 1291
gSC(1)+T> 62 61 61 60 65 2 0 311 121 16.72
gSC(1)+T3 70 71 69 69 73 9 5 361 171 2061
gSC(1) 85 84 87 82 86 38 27 4.62 2538 116.20
gSC(25)+T 67 59 57 56 66 O 0 3.05 030 13.01
gSC(25)+T> 80 81 79 76 8l 1 0 398 037 1693
gSC(25)+T3 89 90 8 88 8 23 14 464 0.71 20.89
gSC(25) 9% 96 94 96 96 61 55 539 24.61 117.14
gSC(my)+T 67 59 57 56 66 O 0 3.05 030 1331
gSC(my)+T> 80 81 78 77 81 1 0 398 037 1728
gSC(m,)+T3 89 90 84 88 8 23 14 463 0.72 21.19
gSC(my) 97 96 94 96 96 61 56 540 24.60 119.95
FR+T} 67 59 57 56 66 O 0 3.05 030 15.10
FR+T» 80 81 78 77 81 1 0 398 037 20.17
FR+T3 8 90 84 88 8 23 14 463 072 2551
FR 97 96 94 96 96 62 56 541 24.59 279.64
FR-PQU+QBIC 38 35 42 42 34 0 0 191 1.11 45471
FR-PQU 90 88 84 81 80 45 31 4.68 2532 454.71

T=05M=1{2,3,4,5,6}

CQuU 69 67 66 66 70 13 338 63.62 12.20
Lasso 94 96 94 97 90 89 4.71 3491 5258
ALasso 88 89 86 87 86 80 436 0.02 53.28
SCAD 82 83 78 80 77 64 4.00 0.05 62.09
MCP 82 81 76 83 79 67 4.01 0.09 97.90
gSC()+T, 8 77 76 81 5 0 392 0.07 18.60
gSC()+T> 99 99 99 97 98 93 492 0.07 23.14
eSC(1)+T3 99 100 100 100 100 99 499 1.00 27.94
gSC(1) 100 100 100 100 100 100 5.00 25.00 118.95
gSC(25)+T 89 74 79 711 77 1 396 0.05 18.87

gSC(25)+T> 100 99 98 98 100
gSC(25)+T3 100 100 99 100 100
gSC(25) 100 100 100 100 100
gSC(my)+T, 8 74 719 71 77
eSC(my)+T> 100 99 98 98 100
gSC(m,)+T3 100 100 99 100 100

96 495 0.06 23.58
99 499 1.02 28.18
100 5.00 25.00 120.27
1 396 0.05 19.03
96 495 0.06 23.84
99 499 1.02 28.54

WON OO~ OO —~LOOoOW—LOOoOO~,O~—O

eSC(my) 100 100 100 100 100 100 5.00 25.00 123.40
FR+T} 8 74 79 71 77 1 39 0.05 21.71
FR+T, 100 99 98 98 100 96 495 0.06 28.00
FR+T3 100 100 99 100 100 99 499 1.02 3476
FR 100 100 100 100 100 100 5.00 25.00 286.61
FR-PQU+QBIC 68 70 66 70 66 51 3.40 0.80 457.61
FR-PQU 99 100 98 99 98 97 494 25.06 457.61
=07, M=1{2,3,4,5,6,21}
CQuU 48 53 51 49 52 13 0 2.66 6434 11.03
Lasso 80 84 88 87 84 53 48 485 5135 70.29
ALasso 73 67 70 73 74 12 8 3.69 031 7240
SCAD 52 48 55 51 49 7 3 262 091 13484
MCP 49 45 55 44 42 4 2 239 1.12 197.56
eSC()+T, 59 54 59 59 57 4 0 292 091 1645
gSC(1)+T> 72 66 78 78 79 8 0 3.81 1.02 20.67
gSC(1)+T3 8 78 87 8 84 23 18 442 141 2494
gSC(1) 98 92 95 94 93 45 40 5.17 24.83 113.34
gSC(25)+T 72 63 63 66 63 8 0 335 055 1685
gSC(25)+T> 8 81 8 8 81 10 0 427 063 21.19
gSC(25)+T3 91 86 92 91 88 47 39 495 095 2556
gSC(25) 98 95 98 96 97 60 55 544 2456 114.57
gSC(m,)+T 72 63 63 66 63 8 0 335 055 17.11

eSC(my)+T> 8 81 8 8 81 10 0 427 0.63 2149
gSC(m,)+T3 91 86 92 91 88 47 39 495 095 2578

eSC(my,) 98 94 98 96 97 61 55 544 2456 117.32
FR+T 72 63 63 66 63 8 0 335 0.55 19.70
FR+T» 8 81 8 8 81 10 0 427 0.63 2545
FR+T3 91 8 92 91 88 47 39 495 095 31.51
FR 98 95 97 96 97 62 56 545 24.55 271.31

