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Abstract

Stationary and nonstationary common factor models are a driving force of recent empirical studies

in various fields of economics. For example, in macroeconomics, the model represents the traditional

idea of summarizing a large set of macroeconomic time-series by a small number of factors related

to fundamental concepts such as real and nominal factors. In asset pricing, there is a long history

of modeling common factors in investigating cross-sections of asset returns. In this dissertation, I

make further contributions to theoretical developments in stationary and nonstationary common

factor models under the perspective of developing useful applications in the fields of empirical

macroeconomics and asset pricing.

Chapter 1 proposes tests to investigate whether the skewed property of time-series data is

attributed to the economy-wide common components and/or the idiosyncratic components. To

this end, I apply the formal econometric test based on the coefficient of skewness proposed by Bai

and Ng (2005) to the large dimensional common factor model. I propose the Wald-type and max-

type test statistics for the space spanned by the common components and a test for idiosyncratic

components. The results show that these tests have the standard asymptotic distributions. Monte

Carlo simulations confirm that all tests have good size and power in finite samples. Furthermore,

I apply the tests to a common factor model using 127 U.S. macroeconomic time-series data from

1960 to 2019. Strong evidence of skewness is found in the common components as well as some

idiosyncratic components related to housing, labor market, and uncertainty. Finally, results suggest

empirical relevance of incorporating the skewed dynamics in business cycle modeling in a general

equilibrium context or in specific factor markets.

Chapter 2 assesses the size and power properties of the right-tailed version of the Panel Analysis

of Nonstationarity in Idiosyncratic and Common Components (PANIC) of Bai and Ng (2004) tests
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when the common and/or the idiosyncratic components are moderately explosive. I find that, when

the idiosyncratic component is moderately explosive, the tests for the common components may

have considerable size-distortions, and those for the idiosyncratic component may suffer from the

nonmonotonic power problem. I provide an analytic explanation under the moderately local to unity

framework developed by Phillips and Magdalinos (2007). I then propose a new cross-sectional (CS)

approach to disentangle the common and idiosyncratic components in a relatively short explosive

window. Monte Carlo simulations show that the CS approach is robust to the nonmonotonic power

problem.

Chapter 3 applies the date-stamping methodology for the origination of explosive behaviors

proposed in the seminal work of Phillips et al. (2011) to the large dimensional factor model. To this

end, I compare two methods of identifying the common and idiosyncratic components: PANIC and

CS investigated in the previous chapter. Monte Carlo simulations show that, when the explosive

behavior lies only in the common component, the origination date is precisely estimated by either

method. However, when the explosive behaviors exist in the idiosyncratic components, the PANIC

method loses its power of detection and provides inaccurate origination dates. These problems are

resolved through the CS method.
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Chapter 1

Testing Skewed Dynamics in the

Common Factor Model

1.1 Introduction

Asymmetric properties in the U.S. macroeconomic time-series have been considered as an important

element in understanding business cycles since Mitchell (1927) and Burns and Mitchell (1946).

Previously, Neftçi (1984) showed statistical evidence of the asymmetric behavior exhibited by the

unemployment rate using a Markov-switching model. Hamilton (1989) reached a similar conclusion

for the GNP using Markov-switching model. Morley and Piger (2012) used a nonlinear regime-

switching model and provided an empirical support for highly asymmetric business cycles with large

negative recessions using the cycle component of the GDP. Compared with such ample evidence of

asymmetric business cycles, empirical studies that dealt with skewness have been relatively scarce,

even though these two terms are typically used interchangeably. De Long and Summers (1984) is one

of the few studies that used a simple coefficient of skewness for the GNP, industrial production, and

unemployment rate over the OECD countries. They found no evidence of skewness in all variables,

except for the U.S. unemployment rate. They concluded that asymmetry is not a phenomenon

of first order importance in understanding business cycles. Later, Bai and Ng (2005) developed a

formal econometric test based on the coefficient of skewness to assess whether a univariate time-

series exhibits skewed dynamics by accounting for serial dependence. Using data up to 1997, they
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found that the U.S. unemployment rate did not show skewed dynamics and strengthened the view

of De Long and Summers (1984). However, evidence of skewness in exchange rates, CPI inflation,

and stock returns is newly obtained.

The discussion has changed focus with the recent short but deep recessions such as the Great

Recession of 2007-2008. Jensen et al. (2020) highlighted increasing negative skewness in the U.S.

business cycles over the last three decades. The phenomenon is linked to financial frictions emanated

from borrowing constraints of households and firms during recessions. In particular, they emphasized

the importance of increasing financial leverages due to financial liberalization.1 Plagborg-Møller et

al. (2020) attempted to forecast higher moments, including skewness of the real GDP, using financial

variables. They found that financial variables contributed slightly to forecasting the skewness of the

GDP growth, that is, growth risk. Additionally, another strand of research investigates micro-level

or cross-sectional skewness to uncover mechanism of business cycles. Salgado et al. (2019) studied

firm-level panel data of almost fifty countries and found a procyclical skewness in the growth rates

of firm sales, productivity, and employment. Ilut et al. (2018) focused on the fact that firms with

concave hiring rules respond more to negative shocks than to positive shocks. Busch et al. (2018)

used panel data of individual labor income in the United States, Germany, and Sweden and showed

that the skewness in income distribution is procyclical. Dew-Becker et al. (2021) reported that the

production network model matched the sectoral data in the United States, suggesting the existence

of missing common factors in the model. Kent et al. (2019) used data of the GDP, consumption,

and investment of 154 countries and quantified the importance of skewness shock. All these works

are suggestive to the goal of this chapter.

In this study, I aim to provide methods to investigate the long-standing question whether the

U.S. macroeconomic time-series exhibits skewed dynamics, particularly focusing on whether the

skewed dynamics is detected in the economy-wide common factors and/or the idiosyncratic compo-

nents. To this end, I extend the formal econometric test proposed by Bai and Ng (2005) to a large

dimensional common factor model. A large body of literature applied the common factor model

to macroeconomic panel data set (Bernanke et al., 2005; McCracken & Ng, 2016; Stock & Watson,

2016) with the presumption that the concepts of important macroeconomic variables may not be
1For details of the mechanism of financial frictions as a source of skewed business cycles, see, for example, Brun-

nermeier et al. (2013) and reference therein.
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directly observed. Instead, they are latent factors that drive the set of observed data. If I find

skewed dynamics in the common components, it should support incorporating fundamental mech-

anisms such as concave decision rules and borrowing constraints in the business cycle modeling.

Furthermore, identifying skewed dynamics in the idiosyncratic components may offer important

information, for example, that related to production network model.

Thus, I propose two types of tests: the Wald-type and max-type to assess the skewed property

in the common components. The former is expected to have a higher power when all the common

factors are uniformly skewed and the latter when only one factor is skewed. I also propose a test

to investigate the skewness in the idiosyncratic component. I derive their asymptotic distributions

under N,T → ∞ with
√
T/N → 0, where N and T are the cross-section and time dimensions,

respectively. Technically, the latter condition warrants the effect of factor estimation errors to

diminish in the limit. Monte Carlo simulation shows that the two tests for the common component

and the test for the idiosyncratic components have very good size properties, especially when N

and T are large. All tests have a power close to their observed counterparts. The effects of factor

estimation errors are minor even if N is relatively smaller than T in finite samples. As an empirical

analysis, I apply the tests to 127 U.S. macroeconomic time-series data obtained from 1960 to 2019.

When I investigate the raw observed data, the results match those obtained by De Long and

Summers (1984) and Bai and Ng (2005). In addition, I find strong evidence of skewness in data

related to housing because the sample includes the period of the Great Recession and is consistent

with the literature that emphasize financial frictions. More importantly, I obtained evidence that

the space spanned by the common factors are skewed by using either the Wald-type or max-type

test. Furthermore, skewed dynamics is found in several variables related to employment, which is

consistent with previous studies. Overall, results suggest empirical relevance of incorporating the

skewed dynamics in business cycle modeling.

The remainder of this chapter is organized as follows. Section 1.2 explains the model, hypotheses,

and test statistics. Section 1.3 provides the asymptotic distributions of the proposed tests and

examines the regularity conditions to derive them. Section 1.4 conducts Monte Carlo simulations

to assess the finite sample size and power of the proposed tests. Section 1.5 provides an empirical

application using the U.S. macroeconomic time-series data, and Section 1.6 concludes. The following

notations are used throughout the chapter: the Euclidean norm of vector x is denoted by ||x||. For
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the matrices, the vector-induced norm is used. The Kronecker product of two vectors x and y is

denoted by the symbol x ⊗ y. Especially, the lth Kronecker power of vector x is denoted by the

symbol x⊗l.2 The symbol p→ represents convergence in probability under the probability measure

P and the symbol ⇒ denotes convergence in distribution. Finally, Op(·) and op(·) are the orders of

convergence in probability under P as N,T → ∞.

1.2 Model and test statistics

I consider the following common factor model.

xi,t = λ′ift + ei,t, for i = 1, . . . , N and t = 1, . . . , T, (1.2.1)

where xi,t is a scalar of the observed random variable; ft = (f1,t, . . . , fr,t)
′ represents an r×1 vector

of the common factors; λi = (λ1,i, . . . , λr,1)
′ indicates an r×1 vector of the factor loadings; and ei,t is

a scalar idiosyncratic component. Subscripts i and t denote the cross-section and time dimensions,

respectively. I am interested in a type of data in which both N and T are large while the number

of common factors r is small, so that a few important factors drive a large set of panel data. The

model may include cross-sectional specific intercepts; however, it would be trivial to consider them

for estimation and inference, so I suppress them to focus on the essence of the problem. I may also

use a matrix representation of (1.2.1) by writing X = FΛ′ + e, where X is a T ×N matrix whose

(t, i)th element is xi,t, F = (f1, . . . , fT )
′ is a T × r matrix of the common factors, Λ = (λ1, . . . , λN )′

is an N × r matrix of the factor loadings, and e is a T ×N matrix whose (t, i)th element is ei,t. In

the absence of ambiguity, notations ei = (ei,1, . . . , ei,T )
′, a T × 1 vector, and et = (e1,t, . . . , eN,t)

′,

an N × 1 vector, may also be used.

I estimate ft and λi using the principal component method (Bai, 2003; Bai & Ng, 2002). In other

word, I obtain F̂ = (f̂1, . . . , f̂T )
′, an estimate for F , as the

√
T times eigenvectors corresponding

to the r largest eigenvalues of (NT )−1XX ′ with normalization of F̂ ′F̂ /T = Ir, where Ir is an

r × r identity matrix. The factor loadings are estimated via the least squares principle λ̂i =

T−1
∑T

t=1 f̂txi,t. The idiosyncratic components are also estimated by êi,t = xi,t − λ̂′if̂t. In this

study, I assume that r is known for simplicity, although the standard methods of Bai and Ng (2002)
2For example, (x1, x2)

′⊗2 = (x1, x2)
′ ⊗ (x1, x2)

′ = (x2
1, x1x2, x2x1, x

2
2)

′.
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and Ahn and Horenstein (2013) are applied in practice.

Previous studies have applied the common factor model to a large macroeconomic panel data

set (Bernanke et al., 2005; McCracken & Ng, 2016; Stock & Watson, 2016) with the presumption

that concepts of important macroeconomic variables might not directly be observed. Instead, they

might be latent factors that drive the set of observed data. In this study, I focus on the issue that

skewed dynamics observed in macroeconomic time series data are attributed to the economy-wide

common components such as policies or the idiosyncratic components of individual variables. This

could contribute to macroeconomic modeling that appropriate frictions should be included as the

source of business cycle.

To this end, I employ the standard type of coefficient of skewness for a univariate time series

(Bai & Ng, 2005; De Long & Summers, 1984). If I take the kth common factor {fk,t}Tt=1, it is

defined by the following equation:

τ fk =
µfk,3(
µfk,2

) 3
2

,

where µfk,l = E[(fk,t−µfk,1)
l] for l = 2, 3, and µfk,1 = E(fk,t). I use the letter µ to denote population

centered moments supplemented with the superscript f indicating the common factor, with the first

subscript k indicating the kth factor (k = 1, . . . , r), and the second subscript l indicating the lth

moment (l = 1, 2, · · · ). Additionally, an r × 1 vector of the population coefficients of skewness is

expressed by τ f = (τ f1 , . . . , τ
f
r )′. I employ the sample counterparts of the population coefficients of

skewness τ̂ f = (τ̂ f1 , . . . , τ̂
f
r )′, where

τ̂ fk =
µ̂fk,3(
µ̂fk,2

) 3
2

,

with µ̂fk,l = T−1
∑T

t=1(f̂k,t − µ̂fk,1)
l for l = 2, 3, and µ̂fk,1 = T−1

∑T
t=1 f̂k,t.

Moreover, I use the null hypothesis (H0) and alternative hypothesis (H1)

H0 : τ
f = 0r×1, (2-N)

H1 : τ
f ̸= 0r×1. (2-A)

I aim to test whether the entire space spanned by the r common factors is skewed; hence, I collec-

tively deal with the coefficients of skewness for the r common factors. I do not aim to examine a
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specific individual factor because it cannot be identified without appropriate restrictions. Further-

more, I focus on whether the τ f is zero, that is, whether the dynamics in the common component

is not skewed positively or negatively. This is because I cannot identify the specific τ f without the

true data generating process; similarly, I cannot verify specific individual factors. To that effect, I

propose two types of test statistics based on τ̂ f .

Wald-type test:

WNT = T
[
τ̂ f ′V̂ −1τ̂ f

]
,

where

V̂ = M̂−3
2 Γ̂f ,

with M̂2 = diag(µ̂f1,2, . . . , µ̂
f
r,2) and Γ̂f is the consistent estimate for the covariance matrix of

(â′1ẑ1,t, . . . , â
′
rẑr,t)

′ and

âk =
(
1,−3µ̂fk,2

)′
,

ẑk,t =

([(
f̂k,t − µ̂fk,1

)3
− µ̂fk,3

]
,
(
f̂t − µ̂fk,1

))′
.

Max-type test:

MNT = max
1≤k≤r

abs

[√
T
(
µ̂fk,2

) 3
2
(
Γ̂f
)− 1

2
τ̂ f
]
.

First, the use of the max-type test is intuitively justified because the estimated factors by the

principal components are orthogonal and thus produce sample coefficients of skewness that are

asymptotically independent. Second, it is expected that the Wald-type test is more powerful when

all r factors are uniformly skewed; thus, the max-type test is used when there is heterogeneity in

the coefficient of skewness among the common factors. Third, I can construct Γ̂f by the standard

heteroskedasticity and autocorrelation consistent (HAC) estimator, in line with Newey and West

(1987) or Andrews (1991) if some serial dependence is potentially present in zt, where

zt =

([(
ft − µf1

)⊗3
− µf3

]′
,
(
ft − µf1

)′)′

,

with µf3 = E[(ft − µf1)
⊗3] and µf1 = E(ft), which stacks the elements of the first and third centered
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cross moments.3

Investigating the ith idiosyncratic components, the null and the alternative hypotheses are as

follows:

H0 : τ
e
i = 0, (3-N)

H1 : τ
e
i ̸= 0, (3-A)

where τ ei is the population coefficient of skewness of {ei,t}Tt=1 defined by

τ ei =
µei,3(
µei,2

) 3
2

,

where µei,l = E[(ei,t − µei,1)
l] for l = 2, 3 and µei,1 = E(ei,t). These population centered moments of

ei,t also employ µ with the same notations as those of the common factors but by replacing f by e.

Additionally, i is used as the first lower subscript to denote the cross-sectional unit.

The test statistic is constructed based on the sample coefficient of skewness computed by the

estimated ith idiosyncratic component, as given below:

τ̂ ei =
µ̂ei,3(
µ̂ei,2

) 3
2

,

where µ̂ei,l = T−1
∑T

t=1(êi,t − µ̂ei,1)
l for l = 2, 3 and µ̂ei,1 = T−1

∑T
t=1 êi,t. Since the idiosyncratic

component is one-dimensional, I propose the test statistic as follows:

Si,NT =
√
T
(
µ̂ei,2
) 3

2

(
Γ̂e
i

)− 1
2
τ̂ ei ,

where Γ̂e
i is the consistent estimate for the variance of b̂′iv̂i,t and

b̂i =
(
1,−3µ̂ei,2

)′
,

v̂i,t =
([(

êi,t − µ̂ei,1
)3 − µ̂ei,3

]
,
(
êi,t − µ̂ei,1

))′
.

3Lemmas A.2.3 and A.4 in Appendix A.1 show that the estimation error of the sample mean in the sample third
moment remains asymptotically. This error corresponds to the second element of zt.
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If dependence is considered in vi,t, where

vi,t =
([(

ei,t − µei,1
)3 − µei,3

]
,
(
ei,t − µei,1

))′
,

I replace Γ̂e
i with the HAC estimator. In the next section, I derive the asymptotic distributions of

the suggested tests.

1.3 Theoretical results

1.3.1 Assumptions

In this section, I derive the asymptotic distributions under the null hypothesis. I follow the regularity

assumptions of Bai (2003) for the common factor models and those of Bai and Ng (2005) to guarantee

the property of the skewness tests. Let m be a generic constant.

Assumption 1.1.

1. E(||ft||6+δ)<∞ with some δ > 0 and T−1
∑T

t=1 ftf
′
t → ΣF for some r × r positive definite

matrix.

2. {ft}Tt=1 is stationary up to the 6th order.

3. T−1/2
∑T

t=1 zt
d→ N(0,Ω), where Ω = limT→∞ T−1

∑T
t=1

∑T
s=1E(ztz

′
s).

Assumption 1.2. ||λi|| ≤ m and N−1Λ′Λ → ΣΛ as N → ∞ for some r×r positive definite matrix.

Assumptions 1.1.1 and 1.2 are standard in the literature of common factor model. Assumption

1.1.1 excludes factors with a time trend. Assumption 1.2 ensures that every common factor has a

certain contribution to the infinitely observed variables. Assumption 1.1.2 restricts the moments to

be time-invariant for the common factors up to the 6th order and, Assumption 1.1.3 warrants the

central limit theorem for up to the third moment. These follow the skewness test examined by Bai

and Ng (2005). For the idiosyncratic components, I require the following regularity conditions.

Assumption 1.3.

1. E(ei,t) = 0 for all i and t and E(|ei,t|8+δ) <∞ with some δ > 0.
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2. {ei,t}Tt=1 for t = 1, . . . , T is stationary up to 6th order for all i.

3. T−1/2
∑T

t=1 vi,t
d→ N(0,Ωi), where Ωi = limT→∞ T−1

∑T
t=1

∑T
s=1E(vi,tv

′
i,s).

4. Let γst = E(N−1
∑N

i=1 ei,sei,t).

Then, |γss| ≤ m and T−1
∑T

t=1

∑T
s=1 |γst| ≤ m for all s and t.

5. Let ϕij,t = E(ei,tej,t). Then, |ϕij,t| ≤ |ϕij | for all t with some ϕij

such that N−1
∑N

i=1

∑N
j=1 |ϕij | ≤ m.

6. Let ϕij,ts = E(ei,tej,s). Then, (NT )−1
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 |ϕij,ts| ≤ m.

7. For every (t, s), E|N−1/2
∑N

i=1[ei,tei,s − E(ei,tei,s)]|4 ≤ m.

Assumption 1.4. ft and ei,s are mutually independent for all leads and lags.

Assumption 1.3.2 requires time-invariant moments of the idiosyncratic components similar to

Assumption 1.1.2. Assumptions 1.3.4–1.3.7 allow weak cross-sectional and time dependence in the

idiosyncratic components, following the standard setup of the common factor model such as Bai

(2003). Assumption 1.4 ensures independence between the two components.

1.3.2 Asymptotic distributions

I derive the asymptotic distributions of the proposed test statistics under the null hypotheses. I

obtain the following results for the common components.

Theorem 1.1. Suppose Assumptions 1.1–1.4 hold and {zt}Tt=1 has no serial dependence. Under

the null hypothesis (2-N), the following hold as N,T → ∞ with
√
T/N → 0,

1. Wald-type test: WNT ⇒ χ2
r.

2. Max-type test: MNT ⇒ Θ where Θ ∼ max(abs(N(0r×1, Ir))).

These results imply a direct use of Bai and Ng’s (2005) idea in the common factor model with

an added condition
√
T/N → 0. This condition is similar to the asymptotic normality of the factor

loading estimate in Bai (2003) and ensures that the factor estimation errors diminish asymptotically

and the estimated common components are regarded as factual. Although I do not assume serial
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dependence in zt to obtain the theoretical results, it is allowed in practice using the standard

HAC estimator proposed by Newey and West (1987) or Andrews (1991). I study the finite sample

properties of the test in the next section via Monte Carlo simulation. Furthermore, I obtain the

following theorem for the idiosyncratic components.

Theorem 1.2. Suppose Assumptions 1.1–1.4 hold and {vi,t}Tt=1 has no serial dependence. Under

the null hypothesis (3-N), Si,NT ⇒ N(0, 1) for any i as N,T → ∞ with
√
T/N → 0.

Here, the same remarks apply as Theorem 1. Importantly, I investigate the power of these tests

under various specifications in the next section.

1.4 Monte Carlo simulations

In this section, I investigate finite sample properties of the proposed tests via Monte Carlo sim-

ulation. In particular, I am interested in two issues. First, I examine whether the properties are

affected by the behaviors of the other components. For example, I am interested in whether the tests

for the common components present a good size when the idiosyncratic components are skewed, and

whether the test for the idiosyncratic components yields a good size when the common components

are skewed. Such an interaction between the common and idiosyncratic components is concerned if

the effects of factor estimation errors are relevant in finite samples. Notably, these effects disappear

under
√
T/N → 0 as N,T → ∞ in the limit. Second, I investigate if the tests have a good power

against various types of skewed distributions. To this end, I follow the setup of Bai and Ng (2005)

and consider four different distributions: the log normal distribution, chi-squared distribution, ex-

ponential distribution, and generalized lambda distribution.4 I also consider four variations of the

generalized lambda distributions with respect to the parameter values. These are summarized in

Table 1.1 as D1–D7. When I consider a symmetric distribution, the standard normal distribution

is used and is labeled as D0.
4The generalized lambda distribution can take on various shapes depending on the parameters. The inverse of the

cumulative distribution function is known as F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, 0 < u < 1.
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Table 1.1: Probability distributions and coefficient of skewness.

Probability Distributions τ

D0 standard normal distribution 0
D1 log normal distribution 6.18
D2 chi-squared distribution with 2 degree of freedom 2
D3 exponential distribution with parameter 1 2
D4 generalized lambda distribution with (λ1, λ2, λ3, λ4) = (0,−1,−0.0075, 0.03) 1.5
D5 generalized lambda distribution with (λ1, λ2, λ3, λ4) = (0,−1,−0.1,−0.18) 2
D6 generalized lambda distribution with (λ1, λ2, λ3, λ4) = (0,−1,−0.001, 0.13) 3.16
D7 generalized lambda distribution with (λ1, λ2, λ3, λ4) = (0,−1,−0.0001, 0.17) 3.8

I generate data from the following model:

xi,t = λ′ift + ei,t,

ft = 0.5ft−1 + ut,

ei,t = 0.5ei,t−1 + εi,t,

for i = 1, . . . , N and t = 1, . . . , T . I draw λi from the standard normal distribution and ut and εi,t

for t = 1, . . . , T as well as f0 and ei,0 independently from the distributions presented in Table 1.1.

I use a simple autoregressive (AR) model of order one with the AR coefficients 0.5 for ft and ei,t

for all i, although using other values for the AR coefficients does not change results qualitatively.

To assess the effects of sample size, I consider that N and T are either 100 or 300, and the number

of factors r is 2. Throughout this section, I use the nominal level 0.05, and the results are assessed

based on 2,000 Monte Carlo replications. All tests are constructed using the HAC variance proposed

by Newey and West (1987).

I first investigate the size of the Wald-type and max-type tests for the common components.

Table 1.2 reports the size of the Wald-type and max-type tests. In both experiments, I independently

draw the two components of ut from the standard normal distributions. The column D0 shows the

size when the idiosyncratic components εi,t are also drawn from the standard normal distribution.

The columns D1–D7 present the size of the tests when the idiosyncratic components εi,t are drawn

from the skewed distributions D1–D7. In the column labeled as “observed,” the size is reported for

the true common factors (ft) instead of the estimated factors (f̂t); hence, this corresponds to the
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Table 1.2: Size of the Wald-type and max-type tests.

(%)

T N D0 D1 D2 D3 D4 D5 D6 D7 observed

100 100 Wald 3.05 2.45 2.50 2.95 2.80 2.10 1.90 2.80 3.00
Max 2.90 2.55 2.60 2.25 2.85 2.40 2.00 3.15 3.05

100 300 Wald 2.80 3.30 3.00 3.10 2.20 3.20 3.10 3.20 3.00
Max 2.75 3.15 2.60 2.55 2.50 2.30 2.70 3.05 3.05

300 100 Wald 4.25 4.40 4.15 4.25 4.00 4.05 4.30 4.05 5.10
Max 4.05 4.15 4.10 3.70 3.85 3.70 3.75 3.50 5.15

300 300 Wald 4.15 4.10 5.35 4.60 4.70 4.00 4.05 4.40 5.10
Max 3.95 4.25 5.15 4.15 4.35 4.25 4.25 4.25 5.15

test that is not affected by the factor estimation errors.5 The size of the Wald-type test is relatively

close to 5% when T = 300. When T = 100, the size is somewhat conservative, but this occurs

even in the “observed” column; hence, these size-distortions are not caused by the factor estimation

errors. The larger sample size, the less distinct the difference from “observed” column. I suspect

that the factor estimation errors would have an effect, but with a minor magnitude. The max-type

test is similar to that of the Wald-type test. This table confirms the relevance of Theorem 1.1.

I then investigate the size of the test for idiosyncratic components. Table 1.3 reports the size

of the Si,NT test for i = 1 when all the idiosyncratic components εi,t are drawn from the standard

normal distribution. The two common components of ut are drawn from the distributions D0–D7,

so that the common components may or may not be skewed. The results suggest that the size is

close to 5% in all cases, validating the results of Theorem 1.2 in finite samples. Importantly, the

effects of factor estimation errors also remain immaterialized in this case. In addition, I conducted

an experiment in which the idiosyncratic components for i = 2, . . . , N are drawn from the same

skewed distributions as ut. The results are similar to those of Table 1.3; thus, they are suppressed.

I now focus on the power of the proposed tests. To consider the tests for the common compo-

nents, I draw the two components of ut from the skewed distributions D1–D7. The idiosyncratic

components εi,t are drawn from the standard normal distribution; however, using the skewed dis-

tributions has not changed the qualitative results. Table 1.4 reports the power of the Wald-type

test, and Table 1.5 presents the power of the max-type test. The power using the true series is
5The results for the true series directly reflect the characteristics of Bai and Ng’s (2005) test, since there are no

issues regarding identification and estimation of the common factors, Thus, they provide a benchmark result.
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Table 1.3: Size of the idiosyncratic test.

(%)

T N D0 D1 D2 D3 D4 D5 D6 D7 observed

100 100 3.55 3.55 3.50 3.10 3.15 3.55 4.25 3.95 4.40
100 300 5.35 4.85 4.70 4.15 4.00 4.75 5.35 5.10 4.40
300 100 3.65 4.00 3.70 3.55 4.75 4.45 4.00 3.50 4.90
300 300 4.20 4.50 5.50 5.40 4.50 5.00 5.35 4.10 4.90

Table 1.4: Power of the Wald-type test.

(%)

T N D1 D2 D3 D4 D5 D6 D7

100 100 58.25 71.40 55.30 75.70 61.15 67.75 64.15
(62.20) (89.60) (80.10) (84.90) (66.15) (78.35) (73.30)

100 300 57.90 69.95 53.25 75.10 65.90 63.55 65.10
(62.75) (88.25) (78.60) (85.35) (69.50) (76.75) (73.70)

300 100 81.05 97.40 95.30 97.45 85.60 92.80 90.90
(83.00) (99.70) (99.30) (98.80) (88.45) (94.85) (93.05)

300 300 80.75 97.50 95.35 97.20 85.65 93.25 89.85
(84.10) (99.60) (99.50) (98.90) (88.05) (95.75) (93.55)

Note: The values in parentheses show the powers when the true common factors are used.

reported in parentheses. I observe that; although the power becomes slightly lower than that using

the true series, both tests have a good power in all cases. Furthermore, the Wald-type test has a

higher power than the max-type test because the two factors are uniformly skewed in this experi-

ment. Additionally, I set an experiment in which the first component in ut is generated from the

skewed distributions D1–D7 but the second component in ut is drawn from the standard normal

distribution. The other specifications are similar to the previous experiment. Table 1.6 shows the

power of the Wald-type test in the upper row and that of the max-type test in the lower row. I

observe that the max-type test has a higher power than the Wald-type test, especially when T is

large. This is expected because only one factor is skewed in this experiment.

Finally, I investigate the power of the idiosyncratic test. The idiosyncratic components εi,t are

drawn from the skewed distributions D1–D7. The common components ut are drawn from the

standard normal distributions, although the results do not change even if ut are drawn from the

skewed distributions. Table 1.7 reports the power of the idiosyncratic test for i = 1 and suggests

that the idiosyncratic tests have a decent power in all cases. Indeed, the power is close to that of
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Table 1.5: Power of the max-type test.

(%)

T N D1 D2 D3 D4 D5 D6 D7

100 100 40.25 58.30 41.60 61.70 45.80 50.85 50.25
(48.10) (79.80) (62.70) (73.70) (54.40) (64.30) (62.00)

100 300 43.20 56.65 41.75 61.50 49.05 51.55 50.85
(49.00) (78.70) (63.50) (75.35) (55.60) (64.65) (61.40)

300 100 64.70 94.55 91.60 93.00 71.80 82.65 79.45
(71.20) (98.50) (97.70) (95.80) (77.55) (90.10) (85.20)

300 300 63.95 94.65 92.60 92.35 71.85 83.10 77.60
(72.30) (98.40) (98.45) (96.15) (77.65) (90.85) (86.00)

Note: The values in parentheses show the powers when the true common factors are used.

Table 1.6: Power of the Wald-type and max-type tests : When only one factor is skewed.

(%)

T N D1 D2 D3 D4 D5 D6 D7

100 100 Wald 25.40 34.30 24.00 35.75 26.25 29.05 27.75
Max 25.10 34.20 23.35 34.90 26.25 29.45 27.45

100 300 Wald 23.00 35.00 23.75 37.80 26.70 31.05 29.35
Max 21.80 35.65 23.50 37.40 25.25 31.30 29.40

300 100 Wald 46.20 81.95 72.55 76.90 54.60 64.35 58.70
Max 48.25 81.50 72.50 78.30 56.15 66.05 60.30

300 300 Wald 46.55 82.10 71.35 77.25 52.80 64.15 56.60
Max 47.00 81.45 72.70 78.50 55.00 66.75 60.35

Table 1.7: Power of the idiosyncratic test.

(%)

T N D1 D2 D3 D4 D5 D6 D7

100 100 42.55 68.00 54.25 64.85 46.75 56.50 52.10
(43.60) (70.80) (59.35) (66.65) (47.15) (58.00) (53.30)

100 300 59.75 93.25 92.25 88.50 66.75 80.25 73.85
(60.10) (93.55) (92.60) (88.40) (67.00) (80.55) (74.25)

300 100 45.40 68.20 56.95 66.05 47.25 56.00 51.60
(45.60) (70.15) (60.20) (66.85) (48.30) (56.95) (52.85)

300 300 60.15 92.80 92.80 89.25 68.30 78.90 72.95
(60.00) (92.95) (93.05) (89.20) (68.30) (78.75) (72.95)

Note: The value in parentheses shows the power when the true common factor is used.
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the test using the true series reported in the lower row.

1.5 Empirical application

In this section, I apply the proposed tests for the common and idiosyncratic components to U.S.

macroeconomic time-series data of FRED-MD provided by McCracken and Ng (2016). I also present

results of the original test proposed by Bai and Ng (2005) when applied to the updated observed

data. The data set contains 127 series from April, 1960, and I use the sample period up to September,

2019. I follow Stock and Watson (2002b) to clean outliers. The 127 series are categorized into eight

groups: “output and income,” “labor market,” “housing,” “consumption, orders and inventories,”

“money and credit,” “interest and exchange rates,” “prices,” and “stock market.” All variables are

transformed to achieve stationarity, as suggested by McCracken and Ng (2016). I determine the

number of factors using the ICp2 of Bai and Ng (2002) and obtain r = 7. Through a casual

investigation, I find that the first factor has relatively large factor loadings for the output and labor

market related series. The second to the fourth factors are more related to price, housing and

financial variables. The fifth to the seventh factors are related to unemployment, hours worked, and

asset pricing variables such as stock prices and term spreads of interest rates. To implement the

proposed tests, I use the HAC variance estimate with the bandwidth selected by Newey and West

(1987) to account for potential serial correlations in the first three moments.

Table 1.8 reports the results of the tests. Table 1.8(a) contains the two tests for the space

spanned by the common factors. Table 1.8(b) provides the results of the idiosyncratic components

as well as those of the original Bai and Ng’s (2005) tests applied to the observed data. I start

with the tests using the observed data. Consistent with De Long and Summers (1984) and Bai

and Ng (2005), relatively scarce evidence on the skewness is obtained. However, I clearly observed

the skewed property in some series of “labor market.” These accord with De Long and Summers’s

(1984) finding using the U.S. unemployment rate. I also observe that many series of “stock market”

and “interest and exchange rates” exhibit the skewed property, which is consistent with the finding

of Bai and Ng (2005). In addition, I find strong evidence of skewness in many series of “housing,”

which remained unexplored in previous studies.

This study analyzed whether the skewed dynamics are attributed to the economy-wide common
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factors. Table 1.8(a), I observe that both the Wald-type and the max-type tests give significance

at the 5% level. My casual observation into the test statistics for each common factor shows that

every test statistic for common factor, except for the second to the fourth factors, takes a relatively

large value.6 These justify the mechanism of skewed dynamics of the nation-wide business cycles in

terms of a general equilibrium.

Some interesting findings in the tests for idiosyncratic components are as follows. First, many

series of “housing” such as “Housing Starts (Total New Privately Owned)” and “New Private Housing

Permit” and some series of “employment” such as “All Employees: Financial Activities” and “Avg

Weekly Hours: Goods-Producing” have skewed properties even after the common components are

controlled. Second, “Japan/U.S. Foreign Exchange Rate” and “Crude Oil Price, spliced WTI and

Cushing” reveal evidence of idiosyncratic skewness. These are likely produced by some international

factors, which may not be captured by the common components estimated by this data set. Third,

skewness in the idiosyncratic component is also found in the “S&P’s Volatility Index,” which is

related to uncertainty or risk perception in financial markets.

Overall, results suggest empirical relevance of incorporating skewed dynamics in business cycle

modeling either in a general equilibrium context or in specific factor markets. These include recent

studies that emphasize the role of financial frictions (Jensen et al., 2020), concave decision rules in

labor markets (Ilut et al., 2018), and uncertainty shock (Plagborg-Møller et al., 2020; Salgado et

al., 2019), among others.

6The test statistics for individual factor estimates are -2.256 (the first), -0.768 (the second), -1.282 (the third),
-1.517 (the fourth), -2.075 (the fifth), 2.770 (the sixth), and -1.825 (the seventh).
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Table 1.8: Tests for skewed dynamics for common and idiosyncratic components of the U.S. macroe-
conomic time-series.

(a) Tests for common component

Wald-type test Max-type test

15.006 ** 2.770 **

Note: “***”, “**” and “*” denote
the significance levels at 1%, 5% and
10%, respectively.

