
Graduate School of Economics, Hitotsubashi University

Discussion Paper Series No. 2022-02

Stochastic Local and Moderate Departures from a Unit Root and Its

Application to Unit Root Testing

Mikihito Nishi and Eiji Kurozumi

August 2022



Stochastic Local and Moderate Departures from a Unit Root

and Its Application to Unit Root Testing

Mikihito Nishi∗1 and Eiji Kurozumi†1

1Graduate School of Economics, Hitotsubashi University

August 26, 2022

Abstract

Local-to-unity and moderate-deviations specifications have been popular alternatives
to unit root modelling. This paper considers another kind of departures from a unit
root, of the form cvt/T

β , where vt is random and β determines the distance from a
unit root. We classify the stochastic departures into two types: local and moderate. This
classification task is completed by investigating the asymptotic behavior of unit root tests
that assume the stochastic unit root (STUR) processes as the alternative hypothesis. The
stochastic local-to-unity model arises when β = 3/4; in this case, the test statistics have
limiting distributions different from those under the unit root null, and their asymptotic
powers are greater than size. Moderate deviations emerge when 1/2 ≤ β < 3/4, in which
case the test statistics diverge. We also propose new tests for a unit root against a STUR,
whose construction is based on the limit theory developed in this paper. To evaluate the
performance of these new tests, we derive the limiting Gaussian power envelope under
the local alternative from an approximate model.

Keywords: random coefficient model, local to unity, moderate deviation, LBI test, power

envelope

JEL Codes: C12, C22

∗We are grateful to Yukitoshi Matsushita and Yohei Yamamoto for helpful comments. All errors
are our responsibility. Address correspondence to Mikihito Nishi, Graduate School of Economics,
Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601, Japan; e-mail: ed225007@g.hit-u.ac.jp

†Eiji Kurozumi’s research was supported by JSPS KAKENHI Grant Number 19K01585 and
22K01422.



1 Introduction

Consider the following AR(1) model

yt = ρyt−1 + εt, t = 1, 2, . . . , T, (1)

with εt ∼ i.i.d(0, σ2ε). In the unit root literature, much attention has been paid to the

specification given by

ρ = ρT := 1 +
a

Tα
, (2)

where α ∈ (0, 1] and a ̸= 0 (e.g., Phillips, 1987; Elliott, Rothenberg, and Stock, 1996; Phillips

and Magdalinos, 2007). Under this specification, although the autoregressive coefficient ρ

strictly differs from unity by a/Tα, it approaches one as the sample size T increases. When

α = 1, the coefficient is said to have local departures from a unit root. When α ∈ (0, 1), ρ is

said to have moderate deviations.

The classification of departures (local or moderate) could be better understood in terms

of the asymptotic behavior of conventional unit root tests such as those proposed by Dickey

and Fuller (1979) (DF, hereafter). When α = 1, the DF test statistics have asymptotic

distributions different from those under the null of a unit root, but the DF tests are not

consistent; that is, the probability that the tests reject the null does not converge to one as

T increases. In this sense, the alternative that the coefficient has local departures is near

the null of a unit root. In contrast, when α ∈ (0, 1), the DF test statistics diverge at a rate

depending on α, and hence they are consistent. This means moderate deviations are sufficient

for the DF tests to detect departures from a unit root with probability approaching one.

In this paper, we consider another specification of the form

ρ = ρT,t := 1 +
cvt
T β

, (3)

where vt ∼ i.i.d(0, 1) and β takes some positive value. This specification is similar to (2) in

that ρ approaches one as T grows. However, ρ defined by (3) is random because of vt, and

its value at time t depends on the realization of vt. Hence, equation (3) formulates stochastic

departures from a unit root. Another explanation could be given for the distinction between

these two types (stochastic and nonstochastic) of departures. The nonstochastic-departures

model approaches a unit root process “in mean”, i.e., E[ρT ] = 1 + aT−α → 1. By contrast,

the coefficient having stochastic-departures, keeping its mean one, approaches a unit root “in

variance”, that is, V[ρT,t] = c2T−2β → 0.
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The usefulness of stochastic departures has been recognized in the literature. Lieber-

man and Phillips (2014, 2017, 2018) considered the AR(1) model with ρ = exp(cvtT
−1/2)

and developed estimation and inference theory. They demonstrated this formulation can

be successfully applied in economics and finance; for instance, they showed the model leads

to a generalization of the well-known Black-Scholes model. Lieberman and Phillips (2020)

extended their preceding work by jointly considering the stochastic and nonstochastic depar-

tures, i.e., ρ = exp(aT−1+cvtT
−1/2). Tao, Phillips, and Yu (2019) considered the continuous

time version of this model and demonstrated that their model can well describe several ex-

treme behaviors of time series such as exuberance followed by collapse. Banerjee, Chevillon,

and Kratz (2020) also considered the model with ρ = exp(aT−α + cvtT
−α/2), 0 < α < 1, as

a model for time series data containing bubbles and flash crashes in its sample path.

One of the purposes of this paper is to classify the stochastic departures (3) into two types:

the local and moderate deviations. This task can be effectively completed on the basis of the

asymptotic behavior of certain test statistics, as in the case of nonstochastic departures; i.e.,

the model is local if the test statistics are Op(1) but their limiting distributions are different

from those under the null, and the model is moderate if they diverge (at a rate depending on

β). However, we cannot solve this classification problem if we employ the DF tests or other

conventional unit root tests. This is because while these tests assume as the alternative a

nonstochastic coefficient that differs from one (e.g., (2)), the alternative hypothesis implied

by (3) is a stochastic coefficient.