FR-PQU+QBIC 36 40 40 35 39 0 0 1.90 1.62 400.49
FR-PQU 90 79 81 86 82 37 26 4.55 25.45 400.49
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Table 8 Simulation results for Example 3 with (n, p) = (400, 4000).

X, X3 X4 Sure TP FP time
=03, M=1{2,3,4}

CQuU 100 2 O 0 1.02 6598 12.25
Lasso 100 99 1 1 200 7991 68.58
ALasso 100 99 O 0 1.99 1283 6941
SCAD 100 63 25 25 1.88  6.99 207.01
MCP 100 100 O 0 2.00 11.11 257.40
gSC()+T, 100 35 O 0 135 1.64 11.45
gSC(1)+T> 100 99 O 0 1.99 200 1522
gSC(1)+T3 100 100 O 0 2.00 299 19.06
gSC(1) 100 100 O 0 2.00 28.00 116.27
gSC(25)+T, 100 46 15 15 1.61 1.54 12.13

gSC(25)+T> 100 100 15 15 215 2.00 1594
gSC(25)+T3 100 100 15 15 2.15 3.00 19.88
gSC(25) 100 100 15 15 2.15 27.85 117.48
gSC(m,)+T, 100 57 27 27 1.84 143 12.82
gSC(my)+T> 100 100 30 30 230 2.03 16.90
gSC(m,)+T3 100 100 31 31 231 3.05 20.99

eSC(my,) 100 100 31 31 231 27.69 120.75
FR+T) 100 61 31 31 1.92 1.39  14.52
FR+T> 100 100 61 61 2.61 230 2277
FR+T3 100 100 100 100 3.00  3.54 31.72
FR 100 100 100 100 3.00 27.00 278.48
FR-PQU+QBIC 100 100 O 0 2.00 13.39 508.39
FR-PQU 100 100 1 1 2.01 27.99 508.39
T=05M=(2,3,4)
CQuU 100 0 O 0 1.00 66.00 12.15
Lasso 100 100 15 15 2.15 10146 68.24
ALasso 100 100 10 10 2.10 1395 69.43
SCAD 100 76 63 63 239 291 15946
MCP 100 99 9 9 2.08 9.69 214.04
gSC()+T, 100 41 2 2 143 1.58 13.84
gSC()+T> 100 100 2 2 202 1.99 18.42
eSC(1)+T3 100 100 2 2 202 299 23.05
gSC(1) 100 100 2 2 202 2798 119.21
gSC(25)+T 100 54 23 23 1.77 145 14.89

gSC(25)+T> 100 100 24 24 224 200 19.60
gSC(25)+T3 100 100 24 24 224  3.00 2422
gSC(25) 100 100 24 24 224 27.76 120.62
gSC(m,)+T, 100 60 31 31 191 1.39  15.50
eSC(my)+T> 100 100 40 40 240 2.08 21.00
gSC(my)+T3 100 100 41 41 241 3.10 25.75

eSC(my) 100 100 41 41 241 27.59 123.64
FR+T 100 61 32 32 193 1.38 17.14
FR+T> 100 100 61 61 2.61 228 26.73
FR+T3 100 100 100 100 3.00  4.00 40.75
FR 100 100 100 100 3.00 27.00 284.64
FR-PQU+QBIC 100 100 1 1 201 13.23 497.19
FR-PQU 100 100 3 3 203 27.97 497.19
T=07,M=(2,3,4)
CcQuU 100 3 O 0 1.03 6597 10.85
Lasso 100 99 5 5 204 8544 7253
ALasso 100 99 3 3 202 1359 7330
SCAD 98 68 23 23 1.89 7.18 191.10
MCP 100 100 O 0 2.00 10.58 226.89
gSC()+T, 100 27 O 0 1.27 1.68 12.70
gSC(1)+T> 100 99 O 0 1.99 1.96 17.00
gSC(1)+T3 100 100 O 0 200 295 21.23
gSC(1) 100 100 O 0 2.00 28.00 115.62
gSC(25)+T 100 36 9 9 145 1.60 13.20
gSC(25)+T> 100 100 9 9 2.09 1.96 17.48
gSC(25)+T3 100 100 9 9 209 296 21.64
gSC(25) 100 100 9 9 2.09 2791 116.79