(b) Tests for idiosyncratic components and tests for observed variables

tcode Description Observed Idiosyncratic tcode Description Observed Idiosyncratic

Group 1. Output and Income Group 5. Money and Credit
5 Real Personal Income 1.400 - 1.387 - 6 M1 Money Stock -0.682 - -0.781 -
5 Real Personal Income Ex Transfer Receipts 0.251 - 0.092 - 6 M2 Money Stock -1.657 * -1.703 *
5 IP Index -1.703 * -1.519 - 5 Real M2 Money Stock 1.273 - 1.545 -
5 IP: Final Products and Nonindustrial Supplies -1.501 - 0.510 - 6 Monetary Base 0.905 - 0.769 -
5 IP: Final Products (Market Group) -1.239 - 1.118 - 6 Total Reserves of Depository Institutions 0.254 - -0.205 -
5 IP: Consumer Goods -0.058 - 0.465 - 7 Reserves of Depository Institutions -0.018 - -0.721 -
5 IP: Durable Consumer Goods -0.049 - 0.839 - 6 Commercial and Industrial Loans -1.412 - -1.370 -
5 IP: Nondurable Consumer Goods -0.973 - -0.428 - 6 Real Estate Loans at All Commercial Banks 0.834 - 0.505 -
5 IP: Business Equipment -1.496 - -0.053 - 6 Total Nonrevolving Credit 0.426 - 0.328 -
5 IP: Materials -1.813 * -1.629 - 2 Nonrevolving Consumer Credit to Personal Income 0.574 - 0.552 -
5 IP: Durable Materials -2.336 ** -1.666 * 6 Consumer Motor Vehicle Loans Outstanding 0.829 - 0.813 -
5 IP: Nondurable Materials -1.626 - -1.222 - 6 Total Consumer Loans and Leases Outstanding -0.214 - -0.258 -
5 IP: Manufacturing (SIC) -1.715 * -1.684 * 6 Securities in Bank Credit at All Commercial Banks -0.940 - -0.991 -
5 IP: Residential Utilities -1.476 - -0.903 - Group 6. Interest and Exchange Rates
5 IP: Fuels 1.319 - 1.366 - 2 Effective Federal Funds Rate -0.730 - -0.540 -
2 Capacity Utilization: Manufacturing -1.779 * -2.340 ** 2 3-Month AA Financial Commercial Paper Rate -1.834 * -1.304 -

Group 2. Labor Market 2 3-Month Treasury Bill -1.049 - 1.685 *
2 Help-Wanted Index for United States 0.493 - 1.034 - 2 6-Month Treasury Bill -0.765 - 1.700 *
2 Ratio of Help Wanted/No. Unemployed -1.558 - -0.402 - 2 1-Year Treasury Rate -0.419 - 1.604 -
5 Civilian Labor Force 0.956 - 0.770 - 2 5-Year Treasury Rate -0.943 - 0.767 -
5 Civilian Employment -0.096 - 1.056 - 2 10-Year Treasury Rate -1.008 - -0.266 -
2 Civilian Unemployment Rate 1.885 * -0.589 - 2 Moody’s Seasoned Aaa Corporate Bond Yield -0.751 - 0.910 -
2 Average Duration of Unemployment (Weeks) -0.256 - -0.760 - 2 Moody’s Seasoned Baa Corporate Bond Yield 0.978 - 1.444 -
5 Civilians Unemployed - Less Than 5 Weeks 0.499 - 0.705 - 1 3-Month Commercial Paper Minus FEDFUNDS -1.144 - 2.166 **
5 Civilians Unemployed for 5-14 Weeks 2.028 ** 1.710 * 1 3-Month Treasury Bill Minus FEDFUNDS -2.616 *** -2.063 **
5 Civilians Unemployed - 15 Weeks & Over 2.061 ** -0.083 - 1 6-Month Treasury Bill Minus FEDFUNDS -2.494 ** -0.374 -
5 Civilians Unemployed for 15-26 Weeks 0.265 - 0.128 - 1 1-Year Treasury C Minus FEDFUNDS -2.434 ** 1.699 *
5 Civilians Unemployed for 27 Weeks and Over 2.158 ** 0.681 - 1 5-Year Treasury C Minus FEDFUNDS -2.718 *** 0.621 -
5 Initial Claims 1.408 - 0.790 - 1 10-Year Treasury C Minus FEDFUNDS -2.752 *** 0.506 -
5 All Employees: Total Nonfarm -1.519 - 0.114 - 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS -2.586 *** -0.157 -
5 All Employees: Goods-Producing Industries -2.368 ** 0.111 - 1 Moody’s Baa Corporate Bond Minus FEDFUNDS -2.061 ** -1.909 *
5 All Employees: Mining and Logging: Mining -0.734 - -0.300 - 5 Trade Weighted U.S. Dollar Index: Major Currencies -0.207 - -1.925 *
5 All Employees: Construction -0.249 - -0.087 - 5 Switzerland/U.S. Foreign Exchange Rate -0.748 - -0.855 -
5 All Employees: Manufacturing -2.412 ** -0.803 - 5 Japan/U.S. Foreign Exchange Rate -2.496 ** -2.452 **
5 All Employees: Durable Goods -2.127 ** -1.068 - 5 U.S./U.K. Foreign Exchange Rate -1.413 - -1.728 *
5 All Employees: Nondurable Goods -1.573 - 0.943 - 5 Canada/U.S. Foreign Exchange Rate 0.614 - -0.860 -
5 All Employees: Service-Providing Industries -0.211 - 0.492 - Group 7. Prices
5 All Employees: Trade, Transportation & Utilities -1.243 - 0.457 - 6 PPI: Finished Goods -0.628 - 0.698 -
5 All Employees: Wholesale Trade -1.645 * 0.637 - 6 PPI: Finished Consumer Goods -0.849 - 0.729 -
5 All Employees: Retail Trade -0.805 - -0.417 - 6 PPI: Intermediate Processed Goods -1.817 * -1.038 -
5 All Employees: Financial Activities -1.344 - -2.427 ** 6 PPI: Intermediate Unprocessed Goods -0.713 - -0.546 -
5 All Employees: Government 1.616 - 1.645 * 6 PPI: Metals and Metal Products: -1.080 - -0.903 -
1 Avg Weekly Hours: Goods-Producing -1.291 - -2.554 ** 6 Crude Oil, spliced WTI and Cushing 2.493 ** 2.319 **
2 Avg Weekly Overtime Hours: Manufacturing -0.524 - -0.111 - 6 CPI: All Items 0.107 - -0.672 -
1 Avg Weekly Hours: Manufacturing -1.763 * -2.394 ** 6 CPI: Apparel 1.594 - 1.786 *
6 Avg Hourly Earnings: Goods-Producing -0.279 - -0.268 - 6 CPI: Transportation -0.722 - -1.286 -
6 Avg Hourly Earnings: Construction -0.723 - -0.571 - 6 CPI: Medical Care -0.817 - -1.058 -
6 Avg Hourly Earnings: Manufacturing 0.999 - 0.209 - 6 CPI: Commodities -0.977 - -0.885 -

Group 3. Housing 6 CPI: Durables 0.596 - 0.274 -
4 Housing Starts: Total New Privately Owned -2.994 *** -2.756 *** 6 CPI: Services 0.964 - 0.663 -
4 Housing Starts, Northeast -2.294 ** 2.427 ** 6 CPI: All Items Less Food -1.166 - 0.481 -
4 Housing Starts, Midwest -4.246 *** -2.802 *** 6 CPI: All Items Less Shelter -0.834 - -0.798 -
4 Housing Starts, South -2.207 ** -0.325 - 6 CPI: All Items Less Medical care -0.779 - -0.978 -
4 Housing Starts, West -3.356 *** -3.115 *** 6 Personal Cons. Expend.: Chain Index -1.297 - 0.883 -
4 New Private Housing Permits -2.740 *** -3.014 *** 6 Personal Cons. Exp: Durable Goods -0.729 - -0.713 -
4 New Private Housing Permits, Northeast -1.800 * 3.369 *** 6 Personal Cons. Exp: Nondurable Goods -1.259 - -1.481 -
4 New Private Housing Permits, Midwest -3.685 *** -3.047 *** 6 Personal Cons. Exp: Services 1.069 - 1.047 -
4 New Private Housing Permits, South -1.754 * -3.834 *** Group 8. Stock Market
4 New Private Housing Permits, West -3.258 *** -2.187 ** 5 S&P’s Common Stock Price Index: Composite -2.340 ** -0.881 -

Group 4. Consumption, Orders and Inventories 5 S&P’s Common Stock Price Index: Industrials -2.407 ** -0.755 -
5 Real Personal Consumption Expenditures -1.014 - -1.188 - 2 S&P’s Composite Common Stock: Dividend Yield 1.492 - -0.660 -
5 Real Manu. and Trade Industries Sales -0.740 - -1.411 - 5 S&P’s Composite Common Stock: Price-Earnings Ratio 0.037 - -0.777 -
5 Retail and Food Services Sales -0.936 - -0.880 - 1 S&P’s Volatility Index 1.915 * 3.027 ***
5 New Orders for Consumer Goods -1.072 - -1.290 -
5 New Orders for Durable Goods -1.021 - 0.108 -
5 New Orders for Nondefense Capital Goods -0.315 - 0.062 -
5 Unfilled Orders for Durable Goods 2.284 ** 1.932 *
5 Total Business Inventories -0.754 - 0.978 -
2 Total Business: Inventories to Sales Ratio 1.171 - 1.070 -
2 Consumer Sentiment Index -0.044 - 0.619 -

Note: “***”, “**” and “*” denote the significance levels at 1%, 5% and 10%, respectively. The column tcode denotes the following data transformation for a series to achieve stationarity: (1) no transformation; (2)
∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2 log(xt); (7) ∆(xt/xt−1 − 1.0).



1.6 Conclusions

A rapidly growing body of literature have been investigating the skewed property in business cycles.

Some studies have emphasized the role of financial frictions while others have focused more on

concave decision rules in labor market. Importance of the role of uncertainty in business cycles

have been attracting much attention. However, statistical evidence of skewed dynamics in the U.S.

macroeconomic time-series has been scarce. De Long and Summers (1984) found no evidence of

skewness, except for the U.S. unemployment rate. Bai and Ng (2005) intensified this view, although

evidence of skewness in exchange rates, CPI inflation, and stock returns is newly obtained.

In this study, I proposed methods to investigate whether the skewed property observed in pre-

vious studies is attributed to the economy-wide common components and/or idiosyncratic compo-

nents. I considered two types of test statistics for the space spanned by the common components

and a test for idiosyncratic components. Additionally, I derived the asymptotic distributions under

the null hypothesis and investigated their finite sample size and power using the Monte Carlo simu-

lations. Furthermore, I applied these tests to a common factor model using 127 U.S. macroeconomic

time-series data of McCracken and Ng (2016). I found strong evidence of skewness in the common

components. Additionally, some idiosyncratic components related to housing, labor market, and

uncertainty exhibited skewed properties. These results suggest empirical relevance of incorporating

the skewed dynamics in business cycle modeling.

The results of this study suggest directions for future research. First, it would be beneficial, if the

methods could incorporate time-varying characteristics of the skewed property, as indicated by many

authors including Jensen et al. (2020) and Plagborg-Møller et al. (2020). Second, my methods may

potentially be extended to produce cross-section data set that is free from the common components

as pointed out by Dew-Becker et al. (2021).
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Chapter 2

A Cross-Sectional Method for

Right-Tailed PANIC Tests under a

Moderately Local to Unity Framework1

2.1 Introduction

Large dimensional common factor models are a driving force in recent empirical analysis in various

fields of economics. Bai (2003) and Bai and Ng (2006) provide sufficient conditions under which the

principal component estimator is consistent for the common and idiosyncratic components when the

series have no time trends. When the series have stochastic trends of integration of the order one,

the standard practice is to induce stationarity by transforming the original data by first differencing

before identifying and estimating the common and idiosyncratic components.2 If one is interested

in identifying whether the stochastic trends lie in the common or idiosyncratic components, Bai

and Ng (2004) suggest applying augmented Dickey–Fuller (ADF) tests (Dickey & Fuller, 1979) for

these components estimated by first-differenced data. This method is called the panel analysis of

nonstationarity in idiosyncratic and common components (PANIC). One main advantage of this
1This chapter is a joint work with Yohei Yamamoto. The published version is Yamamoto, Y., & Horie, T. (2022).

A cross-sectional method for right-tailed PANIC tests under a moderately local to unity framework. Econometric
Theory, forthcoming. (Available at http://doi.org/10.1017/S0266466622000044).

2Bai (2004) proposes estimating common stochastic trends by using the principal components of level data when
none of the idiosyncratic errors have stochastic trends, but the common factors do. See also the seminal work of
Stock and Watson (2002a, 2005) for empirical examples.
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method is that the common and idiosyncratic components are separately identified under the null

hypothesis of a random walk. In addition, the ADF test has nontrivial power when testing against

the alternative hypothesis of stationarity (hereafter, the left-tailed test) because, under such a

hypothesis, the first-differenced series may be over-differenced, but has no time trends; hence, the

common and idiosyncratic components are correctly identified. Bai and Ng (2004) show that the test

for the common components has good size and power despite stationary or random walk idiosyncratic

components. The same can be said of the test for the idiosyncratic components. Therefore, the

PANIC approach successfully disentangles the common and idiosyncratic components.

In this study, I investigate whether this convenient property of the PANIC approach is available

even when the right-tailed version of the ADF test (hereafter, the right-tailed test) is used. The

right-tailed unit root tests are used in various applications. For example, testing for speculative

bubbles in asset prices is a long-standing problem for which numerous econometric techniques have

been developed. The most recent studies include the seminal work of Phillips et al. (2011), in which

they pay attention to the link between speculative bubbles and the explosive behaviors of asset

price data. Their strategy is to fit a univariate AR model and test whether the root is greater than

unity. The present study considers situations where speculative bubbles may be present in large

dimensional panel data of financial assets. It is important to investigate whether these bubbles are

an economy-wide phenomenon or market-specific events. This study takes a step towards answering

such a question.

Consistent with Becheri and van den Akker (2015) and Westerlund (2015), I first show that

both left- and right-tailed PANIC tests for common and idiosyncratic explosive behaviors exhibit

the standard local asymptotic power when the AR coefficient shrinks to one at a fast rate of T−1,

where T is the time dimension of the panel data set (see Appendix B.1). A potential problem of

such a local to unity (LTU) asymptotic framework is that it only considers small deviations from the

unit root. The recent literature establishes that the asymptotic results under such local asymptotic

frameworks may not adequately approximate the finite sample behaviors of the test statistics (see,

e.g., Deng & Perron, 2008). With this caveat in mind, I take an approach that considers the AR

root that shrinks to one at a slower rate than T−1. In particular, I use the moderately local to

unity (MLTU) framework developed by Phillips and Magdalinos (2007). Under this framework, I

find that the explosive idiosyncratic components may be identified as the common component. As
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a result, the tests for the common and idiosyncratic components have size distortions and power

loss.

Monte Carlo simulations illustrate the analytic findings. I first confirm Bai and Ng’s (2004)

results — that is, as far as the left-tailed tests are concerned, the PANIC approach provides good

size and power. However, the right-tailed tests behave very differently from the left-tailed tests.

First, the test for the common components shows significant size distortions when some idiosyncratic

components are explosive because the explosive idiosyncratic components are misidentified as the

common factor. Second, the test for the idiosyncratic components suffers from size distortions when

the common components are explosive for the same reason. Finally, and most importantly, the

test for the idiosyncratic component shows an upward power function when the AR coefficient is

slightly larger than one. However, the power function starts to decline toward zero as the AR

coefficient further increases. This phenomenon is the well-known nonmonotonic power problem

widely documented in the context of structural change tests (Perron, 1991; Vogelsang, 1999). What

is new in this study is that the source of nonmonotonic power is the identification failure between

the common factors and explosive idiosyncratic components under the alternative hypothesis.

This study provides a new method of testing for explosive behavior in the common and id-

iosyncratic components. In many empirical situations, explosive behaviors appear only in a certain

subperiod and the series are not explosive in the remaining sample period — I take advantage of

this fact. Therefore, I can set a training sample during which no, or only weak, explosive behav-

ior exists. I then use cross-sectional (CS) regressions to estimate the common components in the

explosive window as the coefficients attached to the factor loadings, while the factor loadings are

estimated in the training sample. I call this the CS method. It is shown that the tests for the

common components and the tests for the idiosyncratic components achieve the correct asymptotic

size and are consistent under the MLTU framework. A Monte Carlo simulation shows that the CS

test for common components considerably reduces size distortions. More importantly, the CS test

for idiosyncratic components is robust to the nonmonotonic power problem.

The structure of the remaining chapter is as follows. Section 2.2 introduces the model, as-

sumptions, and existing PANIC tests. Section 2.3 presents the finite sample size and power of the

right-tailed PANIC tests and investigates their theoretical properties under the MLTU framework.

Section 2.4 proposes a new CS method and investigates its theoretical and finite sample properties.
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Section 2.5 concludes the chapter. The details of technical derivations and additional results are

provided in Appendix B, including further details on the Results under the LTU Framework (Ap-

pendix B.1), Proof of Theorem SA-1 and Theorem 2.1 (Appendix B.2), Proof of Factor Estimation

Errors in Theorem 2.1 (i) (Appendix B.3), and Proof of Theorem SA-2 and Theorem 2.2 (Appendix

B.4). Throughout the chapter, the following notations are used. The Euclidean norm of vector

x is denoted by ∥x∥. For the matrices, the vector-induced norm is used. The symbols O(·) and

o(·) denote the standard asymptotic orders of sequences. The symbol p→ represents convergence in

probability under the probability measure P and the symbol ⇒ denotes convergence in distribution.

Op(·) and op(·) are the orders of convergence in probability under P as N,T → ∞ (or N,T, h→ ∞).

I use the symbol x ≈ y when ∥x− y∥ = op(1), for two vectors of random variables x and y.

2.2 Model and test statistics

I consider the common factor model:

Xi,t = µi + λ′iFt + Ui,t, for i = 1, ..., N and t = 1, ..., T, (2.2.1)

where Xi,t is a scalar of the observed random variable, µi is an intercept, Ft and λi are the r × 1

vectors of the common factors and factor loadings, respectively, and Ui,t is a scalar idiosyncratic

component. I focus on the essence of the problem by assuming the number of factors is one with

no loss of substance and is known by the econometrician so the estimation of r is not needed.3,4

The common factor follows (1−αL)Ft = C(L)et where C(L) =
∑∞

j=0CjL
j with C0 = 1 and et is a

white noise disturbance. The idiosyncratic components follow (1− ρiL)Ui,t = Di(L)zi,t, where ρi is

the AR coefficient of the ith cross-section, Di(L) =
∑∞

j=0DijL
j , Di0 = 1, and zi,t is a white noise

disturbance.

I consider the following assumptions in this model. Let M <∞ be a generic constant.
3When r > 1, one can implement the right-tailed test series-by-series with the individual factors to investigate

whether the common factor space is explosive. This is adequate because at least one rejection implies that the
whole space is explosive. This is in contrast to the left-tailed tests. As Bai and Ng (2004) contemplate, rejections
of individual factors do not necessarily imply a rejection for the common factor space if they have a cointegration
relationship. Note that since the estimated factors are uncorrelated with each other, the size of the testing for
series-by-series is controlled.

4The cross-section-specific intercepts, µi, are eliminated in the first-differenced data such that they do not affect
inference on α and ρi. When (2.2.1) includes linear time trends, one can work with the demeaned first differenced
data and the equivalent principal components are obtained.
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Assumption 2.1. For every t = 0, 1, ..., T , et ∼ i.i.d.(0, σ2), E |et|4 ≤ M , and
∑∞

j=0 j |Cj | < M.

Furthermore, E|F0| ≤M .

Assumption 2.2.

1. λi is a nonrandom quantity satisfying |λi| ≤M or a random quantity satisfying E |λi|2 ≤M .

2. N−1
∑N

i=1 λ
2
i

p→ σ2λ, where σλ is a positive constant.

Assumption 2.3. For every t, s = 0, 1, ..., T and i = 1, ..., N , the following hold.

1. zi,t ∼ i.i.d.(0, σ2i ), E |zi,t|8 ≤M , and
∑∞

j=0 j |Dij | < M.

2. Let ϕi,j = E(zi,tzj,t). Then,
∑N

i=1 |ϕi,j | ≤M for all j and N−1
∑N

i=1

∑N
j=1 |ϕi,j | ≤M .

3. Let ζs,t = E
∣∣∣N−1/2

∑N
i=1[zi,szi,t − E(zi,szi,t)]

∣∣∣4. Then, ζs,t ≤M .

4. E |Ui,0| ≤M for every i = 1, · · · , N .

Assumption 2.4. zi,s, et, and λj are mutually independent for every (i, j, s, t).

The model and assumptions follow those of Bai and Ng (2004). In particular, Assumption 2.3.1

permits weak serial correlations in the idiosyncratic errors (1 − ρiL)Ui,t, while Assumptions 2.3.2

and 2.3.3 allow weak cross-sectional correlations. Bai and Ng (2004) consider the unit root test

against the alternative hypothesis of stationarity for the common and idiosyncratic components. In

this study, I am interested in the test against the alternative hypothesis of an explosive process. For

the common component, H0 : α = 1 versus H1 : α > 1, and for the ith idiosyncratic component,

H0 : ρi = 1 versus H1 : ρi > 1. Under the restriction of α = 1, the model is the same as Bai

and Ng’s (2004) PANIC. They propose a method of separately identifying the common factors and

idiosyncratic errors under the null hypothesis that the common factors follow random walks. This is

based on first-differenced data; therefore, xi,t = λift+ui,t where xi,t = Xi,t−Xi,t−1, ft = Ft−Ft−1,

and ui,t = Ui,t − Ui,t−1. In the following, I assume that there are T + 1 observations t = 0, 1, ..., T

for Xi,t (so that Ft and Ui,t) for notational simplicity. The common factors and factor loadings can

be estimated by using xi,t following the principal component method such that

(f̂t, λ̂i) = arg min
{λi}Ni=1,{ft}

T
t=1

∑N
i=1

∑T
t=1(xi,t − λift)

2, (2.2.2)
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with normalization T−1
∑T

t=1 f̂
2
t = 1. This minimization problem provides a common factor esti-

mate f̂ = [f̂1, ..., f̂T ]
′ as the

√
T -times eigenvectors of xx′ corresponding to the largest eigenvalue,

where x is a T ×N matrix with the (t, i)th element being xi,t. The factor loadings are estimated by

λ̂i =
1
T

∑T
t=1 f̂txi,t, the level common factor is estimated by F̂t =

∑t
s=1 f̂s, and the level idiosyncratic

errors are estimated by Ûi,t =
∑t

s=1 ûi,s, where ûi,s = xi,s − λ̂if̂s.

The unit root test for the common component (hereafter, the common test) can be implemented

by using a t-test for H0 : δ = 0 in the regression f̂t = δF̂t−1+ error such that tF̂ = δ̂/se(δ̂), where δ̂

is an ordinary least squares estimator for δ and se(δ̂) represents its standard errors. The regression

may include an intercept and a time trend with appropriate adjustment to the critical values to

take account of the time trend. When an intercept is included, I denote the t-test by t̄F̂ . When

the errors are suspected of being serially correlated, I can include the lags of f̂t in the regression.

However, a model with no lags is relevant for asset price data in which no serial correlations are

present in their first differences.5 If necessary, I can extend the framework to the model with p lags.

The lag order selection follows the conventional method, such as the information criteria based on

estimated components. As shown in Said and Dickey (1984), the asymptotic distributions of the

t-tests are not affected by including p lags if p3/T → ∞. Here, this condition must consider that

factor estimation errors vanish if N,T → ∞; hence, I require p3/min{N,T} → 0. When r > 1,

I propose testing the estimated common factors series-by-series to determine whether any of the

common factors are explosive. This is a sufficient treatment for the present study because I am only

interested in the space spanned by the common factors.6 The unit root test for the ith idiosyncratic

component (hereafter, the idiosyncratic test) is implemented by using a t-test for H0 : δi = 0 in the

regression ûi,t = δiÛi,t−1+ error so that tÛ (i) = δ̂i/se(δ̂i) where the same note as tF̂ applies. When

an intercept is included, I denote the t-test by t̄Û (i).

As Bai and Ng (2004) note, this approach is convenient because the common and idiosyncratic

components are separately identified by using the first-differenced data. This way, both common

and idiosyncratic tests have the standard Dickey and Fuller (1979) distribution under the null

hypothesis. If the alternative hypothesis of stationarity is true, the series become over-differenced,
5Phillips and Yu (2011) also consider only the model with p = 0.
6Bai and Ng (2004) consider the method proposed by Stock and Watson (1988) to determine the number of

common trends in the factor space in the setting of I(0) and I(1). However, the number of explosive common trends
is not direct interest. Hence, their method is not used in this study.
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but they remain stationary; hence, the tests have nontrivial power. Further, their simulation study

shows that the common test demonstrates good size and power despite stationary or random walk

idiosyncratic components. The same can be said of the idiosyncratic test. Therefore, the PANIC

approach successfully disentangles the common and idiosyncratic components.

Remark 2.1 (Bai & Ng, 2004). Let Assumptions 2.1–2.4 hold. (i) Under α = 1 and |ρi| ≤ 1 for all i,

tF̂ ⇒ [
∫ 1
0 W (r)dW (r)]/[

∫ 1
0 W (r)2dr]1/2 and t̄F̂ ⇒ [

∫ 1
0 W̄ (r)dW (r)]/[

∫ 1
0 W̄ (r)2dr]1/2 as N,T → ∞,

where W (r) is the standard Wiener process defined on r ∈ [0, 1] and W̄ (r) = W (r) −
∫ 1
0 W (r)dr.

(ii) Under ρi = 1, α = 1, and |ρj | ≤ 1 for all j ̸= i, tÛ (i) ⇒ (
∫ 1
0 Wi(r)dWi(r))/[

∫ 1
0 Wi(r)

2dr]1/2

and t̄Û (i) ⇒ [
∫ 1
0 W̄i(r)dWi(r)]/[

∫ 1
0 W̄i(r)

2dr]1/2 as N,T → ∞, where Wi(r) are standard Wiener

processes defined on r ∈ [0, 1] and W̄i(r) =Wi(r)−
∫ 1
0 Wi(r)dr.

These null distributions are applicable to both left- and right-tailed tests, as long as the common

and idiosyncratic components are consistently estimated. This is warranted in Bai and Ng’s (2004)

framework, where all components are I(1) or I(0) such that their first differences are stationary.

However, this is not necessarily the case if explosive processes are present. When some idiosyncratic

components are moderately explosive, the common components may not be consistently estimated,

and a consistent estimate for the idiosyncratic components is not warranted either. Hence, size

distortions in the common and idiosyncratic tests are concerned. I discuss the properties of PANIC

tests in explosive environments in the next section.

2.3 Properties of the PANIC tests

2.3.1 Finite sample properties

I begin analysis by investigating the finite sample properties of the PANIC tests via Monte Carlo

simulations. Although I focus on the empirical size and power of the right-tailed tests, those of

the left-tailed tests are also presented for reference. While the latter experiment overlaps with Bai

and Ng’s (2004) results, it is instructive to illustrate how differently the left-tailed and right-tailed

tests behave. The data are generated from (2.2.1) with Ft = αFt−1 + et and Ui,t = ρiUi,t−1 + zi,t

with r = 1, where λi, et, zit, F0, and U0,i are independently drawn from the standard normal
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Table 2.1: Size of the PANIC tests.

Common tests

Left-tailed tests Right-tailed tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

ρi = 1.0 0.049 0.050 0.048 0.054 ρi = 1.0 0.049 0.050 0.048 0.045
0.8 0.043 0.046 0.049 0.046 1.02 0.069 0.063 0.243 0.206
0.6 0.051 0.046 0.043 0.051 1.04 1.000 1.000 1.000 1.000
0.4 0.047 0.050 0.050 0.049 1.06 1.000 1.000 1.000 1.000
0.2 0.053 0.048 0.049 0.052 1.08 1.000 1.000 1.000 1.000
0.0 0.051 0.044 0.049 0.045 1.10 1.000 1.000 1.000 1.000

Idiosyncratic tests

Left-tailed tests Right-tailed tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

α = 1.0 0.047 0.049 0.052 0.050 α = 1.00 0.048 0.049 0.045 0.051
0.8 0.050 0.054 0.052 0.051 1.02 0.035 0.039 0.025 0.025
0.6 0.050 0.050 0.052 0.050 1.04 0.011 0.010 0.002 0.002
0.4 0.050 0.045 0.053 0.052 1.06 0.001 0.001 0.002 0.001
0.2 0.049 0.049 0.053 0.044 1.08 0.001 0.001 0.005 0.006
0.0 0.051 0.056 0.051 0.050 1.10 0.002 0.002 0.010 0.008

quasi-random variables in each replication.7 To evaluate size and power, I vary the values of α

and ρi from 1.0 to 1.1 for the right-tailed test and from 1.0 to 0.0 for the left-tailed test. Results

using the regression models that include (A) no deterministic components, (B) an intercept but

no time trend, and (C) an intercept and a linear time trend are produced. Since they are almost

identical, I only report case (B). I use the first idiosyncratic component to evaluate the idiosyncratic

tests; however, this choice is trivial because the Monte Carlo design is symmetric for any i. I use

(N,T ) = (100, 100), (100, 150), (150, 100), (150, 150) to investigate size and power. The number of

replications is 5,000 and the nominal level 5% is used.

I first consider size. I set α = 1.0 to evaluate the size of the common test and ρi = 1.0 to

evaluate that of the idiosyncratic test. The upper panel of Table 2.1 reports the size of the common

test as a function of ρi and the lower panel shows the size of the idiosyncratic test as a function of
7I also computed the size and power of the right-tailed PANIC test using models with p = 4[min{N,T}

100
]1/4. The

results are qualitatively the same and are, thus, not reported.
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Figure 2.3.1: Power of the PANIC tests.

α. The left-tailed tests exhibit good size properties — along the same lines as in Bai and Ng (2004)

— confirming that the PANIC approach successfully disentangles the common and idiosyncratic

components. However, the results of the right-tailed tests are markedly different. The size of the

common test is close to the nominal level when ρi is approximately smaller than 1.02; however,

it quickly reaches one as ρi increases. Further, the size of the idiosyncratic test is also distorted

toward zero as α increases. These size distortions suggest that the convenient property of Bai and

Ng (2004), that is, the common and idiosyncratic components are separately identified no longer

applies to the right-tailed tests. Regarding the effect of sample size, the size of the left-tailed test

is good regardless of N and T , while the size of the right-tailed test deteriorates as T increases.

Next, I consider power. The upper panels in Figure 2.3.1 report the power functions of the

common test under ρi = 1 for all i and show that the common test has a standard power function.8

8Setting at ρi > 1 does not show any unique power features of the common tests, except for the size distortions
already reported in Table 2.1. That is, the power functions of the right-tailed test in the case of ρi > 1 start at a
point above the nominal level, but draw an upward curve.
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Table 2.2: Size of the PANIC right-tailed tests when one idiosyncratic component is explosive.

Common tests Idyosyncratic tests

N 100 150 100 150 N 100 150 100 150

T 100 100 150 150 T 100 100 150 150

ρN = 1.00 0.047 0.050 0.048 0.048 α = 1.00 0.050 0.047 0.047 0.046
1.02 0.050 0.054 0.045 0.047 1.02 0.043 0.039 0.025 0.026
1.04 0.059 0.056 0.471 0.389 1.04 0.011 0.012 0.003 0.003
1.06 0.529 0.445 0.966 0.962 1.06 0.002 0.002 0.001 0.003
1.08 0.920 0.900 0.997 0.998 1.08 0.001 0.001 0.006 0.004
1.10 0.986 0.983 1.000 1.000 1.10 0.004 0.003 0.010 0.011

0.0

0.2

0.4

0.6

0.8

1.0

1.00 1.02 1.04 1.06 1.08 1.10

T=100,N=100

T=100,N=150

T=150,N=100

T=150,N=150

�

Figure 2.3.2: Power of the PANIC idiosyncratic test when one idiosyncratic component is explosive.

My interest is the power functions of the idiosyncratic test presented in the lower panels. The

left-tailed test again has the standard power function; however, the right-tailed test shows a clear

nonmonotonic pattern. When the explosive coefficient ρi is slightly larger than one, the power

increases as ρi increases; however, the power function starts to decline toward zero as ρi further

increases. This means the PANIC approach fails to detect explosive behaviors in an individual

idiosyncratic component unless they are quite small.9 Regarding the effect of sample size, the

power increases as T increases when the function is monotonic, but remains the same as N increases.

When it is nonmonotonic, the peak of the power shifts leftward as T increases, but again, remains

the same as N increases. I also present simulation results in which only one of the idiosyncratic
9Bai and Ng (2004) also propose a pooled test for the idiosyncratic components and investigate the properties

of the left-tailed tests under the assumption that idiosyncratic components are cross-sectionally independent. This
is not direct interest. However, unreported Monte Carlo results show that the pooled version of the right-tailed
PANIC tests have qualitatively similar finite sample properties to those of the individual idiosyncratic tests reported
in Figures 2.3.1 and 2.4.1.
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components is explosive, that is, ρN ≥ 1.0 and ρi = 1.0 for all i ̸= N . Table 2.2 shows the size of

the common and the idiosyncratic right-tailed tests, while Figure 2.3.2 presents the power of the

idiosyncratic test for i = N . The results are consistent with the previous case in which all the

idiosyncratic components are explosive, that is, the common test has considerable size distortions

and the idiosyncratic test shows nonmonotonic power. These findings motivate us to theoretically

investigate the PANIC methods under explosive environments in the following subsections.

2.3.2 Analytic investigation

Becheri and van den Akker (2015) and Westerlund (2015) derive the standard local asymptotic

power of the pooled panel unit root tests in which common factors are extracted by the PANIC

method. In doing so, the first-order AR coefficients are assumed to shrink to one at a fast rate of

T−1.10 I also investigate the power properties of the common and individual idiosyncratic right-

tailed tests by using two complementary asymptotic frameworks. The first approach follows the

same lines and assumes that the AR coefficients shrink to one at a fast order αT = 1 + c
T and

ρi,T = 1+ ci
T , where c and ci are constants. This LTU asymptotic framework is expected to capture

the finite sample properties of the tests when explosiveness is weak. Appendix B.1 shows that the

common and the idiosyncratic tests have the standard local asymptotic power for both the left- and

right-tailed versions.

It is well known that the results under the LTU framework may not adequately approximate

the finite sample behaviors of the test statistics. In the context of structural change tests, a certain

type of test statistic may have good power when the magnitude of change is assumed to shrink to

zero at a fast rate of T−1/2, but it loses power when the magnitude is fixed. This class of tests

typically draws a concave-shaped power function, called the nonmonotonic power problem.11 One

reason for this phenomenon is that, under the alternative hypothesis, a change in the conditional

mean and a change in the persistence parameter are not separately identified. Yamamoto and

Tanaka (2015) further investigate this problem in the factor model, pointing out that the factor

loading structural change and appearance of extra factors may not be separately identified under

the alternative hypothesis when the structural changes occur at common dates. In such a case, the
10The rate also depends on N because they consider the pooled tests.
11As far as the authors know, Perron (1991) was the first study to point out this problem in structural change

tests. See Vogelsang (1999), Perron and Yamamoto (2016), and the references therein.
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standard tests of Breitung and Eickmeier (2011) suffer from the nonmonotonic power problem.

I provide an analytic explanation for why the PANIC tests may have size distortions and non-

monotonic power. I claim that an identification problem between the common and explosive id-

iosyncratic components occurs under the alternative hypothesis. To this end, I take an approach

that assumes the explosive root shrinking to one at a slower rate. In particular, I use the MLTU

framework developed by Phillips and Magdalinos (2007).

Assumption M. 1. The AR coefficients satisfy αT = 1 + c
kT

and ρi,T = 1 + ci
kT

, where c ≥ 0,

ci ≥ 0 and kT is a deterministic sequence such that kT → ∞ and kT = o(T ). 2. C(L) = 1 and

Di(L) = 1 for all i.

The quantities c and ci (i = 1, ..., N) are localizing coefficients and take nonnegative values to

focus on the explosive case. The scaling factor kT is an arbitrary deterministic function of T that

satisfies kT → ∞ strictly slower than T to consider stronger explosiveness than that in the local

assumption. A typical formulation is kT = T κ, where 0 < κ < 1.

In this setting, the principal component estimate cannot only consistently estimate the common

factors, but also misidentify the common components. I illustrate this fact in the following theorem

by considering two cases. The first case assumes that c > 0 but ci = 0 for all i, such that only the

common factor is explosive. The second case is ci > 0 for some or all i but c = 0. Hence, only the

idiosyncratic components are explosive.