As we will demonstrate later, this task can be successfully completed by utilizing unit

root tests that assume as the alternative hypothesis stochastic unit root (STUR) processes, a

class of random coefficient autoregressive processes that was originally proposed by Granger

and Swanson (1997). Such tests were provided by several authors, including McCabe and

Tremayne (1995), Lee (1998) and Nagakura (2009). By investigating the asymptotic behavior

of these tests for different values of β, we can determine which values of β correspond to

(stochastic) local or moderate departures. McCabe and Smith (1998) derived, under β =

3/4, the asymptotic distribution of the McCabe and Tremayne’s (1995) test statistic. The

asymptotic distribution differs from that under the null, which means the β = 3/4 case

corresponds to the local alternative. Our results show that β ∈ [1/2, 3/4) correspond to the

moderate departures from a unit root.1

1Strictly speaking, the moderate-deviations region of β would cover the interval (0, 1/2), but we focus only
on the case β ∈ [1/2, 3/4].
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There have been several studies addressing similar issues. Phillips and Magdalinos (2007)

considered AR(1) models whose coefficient is of the form (2) with 0 < α < 1 and bridged the

gap between the (nonstochastic) local and moderate departures asymptotics. Following their

work, Aue (2008) developed asymptotics for the case where

ρ = 1 +
a

Tα
+
cvt
T β

,

with 1/2 < α < 1 and β > 1/2, and derived the asymptotic behavior of the OLS estimator

of the AR coefficient. McCabe and Smith (1998) dealt with the stochastic coefficient (3)

with β = 3/4 and 1/2. For the former case, they derived the asymptotic distribution of the

McCabe-Tremayne test statistic, and for the latter case they analyzed the behavior of the DF

tests. Our work differs from these earlier studies in that we develop asymptotics for the cases

β = 3/4, β ∈ (1/2, 3/4) and β = 1/2, derive for each case the limiting distributions of several

unit root test statistics, and classify the stochastic departures into local and moderate ones.

As an application of the stochastic-departures models, we also propose several new unit

root tests whose alternative is that the process has a STUR. The construction of these tests

and the analysis of their asymptotic behavior are based on the limit theory developed in this

paper.

The remainder of this paper is organized as follows. In Section 2, we review the concept

of STUR processes and some existing tests of a unit root against a STUR. In Section 3,

we localize the STUR processes by making the stochastic part of the coefficient approach

zero at the rate T−β, β ∈ [1/2, 3/4]. We establish some limit theory for this localized

model, investigate the asymptotic behavior of some unit root tests, and classify the stochastic

departures into the local and moderate deviations. Section 4 proposes several new tests of a

unit root against a STUR, which are based on the limit theory developed in this article. In

Section 5, we evaluate the asymptotic power of these tests along with that of extant tests.

To this end, we derive the limiting Gaussian power envelope from an approximate model

and compare it with the extant and new tests’ power functions. In Section 6, Monte Carlo

experiments are conducted to examine the finite-sample performance of the tests, and we also

apply these tests to real data. Section 7 concludes the paper.

2 STUR Processes and Some Related Unit Root Tests

In this section, we briefly review the concept of STUR processes and existing unit root

tests that assume them as the alternative.
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The STUR processes, which was coined by Granger and Swanson (1997), is a class of

random coefficient autoregressive processes given by

yt = (1 + ωvt)yt−1 + εt, t = 1, 2, . . . , T, (4)

where vt ∼ (0, 1) and εt ∼ (0, σ2ε).
2 The autoregressive coefficient of the process (4) randomly

changes over time. However, its expectation is assumed to be unity, so that the value of the

coefficient is one on average. The STUR model, therefore, includes unit root processes as

a special case obtained by letting ω2 = 0. Granger and Swanson (1997) argued that some

economic theory such as the permanent income hypothesis could be well formulated by the

STUR model. Since their work, empirical studies applying the STUR model have been

conducted. Among such studies are Sollis, Newbold, and Leybourne (2000), Yoon (2005,

2010a,b), and Yau and Hueng (2007).

In model (4), the process becomes an AR(1) process with a unit root when the variance

ω2 of the coefficient is zero; if ω2 is positive, the process is a STUR process. Hence, one

might want to test whether ω2 = 0, thereby determining whether the coefficient of the time

series of interest is constant and one or changes randomly around unity over time. McCabe

and Tremayne (1995, hereafter MT) derived a locally best invariant (LBI) test of a unit root

against a STUR, of the form

MTT = T−3/2κ̂−1
T σ̂−2

T

T∑
t=1

y2t−1{(∆yt)2 − σ̂2T }, (5)

where σ̂2T := T−1
∑T

t=1(∆yt)
2 and κ̂2T := T−1

∑T
t=1{(∆yt)2− σ̂2T }2. Lee (1998) and Nagakura

(2009) derived an LBI test for a more general model

yt = (d+ ωvt)yt−1 + εt, − 1 < d ≤ 1.

When d = 1, their test statistic is given by

LNT =
T−3/2

∑T
t=1 y

2
t−1{(∆yt)2 − σ̂2T }

κ̂T {T−3
∑T

t=1 y
4
t−1 − (T−2

∑T
t=1 y

2
t−1)

2}1/2
. (6)

The MT and Lee-Nagakura (LN, hereafter) tests are both right-tailed. To derive the

limiting null distributions of these test statistics, we impose the following assumption.

2In fact, Granger and Swanson considered a different but very similar model whose coefficient is given by
exp(ωvt).
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Assumption 1. {εt} is a sequence of i.i.d random variables with E[εt] = 0,E[ε2t ] = σ2ε > 0,

and E[ε4t ] <∞. Moreover, y0 = op(T
1/2).

Define ηt := ε2t −σ2ε and κ2ε := E[η2t ]. Define also the partial sum process (WT,ε,WT,η)
′ on

[0, 1] by WT,ε(r) := T−1/2σ−1
ε

∑⌊Tr⌋
t=1 εt and WT,η(r) := T−1/2κ−1

ε

∑⌊Tr⌋
t=1 ηt. Then, it follows

from the functional central limit theorem (FCLT) that under Assumption 1, as T → ∞(
WT,ε

WT,η

)
⇒

(
Wε

Wη

)
,

where Wε and Wη are standard Brownian motions and ⇒ signifies weak convergence. Note

that Wε and Wη are not necessarily independent because of the covariance between εt and

ηt, i.e., ψ := E[ε3t ]. A sufficient condition for them to be independent is that εt is symmetric.