gSC(m,)+T 100 47 22 22 1.69 1.49  13.77
gSC(my)+T> 100 100 23 23 2.23 1.97 18.13
gSC(m,)+T3 100 100 23 23 223 297 2251

eSC(my) 100 100 23 23 223 27.77 119.60
FR+T 100 53 28 28 1.81 1.43  15.76
FR+T> 100 100 53 53 253 221 2433
FR+T3 100 100 100 100 3.00  3.55 36.02
FR 100 100 100 100 3.00 27.00 274.81

FR-PQU+QBIC 100 100 1 1 2.01 13.66 433.54
FR-PQU 100 100 1 1 2.01 27.99 43354
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Table 9 Prediction analysis for the gene expression dataset using the forward-type algorithms without
stopping rules, followed (or not followed) by a regularized method. Values in parentheses are estimated
standard deviation.

Screen  Regularization =03 7=05 =07
PE Size PE Size PE Size
gSC(1) - 0.277(0.075) 30(0.0) 0.307(0.061) 30(0.0) 0.254(0.056) 30(0.0)
Lasso 0.257(0.054)  4(3.1) 0.246(0.054) 4(3.1) 0.211(0.044) 4(3.0)
SCAD 0.265(0.062)  4(3.1) 0.258(0.054) 4(3.1) 0.221(0.043) 4(3.1)
MCP 0.257(0.055)  4(3.1) 0.254(0.053) 4(3.1) 0.221(0.043) 4(3.1)
gSC(my,) - 0.285(0.064) 30(0.0) 0.306(0.061) 30(0.0) 0.295(0.068) 30( 0.0)
Lasso 0.243(0.060)  5(9.0) 0.255(0.071) 5(9.0) 0.194(0.056) 5(9.0)
SCAD 0.247(0.060)  5(6.4) 0.241(0.069) 5(6.4) 0.199(0.050) 5(6.4)
MCP 0.247(0.064) 4(6.4) 0.243(0.068) 4(6.4) 0.202(0.048) 4(6.4)
FR - 0.307(0.085) 30(0.0) 0.330(0.070) 30( 0.0) 0.330(0.094) 30(0.0)
Lasso 0.243(0.067) 6(10.6) 0.268(0.061) 6(10.6) 0.206(0.064) 6(10.6)
SCAD 0.248(0.063)  5(9.0) 0.255(0.057) 5(9.0) 0.213(0.061) 5(9.0)
MCP 0.243(0.071)  5(8.3) 0.252(0.059) 5(8.4) 0.196(0.057) 5(8.4)
FR-PQU - 0.301(0.063) 30(0.0) 0.298(0.074) 30( 0.0) 0.298(0.062) 30( 0.0)
LASSO 0.283(0.065)  2(2.7) 0.306(0.058) 2(2.7) 0.258(0.057) 2(2.7)
SCAD 0.263(0.070)  3(3.2) 0.290(0.056) 3(3.2) 0.249(0.062) 3(3.2)
MCP 0.258(0.070)  4(2.8) 0.283(0.057) 4(2.8) 0.234(0.062) 4(2.8)

Table 10 Pairwise correlation between genes in {YXLC, YXLD, YXLE, YXLJ}, genes in {XHLA, XHLB,
XTRA} and genes in {ARGF, ARGJ}.

YXLC YXLD YXLE YXL] XHLA XHLB XTRA ARGF ARGJ
YXLC 1.00 098 097 0.87
YXLD 0.98 1.00 098 0.90
YXLE 097 098 1.00  0.87
YXL] 087 090 0.87 1.00

XHLA 1.00 098 0.76
XHLB 0.98 1.00  0.71
XTRA 076  0.71 1.00
ARGF 1.00  0.92

ARGJ 092  1.00