Theorem 2.1. Let Assumptions 2.1–2.4 and M hold. If kT grows sufficiently slowly such that

αT
TT

−1/2 and ρTi,TT
−1/2 go to infinity as T → ∞, then the following equation holds for the factor

estimate:

f̂t = Aft +N−1∑N
i=1 aiui,t, (2.3.1)

where A ≡ V −1N−1T−1f̂ ′fΛ′Λ + V −1N−1T−1f̂ ′uΛ and ai ≡ V −1T−1f̂ ′fλ′i + V −1T−1f̂ ′ui with V

being the largest eigenvalue of N−1T−1xx′. Then, the following hold:

(i) If c > 0 and ci = 0 for all i, then V = Op(α
T
TT

−1/2). Furthermore, if the stochastic order of

V is αT
TT

−1/2, A = Op(1) and ai = Op(1).

(ii) If c = 0 and ci > 0 for all i, then V = Op(ρ
T
i,TT

−1/2). Furthermore, if the stochastic order

of V is ρTi,TT
−1/2, A = Op(1) and ai = Op(1).
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A proof is provided in Appendix B.2. From part (i), I can deduce that the common test

behaves well under the alternative hypothesis. This is because, when the true common component

is explosive, the estimation errors of the factor space consist of the second term of (2.3.1). Since

the explosive common component dominates the factor estimation errors,12 the common component

estimate continues to be explosive and the power remains.13

Part (ii) yields a more interesting case. When the idiosyncratic components are explosive, the

second term dominates the first term, because ui,t are explosive, while ft is not. Hence, f̂t is

dominated by the explosive idiosyncratic components ui,t. Therefore, even when the true common

component is not explosive, its estimate may be so when some idiosyncratic components are ex-

plosive. More intuitively, because the principal component estimator is based on the eigenvectors

associated with the largest eigenvalues of the covariance matrix of the panel data, when the idiosyn-

cratic components are explosive, one of the eigenvalues diverges. This causes the idiosyncratic time

series to be misidentified as a common component.

To provide intuition of the condition that αT
TT

−1/2 (and ρTi,TT
−1/2) tends to infinity, let us

consider the case of kT = T κ. In this case, αT
T is approximated by exp(cT 1−κ) and the condition

requires it grows faster than T 1/2. Apparently, the LTU (κ = 1) does not satisfy this condition,

because exp(cT 1−κ) = exp(c) is a flat function of T . On the contrary, if κ = 0, then αT
T = exp(cT )

and this always diverges faster than T 1/2; hence, αT
TT

−1/2 diverges to infinity.14 Therefore, this

condition is more relevant, as κ is smaller (or αT is larger). In my unreported numerical exercise,

αT
TT

−1/2 increases as T when κ is 0.80 or smaller when c = 1.0. The value of αT that corresponds

to κ = 0.80 when T = 100 is αT = 1.03. This gives us a rough guide for when the condition

αT
TT

−1/2 → ∞ holds.15

I can derive clear implications of part (ii): when ui,t are explosive, the size of the common test

is distorted because f̂t is dominated by ui,t that are explosive. More interestingly, because f̂t is

dominated by the explosive ui,t, the idiosyncratic component estimate ûi,t becomes nonexplosive for
12In Appendix B.3, I show that, in case (i), the factor estimation errors in the differenced factor are op(1), but

those in the level factor are Op(T
1/2N−1/2).

13Things are different for the idiosyncratic tests, because the true idiosyncratic components are not explosive and
do not dominate the factor estimation errors. Therefore, the idiosyncratic test could suffer from size distortions.

14Here, how long it takes for the divergence to be evident depends on c. I appreciate this advice from Professor
Peter C. B. Phillips.

15As shown in the Monte Carlo simulation, the finite sample power of the idiosyncratic test starts to decrease when
T = 100 and ρi = 1.03.
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the reason in the following remark. This explains the nonmonotonic power of the idiosyncratic test.

Remark 2.2. I illustrate the power loss of the idiosyncratic test by taking the special case of (ii),

where only the first cross-sectional unit has an explosive idiosyncratic component. I have f̂t ≈ a1u1,t.

By plugging this into the factor loading estimate λ̂1 =
(∑T

t=1 f̂
2
t

)−1 (∑T
t=1 f̂tx1,t

)
I obtain

λ̂1 =
(∑T

t=1 f̂
2
t

)−1 (∑T
t=1 f̂tx1,t

)
≈
(
a21
∑T

t=1 u
2
1,t

)−1 (
a1
∑T

t=1 u1,tx1,t

)
,

=
(
a21T

−1∑T
t=1 u

2
1,t

)−1 (
a1λ1T

−1∑T
t=1 u1,tft + a1T

−1
∑T

t=1 u
2
1,t

)
≈ a−1

1 , (2.3.2)

because the numerator of the second line is dominated by the second term. By plugging f̂t ≈ a1u1,t

and (2.3.2) into the idiosyncratic component estimate û1,t = x1,t − λ̂1f̂t I obtain

û1,t = x1,t − λ̂1f̂t,

≈ u1,t + λ1ft − (a−1
1 )(a1u1,t),

= u1,t + λ1ft − u1,t = λ1ft. (2.3.3)

Therefore, equations f̂t ≈ a1u1,t and (2.3.2) imply λ̂1f̂t ≈ u1,t and equation (2.3.3) implies û1,t ≈

λ1ft. These mean that the common and idiosyncratic components are reversely identified by their

estimates. Hence, the idiosyncratic test loses power.

I validate this identification problem by investigating the correlation coefficient between f̂t and

ft and the correlation coefficient between f̂t and u1,t. If the misidentification occurs, the former

decreases, but the latter increases as u1,t becomes more explosive. To this end, I generate the same

data as in section 2.3.1 and compute the average of the absolute correlation coefficients between the

estimated and true common components
∣∣∣Corr(f̂t, ft)∣∣∣ over 5,000 replications. I also compute the

average of the absolute correlation coefficients between the estimated common component and true

idiosyncratic component
∣∣∣Corr(f̂t, u1,t)∣∣∣. The left panel of Figure 2.3.3 shows that, as u1,t becomes

more explosive, f̂t becomes less correlated with ft, but more correlated with u1,t. This finding

is consistent with Theorem 2.1 (ii). Next, as equation (2.3.3) suggests, I compute the average

of the absolute correlation coefficients between the estimated and true idiosyncratic components

|Corr(û1,t, u1,t)| and the average of the absolute correlation coefficients between the estimated

idiosyncratic component and true common component |Corr(û1,t, ft)|. The right panel of Figure
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Figure 2.3.3: Absolute values of the correlation coefficients of the estimated components (with the
true common and idiosyncratic components).

2.3.3 shows that, as u1,t becomes more explosive, û1,t becomes less correlated with u1,t, but more

correlated with ft, because û1,t inherits the time-series properties of ft.

Remark 2.3. To make Theorem 2.1 more comprehensive, I may consider the case of c > 0 and ci > 0

for some i. Then, I have V = Op(max{αT
TT

−1/2, ρTi,TT
−1/2}), A = Op(1), and ai = Op(1). The

explosive idiosyncratic components become dominating components in the estimated factors if they

are more strongly explosive than the common components. This case yields the same implication

as part (ii), because what matters is the explosive behavior in the idiosyncratic components. In

addition, I may also consider the case of c < 0 and/or ci < 0 for some i. Then, Ft and/or Ui,t

are I(0) for some i and they would not contaminate the factor estimation as shown in Bai and Ng

(2004). Therefore, this case merely gives the same implication as when c = 0 and/or ci = 0.

2.4 Cross-sectional approach

This section provides a new method of testing explosive behavior in the common and idiosyncratic

components. It is based on the following two key ingredients. First, it takes advantage of the fact

that explosive behaviors appear only in a certain subperiod and the series are not explosive in the

rest of the sample period. If this is the case, I can time-wise localize the explosive behaviors by

considering model (2.2.1) with Ft = αFt−1 + et and Ui,t = ρiUi,t−1 + zi,t where α = ρi = 1 for

t = 1, ..., T and α, ρi ≥ 1 for t = T + 1, ..., T + h, for any i, with h being the length of the window,

such that the data are assumed to have a certain period t ∈ [1, T ] in which no explosive behaviors
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exist in either the common or the idiosyncratic components. I call this the training sample.16 On

the contrary, the period of interest t ∈ [T + 1, T + h] is called the explosive window.

2.4.1 Algorithm

The second key element is using cross-sectional regressions to estimate the common factors in the

explosive window instead of using the principal component estimation of the first-differenced series.

This is because the first-differenced series of the explosive process remains explosive and, thus,

violates Assumption 2.3. Hence, the common factors are not consistently estimated. To address

this problem, I estimate the factor loadings in the training sample in a nonexplosive environment.

I then use these loadings as the regressors of the cross-sectional regressions in the explosive window

to estimate the common factors as the coefficients attached to the factor loadings. In this way, I can

avoid the identification problem between the common and idiosyncratic components investigated

in section 2.3.2. An important model assumption is that the factor loadings are constant for the

training sample and explosive window. I also keep the assumption that the number of factors

remains the same. I call this approach the CS method and it involves the following steps:

Algorithm:

Step 1. Use the first-differenced data xi,t for t = 1, ..., T to estimate the factor loadings λi by

using the principal component method (2.2.2). Denote the factor loadings estimated in the training

sample by λ̂∗i .

Step 2. At t = T +1, estimate the level of the common factors by the CS regression of {Xi,t}Ni=1

on
{
λ̂∗i

}N

i=1
so that F̃t =

(∑N
i=1 λ̂

∗
i λ̂

∗′
i

)−1 (∑N
i=1 λ̂

∗
iXi,t

)
and the idiosyncratic components by

Ũi,t = Xi,t − λ̂∗′i F̃t. Then, repeat this for t = T + 2, ..., T + h.

Step 3. Construct the common test t∗
F̃

by using F̃t and f̃t = F̃t − F̃t−1 in the regression

f̃t = δF̃t−1 + error and the idiosyncratic test t∗
Ũ
(i) by using Ũi,t and ũi,t = Ũi,t − Ũi,t−1 in the

regression ũi,t = δiŨi,t−1 + error for t = T +1, ..., T + h. In both regressions, lags of the dependent

variable can be included if serial correlations in the errors are concerned. I denote the tests using

the regression with an intercept by t̄∗
F̃

and t̄∗
Ũ
(i).

16I can easily show that weak (local) explosive processes with AR coefficients 1 + c
T

and 1 + ci
T

can exist in the
training sample.
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Remark 2.4. Although I set t ∈ [1, T ] and t ∈ [T +1, T +h] as the training sample and the explosive

window, respectively, this does not mean that the origination dates of explosive behaviors have to

be known in practice for the following reasons. First, the explosive behaviors can start later than

T + 1. If so, I am merely implementing the right-tailed unit root tests for the sample that includes

a nonexplosive subsample. Second, explosive behaviors can start before T as long as they are as

weak as the LTU. This is because, even in the presence of the explosive behavior, the common

and idiosyncratic components are identified as I see in Theorem SA-1 of Appendix B.1 and so are

the factor loadings. Third, the origination dates of explosive behaviors in the common components

and in any idiosyncratic components are allowed to be heterogeneous because I implement the tests

series-by-series. One method of selecting the training sample is to use an existing date-stamping

method, such as in Phillips et al. (2011), to the cross-sectionally averaged series X̄t = N−1
∑N

i=1Xi,t.

2.4.2 Theoretical results

I next provide an asymptotic justification of the CS method. Note that the time dimension of the

testing period is now h instead of T ; hence, I consider the following Assumption 2.5 in place of

Assumption M.

Assumption 2.5. 1. The AR coefficients satisfy αh = 1+ c
kh

and ρi,h = 1+ ci
kh

, where c ≥ 0, ci ≥ 0

and kh is a deterministic sequence such that kh → ∞ and kh = o(h). 2. C(L) = 1 and Di(L) = 1

for all i.

I obtain the following results. For brevity, again, I provide a proof under i.i.d. assumptions,

setting C(L) = 1 and Di(L) = 1 in Appendix B.4. The case with an intercept is shown, while the

case with no intercept can be similarly given.

Theorem 2.2. Let Assumptions 2.1–2.5 hold. With c ≥ 0 and cj ≥ 0 for any j = 1, ..., N , the

following hold as N,T, h→ ∞.

(a: common tests) If c = 0,

t̄∗
F̃
⇒
(∫ 1

0 W̄ (r)dW (r)
)
/
[∫ 1

0 W̄ (r)2dr
]1/2

,
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if
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0 for any j. If c > 0, with π ∈ (0,∞) and Θ ≡ N(0, σ2/2c),

α−h
h t̄∗

F̃
≈


√

c
2σ2 |Θ| , if T/kh → 0√

c
2σ2

∣∣∣ FT√
T

√
π +Θ

∣∣∣ , if T/kh → π
,

α−h
h k

1/2
h T−1/2t̄∗

F̃
≈ √

c
2σ2

∣∣∣ FT√
T

∣∣∣ , if T/kh → ∞,

if αh
hhk

−1
h

min{N1/2,T 1/2} → 0 and
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0 for any j.

(b: idiosyncratic tests) If ci = 0,

t̄∗
Ũ
(i) ⇒

(∫ 1
0 W̄i(r)dWi(r)

)
/
[∫ 1

0 W̄i(r)
2dr
]1/2

.

if αh
hhk

−1
h

min{N,T 1/2} → 0 and
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0 for any j. If ci > 0, with π ∈ (0,∞) and Θi ≡

N(0, σ2i /2ci),

ρ−h
i,h t̄

∗
Ũ
(i) ≈


√

ci
2σ2

i
|Θi| , if T/kh → 0√

ci
2σ2

i

∣∣∣Ui,T√
T

√
π +Θi

∣∣∣ , if T/kh → π
,

ρ−h
i,h k

1/2
h T−1/2t̄∗

Ũ
(i) ≈

√
ci
2σ2

i

∣∣∣Ui,T√
T

∣∣∣ , if T/kh → ∞,

if αh
hhk

−1
h

min{N1/2,T 1/2} → 0 and
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0 for any j.

Theorem 2.2 shows that the CS method provides the test statistics that have the correct asymp-

totic size under the MLTU framework if the stated conditions on the relative rate among N , T,

and h hold. Under the alternative hypothesis, the tests are consistent and behave as follows. If kh

is faster than T so that T/kh → 0, then I obtain the limit involving the explosive sample thus |Θ|

and the test diverges to positive infinity at a rate of αh
h with probability one. If kh is slower than

T so that T/kh → ∞, then the test statistic scaled by α−h
h k

1/2
h T−1/2 is asymptotically dominated

by the absolute value of the initial value term. The test diverges to positive infinity at a rate of

αh
hk

−1/2
h T 1/2 with probability one. If T and kh grow at the same rate (T/kh → π), then both effects

are dominant and the test diverges to positive infinity at a rate of αh
h with probability one. More

importantly, the divergence becomes faster as the localizing coefficient c increases, which ensures

36



the monotonic power property of the CS test.

The added condition αh
hhk

−1
h

min{N1/2,T 1/2} → 0 (and
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0) requires h not to grow very

fast to eliminate the effects of factor estimation error. To obtain an intuition behind the condition,

I give a parametric example of kh = hκ where κ lies on (0, 1) and I let N = T for simplicity. Then,

the condition reduces to αh
hh

1−κ

T 1/2 → 0. Taking its logarithm and using log(αh) = ch−κ + o(1) yield,

ch1−κ + (1− κ) log(h)− 1

2
log(T ) → −∞.

Suppose c = 0.5. Then, I can show that this is satisfied when h grows at a rate of log(T ). As

another example, I set kh = h/ log(h). Then, the condition becomes

c log(h) + log(log(h))− 1

2
log(T ) → −∞. (2.4.1)

With c = 0.5, h is required to grow slower than T only slightly. Because the condition αh
hhk

−1
h

min{N1/2,T 1/2} →

0 (and
ρhj,hhk

−1
h

min{N1/2,T 1/2} → 0) requires h not to grow very fast, only the case of T/kh → ∞ applies in

most examples. However, T/kh → π and T/kh → 0 are also relevant when h is relatively fast. To

see this in the second example, I let T = h1−ϵ/ log(h) with ϵ ≥ 0. Then, T/kh → 1 when ϵ = 0 and

T/kh → 0 when ϵ > 0. In either case, (2.4.1) holds when c is sufficiently smaller than 1
2 . In the next

subsection, I consider the finite sample performance of the test via Monte Carlo simulation using

realistic values for the parameters and the sample size.

Remark 2.5. The key element of the CS method is estimation errors in the levels and the first

differences of the common factors as shown in Lemma B.6 (or Lemma B.11 for the demeaned

version) in Appendix B.4:

F̃t −HFt = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2, T 1/2}

)
,

f̃t −Hft = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2, T 1/2}

)
,

where ρh = maxi ρi,h. Hence, I extensively use them to prove Theorem 2.2.
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2.4.3 Finite sample properties

This subsection investigates the finite sample property of the CS method via Monte Carlo simula-

tions. The data are generated by the same model as in section 2.3.1. To investigate the validity

of theoretical results more directly, I set the AR coefficients to be α = 1 + c
hκ and ρi = 1 + ci

hκ ,

where c = ci = 0 for t = 1, ..., T and c, ci ≥ 0 for t = T + 1, ..., T + h, for any i. I use the sample

size N = 100 and T = 50 and two lengths of the explosive window h = 50 and 100. All λi, ui,t,

zi,t, F0, and U0,i are independently drawn from the standard normal quasi-random variables in each

replication. The size and power of the CS and PANIC tests in the explosive window are computed

at the 5% nominal level using 5,000 replications.

Table 2.3 presents the size of the common and idiosyncratic tests in the upper and lower panels,

respectively. The left and the right panels correspond to the h = 50 and 100 cases, respectively.

Consistent with the findings in section 2.3.1, the PANIC common test shows serious size distortions

when the idiosyncratic components are explosive and the PANIC idiosyncratic test becomes under-

sized when the common component is explosive when κ = 0.8 and c is large. Although the CS

common test also shows size distortions, these are considerably smaller than those in the PANIC

common tests. As for the CS idiosyncratic test, I now see over-rejections, especially when κ = 0.8

and c is large. This is consistent with the conditions provided in Theorem 2.2. In my unreported

results, I observe that the size of the CS test slightly improves as both N and T increase, although

the effect is not discernible. Figure 2.4.1 reports the power of both tests. Most importantly, the

bottom panels of Figure 2.4.1 suggest that the CS idiosyncratic test is free of the nonmonotonic

power problem. The power functions of the CS and PANIC common tests are similar because

the tests are asymptotically equivalent. In summary, the CS tests display size distortions when

the explosiveness is strong, but it performs well in general with a moderately explosive process

with κ being 0.85 or lower. The CS tests outweigh the PANIC tests with respect to the power of

idiosyncratic tests.

Finally, the CS method relies on the fundamental model assumptions that the factor loadings

and the number of factors are constant even when the explosive regime starts. I investigate the

consequences of instabilities pertaining to them. First, the factor loadings have structural changes

such that Xi,t = λiFt + Ui,t for t = 1, ..., T and Xi,t = (λi + ∆i)Ft + Ui,t for t = T + 1, ..., T + h,
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Table 2.3: Size of the CS and PANIC tests.

Common tests

h 50 50 50 50 100 100 100 100
κ 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95

CS
ci = 0.0 0.053 0.048 0.047 0.050 0.055 0.056 0.044 0.057

0.2 0.053 0.052 0.053 0.057 0.052 0.066 0.046 0.044
0.4 0.059 0.057 0.053 0.058 0.054 0.053 0.046 0.063
0.6 0.075 0.066 0.060 0.054 0.067 0.043 0.048 0.049
0.8 0.087 0.070 0.072 0.057 0.094 0.079 0.055 0.056
1.0 0.142 0.095 0.075 0.058 0.190 0.089 0.063 0.059

PANIC
ci = 0.0 0.048 0.047 0.050 0.056 0.054 0.052 0.043 0.055

0.2 0.056 0.054 0.053 0.056 0.054 0.073 0.044 0.043
0.4 0.063 0.059 0.050 0.059 0.061 0.060 0.045 0.063
0.6 0.097 0.069 0.067 0.053 0.095 0.050 0.050 0.053
0.8 0.238 0.114 0.092 0.064 0.209 0.108 0.067 0.054
1.0 0.872 0.280 0.125 0.085 0.814 0.192 0.086 0.068

Idiosyncratic tests

h 50 50 50 50 100 100 100 100
κ 0.80 0.85 0.90 0.95 0.80 0.85 0.90 0.95

CS
c = 0.0 0.067 0.063 0.056 0.043 0.050 0.055 0.054 0.048
0.2 0.068 0.046 0.057 0.043 0.051 0.062 0.041 0.054
0.4 0.049 0.048 0.049 0.052 0.057 0.053 0.055 0.045
0.6 0.079 0.069 0.074 0.063 0.055 0.060 0.052 0.062
0.8 0.108 0.066 0.076 0.064 0.116 0.090 0.065 0.058
1.0 0.206 0.122 0.069 0.064 0.219 0.103 0.078 0.065

PANIC
c = 0.0 0.068 0.062 0.058 0.037 0.049 0.057 0.054 0.042
0.2 0.064 0.047 0.050 0.042 0.048 0.064 0.044 0.043
0.4 0.044 0.044 0.055 0.057 0.048 0.043 0.055 0.047
0.6 0.059 0.059 0.052 0.054 0.046 0.053 0.041 0.058
0.8 0.038 0.040 0.052 0.046 0.027 0.046 0.051 0.051
1.0 0.031 0.039 0.042 0.044 0.025 0.037 0.052 0.048
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Figure 2.4.1: Power of the CS and PANIC tests.

where the change ∆i ∼ i.i.d.U [0, 1]. Second, I generate Ft and Ui,t via the same processes, but with

an additional common factor Gt = 0 for t ∈ [1, T ] and Gt = αGt−1+ vt for t ∈ [T +1, T +h], where

vt follows i.i.d.N(0, 1). Then, Xi,t = λiFt + Ui,t for t = 1, ..., T and Xi,t = λiFt + γiGt + Ui,t for

t = T +1, ..., T +h, where the new factor loadings are generated by γi ∼ i.i.d.N(0, 1). In both cases,

I implement the PANIC and CS tests in the same manner as the previous case without accounting

for such instabilities. Since the structural changes in the factor loadings and the presence of the

additional factor are most likely to occur simultaneously when Ft switches to the explosive regime,

I focus on the power of the tests. Figure 2.4.2 reports the power of the common and idiosyncratic

tests in the case of structural changes and Figure 2.4.3 presents them in the case of the new factor

for N = 100, T = 50, h = 100 and κ = 0.85. They show that the nonmonotonic power of the

idiosyncratic tests is still found in the PANIC tests, but it is resolved in the CS tests. The power

of the common tests is rarely affected by the structural changes, although I see some power loss in

the PANIC tests in Figure 2.4.2 and in the CS tests in Figure 2.4.3.
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Figure 2.4.2: Power of the CS and PANIC tests when the factor loadings have structural changes.
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Figure 2.4.3: Power of the CS and PANIC tests when a new factor appears.

2.5 Conclusions

In this study, I showed that, when the PANIC tests are applied to the explosive alternative hy-

pothesis, both the common and the idiosyncratic tests may exhibit serious size distortions. More

importantly, the idiosyncratic tests suffer from the nonmonotonic power problem. I then provide

a new CS method to disentangle the common and idiosyncratic components to obtain standard

monotonic power function. The proposed tests achieve the correct asymptotic size and are consis-

tent under the MLTU framework. A Monte Carlo simulation shows that the CS test for common

components considerably reduces size distortions and the CS test for idiosyncratic components is

robust to the nonmonotonic power problem.

This study has several implications. First, the nonmonotonic power problem can occur not only

in certain structural change tests, as shown in Perron and Yamamoto (2016), but also in more
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general circumstances in which important model parameters are not correctly identified under the

alternative hypothesis. Earlier studies such as Müller and Elliott (2003) argued that Elliott et

al.’s (1996) efficient unit root tests may have power that drops to zero when the initial value is

moderately large. This study uncovers another possibility of the nonmonotonic power problem in

unit root testing when unobserved common and idiosyncratic components are misidentified. Second,

asymptotic frameworks that allow general deviations from the null hypothesis, such as the MLTU of

Phillips and Magdalinos (2007), are extremely useful in approximating such phenomena. Third, the

proposed method can potentially extend the right-tailed PANIC tests to various empirical analyses,

including testing financial bubbles (see Phillips et al., 2011) in large panel data and factor-augmented

regressions (see Stock & Watson, 2016). A caveat is that the proposed method is not free from size

distortions when the other nuisance components are strongly explosive. In addition, the relevance

of the constant factor loading assumption must be assessed in particular empirical settings. These

issues should be carefully incorporated in future studies.
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Chapter 3

Date-Stamping the Origination of

Explosive Behaviors in the Large

Dimensional Factor Model1

3.1 Introduction

Testing for speculative bubbles in asset prices is a long-standing problem for which numerous econo-

metric techniques have been developed. The most recent studies include the seminal work of Phillips

et al. (2011) which linked speculative bubbles to explosive behaviors of asset prices.2 Their strategy

is to fit a univariate AR model and test whether the root is greater than unity. Although this chap-

ter is motivated by these studies, it explicitly accounts for empirical facts, such as the speculative

bubbles that prevailed in global as well as individual markets during the period of exuberance. It is

important to investigate whether these bubbles are an economy-wide phenomenon or market-specific

events. To address this question, I formally analyze how panel data of asset prices comove in an

explosive environment. A common practice in the empirical finance literature is to assume a linear

factor structure in panel data of asset prices. A short list of major works includes Fama and French

(1993), Litterman and Scheinkman (1991), and Ang and Piazzesi (2003), who examined stock and
1This chapter is a joint work with Yohei Yamamoto.
2Phillips et al. (2011) and Phillips and Yu (2011) developed methods for a single bubble. Phillips et al. (2015a,

2015b) modified this to account for multiple bubbles. For other testing methods, see Gürkaynak (2008) and Homm
and Breitung (2012).
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bond prices. Del Negro and Otrok (2007), Stock and Watson (2008) and Moench and Ng (2011)

applied the factor model to U.S. house prices.

In the previous chapter, I adopt the framework of principal component estimation of the large

dimensional approximate factor model developed by Stock and Watson (2002a), Bai (2003) and Bai

and Ng (2002, 2004). Specifically, Bai and Ng (2004) proposed PANIC framework to test for the

unit root against stationarity in the common and idiosyncratic components of the factor model.

They showed that the standard ADF tests applied to the common and idiosyncratic components

have good size and power for the left-tailed version of the ADF tests. However, the previous

chapter discovered that the ADF tests in the PANIC framework have very different size and power

properties when the right-tailed versions are considered in an explosive environment. First, the test

for the common component suffers from serious size distortions when the idiosyncratic components

are explosive. Second, the test for the idiosyncratic components exhibits the nonmonotonic power

problem, that is, the power can go down to zero when the idiosyncratic component is moderately

or strongly explosive. To address these problems, I proposed a method based on cross-sectional

regressions to disentangle the common and idiosyncratic components.

In this study, I apply the date-stamping methodology for the origination of explosive behaviors

proposed in the seminal work of Phillips et al. (2011) to the large dimensional factor model. To

this end, I compare two methods of identifying the common and idiosyncratic components: PANIC

and CS. Monte Carlo simulations show that when the explosive behavior lies only in the common

component, the origination date is precisely estimated by either the PANIC or CS method. However,

when the explosive behaviors exist in the idiosyncratic components, PANIC method loses its power

of detection and the origination dates become inaccurate. I also show that these problems are

resolved by using the CS method, although some tendency of overdetection is observed when the

idiosyncratic components are strongly explosive.

The remainder of this chapter is organized as follows. In section 3.2, I introduce the model. In

section 3.3, I explain the date-stamping methodology of Phillips et al. (2011) and two approaches

to disentangle the common and idiosyncratic components. In section 3.4, I implement Monte Carlo

simulations to assess the empirical probability of correctly or incorrectly detecting explosive behav-

iors and the accuracy of the date-stamping strategies. Section 3.5 is the conclusion.
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3.2 Model

I assume that a panel data set of asset prices follow the factor model:

Xi,t = µi + λ′iFt + Ui,t, for i = 1, ..., N and t = 1, ..., T, (3.2.1)

where Xi,t is a scalar of the observed asset price with subscripts i and t indicating cross-section and

time, respectively. In addition, µi is a cross-section specific intercept, Ft and λi are r× 1 vectors of

the common factors and factor loadings, respectively, and Ui,t is a scalar idiosyncratic component.

The cross-section and time dimensions N and T are large, while the number of factors r is small

indicating that the large dimensional panel data is driven by a small number of factors. For the

moment, I consider r = 1. I assume that the common factor and the idiosyncratic components

follow the first-order AR processes: Ft = αFt−1 + et and Ui,t = ρiUi,t−1 + zi,t, where α and ρi are

the AR coefficients and et and zi,t are stationary disturbances, respectively. I assume et and zi,t for

any i are mutually independent for all leads and lags.

The fact that the asset price Xi,t follows a random walk is consistent with the efficient market

hypothesis (Fama, 1970). Therefore, during normal times, both Ft and Ui,t follow a random walk

(α = ρi = 1). When asset price Xi,t is subject to a speculative bubble, it exhibits explosive behavior,

such that α > 1 and/or ρi > 1. Thus, I allow for regimes that switch between the random walk

and the explosive process in the common and idiosyncratic components. For simplicity, I consider

a single bubble in each component so that

Ft =


αFt−1 + et, for TF

e + 1 ≤ t ≤ TF
f ,

Ft−1 + et, otherwise,
(3.2.2)

where TF
e and TF

f are the origination and termination dates of the bubble in the common component.

Further,

Ui,t =


ρiUi,t−1 + zi,t, for TUi

e + 1 ≤ t ≤ TUi
f ,

Ui,t−1 + zi,t, otherwise,
(3.2.3)

where TUi
e and TUi

f are the origination and termination dates of the bubble in the ith idiosyncratic
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component. As Xi,t exhibits bubble when either Ft or Ui,t does so, the bubble in Xi,t starts at

TXi
e = min{TF

e , T
Ui
e } and ends at TXi

f = max{TF
f , T

Ui
f }. If these do not overlap, multiple bubbles

appear in Xi,t. I let h = TXi
f − TXi

e be the length of the explosive period.

When r > 1, one can consider the common factors series-by-series to investigate whether the

common factor space is explosive. This is adequate because the existence of at least one explosive

factor implies that the whole space is explosive. This contrasts with the case of investigating station-

arity of common factor space. As Bai and Ng (2004) point out, random walks of individual factors

do not necessarily imply a random walk for the common factor space if they have a cointegration

relationship and a separate treatment may be needed.

I consider the AR coefficients in the explosive period in the forms of

α = 1 +
c

kh
and ρi = 1 +

ci
kh
, (3.2.4)

where c and ci ≥ 0 for all i are the localizing coefficients. I follow Phillips and Magdalinos (2007) to

assume kh → ∞ and kh/h→ 0 as h→ ∞ to justify the use of the methods of Phillips et al. (2011)

and the previous chapter.

3.3 Date-stamping methodology

3.3.1 Univariate time series

Phillips et al. (2011) proposed the following methodology for date-stamping explosive behavior in a

univariate time series, say Yt for t = 1, ..., T . I denote the ADF test using the subsample t = 1, ..., T0,

where 1 < T0 < T of Yt by ADF [1,T0]
Y ; that is, a t-test statistic for the coefficient δY in the regression

Yt − Yt−1 = µY + δY Yt−1 + error. Thus, I construct a sequence of the ADF test statistics, starting

from sample t ∈ [1, T0] with T0 being the minimal amount of data, and extending forward [1, T0+1],

[1, T0 + 2], ..., [1, T ]. I identify explosive behaviors when the test statistic exceeds the critical value

(cvt), diverging to infinity as T → ∞, so that the origination date is estimated by:

T̂ Y
e = inf

T0≤t≤T
{t : ADF [1,t]

Y > cvt}.
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In practice, I follow Phillips et al.(2011, 2015a, 2015b) and set the critical value diverging at a rate

of double logarithms. I apply this method to the estimated common and idiosyncratic components

identified by the following methods.

3.3.2 Identifying the common and idiosyncratic components

3.3.2.1 The PANIC method

The first approach to identifying the common and idiosyncratic components is the PANIC method

proposed by Bai and Ng (2004). The main concept is simple. I use the principal component method

of the first-differenced data (xi,t = Xi,t−Xi,t−1) for the entire sample to estimate the first-differenced

common components (ft = Ft − Ft−1) and the idiosyncratic components (ui,t = Ui,t − Ui,t−1).

Then, the levels of the common and idiosyncratic components are recovered by accumulating their

differences. The algorithm is described as follows.

1. Take first-differences of the observed data xi,t = Xi,t −Xi,t−1 for t = 2, ..., T .

2. Obtain the principal component estimate of the common components (f̂t, t = 2, ..., T ) out

of xi,t as follows. Let x be a (T − 1) × N matrix, with the (t, i)th element being xi,t+1 and

f̂ = [f̂2, ..., f̂T ]
′ be a (T − 1)× r matrix of an estimate for the common component. Then, f̂ is

the
√
T − 1 times the eigenvectors of xx′ corresponding to the r largest eigenvalues. The factor

loadings and the first-differenced idiosyncratic components are estimated by λ̂ = x′f̂/(T − 1),

where λ̂ = [λ̂1, ..., λ̂N ]′ an N × r matrix, and ûi,t = xi,t − λ̂′if̂t for i = 1, ..., N and t = 2, ..., T ,

respectively.

3. The levels of the common and idiosyncratic components are obtained by F̂t =
∑t

s=2f̂s and

Ûi,t =
∑t

s=2ûi,s, for i = 1, . . . , N and t = 2, . . . , T , respectively.

Bai and Ng (2004) considered the left-tailed ADF test for the common and idiosyncratic components

for the null hypothesis of unit root against an alternative hypothesis of stationarity. They showed

that the tests for either component have the same asymptotic distribution as N,T → ∞ and good

size and power in finite samples. However, the property of the right-tailed version of the ADF test

was not investigated.
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3.3.2.2 The CS method

The previous chapter thoroughly investigated the right-tailed version of the ADF tests under the

PANIC framework. It showed that the test for the common component suffers from serious size

distortions when the idiosyncratic components are explosive. It also showed that the test for the

idiosyncratic components exhibits the nonmonotonic power problem such that the power can go

down to zero when the idiosyncratic component is moderately or strongly explosive, because they

may be misidentified as the common component. To address these problems, it proposed a method

based on cross-sectional regressions to disentangle the common and idiosyncratic components. The

algorithm is described as follows.

1. Divide the entire sample period (t = 1, ..., T ) into two: the training sample (t = 1, ..., T1) and

the testing sample (t = T1 + 1, ..., T ). The training sample must be selected such that no

explosive series or only weakly explosive series are included.

2. Use the first-differenced data xi,t in the training sample to estimate the first-differences of the

common components and the factor loadings by the principal component method. Denote

the first-differenced common components, the level estimates, and the factor loadings by f̂t

and F̂t =
∑t

s=2f̂s for t = 2, ..., T1 and λ̂∗i for i = 1, ..., N . The first differences of the

idiosyncratic components are obtained by ûi,t = xi,t−λ̂∗′i f̂t and the level estimates are obtained

by Ûi,t =
∑t

s=2ûi,s for t = 2, ..., T1 in the training sample.

3. In the testing sample for t = T1+1, ..., T , the common factor is estimated by the cross-sectional

regression with Xi,t and λ̂∗i as the regressand and regressors for i = 1, . . . , N

F̂t =
(∑N

i=1λ̂
∗
i λ̂

∗′
i

)−1 (∑N
i=1λ̂

∗
iXi,t

)
,

and the idiosyncratic components are estimated by Ûi,t = Xi,t − λ̂∗′i F̂t. Their first-differences

are f̂t = F̂t − F̂t−1 and ûi,t = Ûi,t − Ûi,t−1, respectively, for t = T1 + 1, ..., T .

In practice, this method requires us to select the sample demarcation point (t = T1) in Step 1.