Under Assumption 1, the test statistics MTT and LNT have the following asymptotic

distributions under the null ω2 = 0:

MTT ⇒
∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]
dWη(r), (7)

LNT ⇒
∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)[∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

]1/2 . (8)

These convergence results were obtained by MT and Nagakura (2009).

These tests are designed to test the unit root hypothesis ω2 = 0 against the STUR

hypothesis ω2 > 0. On the other hand, the stochastic-departures model specified by (3)

approaches a unit root process along the path ω2 = ω2
T := c2/T 2β ↘ 0. Hence, it is expected

that for some local alternative hypothesis ω2
T = c2/T 2β > 0, or for some β, the MT and LN

test statistics have limit distributions different from those under the null, and that for other

values of β, they diverge. This observation leads us to utilize these tests as tools by which to

determine what size of stochastic departures should be interpreted as local or moderate.

3 Local and Moderate Deviations from Unity

3.1 Assumptions

We turn to local- and moderate-departures models. Our model is obtained by letting

ω = c/T β in model (4), that is,

yt =

(
1 +

c

T β
vt

)
yt−1 + εt, t = 1, 2, . . . , T, (9)
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where c2 ≥ 0. As mentioned in the introduction, the local-departures model arises when

β = 3/4, and the moderate-departures model when 1/2 ≤ β < 3/4. For model (9), we

impose the following assumption in place of Assumption 1.

Assumption 2. (εt, vt)
′ ∼ i.i.d(0,Ω), where Ω := diag(σ2ε , 1). Also, E[ε4t ] < ∞ and E[v8t ] <

∞. Moreover, y0 = op(T
1/2).

Assumption 2 could be modified to allow for dependence, that is, serial correlation in the

innovations and contemporaneous correlation between εt and vt. However, we employ the

simple assumption so as not to let a complicated analysis obscure our main points. For the

development of the theory under more general assumptions, interested readers are referred

to Lieberman and Phillips (2017, 2018).3

Under Assumption 2, we have, from the FCLT,WT,ε

WT,η

WT,v

 ⇒

Wε

Wη

Wv

 ,

where Wv is a standard Brownian motion and WT,v is defined by WT,v(r) := T−1/2
∑⌊Tr⌋

t=1 vt.

3.2 Preliminary asymptotic theory

Before analyzing the asymptotic behavior of the MT and LN test statistics under the al-

ternatives, we need to establish some limit theory. It is mainly concerned with the asymptotic

behavior of the standardized process T−1/2y⌊Tr⌋, σ̂
2
T and κ̂2T , which in turn determine the

behavior of the test statistics. The limit theory will also play a key role in constructing new

unit root tests in Section 4. Proofs of all the subsequent results are given in the appendix.

Lemma 1. For model (9) with 1/2 < β ≤ 3/4, we have, under Assumption 2,

(a) YT ⇒ σεWε in the Skorokhod space D[0, 1], where YT is defined by YT (r) := T−1/2y⌊Tr⌋

for r ∈ [0, 1],4

(b) σ̂2T
p→ σ2ε ,

3Lieberman and Phillips (2017, 2018) considered a model in which the random component of the coefficient
is observable, while we do not assume vt’s are observed.

4Aue (2008) showed that the finite-dimensional distributions of YT weakly converge to those of a Brownian
motion (his Theorem 2.4). Lemma 1(a) extends this result to the weak convergence of YT as a stochastic
process in D[0, 1].
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(c) κ̂2T
p→ κ2ε.

This lemma states that as long as β ∈ (1/2, 3/4], the standardized process YT weakly

converges to the Brownian motion σεWε and estimators σ̂2T and κ̂2T are consistent, as in

the pure unit root case. For the special case β = 1/2, however, we need to establish limit

theory other than that for the case β ∈ (1/2, 3/4]. First, the large-sample behavior of the

standardized process YT (·) = T−1/2y⌊T ·⌋ is no longer approximated by the Brownian motion

σεWε(·), and estimators σ̂2T and κ̂2T have nondegenerate asymptotic distributions, as the

following result indicates.5

Lemma 2. For model (9) with β = 1/2, under Assumption 2,

(a) YT ⇒ σεYc, where

Yc(r) := exp

(
cWv(r)−

c2

2
r

)∫ r

0
exp

(
−cWv(s) +

c2

2
s

)
dWε(s), (10)

for r ∈ [0, 1],

(b)

σ̂2T ⇒ c2σ2ε

∫ 1

0
Y 2
c (r)dr + σ2ε ,

(c) κ̂2T has a nondegenerate limiting distribution.

Although the standardized process YT still weakly converges, the limiting process σεYc

differs from the Brownian motion σεWε unless c = 0 (i.e., the unit root case). The limiting

process Yc belongs to the class of continuous-time processes considered by Tao et al. (2019).

They considered a continuous-time process that satisfies the following stochastic differential

equation:

dy(t) = y(t)[µ̃dt+ cdWv(t)] + σεdWε(t). (11)

The solution of this equation takes the form

y(t) = exp

[
cWv(t) +

(
µ̃− c2

2

)
t

]
y(0) + σε

∫ t

0
exp

[
c
(
Wv(t)−Wv(s)

)
+
(
µ̃− c2

2

)
(t− s)

]
dWε(s),

(12)

5McCabe and Smith (1998) derived the first-order approximation (in c) of the limit process of YT , which
is different from that of Yc given in Lemma 2(a). In fact, Lemma 2(a) corrects their result.
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for which letting y(0) = 0 and µ̃ = 0 yields σεYc(t) defined by (10). This relation between

(10) and (12) stems from the fact that the process defined in (11) is a modified version of the

Ornstein-Uhlenbeck (OU) process

dy(t) = y(t)µ̃dt+ σεdWε(t),

which is the limit of the standardized process constructed from the AR(1) process yt =

(1 + µ̃/T )yt−1 + εt. The continuous-time model (11) extends the OU process by introducing

cdWv(t) to the drift component. This is comparable with introducing stochastic moderate

deviations cvt/
√
T into the coefficient 1 + µ̃/T in the (discrete-time) AR model. Therefore,

µ̃ and c in (11) correspond to the nonstochastic and stochastic localizing parameters in the

AR(1) model, respectively. Indeed, one can show that the standardized process constructed

from yt = (1 + µ̃/T + cvt/
√
T )yt−1 + εt weakly converges to (12) (see also Föllmer and

Schweizer, 1993).

Remark 3. As shown in the appendix, a different result emerges if we allow for endogeneity,

that is, a nonzero correlation between the coefficient and disturbance. When σεv := E[εtvt] ̸=
0, the limit process of YT is expressed as

exp

(
cWv(r)−

c2

2
r

){
σε

∫ r

0
exp

(
−cWv(s) +

c2

2
s

)
dWε(s)− cσεv

∫ r

0
exp

(
−cWv(s) +

c2

2
s

)
ds

}
,

(13)

which reduces to (10) if σεv = 0. This is, too, included in the class of processes considered by

Tao et al. (2019) for which endogeneity is taken into account. Although analyzing models with

endogeneity will lead to more general results, we will focus on the model without endogeneity

in the subsequent analysis to keep the main points of this paper clear.

Remark 4. Lemma 2(a) is related to results of Lieberman and Phillips (2014, 2017, 2018).

The following process is a simplified version of their original model:

yt = exp

(
c√
T
vt

)
yt−1 + εt. (14)

Model (14) may seem to be asymptotically equivalent to model (9) with β = 1/2, because

the autoregressive coefficient satisfies

exp

(
c√
T
vt

)
= 1 +

c√
T
vt +Op(T

−1). (15)
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However, our model (9) with β = 1/2 is not equivalent to (14), even asymptotically. One can

show that, when σεv = 0, model (14) can be written as

T−1/2y⌊Tr⌋ = exp

(
cT−1/2

⌊Tr⌋∑
k=1

vk

) ⌊Tr⌋∑
s=1

exp

(
−cT−1/2

s−1∑
k=1

vk

)(
T−1/2εs

)
+ op(1), (16)

⇒ exp

(
cWv(r)

)∫ r

0
exp

(
−cWv(s)

)
dWε(s),

which differs from Lemma 2(a) by terms in the exponents, namely, −c2r/2 and c2s/2 in the

integral (see, for example, Section 5 of Lieberman and Phillips (2014)). On the other hand,

as shown in the appendix, our model can be written as (when σεv = 0)

T−1/2y⌊Tr⌋ =exp

(
cT−1/2

⌊Tr⌋∑
k=1

vk −
c2

2
T−1

⌊Tr⌋∑
k=1

v2k

)

×
⌊Tr⌋∑
s=1

exp

(
−cT−1/2

s−1∑
k=1

vk +
c2

2
T−1

s−1∑
k=1

v2k

)(
T−1/2εs

)
+ op(1), (17)

where the terms − c2

2 T
−1

∑⌊Tr⌋
k=1 v

2
k and c2

2 T
−1

∑s−1
k=1 v

2
k asymptotically play the roles of −c2r/2

and c2s/2 in the integral in Lemma 2(a), respectively. The difference between the two models

is due to the fact that the effect of the Op(T
−1) term in (15) (namely, c2v2t /2T ) in fact does

not vanish as T → ∞. This amounts to model (14) being asymptotically equivalent to

yt =

(
1 +

c√
T
vt +

c2

2T
v2t

)
yt−1 + εt.

Another point to be noted in Lemma 2 is that σ̂2T and κ̂2T are not consistent estimators

any longer. In particular, σ̂2T overestimates σ2ε in large samples due to the positive term

c2σ2ε
∫ 1
0 Y

2
c (r)dr. However, one can construct an estimator of σ2ε that is consistent under the

moderate-deviations case (and also under the pure unit root case). We will return to this

problem in Section 4.

3.3 Asymptotic behavior of the test statistics

Using two lemmas developed in the previous subsection, we can analyze the asymptotic

behavior of the MT and LN test statistics. The next result gives the asymptotic expression

for these statistics under 1/2 < β ≤ 3/4:

Theorem 5. For model (9) with 1/2 < β ≤ 3/4, under Assumption 2,

9



(a)

MTT
a∼
∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) + T 3/2−2β c

2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr,

(18)

(b)

LNT
a∼

∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)[∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

]1/2 + T 3/2−2β c
2σ2ε
κε

[∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}2

dr

]1/2
,

(19)

(c)

DFT = T (ρ̂T − 1) ⇒
∫ 1
0 Wε(r)dWε(r)∫ 1

0 W
2
ε (r)dr

,

where ρ̂T :=
∑T

t=1 yt−1yt/
∑T

t=1 y
2
t−1.

Note that McCabe and Smith (1998) derived the limiting distribution (18) under β = 3/4,

and the behavior of DFT under β = 3/4 could be expected from Theorem 3 of McCabe and

Smith (1998) by letting τ2 → 0 in their notation.

There are three points worth mentioning. First, when β = 3/4, both the MT and LN test

statistics have the local asymptotic distributions of the form

MTT ⇒
∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) +

c2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr,

and

LNT ⇒
∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)[∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

]1/2 +
c2σ2ε
κε

[∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}2

dr

]1/2
,

which differ from the null distributions (7) and (8) when c2 > 0. For each test, the first

term of the local distribution is identical to the asymptotic null distribution. The second

terms, which are positive, shift the null distributions to the right and hence contribute to

the increase in power. The power of each test becomes greater if the localizing parameter c2

gets larger. Observe that the power also increases when σ2ε increases or κ2ε decreases. For the

special case where εt is normally distributed, σ2ε/κε = 2−1/2 and thus the effects of σ2ε and

κ2ε are constant.
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The second point is that when 1/2 < β < 3/4, the second terms of the asymptotic

expressions in (18) and (19) dominate at the rate Op(T
3/2−2β). Hence, the MT and LN test

statistics diverge to positive infinity as the sample size increases. Because the MT and LN

tests are right-tailed, we conclude from this theorem that the interval 1/2 < β < 3/4 is

included in the stochastic-moderate-deviations region.