Ideally, the training sample should be the longest possible, as far as the factor loading estimates

λ̂∗i are not contaminated by the inclusion of explosive series in the sample. Hence, I wish to select

48



the sample [1, T1] in which no or only weakly explosive series are included in the data Xi,t. A

simple scheme is to apply the aforementioned date-stamping method to the cross-sectional average

X̄t = N−1
∑N

i=1Xit for t = 1, ..., T and use the estimated origination date as T1 + 1. This criterion

would be justified by the fact that, when some series start to be explosive, the average (X̄t) also

exhibits explosive behavior. A more direct criterion is given by the date-stamping method applied

to the estimated common component via the full-sample PANIC method. This is because the factor

loading estimate will not be contaminated as long as the factor estimate is not contaminated. I will

use both criteria in the following section.

3.4 Monte Carlo simulations

In this section, I conduct Monte Carlo simulations to investigate the empirical probability of de-

tecting explosive behaviors by the proposed procedures. I also assess the accuracy of the origination

date when the explosive behavior is present and detected.

I first generate data using models (3.2.1), (3.2.2), (3.2.3), and (3.2.4), where r = 1 and µi = 0

for all i. I set the following two experiments. In the first experiment, I generate data with explosive

behavior only in the common component, such that c > 0 and ci = 0 for all i. In the second

experiment, the data contains explosive behaviors in all the idiosyncratic components but not in

the common component so that c = 0 and ci > 0 for all i. In both experiments, I identify the

common and idiosyncratic components and implement the aforementioned date-stamping method

for both components, enabling the study of correct and false detections. To report the results of

the idiosyncratic components, I particularly select the first cross-section unit. This choice loses no

generality as the model is symmetric for cross-section units.

I implement the following steps in each Monte Carlo replication. If the sequence of ADF test

statistics exceeds the critical value for more than four consecutive periods, the first date when the

test statistic exceeds the critical value is recorded as the origination dates: T̂F
e for the common com-

ponent and T̂Ui
e for the idiosyncratic components. The critical values are set at cvt = log(log(t))/1.5

following Phillips et al.’s (2011, 2015ab) recommendation for the rate of double logarithms. The

scale constant 1.5 is chosen such that the false detection rate becomes approximately 5% in my

setting by a separate simulation. Based on 5,000 replications, I compute the empirical probability
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that the explosive behavior is not detected falsely when there is an explosive behavior in the model.

I also compute the empirical probability that the explosive behavior is incorrectly detected when

there is no explosive behavior in the model. These are called error rates. Given that the bubble

is correctly detected, I compute the averages of
(
T̂F
e −Te

T

)
and

(
T̂Ui
e −Te

T

)
across replications as the

bias and the mean squared error (MSE) of T̂F
e
T and T̂Ui

e
T . I present the case of N = 100, T = 200,

TF
e = TUi

e = 40, and TF
f = TUi

f = 80 so that the duration of the bubble is h = 40. However,

reasonable variations regarding the model setting do not affect qualitative results. The minimal

amount of data is set at T0 = [r0T ], where r0 = 0.01 + 1.8/
√
T , following Phillips et al. (2015a).

Because I am interested in how the results change as the AR coefficients varies, a set of values for c

and ci = [0.2, 0.4, . . . , 2.0] is considered in the AR coefficients (3.2.4) with kh = hκ and κ = 0.85. I

compare the error rates for the common and idiosyncratic components, the bias, and the MSE for

the PANIC, CS1, and CS2 methods, where CS1 uses X̄t and CS2 uses F̂t to select the end of the

training sample (T1). I also compute the error rates, the bias and the MSE when the true common

and idiosyncratic components are used and these are labeled “Observed”. These results are free from

the effects of identification scheme and thus serve as a benchmark.

Figure 3.4.1 shows the results of the origination date for the case of explosive behavior in the

common component but not in the idiosyncratic components. The error rate for the common

component is high when c is small, however, it steadily declines as c increases. This corresponds

to the standard power curve of the ADF test against the explosive alternative hypothesis. The

error rate for the idiosyncratic components remains low in any methods, however, I observe some

tendency for overdetection of CS1 and CS2 when the common component are strongly explosive.

This reflects the size-distortions of the CS based test for idiosyncratic components documented by

the previous chapter. There is no large differences in the biases and the MSEs across the four

methods in this case. Overall, PANIC shows very similar properties to the Observed, which proves

the usefulness of PANIC in this case. However, the results of CS1 and CS2 do not differ much from

them.

Figure 3.4.2 in turn presents the results of the origination date for the case when the idiosyn-

cratic components have explosive behaviors but the common component does not. Remarkably,

the error rate for the common component when using PANIC rapidly increases to one. This cor-

responds to the size distortion of the ADF test for the common component when the idiosyncratic
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Figure 3.4.1: Bias, MSE and error rates when the explosive behavior is in the common components.
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Figure 3.4.2: Bias, MSE and error rates when the explosive behaviors are in the idiosyncratic
components.

components are explosive. This occurs because PANIC misidentifies the common and idiosyncratic

components and suffers from spurious explosive behavior in the former. More interestingly, the

error rate for idiosyncratic components when using PANIC remains very close to one. This is due to

the nonmonotonic power problem of the ADF test applied to the idiosyncratic components pointed

out in the previous chapter. These imply that the explosive behavior in the common component is

falsely detected and the explosive behaviors in the idiosyncratic components are hardly detected by

PANIC. In contrast, the error rates of the idiosyncratic components when using CS1 or CS2 show

similar patterns to that of the Observed. The error rates of the common component when using

CS1 and CS2 are low, although I see some tendency for overdetection when ci becomes large. The

bias and the MSE when using PANIC are high across all values of ci, however, when using CS1

or CS2, the values are very low and similar to those of the Observed. Finally, although the bias

and MSE are very similar for CS1 and CS2, the latter tends to provide a lower error rate than the

former in these experiments.
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In summary, the properties of the right-tailed unit root tests investigated in the previous chapter

are passed over to the date-stamping of explosive behavior. When it lies only in the common

component, the origination date is precisely estimated by either PANIC or CS. However, when

the explosive behaviors exist in the idiosyncratic components, PANIC loses its power of detection

and the origination date is inaccurate. These problems are addressed by using CS, although some

tendency for overdetection is observed when the idiosyncratic components are strongly explosive.

3.5 Conclusions

In this study, I applied the date-stamping methodology for the origination of explosive behaviors

proposed in the seminal work of Phillips et al. (2011) to the large dimensional common factor model.

To this end, I compared two methods of identifying the common and idiosyncratic components:

PANIC and CS. As discovered by the previous chapter, when the PANIC method is used, the ADF

test for the common component may suffer from serious size distortions and that for the idiosyncratic

components exhibits the nonmonotonic power problem. These features are passed over to the study

regarding date-stamping. Monte Carlo simulations show that, when the explosive behavior lies only

in the common component, the origination date is precisely estimated by either the PANIC or the CS

method. However, when the explosive behaviors exist in the idiosyncratic components, the PANIC

method loses its power of detection and the origination dates are inaccurate. These problems are

resolved by using the CS method, although some tendency of overdetection is observed when the

idiosyncratic components are strongly explosive.
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Appendix A

Proofs of Theorems in Chapter 1

A.1 Preliminaries for Theorem 1.1

Let VNT be an r × r diagonal matrix of the first r largest eigenvalues of (NT )−1XX ′ and the kth

eigenvalue be vNT,k. Let H = (Λ′Λ/N)(F ′F̂ /T )V −1
NT = (h1, . . . , hr) be an r × r rotation matrix

where hk is the kth column. I also use the notation δNT = min(
√
N,

√
T ). The following identity

equation holds.

f̂k,t = h′kft + uk,t,

where

uk,t = v−1
NT,k

(
T−1

∑T

s=1
f̂k,sγst + T−1

∑T

s=1
f̂k,sζst + T−1

∑T

s=1
f̂k,sηst + T−1

∑T

s=1
f̂k,sξst

)
,

with γs,t = N−1
∑N

i=1E(ei,sei,t), ζst = N−1[e′tes − E(e′tes)], ηst = N−1f ′sΛ
′et and ξst = N−1f ′tΛ

′es.

Proposition A.1. Under Assumptions 1.1–1.4, the following hold.

1. T−1
∑T

t=1(f̂k,t − h′kft)
2 = Op(δ

−2
NT ),

2. VNT = Op(1),

3. hk = Op(1),

4. T−1
∑T

t=1

∑T
s=1 γ

2
st ≤ m,
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5. E
(
T−1

∑T
t=1

∥∥N−1/2Λ′et
∥∥2) ≤ m.

Proof. First three propositions are shown in Bai (2003). Proof of 1 is Lemma A.1 of Bai (2003).

Proof of 2 and 3 are implicitly shown by Lemma A.3 of Bai (2003). The last two propositions are

shown in Lemma 1.(i) and Lemma 1.(ii) of Bai and Ng (2002).

Lemma A.1. Under Assumptions 1.1–1.4, I have

1. T−2
∑T

t=1

∑T
s=1 f̂k,sγst = Op(T

− 1
2 δ−1

NT ),

2. T−2
∑T

t=1

∑T
s=1 f̂k,sζst = Op(T

− 1
4N− 1

2 ),

3. T−2
∑T

t=1

∑T
s=1 f̂k,sηst = Op(T

− 1
2N− 1

2 ),

4. T−2
∑T

t=1

∑T
s=1 f̂k,sξst = Op(T

− 3
4N− 1

2 ),

5. T−1
∑T

t=1(f̂k,t − h′kft)
3 = Op(δ

−3
NT ),

6. T−1
∑T

t=1(f̂k,t − h′kft)
4 = Op(δ

−4
NT ).

Proof. These can be proved almost the same way as Lemma A.2 in Bai (2003).

1. Let us consider

T−2
∑T

t=1

∑T

s=1
f̂k,sγst = T−2

∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
γst + T−2

∑T

t=1

∑T

s=1
h′kfsγst.

The first term is

∣∣∣∣T−2
∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
γst

∣∣∣∣ ≤ T− 3
2

∑T

t=1

[
T−1

∑T

s=1

(
f̂k,s − h′kfs

)2] 1
2
(∑T

s=1
γ2st

) 1
2

.

Because T−1/2
∑T

t=1 |yt|1/2 ≤ (
∑T

t=1 |yt|)1/2 , I have

T− 3
2

∑T

t=1

(∑T

s=1
γ2st

) 1
2

≤ T− 1
2

(
T−1

∑T

t=1

∑T

s=1
γ2st

) 1
2

,

by Proposition A.1.4. Therefore, this is Op(T
− 1

2 δ−1
NT ) by Proposition A.1.1. The second term

without h′k is Op(T
−1) since

E

∥∥∥∥T−1
∑T

t=1

∑T

s=1
fsγst

∥∥∥∥ ≤
(

max
1≤s≤T

E ∥fs∥
)
T−1

∑T

t=1

∑T

s=1
|γst| ≤ m,
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by Assumptions 1.1.1 and 1.3.4. Hence, the lemma holds.

2. Consider

T−2
∑T

t=1

∑T

s=1
f̂k,sζst = T−2

∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
ζst + T−2

∑T

t=1

∑T

s=1
h′kfsζst.

The first term is Op(N
− 1

2 δ−1
NT ) by Bai (2003). The second term without h′k is

∥∥∥∥T−2
∑T

t=1

∑T

s=1
fsζst

∥∥∥∥ ≤ T− 1
4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

T−1
∑T

t=1

(
T−1

∑T

s=1
ζ2st

) 1
2

= T− 1
4Op (1)Op

(
N− 1

2

)
.

This is because the first set of parentheses is Op(1) by Assumption 1.1.3. The second set of

parentheses is shown in Bai (2003) and is Op(N
− 1

2 ). Hence, the lemma holds.

3. Consider

T−2
∑T

t=1

∑T

s=1
f̂k,sηst = T−2

∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
ηst + T−2

∑T

t=1

∑T

s=1
h′kfsηst.

The first term is

∣∣∣∣T−2
∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
ηst

∣∣∣∣ ≤ [T−1
∑T

t=1

(
f̂k,s − h′kfs

)2] 1
2

T−1
∑T

t=1

(
T−1

∑T

s=1
η2st

) 1
2

.

The second set of parentheses is

T−1
∑T

t=1

(
T−1

∑T

s=1
η2st

) 1
2

≤ T− 1
2

(
T−1

∑T

t=1

∑T

s=1
η2st

) 1
2

,

= T− 1
2

(
T−1

∑T

t=1

∑T

s=1

(
N−1f ′sΛ

′et
)2) 1

2

,

≤ T− 1
4N− 1

2

(
T−1

∑T

t=1

∥∥∥N− 1
2Λ′et

∥∥∥2 T− 1
2

∑T

s=1
∥fs∥2

) 1
2

,

= Op

(
T− 1

4N− 1
2

)
,

by Assumption 1.1.3 and Proposition A.1.5. Therefore the first term is Op(T
− 1

4N− 1
2 δ−1

NT ).
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The second term without h′k is

∥∥∥∥T−2
∑T

t=1

∑T

s=1
fsηst

∥∥∥∥ ≤ T− 1
4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

T−1
∑T

t=1

(
T−1

∑T

s=1
η2st

) 1
2

.

Therefore, this is Op(T
− 1

2N− 1
2 ). Hence, the lemma holds.

4. Consider

T−2
∑T

t=1

∑T

s=1
f̂k,sξst = T−2

∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
ξst

+T−2
∑T

t=1

∑T

s=1
h′kfsξst,

= T−2N−1
∑T

t=1

∑T

s=1

(
f̂k,s − h′kfs

)
e′sΛft

+T−2N−1
∑T

t=1

∑T

s=1
h′kfse

′
sΛft.

The first term is Op(N
− 1

2 δ−1
NT ) by Bai (2003). The second term without h′k is

∥∥∥∥T−2N−1
∑T

t=1

∑T

s=1
fse

′
sΛft

∥∥∥∥ ≤ T− 3
4N− 1

2

∥∥∥∥T− 1
2

∑T

t=1
ft

∥∥∥∥(T− 1
2

∑T

s=1
∥fs∥2

) 1
2

×
(
T−1

∑T

s=1

∥∥∥N− 1
2 e′sΛ

∥∥∥2) 1
2

.

The third set of parentheses is bounded by Proposition A.1.5. Therefore, this is Op(T
− 3

4N− 1
2 )

and the lemma holds.

5. Using Lemma A.1.6,

∣∣∣∣T−1
∑T

t=1

(
f̂k,t − h′kft

)3∣∣∣∣ ≤
[
T−1

∑T

t=1

(
f̂k,t − h′kft

)2] 1
2
[
T−1

∑T

t=1

(
f̂k,t − h′kft

)4] 1
2

= Op

(
δ−1
NT

)
×Op

(
δ−2
NT

)
= Op

(
δ−3
NT

)
.

Therefore, the lemma holds.

6. Because Hölder’s inequality implies (x+ y + z + u)4 ≤ 43(x4 + y4 + z4 + u4) , I obtain

(
f̂k,t − h′kft

)4
≤ v̂−4

NT,k4
3
(
a2t + b2t + c2t + d2t

)
,
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where at = (T−1
∑T

s=1 f̂k,sγst)
2, bt = (T−1

∑T
s=1 f̂k,sζst)

2, ct = (T−1
∑T

s=1 f̂k,sηst)
2 and dt =

(T−1
∑T

s=1 f̂k,sξst)
2. Because at is positive,

T−1
∑T

t=1
a2t ≤

(
T−1

∑T

t=1
at

)2

.

In addition, T−1
∑T

t=1 at = Op

(
T−1

)
by Bai and Ng (2002). Hence, T−1

∑T
t=1 a

2
t = Op

(
T−2

)
.

Similarly,

T−1
∑T

t=1 b
2
t = Op

(
N−2

)
, T−1

∑T
t=1 c

2
t = Op

(
N−2

)
, T−1

∑T
t=1 d

2
t = Op

(
N−2

)
.

Therefore, T−1
∑T

t=1(f̂k,t − h′kft)
4 = Op(δ

−4
NT ).

Lemma A.2. Under Assumptions 1.1–1.4,

1. µ̂fk,1 = T−1
∑T

t=1 h
′
kft +Op(T

− 1
4N− 1

2 ),

2. µ̂fk,2 = T−1
∑T

t=1[(ft − µf1)
⊗2]′h⊗2

k +Op(T
− 1

4N− 1
2 ),

3. µ̂fk,3 =
T−1

∑T
t=1[(ft − µf1)

⊗3]′h⊗3
k − 3T−1

∑T
t=1[(ft − µf1)

⊗2]′h⊗2
k T−1

∑T
t=1(ft − µf1)

′hk

+Op(T
− 1

4N− 1
2 ).

Proof.

1. Consider

µ̂fk,1 = T−1
∑T

t=1
f̂k,t

= T−1
∑T

t=1
h′kft + T−1

∑T

t=1
uk,t.
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The second term is

T−1
∑T

t=1
uk,t = v−1

NT,k

 T−2
∑T

t=1

∑T
s=1 f̂k,sγst + T−2

∑T
t=1

∑T
s=1 f̂k,sζst

+T−2
∑T

t=1

∑T
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∑T
t=1

∑T
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= OP (1)

 Op

(
T− 1

2 δ−1
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)
+Op

(
T− 1

4N− 1
2

)
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(
T− 1

2N− 1
2

)
+Op

(
T− 3

4N− 1
2

)


= Op

(
T− 1

4N− 1
2

)

by Proposition A.1.2 and Lemmas A.1.1 to A.1.4. Hence the lemma holds.

2. Consider

µ̂fk,2 = T−1
∑T

t=1

(
f̂k,t − µ̂fk,1

)2

= T−1
∑T

t=1



f̂k,t − h′kft︸ ︷︷ ︸
=A1

+h′kft − h′kµ
f
1︸ ︷︷ ︸

=A2

+h′kµ
f
1 − T−1

T∑
s=1

h′kfs︸ ︷︷ ︸
=A3

−T−1
T∑

s=1

uk,s︸ ︷︷ ︸
=A4



2

.

I consider the sums of squares of each term. T−1
∑T

t=1A
2
1 is

T−1
∑T

t=1

(
f̂k,t − h′kft

)2
= OP

(
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)
by Proposition A.1.1. T−1

∑T
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2
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T∑
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(
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f
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∑T
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∑T
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[(
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2

∑T
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))′
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]2
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(
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)
by Assumption 1.1.3. T−1

∑T
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2
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∑T
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(
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∑T
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=
[
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(
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2

)]2
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(
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)
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by Lemma A.2.1. T−1
∑T

t=1A1A2 is

∣∣∣∣T−1
∑T

t=1

(
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)(
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f
1
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∥∥∥ ∥hk∥
≤ T− 1

4
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∑T

t=1

(
f̂k,t − h′kft
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2
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∥∥∥2) 1
2
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(
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)

by Assumption 1.1.3 and Proposition A.1.1. T−1
∑T

t=1A2A3 is
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(
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f
1
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f
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(
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2

∑T
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(
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)
by Assumption 1.1.3. T−1

∑T
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∑T
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(
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f
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T∑
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h′kfs

)(
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∑T
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)
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(
T− 1

2

)
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(
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2

)
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(
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2

)

by Lemma A.2.1. T−1
∑T
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∑T
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(
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)
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(
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(
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)
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by Lemma A.2.1. T−1
∑T

t=1A2A4 is

T−1
∑T
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(
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f
1

)(
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s=1
uk,s
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(
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)
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)
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(
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)

by Lemma A.2.1. Therefore,

T−1
∑T
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(
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ft − µf1

)⊗2
]′
h⊗2
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)
.

3. Consider

µ̂fk,3 = T−1
∑T
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3 .
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∑T
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)
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)
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by Lemma A.1.6 and Assumption 1.1.3. T−1
∑T
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2
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)

by Proposition A.1.1 and Lemma A.2.1. T−1
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t=1A
2
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(
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)
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by Assumption 1.1.3 and Lemma A.2.1. T−1
∑T
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2
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∥∥∥2 ∥hk∥2
×
∣∣∣∣T−1

∑T

t=1

(
f̂k,t − h′kft

)∣∣∣∣
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)
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)
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∑T
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=
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by Assumption 1.1.3 and Lemma A.2.1. T−1
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)∣∣∣∣
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)

by Assumption 1.1.3, Proposition A.1.1 and Lemma A.2.1. T−1
∑T
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)
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Therefore,

µ̂k,3 = T−1
∑T

t=1
A3

2 + T−1
∑T

t=1
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2A3 +Op
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T− 1
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NT
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k

− 3T−1
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h⊗2
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Hence, the lemma holds.

Let αk be the probability limit of α̂k whereα̂k = (h⊗3′
k , (−3µf ′2 h

⊗2
k h′k))

′.

Lemma A.3. Under Assumptions 1.1–1.4,

T− 1
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T∑
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â′1ẑ1,t

...

â′rẑr,t

 =


α̂′
1

...

α̂′
r

T− 1
2

T∑
t=1

zt +Op

(
T

1
4N− 1

2

)
(A.1.1)

Proof. It is sufficient to show that (A.1.1) holds for the kth element. By using Lemma A.2, the kth

element of (A.1.1) can expand as follows.
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Consider I.

T− 1
2

T∑
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with τ fk = 0.
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Lemma A.4. Under Assumptions 1.1–1.4,
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µ̂fk,3 − µf ′3 h

⊗3
k

)
= T− 1

2

T∑
t=1

{(
ft − µf1

)⊗3
− µf3

}′
h⊗3
k

− 3T−1
T∑
t=1

[(
ft − µf1

)⊗2
]′
h⊗2
k T− 1

2

T∑
s=1

(
ft − µf1

)′
hk +Op

(
T

1
4N− 1

2

)
,

by Lemma A.2.3. Consider II. The delta method implies

(
µ̂fk,2

) 3
2 −

(
µf ′2 h

⊗2
k

) 3
2
=

3

2

(
µf ′2 h

⊗2
k

) 1
2
[
µ̂fk,2 − µf ′2 h

⊗2
k

]
+ op (1) .

Therefore,

√
T
(
µ̂fk,2 − µf ′2 h

⊗2
k

)
= T− 1

2

T∑
t=1

[(
ft − µf1

)⊗2
− µf2

]′
h⊗2
k +Op

(
T

1
4N− 1

2

)
,
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by Lemma A.2.2. Now I obtain

√
T
(
τ̂ fk − ψf

k

)
=

(
µ̂fk,2

)− 3
2
√
T
(
µ̂fk,3 − µf ′3 h

⊗3
k

)
−
(
µ̂fk,2

)− 3
2
ψf
k

√
T

[(
µ̂fk,2

) 3
2 −

(
µf ′2 h

⊗2
k

) 3
2

]
,

=
(
µ̂fk,2

)− 3
2

 T− 1
2
∑T

t=1

[(
ft − µf1

)⊗3
− µf3

]′
h⊗3
k

−3T−1
∑T

t=1

[(
ft − µf1

)⊗2
]′
h⊗2
k T− 1

2
∑T

s=1

(
ft − µf1

)′
hk +Op

(
T

1
4N− 1

2

)
 ,

− (µ̂k,2)
− 3

2
3

2
ψf
k

(
µf ′2 h

⊗2
k

) 1
2

(
T− 1

2

T∑
t=1

[(
ft − µf1

)⊗2
− µf2

]′
h⊗2
k +Op

(
T

1
4N− 1

2

))
.

Note that

zt =

([(
ft − µf1

)⊗3
− µf3

]′
,
(
ft − µf1

)′)′

.

Hence,

√
T τ̂k = (µ̂k,2)

− 3
2

(
T− 1

2

T∑
t=1

α̂′
kzt

)
+Op

(
T

1
4N− 1

2

)
,

with τ fk = 0 for all k.

A.2 Proof of Theorem 1.1

Proof. By using Lemma A.4, I obtain

√
T τ̂ f =

√
T
(
τ̂ f1 , · · · , τ̂

f
r

)′
,

=


µ̂f1,2 0

. . .

0 µ̂fr,2


︸ ︷︷ ︸

≡M̂2

− 3
2

T− 1
2

∑T

t=1


α̂′
1

...

α̂′
r


︸ ︷︷ ︸
≡α̂′

zt +Op

(
T

1
4N− 1

2

)
,

= M̂
− 3

2
2 α̂′

(
T− 1

2

∑T

t=1
zt

)
+Op

(
T

1
4N− 1

2

)
, (A.2.1)

where α̂ = (α̂1, · · · , α̂r)
′.
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1. By plugging (A.2.1) into the Wald-type test WNT = T
[
τ̂ f ′M̂3

2 (Γ̂
f )−1τ̂ f

]
, where Γ̂f = T−1â′

(
∑T

t=1 ẑtẑ
′
t)â, I obtain

WNT = T
[
τ̂ f ′M̂3

2 (Γ̂
f )−1τ̂ f

]
,

=

(
T− 1

2

∑T

t=1
zt

)′
α̂M̂

− 3
2

2 M3
2

(
Γ̂f
)−1

M̂
− 3

2
2 α̂′

(
T− 1

2

∑T

t=1
zt

)
+Op(T

1
2N−1),

=

(
T− 1

2

∑T

t=1
z′t

)
α̂
(
Γ̂f
)−1

α̂′
(
T− 1

2

∑T

t=1
zt

)
+Op(T

1
2N−1),

=

[(
Γ̂f
)− 1

2
α̂′
(
T− 1

2

∑T

t=1
zt

)]′ [(
Γ̂f
)− 1

2
α̂′
(
T− 1

2

∑T

t=1
zt

)]
+Op(T

1
2N−1),

⇒ χ2
r ,

as N,T → ∞ and
√
T/N → 0 by using Assumption 1.13.

2. By plugging (A.2.1) into an r× 1 vector of the elements in MNT , that is,
√
TM̂

3
2
2 (Γ̂

f )−
1
2 τ̂ f , I

obtain

√
TM̂

3
2
2

(
Γ̂f
)− 1

2
τ̂ f = M̂

3
2
2

(
Γ̂f
)− 1

2
M̂

− 3
2

2 α̂′
(
T− 1

2

∑T

t=1
zt

)
+Op(T

1
4N− 1

2 ),

=
(
Γ̂f
)− 1

2
α̂′
(
T− 1

2

∑T

t=1
zt

)
+Op(T

1
4N− 1

2 )

⇒ N (0r×1, Ir) ,

as N,T → ∞ and
√
T/N → 0 by using Assumption 1.13. The result follows immediately.

A.3 Preliminaries for Theorem 1.2

Lemma A.5. Under Assumptions 1.1–1.4,

1. λ̂i −H−1λi = Op(T
− 1

4N− 1
2 ),

2. T−1
∑T

t=1(λ̂
′
if̂t − λ′ift) = Op(T

− 1
2N−1),

3. T−1
∑T

t=1(λ̂
′
if̂t − λ′ift)

2 = Op(δ
−2
NT ),

4. T−1
∑T

t=1(λ̂
′
if̂t − λ′ift)

3 = Op(δ
−3
NT ),
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5. T−1
∑T

t=1(λ̂
′
if̂t − λ′ift)

4 = Op(δ
−4
NT ),

Proof.

1. According to the proof of Theorem 2 in Bai (2003), I obtain

λ̂i −H−1λi = T−1H ′F ′ei − T−1
(
F̂ − FH

)′ (
F̂ − FH

)
H−1λi (A.3.1)

−T−1H ′F ′
(
F̂ − FH

)
H−1λi + T−1

(
F̂ − FH

)′
ei.

(a) The first term is Op(T
−1) by Assumption 1.4.

(b) The second term is Op(δ
−2
NT ).

(c) For the third term, I have

T−1
T∑
t=1

(
f̂t −H ′ft

)
f ′t = V̂ −1

NT

 T−2
∑T

t=1

∑T
s=1 f̂sγstf

′
t + T−2

∑T
t=1

∑T
s=1 f̂sζstf

′
t

+T−2
∑T

t=1

∑T
s=1 f̂sηstf

′
t + T−2

∑T
t=1

∑T
s=1 f̂sξstf

′
t


= V̂ −1

NT (I + II + III + IV ) .

First, I = Op(T
− 1

2 δ−1
NT ) by Bai (2003). For II,

II = T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ζstf

′
t + T−2

∑T

t=1

∑T

s=1
H ′fsζstf

′
t .

For the first term,

∥∥∥∥T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ζstf

′
t

∥∥∥∥ ≤
(
T−1

∑T

s=1

∥∥∥f̂s −H ′fs

∥∥∥2) 1
2

×

(
T−1

∑T

s=1

∥∥∥∥T−1
∑T

t=1
ζstf

′
t

∥∥∥∥2
) 1

2

.

Then the second set of parentheses is

T−1
∑T

s=1

∥∥∥∥T−1
∑T

t=1
ζstf

′
t

∥∥∥∥2 ≤ T− 3
2

∑T

s=1

(
T− 1

2

∑T

t=1
∥ft∥2

)(
T−1

∑T

t=1
ζ2st

)
≤ Op

(
T− 1

2N−1
)
.

This is because T−1
∑T

t=1 ζ
2
st = Op(N

−1) by Bai (2003). Therefore this is Op(T
− 1

4N− 1
2 δ−1

NT ).
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For the second term,

∥∥∥∥T−2
∑T

t=1

∑T

s=1
fsζstf

′
t

∥∥∥∥ ≤ T− 1
4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

(
T−1

∑T

s=1

∥∥∥∥T−1
∑T

t=1
ζstf

′
t

∥∥∥∥2
) 1

2

= Op

(
T− 1

2N− 1
2

)
.

Thus, II = Op(T
− 1

4N− 1
2 δ−1

NT ) +Op(T
− 1

2N− 1
2 ). For III,

III = T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ηstf

′
t + T−2

∑T

t=1

∑T

s=1
H ′fsηstf

′
t .

For the first term,

∥∥∥∥T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ηstf

′
t

∥∥∥∥ ≤
(
T−1

∑T

s=1

∥∥∥f̂s −H ′fs

∥∥∥2) 1
2

×

(
T−1

∑T

s=1

∥∥∥∥T−1
∑T

t=1
ηstf

′
t

∥∥∥∥2
) 1

2

.

For the second set of parentheses,

T−1
∑T

s=1

∥∥∥∥T−1
∑T

t=1
ηstf

′
t

∥∥∥∥2 = N−2T−1
∑T

s=1

∥∥∥∥T−1
∑T

t=1
f ′sΛ

′etf
′
t

∥∥∥∥2
≤ N−1T−1

(
T− 1

2

∑T

s=1
∥fs∥2

)(
T− 1

2

∑T

t=1
∥ft∥2

)
×
(
T−1

∑T

t=1

∥∥∥N− 1
2Λ′et

∥∥∥2)
= Op

(
T−1N−1

)
.

Therefore this is Op(T
− 1

2N− 1
2 δ−1

NT ). For the second term,

∥∥∥∥T−2
∑T

t=1

∑T

s=1
fsηstf

′
t

∥∥∥∥ ≤ T− 1
4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

(
T−1

∑T

s=1

∥∥∥∥T−1
∑T

t=1
ηstf

′
t

∥∥∥∥2
) 1

2

.

= Op

(
T− 3

4N− 1
2

)
.

Thus, III = Op(T
− 1

2N− 1
2 δ−1

NT ) + Op(T
− 3

4N− 1
2 ). The proof of IV is similar to that of
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III. Thus

T−1
∑T

t=1

(
f̂t −H ′ft

)
f ′t = Op

(
T− 1

4N− 1
2 δ−1

NT

)
+Op

(
T− 1

2N− 1
2

)
.

(d) For the last term, I have

T−1
∑T

t=1

(
f̂t −H ′ft

)
ei,t = V̂ −1

NT

 T−2
∑T

t=1

∑T
s=1 f̂sγstei,t + T−2

∑T
t=1

∑T
s=1 f̂sζstei,t

+T−2
∑T

t=1

∑T
s=1 f̂sηstei,t + T−2

∑T
t=1

∑T
s=1 f̂sξstei,t

 .

= V̂ −1
NT (I + II + III + IV ) .

First, I = Op(T
− 1

2 δ−1
NT ) by Bai (2003). For II,

II = T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ζstei,t + T−2H ′

∑T

t=1

∑T

s=1
fsζstei,t.

The first term is

∥∥∥∥T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ζstei,t

∥∥∥∥ ≤
(
T−1

∑T

s=1

∥∥∥f̂s −H ′fs

∥∥∥2) 1
2

×

[
T−1

∑T

s=1
T

(
T−1

∑T

t=1
ζstei,t

)2
] 1

2

.

Because T−1
∑T

t=1 ζstei,t = Op(N
− 1

2 ), this is Op(N
− 1

2 δ−1
NT ). For the second term,

∥∥∥∥T−2H ′
∑T

t=1

∑T

s=1
fsζstei,t

∥∥∥∥ ≤ ∥H∥T− 1
4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

×

[
T−1

∑T

s=1

(
T−1

∑T

t=1
ζstei,t

)2
] 1

2

.

Therefore this is Op(T
− 1

4N− 1
2 ). Thus II = Op(N

− 1
2 δ−1

NT ) +Op(T
− 1

4N− 1
2 ). For III,

III = T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ηstei,t + T−2H ′

∑T

t=1

∑T

s=1
fsηstei,t.
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For the first term,

∥∥∥∥T−2
∑T

t=1

∑T

s=1

(
f̂s −H ′fs

)
ηstei,t

∥∥∥∥ ≤
(
T−1

∑T

s=1

∥∥∥f̂s −H ′fs

∥∥∥2) 1
2

×

[
T−1

∑T

s=1

(
T−1

∑T

t=1
ηstei,t

)2
] 1

2

.

For the second set of parentheses,

∥∥∥∥∥T−1
∑T

s=1

(
T−1

∑T

t=1
ηstei,t

)2
∥∥∥∥∥

= T−3N−2
∑T

s=1

∥∥∥∥f ′s∑T

t=1

(
Λ′et

)
ei,t

∥∥∥∥2
≤ T−1N−2

∑T

s=1
∥fs∥2

∥∥∥∥T−1
∑T

t=1

(
Λ′et

)
ei,t

∥∥∥∥2
≤ N−1T−1

(
T− 1

2

∑T

s=1
∥fs∥2

)(
T−1

∑T

t=1

∥∥∥N− 1
2Λ′et

∥∥∥2)(T− 1
2

∑T

t=1
e2i,t

)
= Op

(
T−1N−1

)
.

Therefore this is Op(T
− 1

2N− 1
2 δ−1

NT ). For the second term,

∥∥∥∥T−2H ′
∑T

t=1

∑T

s=1
fsηstei,t

∥∥∥∥
≤ ∥H∥T− 1

4

(
T− 1

2

∑T

s=1
∥fs∥2

) 1
2

[
T−1

∑T

s=1

(
T−1

∑T

t=1
ηstei,t

)2
] 1

2

= Op

(
T− 3

4N− 1
2

)
.

Thus III = Op(T
− 1

2N− 1
2 δ−1

NT )+Op(T
− 3

4N− 1
2 ). The proof of IV is similar to that of III.

Thus,

T−1
∑T

t=1

(
f̂t −H ′ft

)
ei,t = Op

(
T− 1

4N− 1
2

)
.

Combining these results yields

λ̂i −H−1λi = Op

(
T−1

)
+Op

(
δ−2
NT

)
+
(
T− 1

4N− 1
2 δ−1

NT

)
+Op

(
T− 1

2N− 1
2

)
+Op

(
T− 1

4N− 1
2

)
= Op

(
T− 1

4N− 1
2

)
.
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2. Consider

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)
=

(
λ̂i −H−1λi

)′
T−1

∑T

t=1

(
f̂t −H ′ft

)
+
(
λ̂i −H−1λi

)′
H ′T−1

∑T

t=1
ft

+λ′i
(
H−1

)′
T−1

∑T

t=1

(
f̂t −H ′ft

)
,

For the first term,

(
λ̂i −H−1λi

)′
T−1

∑T

t=1

(
f̂t −H ′ft

)
= Op

(
T− 1

4N− 1
2

)
Op

(
T− 1

4N− 1
2

)
= Op

(
T− 1

2N−1
)
.

The second term is

(
λ̂i −H−1λi

)′
H ′T− 1

2T− 1
2

∑T

t=1
ft = Op

(
T− 3

4N− 1
2

)
.

The third term is

λ′i
(
H−1

)′
T−1

∑T

t=1

(
f̂t −H ′ft

)
= Op

(
T− 1

4N− 1
2

)
.

Therefore

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)
= Op

(
T− 1

2N−1
)

Thus, the lemma holds.

3. Consider

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)2
= T−1

∑T

t=1


(
λ̂i −H−1λi

)′ (
f̂t −H ′ft

)
+
(
λ̂i −H−1λi

)′
H ′ft + λ̂′i

(
H−1

)′ (
f̂t −H ′ft

)

2

= Op

(
δ−2
NT

)
.
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This is because

∣∣∣∣∣T−1
∑T

t=1

[(
λ̂i −H−1λi

)′ (
f̂t −H ′ft

)]2∣∣∣∣∣ ≤
∥∥∥λ̂i −H−1λi

∥∥∥2 T−1
∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥2
= Op

(
T− 1

2N−1δ−2
NT

)
,

∣∣∣∣∣T−1
∑T

t=1

[(
λ̂i −H−1λi

)′
H ′ft

]2∣∣∣∣∣ ≤
∥∥∥λ̂i −H−1λi

∥∥∥2 T− 1
2T− 1

2

∑T

t=1

∥∥H ′ft
∥∥2

= Op

(
T−1N−1

)
,

∣∣∣∣T−1
∑T

t=1

[
λ′i
(
H−1

)′ (
f̂t −H ′ft

)]2∣∣∣∣ ≤
∥∥λ′i (H−1

)∥∥2 T−1
∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥2
= Op

(
δ−2
NT

)
,

∣∣∣∣T−1
∑T

t=1

(
λ̂i −H−1λi

)′ (
f̂t −H ′ft

)(
λ̂i −H−1λi

)′
H ′ft

∣∣∣∣
≤
∥∥∥λ̂i −H−1λi

∥∥∥2 T−1
∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥ ∥∥H ′ft
∥∥

≤
∥∥∥λ̂i −H−1λi

∥∥∥2(T−1
∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥2) 1
2

T− 1
4

(
T− 1

2

∑T

t=1

∥∥H ′ft
∥∥2) 1

2

= Op

(
T− 1

2N−1
)
Op

(
δ−1
NT

)
T− 1

4 ,

= Op

(
T− 3

4N−1δ−1
NT

)

∣∣∣∣T−1
∑T

t=1

(
λ̂i −H−1λi

)′
H ′ftλ

′
i

(
H−1

)′ (
f̂t −H ′ft

)∣∣∣∣
≤ T−1

∑T

t=1

∥∥∥λ̂i −H−1λi

∥∥∥ ∥∥H ′ft
∥∥ ∥∥(H−1

)
λi
∥∥ ∥∥∥f̂t −H ′ft

∥∥∥
≤
∥∥∥λ̂i −H−1λi

∥∥∥ ∥∥(H−1
)
λi
∥∥(T−1

∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥2) 1
2

T− 1
4

(
T− 1

2

∑T

t=1

∥∥H ′ft
∥∥2) 1

2

= Op

(
T− 1

4N− 1
2

)
Op

(
δ−1
NT

)
T− 1

4 ,

= Op

(
T− 1

2N− 1
2 δ−1

NT

)
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∣∣∣∣T−1
∑T

t=1

(
λ̂i −H−1λi

)′ (
f̂t −H ′ft

)
λ′i
(
H−1

)′ (
f̂t −H ′ft

)∣∣∣∣
≤
∥∥∥λ̂i −H−1λi

∥∥∥ ∥∥(H−1
)
λi
∥∥T−1

∑T

t=1

∥∥∥f̂t −H ′ft

∥∥∥2
= Op

(
T− 1

4N− 1
2 δ−2

NT

)
.

Thus, the lemma holds. Without loss of generality, I can also prove 4 and 5 in the same way

and the lemmas hold.

Lemma A.6. Under Assumptions 1.1–1.4,

1. µ̂ei,1 = T−1
∑T

t=1 ei,t +Op(T
− 1

2N−1).

2. µ̂ei,2 = T−1
∑T

t=1(ei,t − µei,1)
2 +Op(δ

−2
NT ).

3. µ̂ei,3 = T−1
∑T

t=1(ei,t − µei,1)
3 − 3T−1

∑T
s=1(ei,t − µei,1)

2T−1
∑T

t=1(ei,t − µei,1) +Op(δ
−3
NT ).

Proof.

1.

λ′ift + ei,t = λ̂′if̂t + êi,t,

⇔ êi,t = ei,t + λ′ift − λ̂′if̂t, (A.3.2)

⇔ T−1
∑T

t=1 êi,t = T−1
∑T

t=1
ei,t + T−1

∑T

t=1

(
λ′ift − λ̂′if̂t

)
. (A.3.3)

The second term is Op(T
− 1

2N−1) by Lemma A.5.2. Thus, the lemma holds.

2. Combining (A.3.2) and (A.3.3),

êi,t − T−1
∑T

t=1
êi,t =

(
ei,t − µei,1

)
−
(
T−1

∑T

t=1
ei,t − µei,1

)
−
(
λ̂′if̂t − λ′ift

)
− T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)
,

= B1 −B2 −B3 −B4.

Then,

T−1
∑T

t=1

(
êi,t − µ̂ei,1

)2
= T−1

∑T

t=1
(B1 −B2 −B3 −B4)

2 .
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I consider the sums of squares of each term. For T−1
∑T

t=1B
2
2 is

T−1
∑T

t=1

(
T−1

∑T

t=1
ei,t − µei,1

)2

= Op

(
T−1

)
.

For T−1
∑T

t=1B
2
3 ,

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)2
= Op

(
δ−2
NT

)
.

For T−1
∑T

t=1B
2
4 ,

T−1
∑T

t=1

(
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

))2

= Op

(
T−1N−2

)
.

For T−1
∑T

t=1B1B2,

T−1
∑T

t=1

(
ei,t − µei,1

)(
T−1

∑T

s=1
ei,s − µei,1

)
= Op

(
T−1

)
For T−1

∑T
t=1B2B3,

T−1
∑T

t=1

(
T−1

∑T

t=1
ei,t − µei,1

)(
λ̂′if̂t − λ′ift

)
=

(
T−1

∑T

t=1
ei,t − µei,1

)
×T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)
,

= Op

(
T−1N−1

)
.

For T−1
∑T

t=1B3B4,

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]
= Op

(
T−1N−2

)
.

For T−1
∑T

t=1B1B4,

T−1
∑T

t=1

(
ei,t − µfi,1

)[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]
= Op

(
T−1N−1

)
.
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For T−1
∑T

t=1B1B3,

∣∣∣∣T−1
∑T

t=1

(
ei,t − µei,1

) (
λ̂′if̂t − λ′ift

)∣∣∣∣
≤ T

1
4

(
T− 1

2

∑T

t=1

(
ei,t − µei,1

)2) 1
2
[
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)2] 1
2

,

= Op

(
T

1
4 δ−1

NT

)
.

Finally, T−1
∑T

t=1B2B4 is

T−1
∑T

t=1

(
T−1

∑T

t=1
ei,t − µei,1

)
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)
= Op

(
T−1N−1

)
.

Thus, Lemma holds.

3. Consider the following equation.

T−1
∑T

t=1

(
êi,t − µ̂ei,1

)3
= T−1

∑T

t=1
[B1 −B2 −B3 −B4]

3 .

Similar to 2, I consider the sums of squares of each term. T−1
∑T

t=1B
3
2 = Op

(
T− 3

2

)
. For

T−1
∑T

t=1B
3
3 ,

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)3
= Op

(
δ−3
NT

)
.

For T−1
∑T

t=1B
3
4 ,

T−1
∑T

t=1

(
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

))3

= Op

(
T− 3

2N−3
)
.

For T−1
∑T

t=1B
2
1B3,

∣∣∣∣T−1
∑T

t=1

(
ei,t − µei,1

)2 (
λ̂′if̂t − λ′ift

)∣∣∣∣ ≤ T− 1
4

[
T− 1

2

∑T

t=1

(
ei,t − µei,1

)4] 1
2

×
[
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)2] 1
2

,

= Op

(
T− 1

4 δ−1
NT

)
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For T−1
∑T

t=1B
2
1B4,

T−1
∑T

t=1

(
ei,t − µei,1

)2 [
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]
= Op

(
T−1N−1

)
.

For T−1
∑T

t=1B
2
2B1,

T−1
∑T

t=1

(
T−1

∑T

t=1
ei,t − µei,1

)2 (
ei,t − µei,1

)
= Op

(
T− 3

2

)
.

For T−1
∑T

t=1B
2
2B3,

T−1
T∑
t=1

(
T−1

∑T

t=1
ei,t − µei,1

)2 (
λ̂′if̂t − λ′ift

)
= Op

(
T− 3

2N−1
)
.

For T−1
∑T

t=1B
2
2B4,

T−1
∑T

t=1

(
T−1

∑T

t=1
ei,t − µei,1

)2

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)
= Op

(
T− 3

2N−1
)
.

For T−1
∑T

t=1B
2
3B1,

∣∣∣∣T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)2 (
ei,t − µei,1

)∣∣∣∣ ≤ T− 1
4

[
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)4] 1
2

×
[
T− 1

2

∑T

t=1

(
ei,t − µei,1

)2] 1
2

,

= Op

(
T− 1

4 δ−2
NT

)
.

For T−1
∑T

t=1B
2
3B2,

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)2(
T−1

∑T

t=1
ei,t − µei,1

)
= Op

(
T− 1

2 δ−2
NT

)
.

For T−1
∑T

t=1B
2
3B4,

T−1
∑T

t=1

(
λ̂′if̂t − λ′ift

)2
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)
= Op

(
T− 1

2N−1δ−2
NT

)
.
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For T−1
∑T

t=1B
2
4B1,

T−1
∑T

t=1

[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]2 (
ei,t − µei,1

)
= Op

(
T− 3

2N−2
)
.

For T−1
∑T

t=1B
2
4B2,

T−1
∑T

t=1

[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]2(
T−1

∑T

t=1
ei,t − µei,1

)
= Op

(
T− 3

2N−2
)
.

For T−1
∑T

t=1B
2
4B3,

T−1
∑T

t=1

[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]2 (
λ̂′if̂t − λ′ift

)
= Op

(
T− 3

2N−3
)
.

For T−1
∑T

t=1B1B2B3,

∣∣∣∣T−1
∑T

t=1

(
ei,t − µei,1

)(
T−1

∑T

t=1
ei,t − µei,1

)(
λ̂′if̂t − λ′ift

)∣∣∣∣
≤ T− 3

4

∣∣∣∣T− 1
2

∑T

t=1
ei,t − µei,1

∣∣∣∣ [T− 1
2

∑T

t=1

(
ei,t − µei,1

)2] 1
2
[
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)2] 1
2

,

= Op

(
T− 3

4 δ−1
NT

)
.

For T−1
∑T

t=1B1B2B4,

T−1
∑T

t=1

(
ei,t − µei,1

)(
T−1

∑T

t=1
ei,t − µei,1

)
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)
= Op

(
T− 3

2N−1
)
.

For T−1
∑T

t=1B1B3B4,

∣∣∣∣T−1
∑T

t=1

(
ei,t − µei,1

) (
λ̂′if̂t − λ′ift

)
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)∣∣∣∣
≤
∣∣∣∣T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)∣∣∣∣T− 1
4

[
T− 1

2

∑T

t=1

(
ei,t − µei,1

)2] 1
2
[
T−1

∑T

t=1

(
λ̂′if̂t − λ′ift

)2] 1
2

,

= Op

(
T− 3

4N−1δ−1
NT

)
.

85



For T−1
∑T

t=1B2B3B4,

T−1
∑T

t=1

(
T−1

T∑
t=1

ei,t − µei,1

)(
λ̂′if̂t − λ′ift

)[
T−1

∑T

s=1

(
λ̂′if̂s − λ′ifs

)]
= Op

(
T− 3

2N−2
)
.

Therefore, the following holds.

T−1
∑T

t=1

(
êi,t − µ̂ei,1

)3
= T−1

∑T

t=1

(
ei,t − µei,1

)3
− 3T−1

∑T

t=1

(
ei,t − µei,1

)2(
T−1

∑T

t=1
ei,t − µei,1

)
+Op

(
δ−3
NT

)
.

Lemma A.7. Under Assumptions 1.1–1.4,

T− 1
2

T∑
t=1

b̂′iv̂i,t = b̂′iT
− 1

2

T∑
t=1

vi,t +Op

(
T

1
2 δ−3

NT

)
(A.3.4)

Proof. By using Lemma A.6, I obtain

T− 1
2

∑T

t=1
b̂′iv̂i,t = T− 1

2

∑T

t=1

[(
êi,t − µ̂ei,1

)3 − µ̂ei,3

]
− 3µ̂ei,2T

− 1
2

∑T

t=1

(
êt − µ̂ei,1

)
,

= I − 3II.

Consider I.

T− 1
2

∑T

t=1

[(
êi,t − µ̂ei,1

)3 − µ̂ei,3

]
= T− 1

2

∑T

t=1

(
ei,t − µei,1

)3 − T
1
2µei,3

−T
1
2
(
µ̂ek,3 − µei,3

)
− 3T−1

∑T

s=1

(
ei,t − µei,1

)2
T− 1

2

∑T

t=1

(
ei,t − µei,1

)
+Op

(
T

1
2 δ−3

NT

)
,

= T− 1
2

∑T

t=1

[(
ei,t − µei,1

)3 − µei,3

]
+3T−1

∑T

s=1

(
ei,t − µei,1

)2
T− 1

2

∑T

t=1

(
ei,t − µei,1

)
−Op

(
T

1
2 δ−3

NT

)
− 3T−1

∑T

s=1

(
ei,t − µei,1

)2
T− 1

2

∑T

t=1

(
ei,t − µei,1

)
+Op

(
T

1
2 δ−3

NT

)
,

= T− 1
2

∑T

t=1

[(
ei,t − µei,1

)3 − µei,3

]
+Op

(
T

1
2 δ−3

NT

)
.
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by Lemma A.6.3. Consider II.

T− 1
2

∑T

t=1

(
êt − µ̂ei,1

)
= T− 1

2

∑T

t=1
ei,t + T− 1

2

∑T

t=1

(
λ′ift − λ̂′if̂t

)
− T−1

∑T

t=1
ei,t −Op

(
N−1

)
,

= T− 1
2

∑T

t=1

(
ei,t − µei,1

)
+Op

(
N−1

)
by A.6.1. Therefore

T− 1
2

∑T

t=1
b̂′iv̂i,t = T− 1

2

∑T

t=1

[(
ei,t − µei,1

)3 − µei,3

]
+Op

(
T

1
2 δ−3

NT

)
− 3µ̂ei,2T

− 1
2

∑T

t=1

(
ei,t − µei,1

)
+Op

(
N−1

)
,

= T− 1
2

∑T

t=1
b̂′ivi,t +Op

(
T

1
2 δ−3

NT

)
.

Therefore, the lemma holds.

A.4 Proof of Theorem 1.2

Proof. The coefficient of skewness for the ith idiosyncratic component is

√
T (τ̂ ei − τ ei ) =

(
µ̂ei,2
)− 3

2
√
T
(
µ̂ei,3 − µei,3

)︸ ︷︷ ︸
=I

−
(
µ̂ei,2
)− 3

2 τ ei
√
T
[(
µ̂ei,2
) 3

2 −
(
µei,2
) 3

2

]
︸ ︷︷ ︸

=II

.

For I,

√
T
(
µ̂ei,3 − µei,3

)
= T− 1

2

∑T

t=1

((
e3i,t − µei,1

)3 − µei,3

)
− 3T−1

∑T

s=1
(ei,t − µei,1)

2T− 1
2

∑T

t=1
(ei,t − µei,1) +Op

(
T

1
2 δ−3

NT

)
,

by Lemma A.6.3. For II, the delta method implies

(
µ̂ei,2
) 3

2 −
(
µei,2
) 3

2 =
3

2

(
µei,2
) 1

2
(
µ̂ei,2 − µei,2

)
+ op (1) .

Therefore,
√
T
(
µ̂ei,2 − µei,2

)
= T− 1

2

∑T

t=1

[(
ei,t − µei,1

)
− µei,2

]
+Op

(
T

1
2 δ−2

NT

)
,
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by Lemma A.6.2. Now I obtain

√
T (τ̂ ei − τ ei ) =

(
µ̂ei,2
)− 3

2
√
T
(
µ̂ei,3 − µei,3

)
−
(
µ̂ei,2
)− 3

2 τ ei
√
T
[(
µ̂ei,2
) 3

2 −
(
µei,2
) 3

2

]
,

=
(
µ̂ei,2
)− 3

2

 T− 1
2
∑T

t=1

(
e3i,t − µei,1

)
− µei,3

−3T−1
∑T

s=1(ei,t − µei,1)
2T− 1

2
∑T

t=1(ei,t − µei,1)


−
(
µ̂ei,2
)− 3

2
3

2
τ ei
(
µei,2
) 1

2 T− 1
2

∑T

t=1

((
ei,t − µei,1

)
− µei,2

)
+Op

(
T

1
2 δ−2

NT

)
.

Hence,

√
T τ̂ ei =

(
µ̂ei,2
)− 3

2

(
T− 1

2

∑T

t=1
b̂′ivi,t

)
+Op

(
T

1
2 δ−2

NT

)
,

with τ ei = 0. By plugging this into the test statistic for the ith idiosyncratic component Si,NT =
√
T (µ̂ei,2)

3
2 (Γ̂e

i )
− 1

2 τ̂ ei , where Γ̂e
i = T−1

∑T
t=1(b̂

′
iv̂i,t)

2, I have

Si,NT =
√
T

 Γ̂e
i(

µ̂ei,2

)3


− 1
2

τ̂ ei ,

=

 Γ̂e
i(

µ̂ei,2

)3


− 1
2 (
µ̂ei,2
)− 3

2

(
T− 1

2

∑T

t=1
b̂′ivi,t

)
+Op

(
T

1
2 δ−2

NT

)
,

=
(
Γ̂e
i

)− 1
2

(
T− 1

2

∑T

t=1
b̂′ivi,t

)
+Op

(
T

1
2 δ−2

NT

)
,

⇒ N (0, 1) ,

as N,T → ∞ and
√
T/N → 0 by using Assumption 1.3.3.
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Appendix B

Supplementary Material to Chapter 2

B.1 Results under the LTU Framework

Becheri and van den Akker (2015) and Westerlund (2015) derived the local asymptotic power of

the pooled panel unit root tests where the common factors are extracted using the PANIC method.

In doing so, the first-order AR coefficients are assumed to shrink to one at a fast rate of T−1, that

is, the local to unity (LTU) time series rate.1 Here, I present the local asymptotic power of the

common and the idiosyncratic tests of the PANIC and the CS tests by using the LTU framework:

Assumption B.1. The AR coefficients satisfy αT = 1+ c/T and ρi,T = 1+ ci/T , where both c and

ci are the fixed constants.

The localizing coefficients c and ci can be either positive or negative, where c > 0 and ci > 0

relate to explosive processes and c < 0 and ci < 0 pertain to stationary processes. Therefore, the

local asymptotic results are valid against either the explosive alternative hypothesis or the stationary

alternative hypothesis. The following theorem is obtained.

Theorem SA-1. Suppose Assumptions 2.1–2.4 and B.1 hold. Let Wc(r) and Wc,i(r) be inde-

pendent Ornstein and Uhlenbeck processes defined on r ∈ [0, 1], W̄c(r) = Wc(r) −
∫
Wc(r)dr, and

W̄c,i(r) =Wc,i(r)−
∫
Wc,i(r)dr. The following hold as N,T → ∞.

1The rate also depends on N because they consider the pooled tests.
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(i-a: The case of no deterministic components, common tests)

tF̂ ⇒ c
[∫ 1

0 Wc(r)
2dr
]1/2

+

∫ 1
0 Wc(r)dW (r)[∫ 1
0 Wc(r)

2dr
]1/2 .

(i-b: The case of no deterministic components, idiosyncratic tests)

tÛ (i) ⇒ ci

[∫ 1
0 Wc,i(r)

2dr
]1/2

+

∫ 1
0 Wc,i(r)dWi(r)[∫ 1
0 Wc,i(r)

2dr
]1/2 .

(ii-a: The case of the intercept, common tests)

t̄F̂ ⇒ c
[∫ 1

0 W̄c(r)
2dr
]1/2

+

∫ 1
0 W̄c(r)dW (r)[∫ 1
0 W̄c(r)

2dr
]1/2 .

(ii-b: The case of the intercept, idiosyncratic tests)

t̄Û (i) ⇒ ci

[∫ 1
0 W̄c,i(r)

2dr
]1/2

+

∫ 1
0 W̄c,i(r)dWi(r)[∫ 1
0 W̄c,i(r)

2dr
]1/2 .

For brevity, I present the proof of Theorem SA-1 under the i.i.d. assumptions C(L) = 1 and

Di(L) = 1 in Appendix B.2. I can obtain the proof of the tests based on the regression augmented

by p lags under p → ∞ and p3/min {N,T} → 0 by closely following Appendix C of Bai and Ng

(2004); hence, it is condensed. This confirms that the factor estimation errors are immaterial in

the limit distributions in a locally explosive environment. Note that the independent Ornstein and

Uhlenbeck processes reduce to the independent Wiener processes when c = 0 in cases (i-a) and

(ii-a) and when ci = 0 in cases (i-b) and (ii-b); hence, the results encompass the asymptotic null

distributions.

This shows that the size of the common (idiosyncratic) test is robust to the LTU deviations in the

idiosyncratic (common and other idiosyncratic) components. As for the power, it ensures that the

common (idiosyncratic) test has the standard local power even though the idiosyncratic (common

and other idiosyncratic) components have the LTU deviations. Hence, this theorem theoretically

confirms Bai and Ng’s (2004) Monte Carlo findings in both the left- and right-tailed tests and implies
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that the PANIC method can disentangle the common and idiosyncratic explosive components.

I next consider the CS tests. Note that the time dimension of the testing sample is now h instead

of T ; hence, I now denote αh = 1 + c
h and ρi,h = 1 + ci

h in Assumption B.1. I present Theorem

SA-2 under the LTU framework. For brevity, again, I provide a proof under the i.i.d. assumptions

C(L) = 1 and Di(L) = 1 in Appendix B.4.

Theorem SA-2. Suppose Assumptions 2.1–2.4 and B.1 hold. The following hold as N,T, h→

∞.

(i-a: The case of no deterministic components, common tests)

t∗
F̃
⇒ c

[∫ 1
0 Wc(r)

2dr
]1/2

+

∫ 1
0 Wc(r)dW (r)[∫ 1
0 Wc(r)

2dr
]1/2 .

(i-b: The case of no deterministic components, idiosyncratic tests)

t∗
Ũ
(i) ⇒ ci

[∫ 1
0 Wc,i(r)

2dr
]1/2

+

∫ 1
0 Wc,i(r)dWi(r)[∫ 1
0 Wc,i(r)

2dr
]1/2 .

(ii-a: The case of the intercept, common tests)

t̄∗
F̃
⇒ c

[∫ 1
0 W̄c(r)

2dr
]1/2

+

∫ 1
0 W̄c(r)dW (r)[∫ 1
0 W̄c(r)

2dr
]1/2 .

(ii-b: The case of the intercept, idiosyncratic tests)

t̄∗
Ũ
(i) ⇒ ci

[∫ 1
0 W̄c,i(r)

2dr
]1/2

+

∫ 1
0 W̄c,i(r)dWi(r)[∫ 1
0 W̄c,i(r)

2dr
]1/2 .

Similar to Theorem SA-1, this theorem shows that the common test asymptotically achieves the

correct size and is consistent under the LTU framework. The idiosyncratic test also asymptotically

attains the correct size and is consistent under the LTU framework.
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B.2 Proof of Theorem SA-1 and Theorem 2.1

Throughout Appendix B.2, I use the notation θ = min
{√

N,
√
T
}

and H = V −1(f̂ ′f/T )(Λ′Λ/N),

where V is the largest eigenvalue of xx′/(NT ). I also let F c
t−1 = Ft−1−F̄ , where F̄ = T−1

∑T
t=1 Ft−1

and F̂ c
t−1 = F̂t−1 − F̂ , where F̂ = T−1

∑T
t=1 F̂t−1. Let also f ct = ft − f̄ , where f̄ = T−1

∑T
t=1 ft

and f̂ ct = f̂t − f̂ , where f̂ = T−1
∑T

t=1 f̂t. In addition, I let U c
i,t−1 = Ui,t−1 − Ūi where Ūi =

T−1
∑T

t=1 Ui,t−1 and Û c
i,t−1 = Ûi,t−1 − Ûi, where Ûi = T−1

∑T
t=1 Ûi,t−1. Let also uci,t = ui,t − ūi,

where ūi = T−1
∑T

t=1 ui,t and ûci,t = ûi,t− ûi, where ûi = T−1
∑T

t=1 ûi,t. As I explained in the main

text, the proofs are presented under r = 1, C(L) = 1, and Di(L) = 1 for all i.

Lemma B.1. Under Assumptions 2.1, 2.3, 2.4, and B.1, the following hold.

(a) T−1/2F[Tr] ⇒ σWc(r),

(b) T−3/2
∑T

t=1 Ft ⇒ σ
∫
Wc(r)dr,

(c) T−1
∑T

t=1 Ft−1et ⇒ σ2
∫
Wc(r)dW (r),

(d) T−2
∑T

t=1 F
2
t ⇒ σ2

∫
Wc(r)

2dr,

(e) T−1/2Ui,[Tr] ⇒ σiWc,i(r),

(f) T−3/2
∑T

t=1 Ui,t ⇒ σi
∫
Wc,i(r)dr,

(g) T−1
∑T

t=1 Ui,t−1zi,t ⇒ σ2i
∫
Wc,i(r)dW (r),

(h) T−2
∑T

t=1 U
2
i,t ⇒ σ2i

∫
Wc,i(r)

2dr,

(i) T−1
∑T

t=1 F
c
t−1et ⇒ σ2

∫
W̄c(r)dW (r),

(j) T−2
∑T

t=1 F
c2
t−1 ⇒ σ2

∫
W̄c(r)

2dr,

(k) T−1
∑T

t=1 U
c
i,t−1zi,t ⇒ σ2i

∫
W̄c,i(r)dW (r),

(l) T−2
∑T

t=1 U
c
i,t−1 ⇒ σ2i

∫
W̄c,i(r)

2dr,

where Wc(r) and Wc,i(r) are independent Ornstein and Uhlenbeck processes defined on r ∈ [0, 1]

and W̄c(r) ≡Wc(r)−
∫
Wc(r)dr, W̄c,i(r) ≡Wc,i(r)−

∫
Wc,i(r)dr.

Proof of B.1. See Phillips (1987) for parts (a)–(h). For parts (i)–(l), the results are directly

obtained from them. ■

Lemma B.2. Under Assumptions 2.1, 2.3, 2.4, and B.1, the following hold.

(a) T−1
∑T

t=1 f
2
t

p→ Σf , a positive constant,

(b) E(ui,t) = 0 and E |ui,t|8 = O(1),
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(c)
∣∣γ∗s,s∣∣ = O(1) for all s and T−1

∑T
s=1

∑T
t=1

∣∣γ∗s,t∣∣ = O(1), where γ∗st = N−1
∑N

i=1 E(ui,sui,t),

(d)
∑N

i=1

∣∣∣ϕ∗i,j∣∣∣ = O(1) for all j and N−1
∑N

i=1

∑N
j=1

∣∣∣ϕ∗i,j∣∣∣ = O(1), where ϕ∗i,j = E(ui,tuj,t),

(e) ζ∗s,t = O(1), where ζ∗s,t = E
∣∣∣N−1/2

∑N
i=1[ui,sui,t − E(ui,sui,t)]

∣∣∣4.
Proof of Lemma B.2. (a) I start with

ft =
c

T
Ft−1 + et.

Squaring both sides, summing over t, and multiplying both sides by T−1 yields

1

T

∑T
t=1 f

2
t =

c2

T 3

∑T
t=1 F

2
t−1 + 2 c

T 2

∑T
t=1 Ft−1et +

1
T

∑T
t=1 e

2
t ,

= I + II + T−1∑T
t=1 e

2
t

p→ σ2,

because I = Op(T
−1) by using Lemma B.1 (d) and II = op(T

−1) by using Lemma B.1 (c). The

convergence of the third term is implied by the weak law of large numbers in Assumption 2.1. Hence,

the result follows.

(b) It is straightforward that

E(ui,t) = E(Ui,t)− E(Ui,t−1) = 0,

from Assumption 2.3.1. Next,

E |ui,t|8 = E
∣∣∣ c
T
Ui,t−1 + zi,t

∣∣∣8 ,
≤ 28 ×max

{
c8i
T 8

E |Ui,t−1|8 ,E |zi,t|8
}
,

but

E |Ui,t−1|8 ≤ T 8ρ8Ti,TE |zi,t|8 ,

so that
c8i
T 8

E |Ui,t−1|8 ≤ c8i ρ
8T
i,TE |zi,t|8 ,

where ρ8Ti,T = (1 + ci
T )

8T → exp(8ci) and E |zi,t|8 ≤ M from Assumption 2.3.1. Hence, the result

follows.
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(c) Without loss of generality, let s ≥ t. Consider

E(ui,sui,t) = E
[(ci
T
Ui,s−1 + zi,s

)(ci
T
Ui,t−1 + zi,t

)]
,

=
c2i
T 2

E(Ui,s−1Ui,t−1) +
ci
T
E (Ui,s−1zi,t) +

ci
T
E (Ui,t−1zi,s) + E(zi,szi,t),

= I + II + III + IV.

However,

I ≤ c2i
T
E(T−1U2

i,s−1) = O(T−1),

by using Lemma B.1 (e). For II,

II =
ci
T
E (Ui,s−1zi,t) =

ci
T
E[(Ui,s−1 − Ui,t)zi,t + ui,tzi,t + Ui,t−1zi,t],

=
ci
T
E[(Ui,s−1 − Ui,t)zi,t] +

ci
T
E(ui,tzi,t) +

ci
T
E(Ui,t−1zi,t),

= IIa+ IIb+ IIc.

However, since Ui,s−1 = zi,s−1 + ρi,T zi,s−2 + · · ·+ ρs−t−1
i,T Ui,t,

IIa =
ci
T
E[
{
zi,s−1 + ρi,T zi,s−2 + ρ2i,T zi,s−3 + · · ·+ (ρs−t−1

i,T − 1)Ui,t

}
zi,t],

=
ci
T
E[
{
zi,s−1 + ρi,T zi,s−2 + ρ2i,T zi,s−3 + · · ·+ (ρs−t−1

i,T − 1)zi,t + ρi,T (ρ
s−t−1
i,T − 1)Ui,t−1

}
zi,t],

=
ci
T
(ρs−t−1

i,T − 1)E(z2i,t) = O(T−1),

from Assumption 2.3.1,

IIb =
ci
T
E[(zi,t +

ci
T
zi,t−1 +

ci
T
ρi,T zi,t−2 + · · ·+ ci

T
ρti,TUi,0)zi,t],

=
ci
T
E(z2i,t) = O(T−1),

from Assumption 2.3.1, and

IIc =
ci

T 1/2
E(T−1/2Ui,t−1)︸ ︷︷ ︸

=O(1) by Lemma A1 (e)

E(zi,t) = 0,
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so that II = O(T−1). For III,

III =
ci
T
E (Ui,t−1zi,s) =

ci
T
E (Ui,t−1)E(zi,s) = 0,

since Ui,t−1 and zi,s are independent as long as s ≥ t. Therefore,

E(ui,sui,t) = O(T−1) +O(T−1) +O(T−1) + 0 + E(zi,szi,t),

=

 σ2i +O(T−1) if s = t

O(T−1) if s ̸= t
.

I now consider

γ∗s,t = E
[
N−1∑N

i=1 ui,sui,t

]
,

=

 N−1
∑N

i=1 σ
2
i +O(T−1) if s = t

O(T−1) if s ̸= t
.

I also have ∑T
s=1

∣∣γ∗s,t∣∣ = N−1
∑N

i=1 σ
2
i +O(1),

so that

T−1∑T
s=1

∑T
t=1

∣∣γ∗s,t∣∣ = N−1
∑N

i=1 σ
2
i +O(1) = O(1).

(d) Consider

ϕ∗i,j = E(ui,tuj,t) = E
[(ci
T
Ui,t−1 + zi,t

)(cj
T
Uj,t−1 + zj,t

)]
,

=
cicj
T 2

E(Ui,t−1Uj,t−1) +
ci
T
E(Ui,t−1zj,t) +

cj
T
E(Uj,t−1zi,t) + E(zi,tzj,t),

= I + II + III + IV.

For I,

I =
cicj
T 2

E(Ui,t−1Uj,t−1) =
cicj
T 2

ϕi,j

[∑t−1
l=0(1 +

ci
T )

l(1 +
cj
T )l
]
,
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and, assuming ci ≥ cj without loss of generality, I obtain

[∑t−1
l=0(1 +

ci
T )

2l
]
≤ T (1 +

ci
T
)2T = O(T ),

so that I = ϕi,j ×O(T−1). For II,

II =
ci

T 1/2
E(T−1/2Ui,t−1)E(zj,t) = 0,

from Assumption 2.3.1, and similarly, III = 0. IV = ϕi,j by definition. Therefore,

ϕ∗i,j = ϕi,j [1 +O(T−1)],

so that ∑N
i=1

∣∣∣ϕ∗i,j∣∣∣ = [1 +O(T−1)]
∑N

i=1 |ϕi,j | = O(1),

from Assumption 2.3.2 and

N−1∑N
i=1

∑N
j=1

∣∣∣ϕ∗i,j∣∣∣ = [1 +O(T−1)]N−1
∑N

i=1

∑N
j=1 |ϕi,j | = O(1),

from Assumption 2.3.2 as well. Hence, the result follows.

(e) Since

ui,sui,t =
c2

T 2
Ui,s−1Ui,t−1 +

c

T
Ui,s−1zi,t +

c

T
Ui,t−1zi,s + zi,szi,t,

ζ∗s,t = E
∣∣∣N−1/2∑N

i=1 [ui,sui,t − E(ui,sui,t)]
∣∣∣4 ,

= E
∣∣∣∣ c2

T 2N1/2

∑N
i=1 [Ui,s−1Ui,t−1 − E(Ui,s−1Ui,t−1)]

+
c

TN1/2

∑N
i=1 [Ui,s−1zi,t − E(Ui,s−1zi,t)]

+
c

TN1/2

∑N
i=1 [Ui,t−1zi,s − E(Ui,t−1zi,s)]

+
1

N1/2

∑N
i=1 [zi,szi,t − E(zi,szi,t)]

∣∣∣∣4 ,
= E |Φ1 +Φ2 +Φ3 +Φ4|4 ,

≤ 44 ×max
{
E |Φ1|4 ,E |Φ2|4 ,E |Φ3|4 , ζs,t

}
.
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Consider E |Φ1|4. Since Ui,s−1 =
∑s−1

l=0 ρ
s−1−l
i,T zi,l and Ui,t−1 =

∑t−1
m=0 ρ

t−1−m
i,T zi,m,

E |Φ1|4 =
c8i
T 8

E
∣∣∣N−1/2∑N

i=1 [Ui,s−1Ui,t−1 − E(Ui,s−1Ui,t−1)]
∣∣∣4 ,

=
c8i
T 8

E
∣∣∣N−1/2∑N

i=1

[∑s−1
l=0 ρ

s−1−l
i,T

∑t−1
m=0 ρ

t−1−m
i,T zi,lzi,m

−
∑s−1

l=1 ρ
s−1−l
i,T

∑t−1
m=0 ρ

t−1−m
i,T E(zi,lzi,m)

]∣∣∣4 ,
=

c8i
T 8

E
∣∣∣N−1/2∑N

i=1

∑s−1
l=0 ρ

s−1−l
i,T

∑t−1
m=0 ρ

t−1−m
i,T (zi,lzi,m − E(zi,lzi,m))

∣∣∣4 ,
≤ c8i

T 8
E
∣∣∣∑s−1

l=0 ρ
s−1−l
i,T

∑t−1
m=0 ρ

t−1−m
i,T

∣∣∣N−1/2
∑N

i=1(zi,lzi,m − E(zi,lzi,m))
∣∣∣∣∣∣4 ,

≤ c8i
T 8
T 8ρ8Ti,TE

∣∣∣N−1/2∑N
i=1(zi,lzi,m − E(zi,lzi,m))

∣∣∣4 ,
= c8i ρ

8T
i,TM = O(1),

from Assumption 2.3.3. Next,

E |Φ2|4 =
c4i
T 4

E
∣∣∣N−1/2∑N

i=1 [Ui,s−1zi,t − E(Ui,s−1zi,t)]
∣∣∣4 ,

=
c4i
T 4

E
∣∣∣N−1/2∑N

i=1

[∑s−1
l=0 ρ

s−1−l
i,T zi,lzi,t −

∑s−1
l=0 ρ

s−1−l
i,T E(zi,lzi,t)

]∣∣∣4 ,
=

c4i
T 4

E
∣∣∣∑s−1

l=0 ρ
s−1−l
i,T N−1/2

∑N
i=1 [zi,lzi,t − E(zi,lzi,t)]

∣∣∣4 ,
≤ c4i

T 4
T 4ρ4Ti,TE

∣∣∣N−1/2∑N
i=1 [zi,lzi,t − E(zi,lzi,t)]

∣∣∣4 ,
= c4i ρ

4T
i,TM = O(1),

and E |Φ3|4 = O(1) is similarly shown. Therefore,

ζ∗s,t ≤ 44 ×max {O(1), ζs,t} = O(1),

from Assumption 2.3.3. Hence, the result follows. ■

Lemma B.3. Under Assumptions 2.1–2.4 and B.1, the following hold.