The other point is that the DF (coefficient) test statistic converges to the null distribution

either when β = 3/4 or when 1/2 < β < 3/4, which means the test has power equal to size

against these stochastic alternatives. In other words, the DF test cannot detect the stochastic

local and moderate departures from unity. An intuitive explanation for this result is that

because the standardized process T−1/2y⌊T ·⌋ behaves like σεWε(·) as it does under the unit

root null, the DF test takes yt as a (pure) unit root process. It follows from this observation

that conventional unit root tests that assume as the alternative hypothesis a nonstochastic

coefficient differing from one are inappropriate when the true process has stochastic local or

moderate departures from a unit root.

Next, using Lemma 2, we can derive the limiting behavior of the MT and LN statistics

under β = 1/2.

Theorem 6. For model (9) with β = 1/2, under Assumption 2,

(a)

MTT
a∼ κεσ

2
ε

κσ2

∫ 1

0

(
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

)
dWη(r) + T 1/2 c

2σ4ε
κσ2

∫ 1

0

[
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

]2
dr,

where σ2 and κ2 are random variables distributed according to the limiting distributions

of σ̂2T and κ̂2T , respectively (see Lemma 2 and its proof),

(b)

LNT
a∼ κε
κ

∫ 1
0

[
Y 2
c (r)−

∫ 1
0 Y

2
c (s)ds

]
dWη(r)[∫ 1

0 {Y 2
c (r)−

∫ 1
0 Y

2
c (s)ds}2dr

]1/2 + T 1/2 c
2σ2ε
κ

[∫ 1

0

{
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

}2

dr

]1/2
.

Given this result and Theorem 5, we are led to the conclusion that the stochastic-

moderate-deviations interval of values of β in (9) includes [1/2, 3/4).

4 New Tests of a Unit Root Against a STUR

In this section, as an application of the asymptotic theory developed thus far, we propose

several new unit root tests.

11



Consider model (9) and suppose one wants to test the unit root null c2 = 0 against

the alternative c2 > 0. The tests we propose here are motivated under the specification of

β = 1/2. The reason why we consider the moderate deviations given by β = 1/2 rather than

local departures is that σ̂2T , an estimator of σ2ε , is consistent under the null but inconsistent

under the alternative, when β = 1/2. This observation leads us to consider exploiting the

Hausman principle: If an estimator σ̃2T of σ2ε is available that is consistent under both the

null and alternative, then one could use the normalized difference between σ̂2T and σ̃2T to test

the hypothesis of c2 = 0. Indeed, such an estimator can be constructed under Assumption 2,

as the next result shows.

Lemma 7. For model (9) with β = 1/2, under Assumption 2, σ̃2T
p→ σ2ε , where

σ̃2T :=

∑T
t=1(∆yt)

2
∑T

t=1 y
4
t−1 −

∑T
t=1(∆yt)

2y2t−1

∑T
t=1 y

2
t−1

T
∑T

t=1 y
4
t−1 −

(∑T
t=1 y

2
t−1

)2 . (20)

Although σ̃2T is a consistent estimator of σ2ε , finite-sample justifications for this estima-

tor are rather weak. For one thing, σ̃2T is not necessarily positive for finite T , because the

denominator is always positive but the numerator is not. Another problem is that σ̃2T con-

verges very slowly to σ2ε . These two shortcomings of σ̃2T , what is worse, are aggravated when

the localizing parameter c2 is large. In Table 1, several quantiles of simulated finite-sample

distributions of σ̃2T and σ̂2T are displayed.

For the null case (c2 = 0), σ̂2T estimates the true variance σ2ε = 1 with reasonable precision,

particularly when T is large. On the other hand, σ̃2T can take a negative value if T is not so

large. Moreover, the convergence of σ̃2T needs sample size to be so large as to be unrealistic

in practice. When the localizing coefficient c2 is nonzero, the problem becomes more serious.

When c2 = 0.8, we see the overestimation by σ̂2T , as is predicted by the asymptotic theory. As

for σ̃2T , the probability that it takes an extreme value is greater than under the null, especially

for small T . Although it gets concentrated around the true value as the sample size grows,

the convergence speed is slow. Given these shortcomings, it will be sensible to regard σ̃2T just

as a building block of test statistics, rather than as an estimator of practical use.

To obtain a Hausman test statistic that has an asymptotic null distribution, the following

normalization suffices:

HT :=

√
T (σ̂2T − σ̃2T )

κ̂T
. (21)

Hereafter, we shall refer to HT as Hausman type test or simply H test.

12



We propose another test statistic. This test is based on the observation that

ĉ2T :=
σ̂2T − σ̃2T

T−2
∑T

t=1 y
2
t−1

p→ c2,

which is immediately obtained from Lemma 2(b), Lemma 7 and the continuous mapping

theorem. When the null is true, ĉ2T converges in probability to zero. Hence, it is expected

that after proper normalization, we can derive the asymptotic null distribution of ĉ2T . Indeed,

it suffices to normalize it by

CT :=
√
T ĉ2T ×

σ̂2T
κ̂T

(22)

= HT ×
σ̂2T

T−2
∑T

t=1 y
2
t−1

.

We shall call CT coefficient test or C test.

Remark 8. There is a close relation among the MT, LN, H and C tests, as the following

equations indicate (they are proven in the appendix):

LNT = MTT ×
σ̂2T

{T−3
∑T

t=1 y
4
t−1 − (T−2

∑T
t=1 y

2
t−1)

2}1/2
, (23)

HT = MTT ×
σ̂2TT

−2
∑T

t=1 y
2
t−1

T−3
∑T

t=1 y
4
t−1 − (T−2

∑T
t=1 y

2
t−1)

2
, (24)

CT = MTT ×
σ̂4T

T−3
∑T

t=1 y
4
t−1 − (T−2

∑T
t=1 y

2
t−1)

2
. (25)

These expressions shall be exploited to derive the asymptotic behavior of the H and C test

statistics.

Theorem 9. For model (9) with 1/2 < β ≤ 3/4, under Assumption 2,

(a)

HT
a∼
∫ 1

0
W 2

ε (r)dr

∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

+ T 3/2−2β c
2σ2ε
κε

∫ 1

0
W 2

ε (r)dr,

(b)

CT
a∼
∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

+ T 3/2−2β c
2σ2ε
κε

;

13



and with β = 1/2,

(c)

HT
a∼ κε
κ

∫ 1

0
Y 2
c (r)dr

∫ 1
0

[
Y 2
c (r)−

∫ 1
0 Y

2
c (s)ds

]
dWη(r)∫ 1

0 Y
4
c (r)dr −

(∫ 1
0 Y

2
c (r)dr

)2 + T 1/2 c
2σ2ε
κ

∫ 1

0
Y 2
c (r)dr,

where σ2 and κ2 are random variables distributed according to the limiting distributions

of σ̂2T and κ̂2T , respectively (see Lemma 2 and its proof),

(d)

CT
a∼ κεσ

2

κσ2ε

∫ 1
0

[
Y 2
c (r)−

∫ 1
0 Y

2
c (s)ds

]
dWη(r)∫ 1

0 Y
4
c (r)dr −

(∫ 1
0 Y

2
c (r)dr

)2 + T 1/2 c
2σ2

κ
.

The null limiting distributions of HT and CT are given by the first terms of (a) and (b),

respectively. Although H and C tests are constructed under the specification of β = 1/2, we

see from Theorem 9 that they have nonnegligible asymptotic power when β = 3/4. Moreover,

they are consistent not only when β = 1/2 but also when 1/2 < β < 3/4. It should be

emphasized here that the case β = 1/2 was just used to motivate these tests, and such tests

in fact work well for other values of β.

Remark 10. The limiting distributions displayed in Theorems 5, 6 and 9 all depend on

the third moment of εt, a nuisance parameter, through the covariance coefficient ψ/(κεσε)

between Wε and Wη. In the subsequent analysis, we shall assume that ψ = E[ε3t ] = 0. Given

that ψ = 0, the limiting null distribution of LNT reduces to the standard normal distribution

(see Nagakura, 2009). Nagakura (2009) proposed modified LN tests that are independent of

ψ and verified they perform well either when ψ = 0 or when ψ ̸= 0. The modification by

Nagakura (2009) will be applicable to our tests, although we do not consider it here.

Table 2 contains critical values of the MT, H and C tests (when ψ = 0). Since critical

values of the LN test are based on the standard normal distribution, we omit them from

the table. They are all right-tailed tests. The asymptotic null distributions were simulated

through 100,000 Monte Carlo replications where (Wε,Wη)
′ were approximated by normalized

cumulative sums with 1,000 steps.
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5 Evaluation of the Asymptotic Power

In Section 4, we proposed two new tests, the Hausman and coefficient tests, hoping they

perform better than extant ones such as the MT and LN tests. When evaluating power

properties of several tests, it is useful to compare their power functions with the power

envelope, which is obtained under restrictive distributional assumptions. Because there is no

uniformly most powerful test in our case, we derive the power envelope by computing the

powers of a sequence of the most powerful (or point optimal) tests, which can be derived

using the Neyman-Pearson lemma.6

For our model (9) with β = 3/4, the likelihood function lT with a given y0, under the

Gaussian assumption on (εt, vt), is given by

lT (c
2, σ2ε) = (2π)−T/2

T∏
t=1

(c2T−3/2y2t−1 + σ2ε)
−1/2 × exp

[
−1

2

T∑
t=1

(yt − yt−1)
2

c2T−3/2y2t−1 + σ2ε

]
.

Then, by the Neyman-Pearson lemma, the most powerful (MP) test for H0 : c2 = 0 vs

H1 : c
2 = c̄2 for a given c̄2 rejects the null when the following statistic takes a large value:

qT (c̄
2, σ2ε) := 2{log lT (c̄2, σ2ε)− log lT (0, σ

2
ε)}

= −
T∑
t=1

log(c̄2T−3/2ỹ2t−1 + 1)−
T∑
t=1

(ỹt − ỹt−1)
2

c̄2T−3/2y2t−1 + 1

+
T∑
t=1

(ỹt − ỹt−1)
2,

where ỹt := yt/σε. Note that qT (c̄
2, σ2ε) is infeasible since σ

2
ε is an unknown nuisance parame-

ter. One possible way to obtain a feasible MP test would be to replace σ2ε with the consistent

estimator σ̂2T , following Elliott et al. (1996). If the limiting distribution of qT (c̄
2, σ̂2ε) coincides

with that of qT (c̄
2, σ2ε), we can compute the asymptotic power envelope based on the common

limiting distribution. Unfortunately, this is not the case as the following proposition shows.

Proposition 11. For model (9) with β = 3/4, under Assumption 2 with (εt, vt) being Gaus-

sian, we have

qT (c̄
2, σ2ε) ⇒ c̄2

[√
2

∫ 1

0
W 2

ε dWη(r) +

(
c2 − c̄2

2

)∫ 1

0
W 4

ε (r)dr

]
=: k(c2, c̄2),

6Elliott et al. (1996) used this strategy to obtain the local asymptotic Gaussian power envelope for unit
root tests.
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and

qT (c̄
2, σ̂2T ) ⇒ c̄2

[√
2

∫ 1

0

(
W 2

ε −
∫ 1

0
W 2

ε (s)ds

)
dWη(r)

+ c2
∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}2

dr − c̄2

2

∫ 1

0
W 4

ε (r)dr

]
=: k̂(c2, c̄2),

where Wε and Wη are independent.