(a) T−1/2
∑T

t=1(f̂t −Hft) = Op(θ
−1),

(b) T−1
∑T

t=1(f̂t −Hft)
2 = Op(θ

−2),

(c) T−1
∑T

t=1(f̂t −Hft)ui,t = Op(θ
−2),
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(d) T−1
∑T

t=1(f̂t −Hft)ft = Op(θ
−2),

(e) T−1
∑T

t=1(f̂t −Hft)f̂t = Op(θ
−2),

(f) λ̂i −H−1λi = Op

(
1

min{N,T 1/2}

)
.

Proof of Lemma B.3. Part (a) follows Theorem 1 of Bai (2003). For part (b), the proof is

straightforward from Theorem 1 of Bai and Ng (2002) if their assumptions are replaced with my

Lemma B.2. For parts (c), (d), and (e), the proof follows Lemmas B1, B2, and B3 of Bai (2003),

respectively if their assumptions are replaced with my Lemma B.2. For part (f), I have

λ̂i − λiH
−1 = T−1H

∑T
t=1 ftui,t

+T−1∑T
t=1(f̂t −Hft)f̂tλi + T−1

∑T
t=1(f̂t −Hft)ui,t,

= T−1H
∑T

t=1 ftui,t +Op(θ
−2),

by using Lemma B.3 (e) and (c). Now,

T−1∑T
t=1 ftui,t = T−1∑T

t=1

(
c
T Ft−1 + et

) (
ci
T Ui,t−1 + zi,t

)
,

= cciT
−3∑T

t=1 Ft−1Ui,t−1 + cT−2
∑T

t=1 Ft−1zi,t

+ciT
−2∑T

t=1 Ui,t−1et + T−1
∑T

t=1 etzi,t,

= I + II + III + IV.

However, by using the Cauchy–Schwarz inequality, Lemma B.1 (d) and (h), and Assumptions 2.1

and 2.3.1, I obtain

I ≤ cciT
−1
(
T−2∑T

t=1 F
2
t−1

)1/2 (
T−2∑T

t=1 U
2
i,t−1

)1/2
= Op(T

−1),

II ≤ cT−1/2
(
T−2∑T

t=1 F
2
t−1

)1/2 (
T−1∑T

t=1 z
2
i,t−1

)1/2
= Op(T

−1/2),

III ≤ ciT
−1/2

(
T−2∑T

t=1 U
2
i,t−1

)1/2 (
T−1∑T

t=1 e
2
t−1

)1/2
= Op(T

−1/2).

For IV , Assumptions 2.1, 2.3.1, and 2.4 imply that {etzi,t}Tt=2 is a white noise sequence so that
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IV = Op(T
−1/2). Therefore,

λ̂i −H−1λi = Op(T
−1/2) +Op(θ

−2) = Op

(
1

min
{
N,T 1/2

}) . (B.2.1)

Hence, the result follows. ■

Lemma B.4. Under Assumptions 2.1–2.4 and A, the following hold.

(a) T−1
∑T

t=1 f̂
2
t = T−1H2

∑T
t=1 f

2
t +Op(θ

−2),

(b) T−2
∑T

t=1 F̂
2
t−1 = T−2H2

∑T
t=1 F

2
t−1 +Op(θ

−1),

(c) T−1
∑T

t=1 F̂t−1f̂t = T−1H2
∑T

t=1 Ft−1ft +Op(θ
−1),

(d) T−1
∑T

t=1 û
2
i,t = T−1

∑T
t=1 u

2
i,t +Op(θ

−2),

(e) T−2
∑T

t=1 Û
2
i,t−1 = T−2

∑T
t=1 U

2
i,t−1 +Op(θ

−1),

(f) T−1
∑T

t=1 Ûi,t−1ûi,t = T−1
∑T

t=1 Ui,t−1ui,t +Op(θ
−1),

(g) T−1
∑T

t=1 F̂
c
t−1f̂t = T−1H2

∑T
t=1 F

c
t−1ft +Op(θ

−1),

(h) T−2
∑T

t=1 F̂
c2
t−1 = T−2H2

∑T
t=1 F

c2
t−1 +Op(θ

−1),

(i) T−1
∑T

t=1 Û
c
i,t−1ûi,t = T−1

∑T
t=1 U

c
i,t−1ui,t +Op(θ

−1),

(j) T−2
∑T

t=1 Û
c2
i,t−1 = T−2

∑T
t=1 U

c2
i,t−1 +Op(θ

−1).

Proof of Lemma B.4. Note that F̂0 = 0 and Ûi,0 = 0 for all i by definition. (a) I start with

the identity

T−1∑T
t=1 f̂

2
t = T−1∑T

t=1

[
Hft + (f̂t −Hft)

]2
,

= T−1H2∑T
t=1 f

2
t + T−1

∑T
t=1(f̂t −Hft)

2

+2T−1H
∑T

t=1 ft(f̂t −Hft),

= T−1H2∑T
t=1 f

2
t + I + II.

However, I = Op(θ
−2) by using Lemma B.3 (b) and II = Op(θ

−2) by using Lemma B.3 (d). Hence,

the result follows.

(b) This part closely follows Bai and Ng’s (2004) Lemma B.7. Since

F̂t−1 = HFt−1 +
∑t−1

s=1(f̂s −Hfs), (B.2.2)
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squaring both sides, summing over t, and multiplying by T−2 yields

T−2∑T
t=1 F̂

2
t−1 = T−2H2∑T

t=1 F
2
t−1 + T−1

∑T
t=1

[
T−1/2

∑t−1
s=1(f̂s −Hfs)

]2
+2T−1H

∑T
t=1 Ft−1

[
T−1/2

∑t−1
s=1(f̂s −Hfs)

]
,

= T−2H2∑T
t=1 F

2
t−1 + I + II.

However, I = Op(θ
−1) by using Lemma B.3 (a). For term II, I use the Cauchy–Schwarz inequality

to get

II ≤ 2
(
T−2∑T

t=1 F
2
t−1

)1/2 [
T−1∑T

t=1

(
T−1/2

∑t−1
s=1(f̂s −Hfs)

)2]1/2
,

= Op(1)×Op(θ
−1),

by using Lemma B.1 (d) for the first term and Lemma B.3 (a) for the second term. Hence, the

result follows.

(c) Since F 2
t = (Ft−1 + ft)

2 = F 2
t−1 + f2t + 2Ft−1ft by construction, I obtain

Ft−1ft =
1

2
(F 2

t − F 2
t−1 − f2t ).

Summing over t and multiplying by T−1 yields

T−1∑T
t=1 Ft−1ft =

1
2(T

−1F 2
T − T−1F 2

0 − T−1
∑T

t=1 f
2
t ). (B.2.3)

I also have by construction

F̂t−1f̂t =
1

2
(F̂ 2

t − F̂ 2
t−1 − f̂2t ),

so that

T−1∑T
t=1 F̂t−1f̂t =

1
2(T

−1F̂ 2
T − T−1F̂ 2

0 − T−1
∑T

t=1 f̂
2
t ). (B.2.4)
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Subtracting (B.2.3) multiplied by H2 from (B.2.4) yields

T−1∑T
t=1 F̂t−1f̂t = T−1H2∑T

t=1 Ft−1ft +
1
2T (F̂

2
T −H2F 2

T )−
1
2T (F̂

2
0 −H2F 2

0 )

−
(
T−1∑T

t=1 f̂
2
t − T−1H2

∑T
t=1 f

2
t

)
,

= T−1H2∑T
t=1 Ft−1ft + I + II + III.

For I, updating (B.2.2) to the period T , squaring both sides, and multiplying by T−1 yields

T−1F̂ 2
T = T−1H2F 2

T +
[
T−1/2∑T

s=1(f̂s −Hfs)
]2

︸ ︷︷ ︸
=Op(θ−2) by Lemma B.3 (a)

+2 T−1/2FT︸ ︷︷ ︸
=Op(1) by Lemma B.1 (a)

[
T−1/2∑T

s=1(f̂s −Hfs)
]

︸ ︷︷ ︸
=Op(θ−1) by Lemma B.3 (a)

,

so that I = Op(θ
−1). For II,

F̂ 2
0 −H2F 2

0 = −H2(α2
TF

2
0 + e21 + 2αTF0e1),

is bounded as T → ∞ so that II = Op(T
−1). Term III is Op(θ

−2) by using Lemma B.4 (a). Hence,

the result follows.

(d) Since ûi,t = xi,t − λ̂if̂t and xi,t = ui,t + λiH
−1Hft,

ûi,t = ui,t + λiH
−1Hft − λ̂if̂t,

= ui,t − λiH
−1(f̂t −Hft)− (λ̂i − λiH

−1)f̂t. (B.2.5)

Squaring both sides, summing over t, and multiplying by T−1 yields

T−1∑T
t=1 û

2
i,t = T−1∑T

t=1 u
2
i,t + λ2iH

−2T−1
∑T

t=1(f̂t −Hft)
2 + (λ̂i − λiH

−1)2T−1
∑T

t=1 f̂
2
t

−2λiH
−1T−1∑T

t=1(f̂t −Hft)ui,t − 2(λ̂i − λiH
−1)T−1

∑T
t=1 f̂tui,t

+2λi(λ̂i − λiH
−1)T−1∑T

t=1(f̂t −Hft)f̂t,

= T−1∑T
t=1 u

2
i,t + I + II + III + IV + V.
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However, I = Op(θ
−2) by using Lemma B.3 (b), II = Op(

1
min{T,N2}) by using Lemma B.3 (f) and

T−1
∑T

t=2 f̂t = 1, and III = Op(θ
−2) by using Lemma B.3 (c). I also have

IV = −2(λ̂i − λiH
−1)T−1∑T

t=1 f̂tui,t,

= −2(λ̂i − λiH
−1)T−1∑T

t=1(f̂t −Hft)ui,t − 2(λ̂i − λiH
−1)T−1H

∑T
t=1 ftui,t,

= Op

(
1

min {T,N2}

)
×Op(θ

−2) +Op

(
1

min {T,N2}

)
×Op(T

−1/2),

by using Lemma B.3 (f) and Lemma B.3 (c) for the first term and by using Lemma B.3 (f) for

the second term, and V = Op

(
1

min{T,N2}

)
×Op(θ

−2) by using Lemma B.3 (f) and Lemma B.3 (e).

Hence, the result follows.

(e) I have

Ûi,t =
∑t

s=1 ûi,s,

=
∑t

s=1 ui,s − λiH
−1
∑t

s=1(f̂s −Hfs)− (λ̂i − λiH
−1)

∑t
s=1 f̂s,

= Ui,t − Ui,0 − λiH
−1∑t

s=1(f̂s −Hfs)− (λ̂i − λiH
−1)

∑t
s=1 f̂s,

from (B.2.5). Multiplying both sides by T−1/2 would yield

T−1/2Ûi,t = T−1/2Ui,t − T−1/2Ui,0 − λiH
−1
[
T−1/2∑t

s=1(f̂s −Hfs)
]
− (λ̂i −H−1λi)T

−1/2∑t
s=1 f̂s,

= T−1/2Ui,t + I + II + III.

but I = Op(T
−1/2) from Assumption 2.3.1, II = Op(θ

−1) by using Lemma B.3 (a), III =

Op

(
1

min{N,T 1/2}

)
by using Lemma B.3 (f) and

T−1/2∑t
s=1 f̂s = T−1/2F̂t = T−1/2HFt + T−1/2∑t

s=1(f̂s −Hfs),

= Op(1) +Op(θ
−1),

by using Lemma B.1 (b) and Lemma B.3 (a). This results in T−1/2Ûi,t = T−1/2Ui,t + Op(θ
−1) so
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that squaring both sides yields

T−1Û2
i,t = T−1U2

i,t +Op(θ
−2) +Op(θ

−1)× T−1/2Ui,t,

= T−1U2
i,t +Op(θ

−1), (B.2.6)

by using Lemma B.1 (e). Furthermore, summing over t yields

T−1∑T
t=1 Û

2
i,t = T−1

∑T
t=1 U

2
i,t +Op(θ

−1)T−1/2
∑T

t=1 Ui,t.

Multiplying both sides by T−1 yields

T−2∑T
t=1 Û

2
i,t = T−2∑T

t=1 U
2
i,t +Op(θ

−1) T−3/2∑T
t=1 Ui,t︸ ︷︷ ︸

=Op(1) by Lemma B.1 (g)

,

= T−2∑T
t=1 U

2
i,t +Op(θ

−1).

Hence, the result follows.

(f) I use an identity similar to (B.2.4) for Ûi,t

T−1∑T
t=1 Ûi,t−1ûi,t =

Û2
i,T

2T − Û2
i,0

2T − 1
2T

∑T
t=1 û

2
i,t, (B.2.7)

and an identity similar to (B.2.3) for Ui,t

T−1∑T
t=1 Ui,t−1ui,t =

U2
i,T

2T − U2
i,0

2T − 1
2T

∑T
t=1 u

2
i,t. (B.2.8)

Subtracting (B.2.8) from (B.2.7) yields

T−1∑T
t=1 Ûi,t−1ûi,t − T−1

∑T
t=1 Ui,t−1ui,t

=
1

2T
(Û2

i,T − U2
i,T )−

1

2T
(Û2

i,0 − U2
i,0)−

1

2T

(∑T
t=1 û

2
i,t −

∑T
t=1 u

2
i,t

)
,

= I + II + III.

However, I and II are Op(θ
−1) from (B.2.6) and III is Op(θ

−2) by using Lemma B.4 (d). Hence,

the result follows.
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(g) Since F c2
t = (Ft−1+ ft− F̄ )2 = (F c

t−1+ ft)
2 = F c2

t−1+ f2t +2F c
t−1ft by construction, I obtain

F c
t−1ft =

1

2
(F c2

t − F c2
t−1 − f2t ),

=
1

2
(F 2

t − F 2
t−1 − 2F̄ ft − f2t ).

Summing over t and multiplying by T−1 yields

T−1∑T
t=1 F

c
t−1ft =

1
2(T

−1F 2
T − T−1F 2

0 − 2F̄ f̄ − T−1
∑T

t=1 f
2
t ). (B.2.9)

I also have by construction

F̂ c
t−1f̂t =

1

2
(F̂ c2

t − F̂ c2
t−1 − f̂2t ),

=
1

2
(F̂ 2

t − F̂ 2
t−1 − 2F̂ f̂t − f̂2t ),

so that

T−1∑T
t=1 F̂

c
t−1f̂t =

1
2(T

−1F̂ 2
T − T−1F̂ 2

0 − 2F̂ f̂ − T−1
∑T

t=1 f̂
2
t ). (B.2.10)

Subtracting (B.2.9) multiplied by H2 from (B.2.10) yields

T−1∑T
t=1 F̂

c
t−1f̂t = T−1H2∑T

t=1 F
c
t−1ft +

1
2T (F̂

2
T −H2F 2

T )−
1
2T (F̂

2
0 −H2F 2

0 )

−
(
T−1∑T

t=1 f̂
2
t − T−1H2

∑T
t=1 f

2
t

)
− (F̃ f̂ −H2F̄ f̄),

= T−1H2∑T
t=1 Ft−1ft + I + II + III + IV.

For the terms I + II + III, I follow the proof of part (c) to obtain Op(θ
−1). Term IV is

F̂ f̂ −H2F̄ f̄ = (F̂ −HF̄ )Hf̄ +HF̄ (f̂ −Hf̄) + (F̂ −HF̄ )(f̂ −Hf̄),

= Op(T
1/2θ−1)×Op(T

−1/2)

+Op(T
1/2)×Op(T

−1/2θ−1)

+Op(T
1/2θ−1)×Op(T

−1/2θ−1),

= Op(θ
−1),
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because Hf̄ = Op(T
−1/2),

F̂ = T−1H
∑T

t=1 Ft−1 + T−1
∑T

t=1(F̂t−1 −HFt−1),

= T−1H
∑T

t=1 Ft−1 + T−1
∑T

t=1

∑t−1
s=1(f̂s −Hfs),

= HF̄ +Op(T
1/2θ−1),

and

f̂ = T−1H
∑T

t=1 ft + T−1
∑T

t=1(f̂t −Hft),

= Hf̄ +Op(T
−1/2θ−1).

(h) I have

T−2∑T
t=1 F̂

c2
t−1 = T−2∑T

t=1 F̂
2
t−1 − 2F̂ T−2

∑T
t=1 F̂t−1 + T−1F̂

2
,

= T−2∑T
t=1 F̂

2
t−1 − T−1F̂

2
= I + II.

However,

I = T−2H2∑T
t=1 F

2
t−1 +Op(θ

−1),

by using Lemma B.4 (b) and

II = T−1H2F̄ 2 +Op(θ
−1).

Hence,

I + II = T−2H2∑T
t=1 F

2
t−1 − T−1H2F̄ 2 +Op(θ

−1),

= T−2H2∑T
t=1(Ft−1 − F̄ )2 +Op(θ

−1).

(i) The proof follows part (g) by using an identity similar to (B.2.10)

T−1∑T
t=1 Û

c
i,t−1ûi,t =

1
2(T

−1Û2
i,T − T−1Û2

i,0 − 2Û iûi − T−1
∑T

t=1 û
2
i,t),
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and an identity similar to (B.2.9) for Ui,t

T−1∑T
t=1 U

c
i,t−1ui,t =

1
2(T

−1U2
i,T − T−1U2

i,0 − 2U iui − T−1
∑T

t=1 u
2
i,t).

(j) I have

T−2∑T
t=1(Ûi,t−1 − Û i)

2 = T−2∑T
t=1 Û

2
i,t−1 − 2T−2Û i

∑T
t=1 Ûi,t−1 + T−2

∑T
t=1 Û

2

i ,

= T−2∑T
t=1 Û

2
i,t−1 − T−1Û

2

i = I + II,

but

I = T−2∑T
t=1 U

2
i,t−1 +Op(θ

−1),

by using Lemma B.4 (e) and

II = −T−1Ū2
i +Op(θ

−1).

Hence,

I + II = T−2∑T
t=1 U

2
i,t−1 − T−1Ū2

i +Op(θ
−1),

= T−2∑T
t=1(Ui,t−1 − Ūi)

2 +Op(θ
−1),

and the result follows. ■

Proof of Theorem SA-1. (i-a) The common test is

tF̂ =
T δ̂

σ̂
(
T−2

∑T
t=2 F̂

2
t−1

)−1/2
. (B.2.11)

Under Assumptions 2.1–2.4 and B.1, I can use Lemma B.4 (b) and (c) so that the numerator
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becomes

T δ̂ =
T−1

∑T
t=1 F̂t−1f̂t

T−2
∑T

t=1 F̂
2
t−1

,

=
T−1H2

∑T
t=1 Ft−1ft +Op(θ

−1)

T−2H2
∑T

t=1 F
2
t−1 +Op(θ

−1)
,

=
cT−2H2

∑T
t=1 F

2
t−1 + T−1H2

∑T
t=1 Ft−1et +Op(θ

−1)

T−2H2
∑T

t=1 F
2
t−1 +Op(θ

−1)
. (B.2.12)

The variance estimate

σ̂2 = T−1∑T
t=1

(
f̂t − δ̂F̂t−1

)2
,

= T−1∑T
t=1

[
Hft − δ̂∗HFt−1 +

(
f̂t −Hft

)
+ δ̂∗HFt−1 − δ̂F̂t−1

]2
,

= T−1∑T
t=1

[
Het − (δ̂∗ − δ)HFt−1 +

(
f̂t −Hft

)
+ δ̂∗HFt−1 − δ̂F̂t−1

]2
,

= T−1∑T
t=1

(∑5
j=1Dj

)2
≤ T−1

∑T
t=1 5

(∑5
j=1D

2
j

)
,

where δ̂∗ =
T−1H2

∑T
t=1 Ft−1ft

T−1H2
∑T

t=1 F
2
t−1

. To ensure this is a consistent estimate, I compute the stochastic

orders of the five terms. First, T−1
∑T

t=1D
2
1 = T−1

∑T
t=1H

2e2t ,

T−1∑T
t=1D

2
2 = T−1

[
T−1H2

∑T
t=1 Ft−1et

]2
T−2H2

∑T
t=1 F

2
t−1

= Op(T
−1),

by using Lemma B.1 (c) and (d).

T−1∑T
t=1D

2
3 = T−1

∑T
t=1

(
f̂t −Hft

)2
= Op(θ

−2),

by using Lemma B.3 (b).

T−1∑T
t=1D

2
4 = T−1

[
T−1H2

∑T
t=1 Ft−1ft

]2
T−2H2

∑T
t=1 F

2
t−1

= Op(T
−1),

by using Lemma B.1 (c) and (d). Finally,

T−1∑T
t=1D

2
5 = T−1

[
T−1

∑T
t=1 F̂t−1f̂t

]2
T−2

∑T
t=1 F̂

2
t−1

= Op(T
−1),
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by using Lemma B.4 (b) and (c). Therefore, the first term dominates and the variance estimate

satisfies σ̂2 = Q−2σ2 +Op(θ
−2) with Q−1 ≡ p limH, for any fixed c. Hence, plugging (B.2.12) into

(B.2.11) and applying Lemma B.1 (c) and (d), I obtain

tF̂ ⇒ c
[∫ 1

0 Wc(r)
2dr
]1/2

+

∫ 1
0 Wc(r)dW (r)[∫ 1
0 Wc(r)

2dr
]1/2 .

(i-b) I follow the same steps as above by replacing f̂t and F̂t−1 with ûi,t and Ûi,t−1 and using

the corresponding lemmas to show the results. Hence, the proof is condensed.

(ii-a) The common test is

t̄F̂ =
T δ̂

σ̂
[
T−2

∑T
t=2(F̂t−1 − F̂ )2

]−1/2
, (B.2.13)

where

T δ̂ =
T−1

∑T
t=1(F̂t−1 − F̂ )f̂t

T−2
∑T

t=1(F̂t−1 − F̂ )2
,

=
T−1H2

∑T
t=1(Ft−1 − F̄ )ft +Op(θ

−1)

T−2H2
∑T

t=1(Ft−1 − F̄ )2 +Op(θ
−1)

,

=
cT−1H2

∑T
t=1(Ft−1 − F̄ )2 + T−1H2

∑T
t=1(Ft−1 − F̄ )et +Op(θ

−1)

T−2H2
∑T

t=1(Ft−1 − F̄ )2 +Op(θ
−1)

, (B.2.14)

by using Lemma B.4 (g) for the numerator and Lemma B.4 (h) for the denominator. For the

variance estimate, I can show that σ̂2 = Q−2σ2 +Op(θ
−2) as follows.

σ̂2 = T−1∑T
t=1

[
f̂t − f̂ − δ̂

(
F̂t−1 − F̂

)]2
,

= T−1∑T
t=1

[
Hft −Hf̄ − δ̂

(
F̂t−1 − F̂

)
+
(
f̂t −Hft

)
−
(
f̂ −Hf

)]2
,

= T−1∑T
t=1

[
Het −Hē+ δ

(
HFt−1 −HF̄

)
− δ̂∗

(
HFt−1 −HF̄

)
+
(
f̂t −Hft

)
−
(
f̂ −Hf

)
+ δ̂∗

(
HFt−1 −HF̄

)
− δ̂

(
F̂t−1 −HF̂

)]2
,

= T−1∑T
t=1

[
Het −Hē−

(
δ̂∗ − δ

) (
HFt−1 −HF̄

)
+
(
f̂t −Hft

)
−
(
f̂ −Hf

)
+δ̂∗

(
HFt−1 −HF̄

)
− δ̂

(
F̂t−1 − F̂

)]2
,

= T−1∑T
t=1

(∑7
j=1Dj

)2
≤ T−1

∑T
t=1 7

(∑7
j=1D

2
j

)
,
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where δ̂∗ =
T−1H2

∑T
t=1(Ft−1 − F̄ )ft

T−1H2
∑T

t=1(Ft−1 − F̄ )2
. However, T−1

∑T
t=1D

2
1 = T−1H2

∑T
t=1 e

2
t , T

−1
∑T

t=1D
2
2 =

H2ē2 = Op(T
−1),

T−1∑T
t=1D

2
3 = T−1

[
T−1H2

∑T
t=1(Ft−1 − F̄ )et

]2
T−2H2

∑T
t=1(Ft−1 − F̄ )2

= Op(T
−1),

by using Lemma B.1 (i) and (j),

T−1∑T
t=1D

2
4 = T−1

∑T
t=1

(
f̂t −Hft

)2
= Op(θ

−2),

by using Lemma B.3 (b),

T−1∑T
t=1D

2
5 =

(
f̂ −Hf

)2
=
[
T−1

∑T
t=1

(
f̂t −Hft

)]2
= Op(θ

−2),

by using Lemma B.3 (a),

T−1∑T
t=1D

2
6 = T−1

[
T−1H2

∑T
t=1(Ft−1 − F̄ )ft

]2
T−2H2

∑T
t=1(Ft−1 − F̄ )2

= Op(T
−1),

by using Lemma B.1 (i) and (j),

T−1∑T
t=1D

2
7 = T−1

[
T−1

∑T
t=1(F̂t−1 − F̂ )f̂t

]2
T−2

∑T
t=1(F̂t−1 − F̂ )2

= Op(T
−1),

by using Lemma B.4 (g) and (h). Therefore, by plugging (B.2.14) into (B.2.13) and applying Lemma

B.1 (i) and (j), I obtain

tF̂ ⇒ c
[∫ 1

0 W̄c(r)
2dr
]1/2

+

∫ 1
0 W̄c(r)dW (r)[∫ 1
0 W̄c(r)

2dr
]1/2 ,

as N,T → ∞.

(ii-b) I follow the same steps as above by replacing f̂t and F̂t−1 with ûi,t and Ûi,t−1 and using

the corresponding lemmas to show the results. Hence, the proof is condensed. ■

Lemma B.5. Under Assumptions 2.1 and 2.5, the following hold.
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(a) k−1/2
T

∑T
t=1 α

−t
T et ⇒ N(0, σ2/2c),

(b)
∑T

t=1 Ft = Op(kTT
1/2) +Op(α

T
T k

3/2
T ),

(c) α−T
T k−1

T

∑T
t=1 Ft−1et = op(1),

(d) α−2T
T k−2

T

∑T
t=1 F

2
t = Op(1),

(e) T−1
∑T

t=1 f
2
t = Op(α

2T
T T−1) +Op(1).

Under Assumptions 2.3.1 and 2.5, the following hold for all i:

(f) k−1/2
T

∑T
t=1 ρ

−t
i,T zi,t ⇒ N(0, σ2i /2ci),

(g)
∑T

t=1 Ui,t = Op(kTT
1/2) +Op(ρ

T
i,Tk

3/2
T ),

(h) ρi,T−Tk−1
T

∑T
t=1 Ui,t−1zi,t = op(1),

(i) ρi,T−2Tk−2
T

∑T
t=1 U

2
i,t = Op(1),

(j) T−1
∑T

t=1 u
2
i,t = Op(ρ

2T
i,TT

−1) +Op(1).

Proof of Lemma B.5. Here, I present the proof of only parts (a) to (e). The proofs of parts

(f) to (j) are shown in the same way but with Ui,t instead of Ft and with Assumption 2.1 replaced

by Assumption 2.3.1. I suppress the proofs to conserve space.

(a) See Lemma 4.2 of Phillips and Magdalinos (2007).

(b) I start with the expression

∑T
t=1 Ft =

∑T
t=0 α

t
T e0 +

∑T−1
t=0 α

t
T e1 +

∑T−2
t=0 α

t
T e2 + · · ·+ eT ,

=
1

1− αT

[
(αT − αT+1

T )F0 + (1− αT
T )e1 + (1− αT−1

T )e2 + · · ·+ (1− αT )eT

]
,

=
kT
c

[∑T
t=1 et −

∑T
t=1 α

T+1−t
T et + (αT − αT+1

T )F0

]
,

=
kT
c

∑T
t=1 et −

αT+1
T kT

c

∑T
t=1 α

−t
T et +

kT
c (αT − αT+1

T )F0,

= I + II + III.

However, I = Op(kTT
1/2) from Assumption 2.1, II = Op(α

T
T k

3/2
T ) by using Lemma B.5 (a), and

III = Op(α
T
T kT ) from Assumption 2.1. Hence, the result follows.

(c) I start with the expression for Ft−1

Ft−1 = et−1 + αT et−2 + ...+ αt−2
T e1 + αt−1

T F0 = αt−1
T

∑t−1
s=1 α

−s
T es + αt−1

T F0.
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Multiplying both sides by α−T
T k−1

T et and summing over t yield

α−T
T k−1

T

∑T
t=1 Ft−1et = α−T

T k−1
T

∑T
t=1

(∑t−1
s=1 α

t−s−1
T es

)
et + α−T

T k−1
T F0

∑T
t=1 α

t−1
T et,

= I + II.

The expected value of this is zero because of Assumption 2.1. To show that this is op(1), I confirm

that the second moments of both terms are bounded as T → ∞. For I, I can simplify the second

moment as follows by using Assumption 2.1.

E
[
α−T
T k−1

T

∑T
t=1

(∑t−1
s=0 α

t−s−1
T es

)
et

]2
= α−2T

T k−2
T σ4

∑T
t=1

∑t−1
s=0 α

2(t−s−1)
T ,

= α−2T
T

α2
Tσ

4

kT (α2
T − 1)

(
α2T
T − 1

kT (α2
T − 1)

− T

kTα2
T

)
,

=
α2
Tσ

4

kT (α2
T − 1)

(
1− α−2T

T

kT (α2
T − 1)

−
α−2T
T T

kTα2
T

)
.

However, since kT (α2
T − 1) → 2c, α2

T → 1, and α−2T
T T = o(1), this is O(1). For II,

E
[
α−T
T k−1

T F0
∑T

t=1 α
t−1
T et

]2
,

= α−2T
T k−1

T

E(F 2
0 )σ

2

kT (α2
T − 1)

(α2T
T − 1),

= k−1
T

E(F 2
0 )σ

2

kT (α2
T − 1)

(1− α−2T
T ) = O(k−1

T ),

so that the second moment of II diminishes. Therefore, the result follows.

(d) I take squares of both sides of Ft = αTFt−1 + et and take summations over t = 1, ..., T to
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obtain

∑T
t=1 F

2
t−1 =

1

α2
T − 1

{
F 2
T − F 2

0 −
∑T

t=1 e
2
t − 2αT

∑T
t=1 Ft−1et

}
,

α−2T
T k−2

T

∑T
t=1 F

2
t−1 =

1

kT (α2
T − 1)

{
α−2T
T

kT
(F 2

T − F 2
0 )−

α−2h
h

kh

∑T
t=1 e

2
t

−
2α−2T+1

T

kT

∑T
t=1 Ft−1et

}
,

=
1

kT (α2
T − 1)

{I − II − III} ,

where kT (α2
T − 1) → 2c. Now I can show that I = Op(1), because

FT =
∑T

j=1 α
T−j
T ej = αT

T k
1/2
T

(
1√
kT

∑T
j=1 α

−j
T ej

)
,

F 2
T = α2T

T kT

(
1√
kT

∑T
j=1 α

−j
T ej

)2

= Op(α
2T
T kT ),

so that

I =
α−2T
T

kT
F 2
T −

α−2T
T

kT
F 2
0 = Op(1) +Op(α

−2T
T k−1

T ) = Op(1).

For II,

II =

(
α−2T
T T

kT

)
1

T

∑T
t=1 e

2
t = o

(
kT
T

)
×Op(1) = op(1).

For III (divided by 2),

III =
α−2T+1
T

kT

∑T
t=1 Ft−1et

=
α−2T+1
T

kT

∑T
t=1

(∑t−1
j=1 α

t−1−j
T ej

)
et + F0

(
α−T
T√
kT

)
1√
kT

∑T
t=1 α

−(T−t)
T et,

= IIIa+ IIIb.

For IIIa, because I have

E

[
α−2T+1
T

kT

∑T
t=1

(∑t−1
j=1 α

t−1−j
T ej

)
et

]2
=

σ4α−4T
T

k2T

∑T
t=1

∑t−1
j=1 α

2(t−j−1)
T ,

=
σ4α−4T

T

k2T (α
2
T − 1)

[∑T
t=1 α

2(t−1)
T − T

]
= O(α−2T

T ),
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IIIa = op(1). For IIIb, because F0 = Op(1),

(
α−T
T√
kT

)
= o

(√
kT
T

)
= op(1), and

(
1√
kT

∑T
t=1 α

−(T−t)
T et

)
=

Op(1), IIIb = op(1). Hence, III = op(1). The result follows. ■

(e) I start with

ft =
c

kT
Ft−1 + et.

Squaring both sides, summing over t, and multiplying by T−1 yields

1

T

∑T
t=1 f

2
t =

c2

Tk2T

∑T
t=1 F

2
t−1 +

2c
TkT

∑T
t=1 Ft−1et +

1
T

∑T
t=1 e

2
t ,

= I + II + III.

However, I = Op(α
2T
T T−1) by using Lemma B.5 (d), II = op(α

T
TT

−1) by using Lemma B.5 (c), and

III = Op(1) by Assumption 2.1. Hence, the result follows. ■

Proof of Theorem 2.1. I start with equation (A.1) of Bai and Ng (2004). Let ut = [u1,t u2,t

· · · uN,t] be a 1×N vector of the first differences of the idiosyncratic errors at time t.

f̂t = Hft + V −1N−1T−1f̂ ′uΛft + V −1N−1T−1f̂ ′fΛ′u′t

+V −1N−1T−1f̂ ′uu′t,

or

f̂t = A1ft +A2ft +N−1∑N
i=1 a1,iui,t +N−1

∑N
i=1 a2,iui,t,

= Aft +N−1∑N
i=1 aiui,t,

where A = A1 + A2 and ai = a1,i + a2,i. I also have A1 = V −1N−1T−1f̂ ′fΛ′Λ from the definition

of the H matrix, A2 = V −1N−1T−1f̂ ′uΛ, a1,i = V −1T−1f̂ ′fλ′i, and a2,i = V −1T−1f̂ ′ui. In the

following, because V −1 appears in every component A1, A2, a1,i and a2,i, I multiply them by V to

ease computation and separately derive the bound of V .
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(i) If c > 0 and ci = 0 for all i, then

V A1 ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 f

2
s

∣∣∣1/2︸ ︷︷ ︸
=Op(αT

TT−1/2) by Lemma B.5(e)

∣∣∣N−1∑N
i=1 λ

2
i

∣∣∣︸ ︷︷ ︸
=Op(1) from Assumption 2.2

= Op(α
TT−1/2),

V A2 ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣N−1∑N
i=1 T

−1
∑T

s=1 u
2
i,s

∣∣∣1/2︸ ︷︷ ︸
=Op(1)

∣∣∣N−1∑N
i=1 λ

2
i

∣∣∣︸ ︷︷ ︸
=Op(1)

= Op(1),

V a1,i ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 f

2
s

∣∣∣1/2︸ ︷︷ ︸ |λi|
=Op(αT

TT−1/2)

= Op(α
TT−1/2),

V a2,i ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 u

2
i,s

∣∣∣1/2︸ ︷︷ ︸
=Op(1)

= Op(1).

(ii) If c = 0 and ci > 0 for all i, then

V A1 ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 f

2
s

∣∣∣1/2︸ ︷︷ ︸
=Op(1)

∣∣∣N−1∑N
i=1 λ

2
i

∣∣∣︸ ︷︷ ︸
=Op(1)

= Op(1),

V A2 ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣N−1∑N
i=1 T

−1
∑T

s=1 u
2
i,s

∣∣∣1/2︸ ︷︷ ︸
=Op(ρTi,TT−1/2) by Lemma B.5 (j)

∣∣∣N−1∑N
i=1 λ

2
i

∣∣∣︸ ︷︷ ︸
=Op(1)

= Op(ρ
T
i,TT

−1/2),

V a1,i ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 f

2
s

∣∣∣1/2︸ ︷︷ ︸ |λi|
=Op(1)

= Op(1),

V a2,i ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 u

2
i,s

∣∣∣1/2︸ ︷︷ ︸
=Op(ρTi,TT−1/2)

= Op(ρ
T
i,TT

−1/2).

The largest eigenvalue V of N−1T−1xx′ satisfies V 1/2 =
∥∥N−1/2T−1/2x

∥∥, where ∥·∥ denotes the

Euclidean norm, so that

V = N−1T−1 ∥x∥2 ,

= N−1T−1∑N
i=1

∑T
t=1 x

2
i,t,

=

 Op(α
T
TT

−1/2), for case (i)

Op(ρ
T
i,TT

−1/2), for case (ii)
. (B.2.15)

Hence, the results follow if the stochastic bound for V is sharp and the expression is asymptotically
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dominated by the mildly explosive components. ■

B.3 Proof of Factor Estimation Errors in Theorem 2.1 (i)

In the following, I provide two additional facts pertaining to consistency of factor estimation in

Theorem 2.1 (i).

First, I show that the differenced factors can be consistently estimated. From Proof of Theorem

2.1 (i) in Appendix B.2, I have

f̂t − (A1 +A2)ft = N−1∑N
i=1 a1,iui,t +N−1

∑N
i=1 a2,iui,t,

= I + II, (B.3.1)

whereA1 = V −1N−1T−1f̂ ′fΛ′Λ, A2 = V −1N−1T−1f̂ ′uΛ, a1,i = V −1T−1f̂ ′fλ′i, and a2,i = V −1T−1f̂ ′ui

as I previously defined. Then,

I = V −1(T−1f̂ ′f)N−1∑N
i=1 λiui,t,

with V = Op(α
T
TT

−1/2) from (B.2.15) and

(T−1f̂ ′f) ≤
∣∣∣T−1∑T

s=1 f̂
2
s

∣∣∣1/2︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1 f

2
s

∣∣∣1/2︸ ︷︷ ︸
=Op(αT

TT−1/2) by Lemma B.5 (e)

= Op(α
T
TT

−1/2).

Hence,

I = Op(α
−T
T T 1/2)×Op(α

T
TT

−1/2)× op(1) = op(1).

I also have, by using the definition of a2,i in Proof of Theorem 2.1,

II = V −1T−1N−1∑T
s=1 f̂s

∑N
i=1 ui,sui,t,

≤ V −1T−1∑T
s=1 f̂s

∣∣∣N−1
∑N

i=1 u
2
i,s

∣∣∣1/2 ∣∣∣N−1
∑N

i=1 u
2
i,t

∣∣∣1/2 ,
≤ V −1

∣∣∣T−1∑T
s=1 f̂

2
s

∣∣∣︸ ︷︷ ︸
=1

∣∣∣T−1∑T
s=1

∣∣∣N−1
∑N

i=1 u
2
i,s

∣∣∣∣∣∣︸ ︷︷ ︸
=Op(1)

1/2 ∣∣∣N−1∑N
i=1 u

2
i,t

∣∣∣1/2 ,
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but V = Op(α
T
TT

−1/2) from (B.2.15), T−1
∑T

s=1

∣∣∣N−1
∑N

i=1 u
2
i,s

∣∣∣ = Op(1), and N−1
∑N

i=1 u
2
i,t =

Op(1) under ci = 0. Hence,

II = Op(α
−T
T T 1/2)×Op(1) = op(1).

I also show that the level factors involve factor estimation errors of order Op(T
1/2N−1/2). Using

(B.3.1), the level factor estimate is

F̂t =
∑t

s=1 f̂s = (A1 +A2)
∑t

s=1 fs +
∑t

s=1N
−1
∑N

i=1 a1,iui,s +
∑t

s=1N
−1
∑N

i=1 a2,iui,s,

or

F̂t − (A1 +A2)Ft =
∑t

s=1N
−1
∑N

i=1 a1,iui,s +
∑t

s=1N
−1
∑N

i=1 a2,iui,s,

= I + II = Op(T
1/2N−1/2), (B.3.2)

because

I = V −1(T−1f̂ ′f)
∑t

s=1N
−1
∑N

i=1 λiui,t,

= V −1(T−1f̂ ′f)T 1/2N−1/2(T−1/2N−1/2∑t
s=1

∑N
i=1 λiui,t),

where V −1(T−1f̂ ′f) = Op(1) because V −1 = Op(α
−T
T T 1/2) and T−1f̂ ′f = Op(α

T
TT

−1/2) as I showed

in term I of the differenced factor. I also have

T−1/2N−1/2∑t
s=1

∑N
i=1 λiui,t = Op(1).

Hence,

I = Op(1)× T 1/2N−1/2 ×Op(1) = Op(T
1/2N−1/2).

and

II = V −1T−1N−1∑T
l=1 f̂l

∑N
i=1 ui,l

∑t
s=1 ui,s,

≤ V −1
∣∣∣T−1∑T

l=1 f̂
2
l

∣∣∣ ∣∣∣T−1∑T
l=1

∣∣∣N−1
∑N

i=1 u
2
i,l

∣∣∣∣∣∣1/2 ∣∣∣N−1∑N
i=1

∑t
s=1 u

2
i,s

∣∣∣1/2 ,
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where V = Op(α
T
TT

−1/2) from (B.2.15), T−1
∑T

l=1 f̂
2
l = 1, T−1

∑T
l=1

∣∣∣N−1
∑N

i=1 u
2
i,l

∣∣∣ = Op(1), and∣∣∣N−1
∑N

i=1

∑t
s=1 u

2
i,s

∣∣∣1/2 = Op(T
1/2). Hence, II is dominated by I. Therefore, (B.3.1) implies that

the factor estimation errors in the differenced factor are op(1) and (B.3.2) implies that the factor

estimation errors in the level factor are Op(T
1/2N−1/2).

B.4 Proof of Theorem SA-2 and Theorem 2.2

Throughout Appendix B.4, I let F c
t−1 = Ft−1−F̄ , where F̄ = h−1

∑T+h
t=T+1 Ft−1 and F̃ c

t−1 = F̃t−1−F̃ ,

where F̃ = h−1
∑T+h

t=T+1 F̃t−1. Let also f ct = ft − f̄ , where f̄ = h−1
∑T+h

t=T+1 ft and f̃ ct = f̃t − f̃ ,

where f̃ = h−1
∑T+h

t=T+1 f̃t. In addition, I let U c
i,t−1 = Ui,t−1 − Ūi, where Ūi = h−1

∑T+h
t=T+1 Ui,t−1

and Ũ c
i,t−1 = Ũi,t−1 − Ũ i, where Ũ i = h−1

∑T+h
t=T+1 Ũi,t−1. Let also uci,t = ui,t − ūi, where ūi =

h−1
∑T+h

t=T+1 ui,t−1 and ũci,t−1 = ũi,t−1− ũi, where ũi = h−1
∑T+h

t=T+1 ũi,t−1. I also let ρh = maxi ρi,h.

Lemma B.6. Under Assumptions 2.1–2.5, the following hold:

(a) For t = T + 1, ..., T + h uniformly in t,

Ft = Op(α
h
hk

1/2
h ),

(b) For t = T + 1, ..., T + h uniformly in t and all i,

Ui,t = Op(ρ
h
hk

1/2
h ),

(c) For t = T + 1, ..., T + h uniformly in t,

F̃t −HFt = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
(d)

h−1∑T+h
t=T+1(F̃t−1 −HFt−1)

2 = Op

(
α2h
h kh

min{N2,T}

)
+Op

(
ρ2hh kh

min{N,T}

)
,
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(e)

h−1∑T+h
t=T+1 Ft−1(F̃t−1 −HFt−1) = Op

(
α2h
h kh

min{N,T 1/2}

)
+Op

(
αh
hρ

h
hkh

min{N1/2,T 1/2}

)
,

(f)

h−1∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1) = Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh kh

min {N,T}

)
,

(g)

h−1/2∑T+h
t=T+1(F̃t−1 −HFt−1)et = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
,

(h) For t = T + 1, ..., T + h uniformly in t,

ft = Op(α
h
hk

−1/2
h ),

(i) For t = T + 1, ..., T + h uniformly in t and all i,

ui,t = Op(ρ
h
hk

−1/2
h ),

(j) For t = T + 1, ..., T + h uniformly in t,

f̃t −Hft = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
(k)

h−1∑T+h
t=T+1(f̃t −Hft)

2 = Op

(
α2h
h k−1

h
min{N2,T}

)
+Op

(
ρ2hh k−1

h
min{N,T}

)
,

(l)

h−1∑T+h
t=T+1(F̃t−1 −HFt−1)(f̃t −Hft) = Op

(
α2h
h

min{N2,T}

)
+Op

(
ρ2hh

min{N,T}

)
,
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(m)

h−1∑T+h
t=T+1(F̃t−1 −HFt−1)ft = Op

(
α2h
h

min{N,T 1/2}

)
+Op

(
αh
hρ

h
h

min{N1/2,T 1/2}

)
,

(n)

h−1∑T+h
t=T+1 Ft−1(f̃t −Hft) = Op

(
α2h
h

min{N,T 1/2}

)
+Op

(
αh
hρ

h
h

min{N1/2,T 1/2}

)
,

(o)

h−1∑T+h
t=T+1 F̃t−1(f̃t −Hft) = Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh

min {N,T}

)
,

(p)

h−1∑T+h
t=T+1(f̃t −Hft)et = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
,

(q)

h−2∑T+h
t=T+1 F̃

2
t−1 = h−2H2∑T+h

t=T+1 F
2
t−1 +Op

(
α2h
h h−1kh

min{N2,T}

)
+Op

(
ρ2hh h−1kh
min{N,T}

)
+Op

(
α2h
h h

−1kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hh

−1kh

min
{
N1/2, T 1/2

}) ,
(r)

h−1∑T+h
t=T+1 F̃t−1et = h−1∑T+h

t=T+1 Ft−1et

+Op

(
αh
hh

−1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

−1/2k
1/2
h

min
{
N1/2, T 1/2

}) .
Proof of Lemma B.6.

(a) For t = T + j with j = 1, ..., h,

Ft = et + αhet−1 + ...+ αj−1
h et+j−1 + αj

hFT ,

= αj
h

∑j
s=1 α

−s
h et+j−s + αj

hFT = Op(α
h
hk

1/2
h ),
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by using Lemma B.5 (a).

(b) The proof is the same as part (a).

(c) I start with

F̃t =

∑N
i=1 λ̂

∗
iXit∑N

i=1 λ̂
∗2
i

=
N−1

∑N
i=1 λ̂

∗
iλi

N−1
∑N

i=1 λ̂
∗2
i

Ft +
N−1

∑N
i=1 λ̂

∗
iUi,t

N−1
∑N

i=1 λ̂
∗2
i

= I + II.

For I,

I =
N−1

∑N
i=1(Hλ̂

∗2
i + λ̂∗iλi −Hλ̂∗2i )

N−1
∑N

i=1 λ̂
∗2
i

Ft,

=

[
H −

HN−1
∑N

i=1 λ̂
∗
i (λ̂

∗
i −H−1λi)

N−1
∑N

i=1 λ̂
∗2
i

]
Ft,

but

N−1
N∑
i=1

λ̂∗i (λ̂
∗
i −H−1λi) = N−1

N∑
i=1

H−1λi(λ̂
∗
i −H−1λi) +N−1

N∑
i=1

(λ̂∗i −H−1λi)
2,

= Op

(
1

min
{
N,T 1/2

}) ,
by using Lemma B.3 (f). For II,

II =
N−1

∑N
i=1H

−1λiUi,t +N−1
∑N

i=1(λ̂
∗
i −H−1λi)Ui,t

N−1
∑N

i=1 λ̂
∗2
i

.

Therefore,

F̃t −HFt = −
HN−1

∑N
i=1 λ̂

∗
i (λ̂

∗
i −H−1λi)

N−1
∑N

i=1 λ̂
∗2
i

Ft

+
N−1

∑N
i=1H

−1λiUi,t

N−1
∑N

i=1 λ̂
∗2
i

+
N−1

∑N
i=1(λ̂

∗
i −H−1λi)Ui,t

N−1
∑N

i=1 λ̂
∗2
i

,

= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

N1/2

)
+Op

(
ρhhk

1/2
h

min
{
N,T 1/2

}) ,
= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t by using (a) and (b). (d) is straightforwardly shown from (c).
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(e) Since Ft = Op(α
h
hk

1/2
h ),

Ft(F̃t −HFt) = Op(α
h
hk

1/2
h )×

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

}) ,
uniformly in t for t = T + 1, · · · , T + h by using (a) and (c). Hence,

h−1∑T+h
t=T+1 Ft−1(F̃t−1 −HFt−1) = Op

(
α2h
h kh

min{N,T 1/2}

)
+Op

(
αh
hρ

h
hkh

min{N1/2,T 1/2}

)
.

(f) By using (e) and (d),

F̃t(F̃t −HFt) = HFt(F̃t −HFt) + (F̃t −HFt)
2,

= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
α2h
h kh

min {N2, T}

)
+Op

(
ρ2hh kh

min {N,T}

)
,

= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh kh

min {N,T}

)
,

uniformly in t for t = T + 1, · · · , T + h. Hence,

h−1∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1) = Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh kh

min {N,T}

)
.

(g) Since

(F̃t−1 −HFt−1)et = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t and (F̃t−1 − HFt−1) and et are independent with et being i.i.d. with E(et) = 0, I
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have

h−1/2∑T+h
t=T+1(F̃t−1 −HFt−1)et = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
.

(h) From (a), I obtain

ft = Ft − Ft−1 = (1 +
c

kh
)Ft−1 + et − Ft−1,

=
c

kh
Ft−1 + et = Op(α

h
hk

−1/2
h ),

uniformly in t. (i) The proof is the same as (h).

(j) I start with

f̃t =

∑N
i=1 λ̂

∗
ixit∑N

i=1 λ̂
∗2
i

=
N−1

∑N
i=1 λ̂

∗
iλi

N−1
∑N

i=1 λ̂
∗2
i

ft +
N−1

∑N
i=1 λ̂

∗
iui,t

N−1
∑N

i=1 λ̂
∗2
i

= I + II,

where

I =

[
H −

HN−1
∑N

i=1 λ̂
∗
i (λ̂

∗
i − λiH

−1)

N−1
∑N

i=1 λ̂
∗2
i

]
ft,

= Hft +Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

}) ,
and II = Op

(
ρhhk

−1/2
h

N1/2

)
+Op

(
ρhhk

−1/2
h

min{N,T 1/2}

)
= Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
. Hence,

f̃t −Hft = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t. (k) is straightforwardly shown from (j).

(l) (c) and (j) imply that

(F̃t−1 −HFt−1)(f̃t −Hft) =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]

×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min {N,T}

)
,
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uniformly in t, which yields the result.

(m) Since

(F̃t−1 −HFt−1)ft =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]×Op(α
h
hk

−1/2
h ),

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, which yields the result.

(n) (a) and (j) imply that

Ft−1(f̃t −Hft) = Op(α
h
hk

1/2
h )×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, which yields the result.

(o) By using (n) and (l), I obtain

F̃t−1(f̃t −Hft) = HFt−1(f̃t −Hft) + (F̃t −HFt)(f̃t −Hft),

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})

+Op

(
ρ2hh

min {N,T}

)
,

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh

min {N,T}

)
,

uniformly in t, which yields the result.

(p) From part (j), I obtain

h−1∑T+h
t=T+1(f̃t −Hft)et = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
.
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(q) I have

∑T+h
t=T+1(F̃t−1 −HFt−1)

2 =
∑T+h

t=T+1 F̃
2
t−1 +H2

∑T+h
t=T+1 F

2
t−1 − 2H

∑T+h
t=T+1 F̃t−1Ft−1,

=
∑T+h

t=T+1 F̃
2
t−1 +H2

∑T+h
t=T+1 F

2
t−1

−2H
∑T+h

t=T+1(F̃t−1 −HFt−1)Ft−1 − 2H2
∑T+h

t=T+1 F
2
t−1,

=
∑T+h

t=T+1 F̃
2
t−1 −H2

∑T+h
t=T+1 F

2
t−1

−2H
∑T+h

t=T+1(F̃t−1 −HFt−1)Ft−1.

This yields

∑T+h
t=T+1 F̃

2
t−1 = H2∑T+h

t=T+1 F
2
t−1 +

∑T+h
t=T+1(F̃t−1 −HFt−1)

2

+2H
∑T+h

t=T+1(F̃t−1 −HFt−1)Ft−1,

or

h−2∑T+h
t=T+1 F̃

2
t−1 = h−2H2∑T+h

t=T+1 F
2
t−1 + h−2

∑T+h
t=T+1(F̃t−1 −HFt−1)

2

+2h−2H
∑T+h

t=T+1(F̃t−1 −HFt−1)Ft−1,

= h−2H2∑T+h
t=T+1 F

2
t−1

+Op

(
α2h
h h

−1kh
min {N2, T}

)
+Op

(
ρ2hh h

−1kh
min {N,T}

)
+Op

(
α2h
h h

−1kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hh

−1kh

min
{
N1/2, T 1/2

}) ,
by using (d) and (e).

(r) I have

h−1∑T+h
t=T+1 F̃t−1et = h−1H

∑T+h
t=T+1 Ft−1et + h−1

∑T+h
t=T+1(F̃t−1 −HFt−1)et,

= h−1H
∑T+h

t=T+1 Ft−1et

+Op

(
αh
hk

1/2
h h−1/2

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h h−1/2

min
{
N1/2, T 1/2

}) ,
by using (g). ■
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Lemma B.7. Suppose Assumptions 2.1–2.4 and B.1 hold or Assumptions 2.1–2.5 and the following

condition hold:
αh
hρ

h
hh

1/2k
−1/2
h

min
{
N1/2, T 1/2

} → 0.

Then, I have

σ̂2
p→ Q−2σ2,

as N,T, h→ ∞, where

σ̂2 = h−1∑T+h
t=T+1(f̃t − δ̂∗F̃t−1)

2,

with

δ̂∗ =

∑T+h
t=T+1 F̃t−1f̃t∑T+h
t=T+1 F̃

2
t−1

.

Proof of Lemma B.7.

I start with the AR coefficient estimator,

δ̂∗ =

∑T+h
t=T+1 F̃t−1f̃t∑T+h
t=T+1 F̃

2
t−1

.

Since

f̃t = F̃t − F̃t−1,

= HFt −HFt−1 + (F̃t −HFt)− (F̃t−1 −HFt−1),

= H
c

kh
Ft−1 +Het + (F̃t −HFt)− (F̃t−1 −HFt−1),

=
c

kh
F̃t−1 +Het + (f̃t −Hft)−

c

kh
(F̃t−1 −HFt−1),
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I obtain

δ̂∗ =
c

kh
+
H
∑T+h

t=T+1 F̃t−1et∑T+h
t=T+1 F̃

2
t−1

+

∑T+h
t=T+1 F̃t−1(f̃t −Hft)∑T+h

t=T+1 F̃
2
t−1

+
c

kh

∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1)∑T+h

t=T+1 F̃
2
t−1

,

=
c

kh
+
α−2h
h k−2

h H2
∑T+h

t=T+1 Ft−1et

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
α−2h
h k−2

h H
∑T+h

t=T+1(F̃t−1 −HFt−1)et

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
α−2h
h k−2

h

∑T+h
t=T+1 F̃t−1(f̃t −Hft)

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
c

kh

α−2h
h k−2

h

∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1)

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

.

This yields

α−h
h k−1

h

(
δ̂∗ − c

kh

)
=

α−h
h k−1

h H2
∑T+h

t=T+1 Ft−1et

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
α−h
h k−1

h H
∑T+h

t=T+1(F̃t−1 −HFt−1)et

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
α−h
h k−1

h

∑T+h
t=T+1 F̃t−1(f̃t −Hft)

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

+
c

kh

α−h
h k−1

h

∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1)

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1

,

= I + II + III + IV.

For the denominator,

α−2h
h k−2

h

∑T+h
t=T+1 F̃

2
t−1 = α−2h

h k−2
h H2∑T+h

t=T+1 F
2
t−1 +Op

(
hk−1

h
min{N2,T}

)
+Op

(
α−2h
h ρ2hh hk−1

h
min{N,T}

)
+Op

(
hk−1

h

min
{
N,T 1/2

})+Op

(
α−h
h ρhhhk

−1
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (q) and the four terms of the factor estimation errors are op(1) under the

stated conditions.

The numerator of I is op(1) by using Lemma B.5 (c). For the numerator of II,

α−h
h k−1

h

∑T+h
t=T+1(F̃t−1 −HFt−1)et = Op

(
h1/2k

−1/2
h

min{N,T 1/2}

)
+Op

(
α−h
h ρhhh

1/2k
−1/2
h

min{N1/2,T 1/2}

)
,

by using Lemma B.6 (g) and it is op(1) under the stated conditions.
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For the numerator of III,

α−h
h k−1

h

∑T+h
t=T+1 F̃t−1(f̃t −Hft) = Op

(
αh
hhk

−1
h

min
{
N,T 1/2

})+Op

(
ρhhhk

−1
h

min
{
N1/2, T 1/2

})

+Op

(
α−h
h ρ2hh hk

−1
h

min {N,T}

)
= op(1),

by using Lemma B.6 (o) and it is op(1) under the stated conditions.

For the numerator of IV ,

α−h
h k−2

h

∑T+h
t=T+1 F̃t−1(F̃t−1 −HFt−1) = Op

(
αh
hhk

−1
h

min
{
N,T 1/2

})+Op

(
ρhhhk

−1
h

min
{
N1/2, T 1/2

})

+Op

(
αh
hρ

2h
h hk

−1
h

min {N,T}

)
,

by using Lemma B.6 (f) and it is op(1) under the stated conditions so that I proceed with δ̂∗− c
kh

=

Op(α
−h
h k−1

h ) and δ̂∗ = Op(k
−1
h ). Then,

σ̂2 = h−1∑T+h
t=T+1(f̃t − δ̂∗F̃t−1)

2,

= h−1∑T+h
t=T+1[Hft − δ̂∗HFt−1 + (f̃t −Hft)− δ̂∗(F̃t−1 −HFt−1)]

2,

= h−1∑T+h
t=T+1[Hft −H c

kh
Ft−1 − (δ̂∗ − c

kh
)HFt−1 + (f̃t −Hft)− δ̂∗(F̃t−1 −HFt−1)]

2,

= h−1∑T+h
t=T+1[Het − (δ̂∗ − c

kh
)HFt−1 + (f̃t −Hft)− δ̂∗(F̃t−1 −HFt−1)]

2,

= h−1∑T+h
t=T+1[H

2e2t + (δ̂∗ − c
kh
)2H2F 2

t−1 + (f̃t −Hft)
2 + δ̂∗2(F̃t−1 −HFt−1)

2

+2H2(δ̂∗ − c

kh
)Ft−1et + 2H(f̃t −Hft)et − 2δ̂∗(F̃t−1 −HFt−1)Het

+2(δ̂∗ − c

kh
)HFt−1(f̃t −Hft)− 2(δ̂∗ − c

kh
)δ̂∗HFt−1(F̃t−1 −HFt−1)

+2δ̂∗(f̃t −Hft)(F̃t−1 −HFt−1)],

= h−1∑T+h
t=T+1H

2e2t +
∑9

k=1Dk,

has nine terms of the factor estimation errors. I now show that they are all op(1) under the stated
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conditions. For D1,

D1 = (δ̂∗ − c

kh
)2H2h−1∑T+h

t=T+1 F
2
t−1,

= Op(α
−2h
h k−2

h )×Op

(
α2h
h h

−1k2h

)
,

= Op(h
−1) = op(1).

For D2,

D2 = h−1∑T+h
t=T+1(f̃t −Hft)

2,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.6 (k) and it is op(1) under the stated conditions. For D3,

D3 = δ̂∗2h−1∑T+h
t=T+1(F̃t−1 −HFt−1)

2,

= Op(k
−2
h )×

[
Op

(
α2h
h kh

min {N2, T}

)
+Op

(
ρ2hh kh

min {N,T}

)]
,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.6 (d) and it is op(1) under the stated conditions. For D4,

D4 = 2H2(δ̂∗ − c

kh
)h−1∑T+h

t=T+1 Ft−1et,

= Op(α
−h
h k−1

h )× op

(
αh
hh

−1kh

)
,

= op(h
−1) = op(1),

by using Lemma B.5 (c). For D5,

D5 = 2Hh−1∑T+h
t=T+1(f̃t −Hft)et,

= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
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by using Lemma B.6 (p) and it is op(1) under the stated conditions. For D6,

D6 = 2δ̂∗Hh−1∑T+h
t=T+1(F̃t−1 −HFt−1)et,

= Op(k
−1
h )×

[
Op

(
αh
hh

1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

1/2k
1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hh

1/2k
−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

1/2k
−1/2
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (g) and it is op(1) under the stated conditions. For D7,

D7 = 2(δ̂∗ − c

kh
)Hh−1∑T+h

t=T+1 Ft−1(f̃t −Hft),

= Op(α
−h
h k−1

h )×

[
Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hk

−1
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (o) and it is op(1) under the stated conditions. For D8,

D8 = 2(δ̂∗ − c

kh
)δ̂∗Hh−1∑T+h

t=T+1 Ft−1(F̃t−1 −HFt−1),

= Op(α
−h
h k−1

h )×Op(k
−1
h )×

[
Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hk

−1
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (e) and it is op(1) under the stated conditions. For D9,

D9 = 2δ̂∗h−1∑T+h
t=T+1(f̃t −Hft)(F̃t−1 −HFt−1),

= Op

(
k−1
h

)
×

[
Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})+Op

(
ρ2hh

min {N,T}

)]
,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
αh
hρ

h
hk

−1
h

min
{
N3/2, T

})+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.6 (l) and it is op(1) under the stated conditions. Therefore,

σ̂2 = h−1∑T+h
t=T+1H

2e2t + op(1),
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under the stated conditions, which yields the result. Note that carefully investigating all 17 terms of

the factor estimation errors gives the dominating terms Op

(
αh
hhk

−1
h

min{N,T 1/2}

)
, and Op

(
ρhhhk

−1
h

min{N1/2,T 1/2}

)
that appear in the numerator of IV . ■

Lemma B.8. Under Assumptions 2.1–2.5, the following hold:

(a) For t = T + 1, ..., T + h uniformly in t,

Ũi,t − Ui,t = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
(b)

h−1∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)

2 = Op

(
α2h
h kh

min{N2,T}

)
+Op

(
ρ2hh kh

min{N,T}

)
,

(c)

h−1∑T+h
t=T+1 Ui,t−1(Ũi,t−1 − Ui,t−1) = Op

(
αh
hρ

h
hkh

min{N,T 1/2}

)
+Op

(
ρ2hh kh

min{N1/2,T 1/2}

)
,

(d)

h−1∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1) = Op

(
α2h
h kh

min {N2, T}

)
+Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})

+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

}) ,
(e)

h−1/2∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)zi,t = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
,

(f) For t = T + 1, ..., T + h uniformly in t,

ũi,t − ui,t = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
(g)

h−1∑T+h
t=T+1(ũi,t − ui,t)

2 = Op

(
α2h
h k−1

h
min{N2,T}

)
+Op

(
ρ2hh k−1

h
min{N,T}

)
,

130



(h)

h−1∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)(ũi,t − ui,t) = Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})

+Op

(
ρ2hh

min {N,T}

)
,

(i)

h−1∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)ui,t = Op

(
αh
hρ

h
h

min{N,T 1/2}

)
+Op

(
ρ2hh

min{N1/2,T 1/2}

)
,

(j)

h−1∑T+h
t=T+1 Ui,t−1(ũi,t − ui,t) = Op

(
αh
hρ

h
h

min{N,T 1/2}

)
+Op

(
ρ2hh

min{N1/2,T 1/2}

)
,

(k)

h−1∑T+h
t=T+1 Ũi,t−1(ũi,t − ui,t) = Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min
{
N1/2, T 1/2

})

+Op

(
αh
hρ

h
h

min
{
N,T 1/2

}) ,
(l)

h−1∑T+h
t=T+1(ũi,t − ui,t)zi,t = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
,

(m)

h−2∑T+h
t=T+1 Ũ

2
i,t−1 = h−2H2∑T+h

t=T+1 U
2
i,t−1 +Op

(
α2h
h h−1kh

min{N2,T}

)
+Op

(
ρ2hh h−1kh
min{N,T}

)
+Op

(
αh
hρ

h
hh

−1kh

min
{
N,T 1/2

})+Op

(
ρ2hh h

−1kh

min
{
N1/2, T 1/2

}) ,
(n)

h−1∑T+h
t=T+1 Ũi,t−1zi,t = h−1∑T+h

t=T+1 Ui,t−1zi,t

+Op

(
αh
hh

−1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

−1/2k
1/2
h

min
{
N1/2, T 1/2

}) .
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Proof of Lemma B.8.

(a) Since

Ũi,t − Ui,t = (λ̂∗i −H−1λi)HFt +H−1λ∗i (F̃t −HFt)

+(λ̂∗i −H−1λi)(F̃t −HFt),

= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})

+Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})

+Op

(
1

min
{
N,T 1/2

})

×

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (c) for t = T +1, · · · , T +h uniformly in t. (b) The result is straightforwardly

shown from (a).

(c) Since

Ui,t(Ũi,t − Ui,t) = Op

(
ρhhk

1/2
h

)
×

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

}) ,
uniformly in t, the result follows.

(d) By using (b) and (c),

Ũi,t(Ũi,t − Ui,t) = Ui,t(Ũi,t − Ui,t) + (Ũi,t − Ui,t)
2,

= Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

})

+Op

(
α2h
h kh

min {N2, T}

)
+Op

(
ρ2hh kh

min {N,T}

)
,

= Op

(
α2h
h kh

min {N2, T}

)
+Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

}) ,
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uniformly in t for t = T + 1, · · · , T + h. Hence,

h−1∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1) = Op

(
α2h
h kh

min {N2, T}

)
+Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})

+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

}) .
(e) Since

(Ũi,t−1 − Ui,t−1)zi,t = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
and (Ũi,t−1 − Ui,t−1) and zi,t are independent with zi,t being i.i.d. with E(zi,t) = 0, I have

h−1/2∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)zi,t = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
.

(f) This is because

ũi,t − ui,t = (λ̂∗i −H−1λi)Hft +H−1λi(f̃t −Hft)

+(λ̂∗i −H−1λi)(f̃t −Hft),

= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t by using Lemma B.6 (j).

(g) is straightforwardly shown from (f).

(h) (a) and (f) imply that

(Ũi,t−1 − Ui,t−1)(ũi,t − ui,t) =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]

×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min {N,T}

)
,

uniformly in t, which yields the result.
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(i) Since

(Ũi,t−1 − Ui,t−1)ui,t =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]×Op(ρ
h
hk

−1/2
h ),

= Op

(
αh
hρ

h
h

min
{
N,T 1/2

})+Op

(
ρ2hh

min
{
N1/2, T 1/2

}) ,
uniformly in t, which yields the result.

(j) Lemma B.6 (b) and Lemma B.8 (f) imply that

Ui,t−1(ũi,t − ui,t) = Op(ρ
h
hk

1/2
h )×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hρ

h
h

min
{
N,T 1/2

})+Op

(
ρ2hh

min
{
N1/2, T 1/2

}) ,
uniformly in t, which yields the result.

(k) By using (j) and (h), I obtain

Ũi,t−1(ũi,t − ui,t) = Ui,t−1(ũi,t − ui,t) + (Ũi,t−1 − Ui,t−1)(ũi,t − ui,t),

= Op

(
αh
hρ

h
h

min
{
N,T 1/2

})+Op

(
ρ2hh

min
{
N1/2, T 1/2

})

+Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})

+Op

(
ρ2hh

min {N,T}

)
,

= Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N,T 1/2

})

+Op

(
ρ2hh

min
{
N1/2, T 1/2

}) ,
uniformly in t, which yields the result.

(l) From (f), I obtain

h−1∑T+h
t=T+1(ũi,t − ui,t)zi,t = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
.
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(m) I have

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)

2 =
∑T+h

t=T+1 Ũ
2
i,t−1 +

∑T+h
t=T+1 U

2
i,t−1 − 2

∑T+h
t=T+1 Ũi,t−1Ui,t−1,

=
∑T+h

t=T+1 Ũ
2
i,t−1 +

∑T+h
t=T+1 U

2
i,t−1

−2
∑T+h

t=T+1(Ũi,t−1 − Ui,t−1)Ui,t−1 − 2
∑T+h

t=T+1 U
2
i,t−1,

=
∑T+h

t=T+1 Ũ
2
i,t−1 −

∑T+h
t=T+1 U

2
i,t−1 − 2

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)Ui,t−1.

Solving the first term on the right-hand side gives

∑T+h
t=T+1 Ũ

2
i,t−1 =

∑T+h
t=T+1 U

2
i,t−1 +

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)

2 + 2
∑T+h

t=T+1(Ũi,t−1 − Ui,t−1)Ui,t−1,

so that

h−2∑T+h
t=T+1 Ũ

2
i,t−1 = h−2∑T+h

t=T+1 U
2
i,t−1 + h−2

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)

2

+2h−2∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)Ui,t−1,

= h−2∑T+h
t=T+1 U

2
i,t−1

+Op

(
α2h
h h

−1kh
min {N2, T}

)
+Op

(
ρ2hh h

−1kh
min {N,T}

)
+Op

(
αh
hρ

h
hh

−1kh

min
{
N,T 1/2

})+Op

(
ρ2hh h

−1kh

min
{
N1/2, T 1/2

}) ,
by using (b) and (c).

(n) I have

h−1∑T+h
t=T+1 Ũi,t−1zi,t = h−1∑T+h

t=T+1 Ui,t−1zi,t + h−1
∑T+h

t=T+1(Ũi,t−1 − Ui,t−1)zi,t,

= h−1∑T+h
t=T+1 Ui,t−1zi,t

+Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
by using (e). ■

Lemma B.9. Suppose Assumptions 2.1–2.4 and B.1 hold or Assumptions 2.1–2.5 and the following
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conditions hold:
αh
hhk

−1
h

min
{
N,T 1/2

} → 0 and
ρhhhk

−1
h

min
{
N1/2, T 1/2

} → 0.

Then, I have

σ̂2i
p→ σ2i ,

for any i as N,T, h→ ∞, where

σ̂2i = h−1∑T+h
t=T+1(ũi,t − δ̂∗i Ũi,t−1)

2,

with

δ̂∗i =

∑T+h
t=T+1 Ũi,t−1ũi,t∑T+h
t=T+1 Ũ

2
i,t−1

.

Proof of Lemma B.9.

I start with the AR coefficient estimator,

δ̂∗i =

∑T+h
t=T+1 Ũi,t−1ũi,t∑T+h
t=T+1 Ũ

2
i,t−1

.