We note that Wε and Wη may be dependent and
√
2 in the limiting distributions is

replaced by κε/σ
2
ε without the assumption of normality (see the proof), although we do not

pursue such a general case when considering the optimality.

This proposition tells us that qT (c̄
2, σ2ε) and qT (c̄

2, σ̂2T ) have different asymptotic distri-

butions, which implies that the asymptotic power functions based on k̂(c2, c̄2) may not be

relevant references in our case. Therefore, we need to seek another way to derive the MP

tests without the knowledge of σ2ε .

Ideally, one solution would be to derive the point optimal test in a class of invariant tests

with respect to σ2ε . In fact, McCabe and Tremayne (1995) derived the locally best (c̄2 → 0)

invariant test by considering the transformation of scale invariance, where {yt/y1}Tt=2 was

used as the maximal invariant. However, it is difficult to derive the point optimal invariant

test for a general value of c̄2 based on the maximal invariant {yt/y1}Tt=2. This is because

the joint density f of the maximal invariant and y1 depends on the latter variable in such a

complicated way that it is difficult to integrate out y1 from f to get the density only of the

maximal invariant (see McCabe and Tremayne (1995) for details).

Because of such a difficulty of proceeding with lT (c
2, σ2ε), we now consider using the power

envelope derived from a quasi likelihood l∗T (c
2, σ2ε) that is “near” and more tractable than the

exact likelihood lT (c
2, σ2ε). Of course, the power envelope derived from l∗T is not necessarily

identical to the exact counterpart based on lT . We emphasize here that the motivation for

introducing l∗T is to obtain benchmark test statistics; once we obtain the MP test statistics

from l∗T , we eventually derive their limiting distributions under (9) and use the derived power

envelope as a benchmark. To find such a likelihood, we approximate the exact model in the

following way. First, from model (9), a simple calculation yields

(∆yt)
2 = σ2ε + ω2

T y
2
t−1 + ξt, (26)

where ξt := ω2
T y

2
t−1(v

2
t − 1) + 2ωT yt−1εtvt + (ε2t − σ2ε) and ωT = cT−3/4. Note that E[ξt] = 0

and E[y2t−1ξt] = 0 since (εt, vt) is i.i.d and E[εtvt] = 0. Hence, model (26) could be viewed as
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the linear regression model with ξt playing the role of the disturbance.7

Our approximation strategy comes from the observation that, under the stronger assump-

tion that E[|εt|8+δ] < ∞ and E[|vt|8+δ] < ∞ for some δ > 0, the disturbance ξt in (26) can

be expressed as ξt = ε2t −σ2ε + op(1). In view of this observation, we approximate (26) by the

following Gaussian model:

(∆yt)
2 = σ2ε + ω2

T y
2
t−1 + ξ∗t , (27)

where ξ∗t ∼ i.i.d N(0, κ2ε). Again, note that model (27) is an approximate one. The best we

can hope for is that model (27) approximates (26), or (9) so well that the power envelope

based on (27) serves as a good benchmark. Fortunately, the point optimal tests derived

from (27) coincide with those based on (9), when σ2ε is known. To state this precisely, let

l∗T (c
2, σ2ε , κ

2
ε) be the likelihood for model (27):

l∗T (c
2, σ2ε , κ

2
ε) = (2πκ2ε)

−T/2 exp

[
− 1

2κ2ε

T∑
t=1

{
(∆yt)

2 − σ2ε − c2T−3/2y2t−1

}2
]
.

Let q∗T (c̄
2, σ2ε , κ

2
ε) be the point optimal test based on model (27) under the assumption that

σ2ε and κ2ε are known, which is given by

q∗T (c̄
2, σ2ε , κ

2
ε) = log l∗T (c̄

2, σ2ε , κ
2
ε)− log l∗T (0, σ

2
ε , κ

2
ε)

=
c̄2

κ2ε

[
T−3/2

T∑
t=1

y2t−1

{
(∆yt)

2 − σ2ε
}
− c̄2

2
T−3

T∑
t=1

y4t−1

]
.

Proposition 12. For model (9) with β = 3/4 under Assumption 2, we have

κ2ε
σ4ε
q∗T (c̄

2, σ2ε , κ
2
ε)− qT (c̄

2, σ2ε)
p→ 0 and q∗T (c̄

2, σ2ε , κ
2
ε)− q∗T (c̄

2, σ2ε , κ̂
2
T )

p→ 0.

From Proposition 12, we can see that model (27) well approximates the exact one, (9), in

that these two models induce the asymptotically equivalent point optimal tests (when σ2ε is

known). Furthermore, we can see that the LN test is obtained as the t-test for H0 : ω2
T = 0

in model (27). Based on these observations, it will be reasonable to use the power envelope

obtained from (27) as a benchmark for the power functions of the LN and other tests.

7The idea of “linearizing” model (9) into (26) is not entirely new in itself. For example, Horváth and
Trapani (2019) proposed a test statistic for coefficient randomness in autoregressions using this linearization.