Since

ũi,t = Ũi,t − Ũi,t−1,

= Ui,t − Ui,t−1 + (Ũi,t − Ui,t)− (Ũi,t−1 − Ui,t−1),

=
ci
kh
Ui,t−1 + zi,t + (Ũi,t − Ui,t)− (Ũi,t−1 − Ui,t−1),

=
ci
kh
Ũi,t−1 + zi,t + (ũi,t − ui,t)−

ci
kh

(Ũi,t−1 − Ui,t−1),
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I obtain

δ̂∗i =
ci
kh

+

∑T+h
t=T+1 Ũi,t−1zi,t∑T+h
t=T+1 Ũ

2
i,t−1

+

∑T+h
t=T+1 Ũi,t−1(ũi,t − ui,t)∑T+h

t=T+1 Ũ
2
i,t−1

+
ci
kh

∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1)∑T+h

t=T+1 Ũ
2
i,t−1

,

=
ci
kh

+
ρ−2h
h k−2

h

∑T+h
t=T+1 Ui,t−1zi,t

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ρ−2h
h k−2

h

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)zi,t

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ρ−2h
h k−2

h

∑T+h
t=T+1 Ũi,t−1(ũi,t − ui,t)

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ci
kh

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1)

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

.

This yields

ρ−h
h k−1

h

(
δ̂∗i −

ci
kh

)
=

ρ−h
h k−1

h

∑T+h
t=T+1 Ui,t−1zi,t

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ρ−h
h k−1

h

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)zi,t

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ρ−h
h k−1

h

∑T+h
t=T+1 Ũi,t−1(ũi,t − ui,t)

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

+
ci
kh

ρ−h
h k−1

h

∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1)

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1

,

= I + II + III + IV.

For the denominator,

ρ−2h
h k−2

h

∑T+h
t=T+1 Ũ

2
i,t−1 = ρ−2h

h k−2
h

∑T+h
t=T+1 U

2
i,t−1 +Op

(
α2h
h ρ−2h

h hk−1
h

min{N2,T}

)
+Op

(
hk−1

h
min{N,T}

)
+Op

(
αh
hρ

−h
h hk−1

h

min
{
N,T 1/2

})+Op

(
hk−1

h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.8 (m) and the four terms of the factor estimation errors are op(1) under the

stated conditions.

The numerator of I is op(1) by using Lemma B.5 (h). For the numerator of II,

ρ−h
h k−1

h

∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)zi,t = Op

(
αh
hρ

−h
h h1/2k

−1/2
h

min{N,T 1/2}

)
+Op

(
h1/2k

−1/2
h

min{N1/2,T 1/2}

)
,
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by using Lemma B.8 (e) and it is op(1) under the stated conditions. For the numerator of III,

ρ−h
h k−1

h

∑T+h
t=T+1 Ũi,t−1(ũi,t − ui,t) = Op

(
α2h
h ρ

−h
h hk−1

h

min {N2, T}

)
+Op

(
ρhhhk

−1
h

min
{
N1/2, T 1/2

})

+Op

(
αh
hhk

−1
h

min
{
N,T 1/2

}) ,
by using Lemma B.8 (k) and it is op(1) under the stated conditions. For the numerator of IV ,

ρ−h
h k−2

h

∑T+h
t=T+1 Ũi,t−1(Ũi,t−1 − Ui,t−1) = Op

(
α2h
h ρ

−h
h hk−1

h

min {N2, T}

)
+Op

(
αh
hhk

−1
h

min
{
N,T 1/2

})

+Op

(
ρhhhk

−1
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.8 (d) and it is op(1) under the stated conditions. Therefore, I proceed with

δ̂∗i −
ci
kh

= Op(ρ
−h
h k−1

h ) and δ̂∗i = Op(k
−1
h ). I now consider

σ̂2i = h−1∑T+h
t=T+1(ũi,t − δ̂∗i Ũi,t−1)

2,

= h−1∑T+h
t=T+1[ui,t − δ̂∗i Ui,t−1 + (ũi,t − ui,t)− δ̂∗i (Ũi,t−1 − Ui,t−1)]

2,

= h−1∑T+h
t=T+1[ui,t −

ci
kh
Ui,t−1 − (δ̂∗i −

ci
kh
)Ui,t−1 + (ũi,t − ui,t)− δ̂∗i (Ũi,t−1 − Ui,t−1)]

2,

= h−1∑T+h
t=T+1[zi,t − (δ̂∗i −

ci
kh
)Ui,t−1 + (ũi,t − ui,t)− δ̂∗i (Ũi,t−1 − Ui,t−1)]

2,

= h−1∑T+h
t=T+1[z

2
i,t + (δ̂∗i −

ci
kh
)2U2

i,t−1 + (ũi,t − ui,t)
2 + δ̂∗2i (Ũi,t−1 − Ui,t−1)

2

+2(δ̂∗i −
ci
kh

)Ui,t−1zi,t + 2(ũi,t − ui,t)zi,t − 2δ̂∗i (Ũi,t−1 − Ui,t−1)zi,t

+2(δ̂∗i −
ci
kh

)Ui,t−1(ũi,t − ui,t)− 2(δ̂∗i −
ci
kh

)δ̂∗i Ui,t−1(Ũi,t−1 − Ui,t−1)

+2δ̂∗i (ũi,t − ui,t)(Ũi,t−1 − Ui,t−1)],

= h−1∑T+h
t=T+1 z

2
i,t +

∑9
k=1Dk,

has nine terms of the factor estimation errors. I now show that they are all op(1) under the stated
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conditions. For D1,

D1 = (δ̂∗i −
ci
kh

)2h−1∑T+h
t=T+1 U

2
i,t−1,

= Op(ρ
−2h
h k−2

h )×Op

(
ρ2hh h

−1k2h

)
,

= Op(h
−1) = op(1).

For D2,

D2 = h−1∑T+h
t=T+1(ũi,t − ui,t)

2,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.8 (g) and it is op(1) under the stated conditions. For D3,

D3 = δ̂∗2h−1∑T+h
t=T+1(Ũi,t−1 − Ui,t−1)

2,

= Op(k
−2
h )×

[
Op

(
α2h
h kh

min {N2, T}

)
+Op

(
ρ2hh kh

min {N,T}

)]
,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.8 (b) and it is op(1) under the stated conditions. For D4,

D4 = 2(δ̂∗i −
ci
kh

)h−1∑T+h
t=T+1 Ui,t−1zi,t,

= Op(ρ
−h
h k−1

h )× op

(
ρhhkhh

−1
)
= op(1).

For D5,

D5 = 2h−1∑T+h
t=T+1(ũi,t − ui,t)zi,t,

= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
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by using Lemma B.8 (l) and it is op(1) under the stated conditions. For D6,

D6 = 2δ̂∗i h
−1∑T+h

t=T+1(Ũi,t−1 − Ui,t−1)zi,t,

= Op(k
−1
h )×

[
Op

(
αh
hh

1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

1/2k
1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hh

1/2k
−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

1/2k
−1/2
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.8 (e) and it is op(1) under the stated conditions. For D7,

D7 = 2(δ̂∗i −
ci
kh

)h−1∑T+h
t=T+1 Ui,t−1(ũi,t − ui,t),

= Op(ρ
−h
h k−1

h )×

[
Op

(
αh
hρ

h
h

min
{
N,T 1/2

})+Op

(
ρ2hh

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
hk

−1
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.8 (j) and it is op(1) under the stated conditions. For D8,

D8 = 2(δ̂∗i −
ci
kh

)δ̂∗i h
−1∑T+h

t=T+1 Ui,t−1(Ũi,t−1 − Ui,t−1),

= Op(ρ
−h
h k−1

h )×

[
Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

})] ,
= Op

(
αh
h

min
{
N,T 1/2

})+Op

(
ρhh

min
{
N1/2, T 1/2

}) ,
by using Lemma B.8 (c) and it is op(1) under the stated conditions. For D9,

D9 = 2δ̂∗i h
−1∑T+h

t=T+1(ũi,t − ui,t)(Ũi,t−1 − Ui,t−1),

= Op

(
k−1
h

)
×
[
Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min {N,T}

)]
,

= Op

(
α2h
h k

−1
h

min {N2, T}

)
+Op

(
ρ2hh k

−1
h

min {N,T}

)
,

by using Lemma B.8 (h) and it is op(1) under the stated conditions. Therefore,

σ̂2i = h−1∑T+h
t=T+1 z

2
i,t + op(1),
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under the stated conditions. Note that the two conditions

αh
hhk

−1
h

min
{
N,T 1/2

} → 0 and
ρhhhk

−1
h

min
{
N1/2, T 1/2

} → 0,

are obtained by carefully investigating all 17 terms of the factor estimation errors. ■

Lemma B.10. Under Assumptions 2.1–2.5, the following hold:

(a)

F̃ −HF̄ = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
(b)

f̃ −Hf̄ = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) .
Proof of Lemma B.10. (a) I have

F̃ −HF̄ = h−1∑T+h
t=T+1(F̃t−1 −HFt−1) = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
,

by using Lemma B.6 (c). (b) I have

f̃ −Hf̄ = h−1∑T+h
t=T+1(f̃t −Hft) = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
,

by using Lemma B.6 (j). ■

Lemma B.11. Under Assumptions 2.1–2.5, the following hold:

(a) For t = T + 1, ..., T + h uniformly in t,

F c
t = Op(α

h
hk

1/2
h ),

(b) For t = T + 1, ..., T + h uniformly in t and all i,

U c
i,t = Op(ρ

h
hk

1/2
h ),
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(c) For t = T + 1, ..., T + h uniformly in t,

F̃ c
t −HF c

t = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
(d)

h−1∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)
2 = Op

(
α2h
h kh

min{N2,T}

)
+Op

(
ρ2hh kh

min{N,T}

)
,

(e)

h−1∑T+h
t=T+1 F

c
t−1(F̃

c
t−1 −HF c

t−1) = Op

(
α2h
h kh

min{N,T 1/2}

)
+Op

(
αh
hρ

h
hkh

min{N1/2,T 1/2}

)
,

(f)

h−1∑T+h
t=T+1 F̃

c
t−1(F̃

c
t−1 −HF c

t−1) = Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh kh

min {N,T}

)
,

(g)

h−1/2∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)et = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
,

(h) For t = T + 1, ..., T + h uniformly in t,

f ct = Op(α
h
hk

−1/2
h ),

(i) For t = T + 1, ..., T + h uniformly in t and all i,

uci,t = Op(ρ
h
hk

−1/2
h ),

(j) For t = T + 1, ..., T + h uniformly in t,

f̃ ct −Hf ct = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
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(k)

h−1∑T+h
t=T+1(f̃

c
t −Hf ct )

2 = Op

(
α2h
h k−1

h
min{N2,T}

)
+Op

(
ρ2hh k−1

h
min{N,T}

)
,

(l)

h−1∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)(f̃
c
t −Hf ct ) = Op

(
α2h
h

min{N2,T}

)
+Op

(
ρ2hh

min{N,T}

)
,

(m)

h−1∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)f
c
t = Op

(
α2h
h

min{N,T 1/2}

)
+Op

(
αh
hρ

h
h

min{N1/2,T 1/2}

)
,

(n)

h−1∑T+h
t=T+1 F

c
t−1(f̃

c
t −Hf ct ) = Op

(
α2h
h

min{N,T 1/2}

)
+Op

(
αh
hρ

h
h

min{N1/2,T 1/2}

)
,

(o)

h−1∑T+h
t=T+1 F̃

c
t−1(f̃

c
t −Hf ct ) = Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh

min {N,T}

)
,

(p)

h−1∑T+h
t=T+1(f̃

c
t −Hf ct )et = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
,

(q)

h−2∑T+h
t=T+1 F̃

c2
t−1 = h−2H2∑T+h

t=T+1 F
c2
t−1 +Op

(
α2h
h h−1kh

min{N2,T}

)
+Op

(
ρ2hh h−1kh
min{N,T}

)
+Op

(
α2h
h h

−1kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hh

−1kh

min
{
N1/2, T 1/2

}) ,
(r)

h−1∑T+h
t=T+1 F̃

c
t−1et = h−1∑T+h

t=T+1 F
c
t−1et

+Op

(
αh
hh

−1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

−1/2k
1/2
h

min
{
N1/2, T 1/2

}) .
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Proof of Lemma B.11.

(a) I have

F c
t−1 = Ft−1 − h−1∑T+h

t=T+1 Ft−1,

= Op(α
h
hk

1/2
h ),

by using Lemma B.6 (a).

(b) The proof is the same as (a).

(c) I have

F̃ c
t−1 −HF c

t−1 = (F̃t−1 −HFt−1)− (F̃ −HF ),

= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, for t = T+1, · · ·T+h, by using Lemmas B.6 (c) and B.10 (a). (d) is straightforwardly

shown from (c).

(e) I have

F c
t−1(F̃

c
t−1 −HF c

t−1) = Op(α
h
hk

1/2
h )×

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

}) ,
uniformly in t, for t = T + 1, · · ·T + h, by using (a) and (c). The result follows.

(f) I have

F̃ c
t−1(F̃

c
t−1 −HF c

t−1) = HF c
t−1(F̃

c
t−1 −HF c

t−1) + (F̃ c
t−1 −HF c

t−1)
2,

= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
α2h
h kh

min {N2, T}

)
+Op

(
ρ2hh kh

min {N,T}

)
,

= Op

(
α2h
h kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hkh

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh kh

min {N,T}

)
,
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uniformly in t, for t = T + 1, · · ·T + h, by using results derived in (e) and (d). The result follows.

(g) I have

(F̃ c
t−1 −HF c

t−1)et = (F̃t−1 −HFt−1)et − (F̃ −HF )et,

so that

h−1/2∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)et = h−1/2∑T+h
t=T+1(F̃t−1 −HFt−1)et + (F̃ −HF )h−1/2

∑T+h
t=T+1 et,

= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})

+Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
= Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (g) and Lemma B.10 (a).

(h) I have

f ct = ft − h−1∑T+h
t=T+1 ft = Op(α

h
hk

−1/2
h ).

(i) can be shown same as (h).

(j) I have

f̃ ct −Hf ct = (f̃t −Hft)− (f̃ −Hf̄),

= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, for t = T + 1, · · ·T + h, by using Lemma B.6 (j) and Lemma B.10 (b). (k) is

straightforwardly shown from part (j).

(l) I have

(F̃ c
t−1 −HF c

t−1)(f̃
c
t −Hf ct ) =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]

×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min {N,T}

)
,
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uniformly in t, for t = T + 1, · · ·T + h, by using the results obtained in (c) and (j). This yields the

result.

(m) I have

(F̃ c
t−1 −HF c

t−1)f
c
t =

[
Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

})]×Op(α
h
hk

−1/2
h ),

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, for t = T + 1, · · ·T + h, by using the result obtained in (c). This yields the result.

(n) (a) and (j) imply that

F c
t−1(f̃

c
t −Hf ct ) = Op(α

h
hk

1/2
h )×

[
Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})] ,
= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

}) ,
uniformly in t, for t = T + 1, · · ·T + h, which yields the result.

(o) I have

F̃ c
t−1(f̃

c
t −Hf ct ) = HF c

t−1(f̃
c
t −Hf ct ) + (F̃ c

t −HF c
t )(f̃

c
t −Hf ct ),

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})

+Op

(
ρ2hh

min {N,T}

)
,

= Op

(
α2h
h

min
{
N,T 1/2

})+Op

(
αh
hρ

h
h

min
{
N1/2, T 1/2

})

+Op

(
ρ2hh

min {N,T}

)
,

uniformly in t, for t = T + 1, · · ·T + h, by using the results obtained in (n) and (l). This yields the

result.
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(p) I have

h−1∑T+h
t=T+1(f̃

c
t −Hf ct )et = h−1∑T+h

t=T+1(f̃t −Hft)et + (f̃ −Hf̄)h−1
∑T+h

t=T+1 et,

= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

})

+Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
= Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
by using Lemma B.6 (p) and Lemma B.10 (b). Hence,

h−1∑T+h
t=T+1(f̃

c
t −Hf ct )et = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
.

(q) I have

∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)
2 =

∑T+h
t=T+1 F̃

c2
t−1 +H2

∑T+h
t=T+1 F

c2
t−1 − 2H

∑T+h
t=T+1 F̃

c
t−1F

c
t−1,

=
∑T+h

t=T+1 F̃
c2
t−1 +H2

∑T+h
t=T+1 F

c2
t−1

−2H
∑T+h

t=T+1(F̃
c
t−1 −HF c

t−1)Ft−1 − 2H2
∑T+h

t=T+1 F
c2
t−1,

=
∑T+h

t=T+1 F̃
c2
t−1 −H2

∑T+h
t=T+1 F

c2
t−1

−2H
∑T+h

t=T+1(F̃
c
t−1 −HF c

t−1)F
c
t−1.

This yields

∑T+h
t=T+1 F̃

c2
t−1 = H2∑T+h

t=T+1 F
c2
t−1 +

∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)
2

+2H
∑T+h

t=T+1(F̃
c
t−1 −HF c

t−1)F
c
t−1,
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or

h−2∑T+h
t=T+1 F̃

c2
t−1 = h−2H2∑T+h

t=T+1 F
c2
t−1 + h−2

∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)
2

+2h−2H
∑T+h

t=T+1(F̃
c
t−1 −HF c

t−1)F
c
t−1,

= h−2H2∑T+h
t=T+1 F

c2
t−1

+Op

(
α2h
h h

−1kh
min {N2, T}

)
+Op

(
ρ2hh h

−1kh
min {N,T}

)
+Op

(
α2h
h h

−1kh

min
{
N,T 1/2

})+Op

(
αh
hρ

h
hh

−1kh

min
{
N1/2, T 1/2

}) ,
by using (d) and (e).

(r) I have

h−1∑T+h
t=T+1 F̃

c
t−1et = h−1H

∑T+h
t=T+1 F

c
t−1et + h−1

∑T+h
t=T+1(F̃

c
t−1 −HF c

t−1)et,

= h−1H
∑T+h

t=T+1 F
c
t−1et

+Op

(
αh
hk

1/2
h h−1/2

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h h−1/2

min
{
N1/2, T 1/2

}) ,
by using (g). ■

Lemma B.12. Suppose Assumptions 2.1–2.4 and B.1 hold or Assumptions 2.1–2.5 and the following

condition hold:
αh
hρ

h
hh

1/2k
−1/2
h

min
{
N1/2, T 1/2

} → 0.

Then, I have

σ̂2
p→ Q−2σ2,

as N,T, h→ ∞, where

σ̂2 = h−1∑T+h
t=T+1(f̃

c
t − δ̂∗F̃ c

t−1)
2.

Proof of Lemma B.12. The proof follows that of Lemma B.7 by replacing Lemma B.6 with

Lemma B.11. Thus, it is not repeated.

Lemma B.13. Under Assumptions 2.1–2.5, the following hold:
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(a) For t = T + 1, ..., T + h uniformly in t,

Ũ c
i,t − U c

i,t = Op

(
αh
hk

1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

1/2
h

min
{
N1/2, T 1/2

}) ,
(b)

h−1∑T+h
t=T+1(Ũ

c
i,t−1 − U c

i,t−1)
2 = Op

(
α2h
h kh

min{N2,T}

)
+Op

(
ρ2hh kh

min{N,T}

)
,

(c)

h−1∑T+h
t=T+1 U

c
i,t−1(Ũ

c
i,t−1 − U c

i,t−1) = Op

(
αh
hρ

h
hkh

min{N,T 1/2}

)
+Op

(
ρ2hh kh

min{N1/2,T 1/2}

)
,

(d)

h−1∑T+h
t=T+1 Ũ

c
i,t−1(Ũ

c
i,t−1 − U c

i,t−1) = Op

(
α2h
h kh

min {N2, T}

)
+Op

(
αh
hρ

h
hkh

min
{
N,T 1/2

})

+Op

(
ρ2hh kh

min
{
N1/2, T 1/2

}) ,
(e)

h−1/2∑T+h
t=T+1(Ũ

c
i,t−1 − U c

i,t−1)zi,t = Op

(
αh
hk

1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

1/2
h

min{N1/2,T 1/2}

)
,

(f) For t = T + 1, ..., T + h uniformly in t,

ũci,t − uci,t = Op

(
αh
hk

−1/2
h

min
{
N,T 1/2

})+Op

(
ρhhk

−1/2
h

min
{
N1/2, T 1/2

}) ,
(g)

h−1∑T+h
t=T+1(ũ

c
i,t − uci,t)

2 = Op

(
α2h
h k−1

h
min{N2,T}

)
+Op

(
ρ2hh k−1

h
min{N,T}

)
,

(h)

h−1∑T+h
t=T+1(Ũ

c
i,t−1 − U c

i,t−1)(ũ
c
i,t − uci,t) = Op

(
α2h
h

min {N2, T}

)
+Op

(
αh
hρ

h
h

min
{
N3/2, T

})

+Op

(
ρ2hh

min {N,T}

)
,
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(i)

h−1∑T+h
t=T+1(Ũ

c
i,t−1 − U c

i,t−1)u
c
i,t = Op

(
αh
hρ

h
h

min{N,T 1/2}

)
+Op

(
ρ2hh

min{N1/2,T 1/2}

)
,

(j)

h−1∑T+h
t=T+1 U

c
i,t−1(ũ

c
i,t − uci,t) = Op

(
αh
hρ

h
h

min{N,T 1/2}

)
+Op

(
ρ2hh

min{N1/2,T 1/2}

)
,

(k)

h−1∑T+h
t=T+1 Ũ

c
i,t−1(ũ

c
i,t − uci,t) = Op

(
α2h
h

min {N2, T}

)
+Op

(
ρ2hh

min
{
N1/2, T 1/2

})

+Op

(
αh
hρ

h
h

min
{
N,T 1/2

}) ,
(l)

h−1∑T+h
t=T+1(ũ

c
i,t − uci,t)zi,t = Op

(
αh
hk

−1/2
h

min{N,T 1/2}

)
+Op

(
ρhhk

−1/2
h

min{N1/2,T 1/2}

)
,

(m)

h−2∑T+h
t=T+1 Ũ

c2
i,t−1 = h−2H2∑T+h

t=T+1 U
c2
i,t−1 +Op

(
α2h
h h−1kh

min{N2,T}

)
+Op

(
ρ2hh h−1kh
min{N,T}

)
+Op

(
αh
hρ

h
hh

−1kh

min
{
N,T 1/2

})+Op

(
ρ2hh h

−1kh

min
{
N1/2, T 1/2

}) ,
(n)

h−1∑T+h
t=T+1 Ũ

c
i,t−1zi,t = h−1∑T+h

t=T+1 U
c
i,t−1zi,t

+Op

(
αh
hh

−1/2k
1/2
h

min
{
N,T 1/2

})+Op

(
ρhhh

−1/2k
1/2
h

min
{
N1/2, T 1/2

}) .
Proof of Lemma B.13. They can be shown straightforwardly from Lemma B.8 as I did in

Lemma B.11 from Lemma B.6. Thus, the proof is not repeated. ■

Lemma B.14. Suppose Assumptions 2.1–2.4 and B.1 hold or Assumptions 2.1–2.5 and the following

conditions hold:
αh
hhk

−1
h

min
{
N,T 1/2

} → 0 and
ρhhhk

−1
h

min
{
N1/2, T 1/2

} → 0.
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Then, I have

σ̂2i
p→ σ2i ,

for any i as N,T, h→ ∞, where

σ̂2i = h−1∑T+h
t=T+1(ũ

c
i,t − δ̂∗i Ũ

c
i,t−1)

2.

Proof of Lemma B.14. The proof follows that of Lemma B.9 by replacing Lemma B.8 with

Lemma B.13. Thus, it is not repeated. ■

Lemma B.15. Let Θ ∼ N(0, σ2/2c) and Θi ∼ N(0, σ2i /2ci). Under Assumptions 2.1–2.5, the

following hold as T and h→ ∞.

(a) Suppose c > 0.

If T/kh → 0, then

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 ≈ 1

2cΘ
2.

If T/kh → π (0 < π <∞), then

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 ≈ 1

2c

(
FT√
T

√
π +Θ

)2
.

If T/kh → ∞, then

α−2h
h k−1

h T−1∑T+h
t=T+1 F

2
t−1 ≈ 1

2c

(
FT√
T

)2
.

(b) Suppose ci > 0.

If T/kh → 0, then

ρ−2h
i,h k−2

h

∑T+h
t=T+1 U

2
i,t−1 ≈ 1

2ci
Θ2

i .

If T/kh → π (0 < π <∞), then

ρ−2h
i,h k−2

h

∑T+h
t=T+1 U

2
i,t−1 ≈ 1

2ci

(
Ui,T√

T

√
π +Θi

)2
.

If T/kh → ∞, then

ρ−2h
i,h k−1

h T−1∑T+h
t=T+1 U

2
i,t−1 ≈ 1

2ci

(
Ui,T√

T

)2
.
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Proof of Lemma B.15.

(a) I take squares of both sides of Ft = αTFt−1 + et to obtain

F 2
t = α2

hF
2
t−1 + 2αhFt−1et + e2t ,

(α2
h − 1)F 2

t−1 = F 2
t − F 2

t−1 − 2αhFt−1et − e2t .

I then take summations over t = T + 1, ..., T + h to obtain

(α2
h − 1)

∑T+h
t=T+1 F

2
t−1 = F 2

T+h − F 2
T −

∑T+h
t=T+1 e

2
t − 2αh

∑T+h
t=T+1 Ft−1et,∑T+h

t=T+1 F
2
t−1 =

1

α2
h − 1

{
F 2
T+h − F 2

T −
∑T+h

t=T+1 e
2
t − 2αh

∑T+h
t=T+1 Ft−1et

}
,

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 =

1

k2h(α
2
h − 1)

{
α−2h
h (F 2

T+h − F 2
T )− α−2h

h

∑T+h
t=T+1 e

2
t

−2α−2h+1
h

∑T+h
t=T+1 Ft−1et

}
,

=
1

kh(α
2
h − 1)

{
α−2h
h

kh
(F 2

T+h − F 2
T )−

α−2h
h

kh

∑T+h
t=T+1 e

2
t

−
2α−2h+1

h

kh

∑T+h
t=T+1 Ft−1et

}
,

=
1

kh(α
2
h − 1)

{I − II − III} .

I now consider terms II, III, and I in order. For II,

α−2h
h

kh

∑T+h
t=T+1 e

2
t =

(
α−2h
h

h
kh

)(
1
h

∑T+h
t=T+1 e

2
t

)
= o(1)×Op (1) = op(1),

by using Proposition A.1 of Phillips and Magdalinos (2007) α−2h
h = o(k2hh

−2) for the first component

and the weak law of large numbers for the second component.

For III, by plugging

Ft−1 = αt−T−1
h FT +

∑t−T−j−1
j=1 αt−T−j−1

h eT+j ,

152



in III (divided by 2) yields

α−2h+1
h

kh

∑T+h
t=T+1 Ft−1et =

α−2h+1
h

kh

∑T+h
t=T+1

(∑t−T−1
j=1 αt−T−j−1

h eT+j

)
et

+
1

kh
FTα

−2h+1
h

∑T+h
t=T+1 α

t−T−1
h et,

=
α−2h
h

kh

∑T+h
t=T+1

(∑t−T−1
j=1 αt−T−j

h eT+j

)
et +

1
kh
FTα

−h
h

∑T+h
t=T+1 α

t−T−h
h et,

=
α−2h
h

kh

∑T+h
t=T+1

(∑t−T−1
j=1 αt−T−j

h eT+j

)
et

+

(
FT√
T

)
︸ ︷︷ ︸
=Op(1)

(√
T

kh
α−h
h

)
︸ ︷︷ ︸
=o(T 1/2h−1/2)

(
1√
kh

∑T+h
t=T+1 α

t−T−h
h et

)
︸ ︷︷ ︸

=Op(1)

,

=
α−2h
h

kh

∑T+h
t=T+1

(∑t−T−1
j=1 αt−T−j

T eT+j

)
et + op

(
T 1/2h−1/2

)
,

because
√

T
kh
α−h
h =

√
T
kh
×o
(
khh

−1
)
= o

(
T 1/2k

1/2
h h−1

)
= o

(
T 1/2h−1/2

)
. For 1√

kh

∑T+h
t=T+1 α

t−T−h
h et =

Op(1), I used Lemma 4.2 of Phillips and Magdalinos (2007). In addition, I can show

α−2h
h

kh

∑T+h
t=T+1

(∑t−T−h
j=1 αt−T−j

h eT+j

)
et = Op(α

−h
h ) = op(1),

by following Phillips and Magdalinos (2007).

Finally, I consider term I as follows.

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 =

1

kh(α
2
h − 1)

{
α−2h
h

kh
(F 2

T+h − F 2
T ) + op

(
T 1/2h−1/2

)}
,

=
1

kh(α
2
h − 1)

(
α−2h
h

kh

)
F 2
T+h

− 1

kh(α
2
h − 1)

(
α−2h
h

T

kh

)
F 2
T

T
+ op

(
T 1/2h−1/2

)
,

because kh(α2
h − 1) → 2c. But the second term is op(Th−1) because α−2h

h = o(khh
−1) so that
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α−2h
h (T/kh) = o

(
Th−1

)
and F 2

T /T = Op(1). Furthermore,

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 =

1

kh(α
2
h − 1)

(
α−2h
h

kh

)
F 2
T+h + op

(
Th−1

)
,

=
1

kh(α
2
h − 1)

(
α−2h
h

kh

)(
αh
hFT +

∑h
j=1 α

h−j
h eT+j

)2
+ op

(
Th−1

)
,

=
1

kh(α
2
h − 1)

(
1

kh

)(
FT +

∑h
j=1 α

−j
h eT+j

)2
+ op

(
Th−1

)
,

=
1

kh(α
2
h − 1)

(
FT√
T

√
T

kh
+

1√
kh

∑h
j=1 α

−j
h eT+j

)2

+ op
(
Th−1

)
.

Therefore, if T/kh → 0, then T/h→ 0 by Assumption 2.5 and

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 ≈ 1

2c

(
1√
kn

∑h
j=1 α

−j
h eT+j

)2
⇒ 1

2cΘ
2,

by Lemma B.5 (a). If T/kh → π (0 < π <∞), then T/h→ 0 and

α−2h
h k−2

h

∑T+h
t=T+1 F

2
t−1 ≈ 1

2c

(
FT√
T

√
π +Θ

)2
.

If T/kh → ∞, then

α−2h
h k−1

h T−1∑T+h
t=T+1 F

2
t−1 =

1

kh(α
2
h − 1)

kh
T

(
FT√
T

√
T

kh
+

1√
kh

∑h
j=1 α

−j
h eT+j

)2

+ op
(
khh

−1
)
,

=
1

kh(α
2
h − 1)

 FT√
T

+

√
kh
T︸ ︷︷ ︸

=o(1)

1√
kh

∑h
j=1 α

−j
h eT+j︸ ︷︷ ︸

=Op(1) by Lemma A5(a)


2

+ op
(
khh

−1
)
,

≈ 1

2c

(
FT√
T

)2

.

(b) I follow the same steps as above by replacing F c
t and Ft with U c

i,t and Ui,t to show the results.

Hence, the proof is condensed. ■

I now provide a proof for the asymptotic properties of the CS tests under the LTU frame-

work (Theorem SA-2) provided in Appendix B.1 and under the MLTU framework (Theorem 2.2)

154



presented in Section 2.4.

Proof of Theorem SA-2.

(i-a) The t test statistic is

t∗
F̃
=

h−1
∑T+h

t=T+1 F̃t−1f̃t

σ̂
(
h−2

∑T+h
t=T+1 F̃

2
t−1

)1/2 .
The numerator is

h−1∑T+h
t=T+1 F̃t−1f̃t =

c

h2
∑T+h

t=T+1 F̃
2
t−1 + h−1H2

∑T+h
t=T+1 Ft−1et

− c

h2
∑T+h

t=T+1(F̃
2
t−1 −H2F 2

t−1)

+h−1H
∑T+h

t=T+1(F̃t−1 −HFt−1)ft

+h−1∑T+h
t=T+1 F̃t−1(f̃t −Hft),

=
c

h2
∑T+h

t=T+1 F̃
2
t−1 + I + II + III + IV,

but I = op(1). Further, II, III, and IV are shown to be op(1) by using Lemma B.6 (q), (m), and

(o) because αh
h, ρ

h
h = O(1) when kh = h. For the denominator,

h−2∑T+h
t=T+1 F̃

2
t−1 = h−2H2∑T+h

t=T+1 F
2
t−1 +Op

(
1

min{N2,T}

)
+Op

(
ρ2hh

min{N,T}

)
+Op

(
1

min
{
N,T 1/2

})+Op
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by using Lemma B.6 (q). The consistency of σ̂ is shown in Lemma B.7 because under kh = h,
αh
hρ

h
hh

1/2k
−1/2
h

min{N1/2,T 1/2} = o(1). Therefore,
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σ
(
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2
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)1/2 + op(1),

which leads to the result.
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(i-b) The t test statistic is
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Ũ
(i) =
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σ̂i

(
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2
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The numerator is
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ci
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2
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=
c
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t=T+1 Ũ
2
i,t−1 + I + II + III + IV,

but I = op(1). Further, II, III, and IV are shown to be op(1) by using Lemma B.8 (m), (i), and

(k). For the denominator, under kh = h
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2
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(
1
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{
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}) ,
by using Lemma B.8 (m) and the four terms of the factor estimation errors are op(1). The consistency

of σ̂i is shown in Lemma B.9 because under kh = h, αh
hhk

−1
h

min{N,T 1/2} = op(1) and ρhhhk
−1
h
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Therefore,
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Ũ
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2
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)1/2 + op(1),

which leads to the result.

(ii-a) The result is directly shown from (i-a) by using Lemmas B.11 and B.12 instead of Lemmas

B.6 and B.7.

(ii-b) The result is directly shown from (i-b) by using Lemmas B.13 and B.14 instead of Lemmas

B.8 and B.9. ■
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Proof of Theorem 2.2.

(a) When c = 0, the t test statistic is
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The numerator is
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(
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)
,

by using Lemma B.11 (g) and (o) and the five terms of the factor estimation errors are op(1) under

the stated condition. For the denominator,

h−2∑T+h
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c2
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{
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}) ,
by using Lemma B.11 (q) and the four terms of the factor estimation errors are op(1) under the stated

condition. The consistency of σ̂ is shown in Lemma B.12 under the same condition. Therefore,
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=
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c
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σ
(
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which leads to the result.

When c > 0, the t test statistic is
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=
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c
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c
t
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(
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The numerator is
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Therefore, if I scale the t test by α−h
h
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=

c
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(
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I now show that the first term is asymptotically equal to a positive value or diverges to positive

infinity and the second term disappears. The first term is
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h
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}) ,
by using Lemma B.11 (q) and the four terms of the factor estimation errors are op(1) under the

stated condition. I next consider the second term.
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t=T+1 F
c
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by using Lemma B.5 (c),
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h × II =

cα−2h
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as shown in the first term,
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by using Lemma B.11 (m) and it is op(1) under the stated condition, and
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,

by using Lemma B.11 (o) and it is op(1) under the stated condition. The consistency of σ̂ is shown

in Lemma B.12 under the stated condition. Therefore,
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under the stated conditions.

Finally,
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but because F̄ 2 = Op(k
2
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3
hh

−2) from Lemma B.5 (b) and khh−1 = op(1),
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By using Lemma B.15 (a), α−2h
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2
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cally equal to the stated values. Plugging these into (B.4.1) yields the final results.

(b) When ci = 0, the t test statistic is
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c
i,t = h−1∑T+h

t=T+1 U
c
i,t−1zi,t + h−1

∑T+h
t=T+1(Ũ

c
i,t−1 − U c

i,t−1)zi,t

+h−1∑T+h
t=T+1 Ũ
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by using Lemma B.13 (e) and (k) and the five terms of the factor estimation errors are op(1) under

the stated condition. For the denominator,
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by using Lemma B.13 (m) and the four terms of the factor estimation errors are op(1) under

the stated condition. The consistency of σ̂i is shown in Lemma B.14 under the same condition.

Therefore,
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which leads to the result.
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When ci > 0, the t test statistic is
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c
i,t−1ũ
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I now show that the first term is equal to a positive value or diverges to positive infinity and the

second term disappears. First,
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by using Lemma B.13 (m) and the last four terms of the factor estimation errors are op(1) under
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min{N,T 1/2} → 0. I next consider the second term.
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by using Lemma B.5 (h),
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by using Lemma B.13 (i) and it is op(1) under the stated condition, and
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by using Lemma B.13 (k) and it is op(1) under the stated condition. The consistency of σ̂i is shown

in Lemma B.14 under the stated condition. Therefore,
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By using Lemma B.15 (b), ρ−2h
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equal to the stated values. Plugging these results into (B.4.2) yields the final results. ■
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