17



To deal with unknown σ2ε in (27), it is natural to investigate a class of location invariant

tests because it appears as a constant term in (27). To derive the location invariant test

with respect to a constant term, let us define zt := (∆yt)
2 and xt := y2t−1. Define also

Z := (z1, z2, . . . , zT )
′, ι := (1, 1, . . . , 1)′, X := (x1, x2, . . . xT )

′ and Ξ := (ξ1, ξ2, . . . , ξT )
′. Then,

model (27) can be expressed in matrix notation as

Z = ισ2ε +Xω2
T + Ξ, (28)

where Ξ ∼ N(0, κ2εIT ). Define M := IT − ι(ι′ι)−1ι′. Then, according to Tanaka (2017), there

exists a T × (T − 1) matrix H such that H ′H = IT−1 and HH ′ = M . Note that H ′ι = 0

since Mι = HH ′ι = 0. Thus, premultiplying (28) by H, we get

H ′Z = H ′Xω2
T +H ′Ξ. (29)

Now, letting F (c2) := Z−Xc2T−3/2 and L∗
T (c

2, κ2ε) be the likelihood of (29), and noting that

H ′F (c2) = H ′Ξ ∼ N(0, κ2εIT−1), we have

L∗
T (c

2, κ2ε) = (2πκ2ε)
−(T−1)

2 exp

[
− 1

2κ2ε
F (c2)′MF (c2)

]
= (2πκ2ε)

−(T−1)
2 exp

[
− 1

2κ2ε

T∑
t=1

{
(∆yt)

2 − c2T−3/2y2t−1 − T−1
T∑
t=1

(
(∆yt)

2 − c2T−3/2y2t−1

)}2]
,

which is independent of σ2ε . The point optimal test statistic for H0 : c2 = 0 vs H1 : c2 = c̄2

based on L∗
T is given by

Q∗
T (c̄

2, κ2ε) := logL∗
T (c̄

2, κ2ε)− logL∗
T (0, κ

2
ε)

=
c̄2

κ2ε

[
T−3/2

T∑
t=1

y2t−1

{
(∆yt)

2 − σ̂2T
}
− c̄2

2
T−3

T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

)2]
.

Theorem 13. For model (9) with β = 3/4, under Assumption 2 with (εt, vt) being Gaussian,

we have

Q∗
T (c̄

2, κ2ε)

⇒ c̄2√
2

[∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) +

(c2 − c̄2/2)√
2

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr

]
=: k∗(c2, c̄2),

and

Q∗
T (c̄

2, κ̂2T )−Q∗
T (c̄

2, κ2ε)
p→ 0.
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Theorem 13 shows that the feasible test statistic Q∗
T (c̄

2, κ̂2T ) for a given c̄2 has the same

limiting distribution k∗(c2, c̄2) as the point optimal test statistic Q∗
T (c̄

2, κ2ε), and thus we can

obtain the limiting power envelope as a function of c2 at the significance level α,

π(c2) := P
(
k∗(c2, c2) > cv(c2)

)
,

where cv(c2) satisfies P (k∗(0, c2) > cv(c2)) = α. Although there is no verifying whether

the quasi power envelope π(c2) is identical to the exact counterpart derived from lT with σ2ε

unknown, π(c2) seems to serve as a good benchmark according to the result of the following

simulation study.

Figure 1 displays the local asymptotic power functions of the tests considered in this

article, along with the limiting power envelope π(c2). The local asymptotic distributions

were simulated by 100,000 replications. The replications are based on εt ∼ i.i.d N(0, 1) and

hence σ2ε = 1 and κ2ε = 2. We give results for the case where the significance level is 0.05.

As for tests proposed by earlier work, the LN test performs reasonably well for each value

of c2 (but its power function stays a little below the power envelope), whereas the power of

the MT is relatively low except at small c2. The low power exhibited by the MT test is in line

with the results of some previous work such as Nagakura (2009) and Su and Roca (2012). The

H test is more powerful than the MT test but is less powerful than the LN test, for almost

all c2. While one can see a similar pattern in these three tests (i.e., the power gradually rises

as c2 gets large), the shape of the power function of the C test looks differently. For small c2

up to about 10, the power rises only slightly. However, for c2 over 10, it dramatically rises

as the localizing coefficient increases, excelling the powers of the other tests for c2 ≥ 20 and

being tangent to the power envelope for c2 ≥ 25.

From the above results, we find that the LN test is preferred when c2 is small, and that

the C test is preferred when c2 is large. However, in general, the true value of the variance of

the coefficient is unknown, and therefore we cannot decide which test should be used based

on the (true) value of c2. To deal with this uncertainty about the data generating process,

following Harvey, Leybourne, and Taylor (2009) and Harvey, Leybourne, and Sollis (2015),

we consider an alternative test with the rule “reject if at least one test rejects.” To fix ideas,

assume two test statistics are available for some hypothesis. According to the rule, one rejects

the null when either test rejects the null. Harvey et al. (2009) applied this strategy to unit

root testing and Harvey et al. (2015) to right-tailed DF-type testing for a bubble. Both the

studies verified that the tests based on this strategy have higher power than when only either

one test is employed, across different data generating processes considered in their studies.
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If we adopt this procedure with the LN and C tests employed, high power across all c2 is

expected, because while the LN test performs well particularly when c2 is small, the C test

has the highest power for c2 large. We refer to the test constructed according to this strategy

as union-of-rejections test or UR test. The UR test with significance level α can be formulated

by the rule

Reject if LNT > ταcv
LN
α or CT > ταcv

C
α ,

where cvLNα and cvCα denote the critical values of the LN and C tests at significance level

α, respectively. Here τα is a scaling factor introduced to keep type one error equal to the

significance level α. The values of τα for α = 0.01, 0.05, and 0.1 are found through simulation

to be 1.153, 1.234 and 1.277, respectively (for the procedure to calculate τα for given α, see

Harvey et al. (2015)).

The power function of the UR test is displayed in Figure 1. Although it is slightly lower

than the power of the LN test for small c2, it attains higher power for c2 over about 15. Since

each of these two tests do not dominate the other across c2, we evaluate their performance in

terms of the mean of power over c2. This can be directly calculated as the area under power

function. The mean powers of the UR and LN tests are 0.790 and 0.781, respectively. Given

this small difference in mean power, the UR test can be used as an alternative to the LN test

if one thinks it is important to reject the null when c2 is relatively large.

6 Finite Sample Performance and Empirical Application

To evaluate the finite-sample performance of the tests considered so far, we conducted

Monte Carlo experiments. The experiments are based on 50,000 replications. The significance

level is set to 0.05. In these experiments, data were generated from

yt = (1 + ωvt)yt−1 + εt,

where (εt, vt)
′ ∼ i.i.d N(0,Ω) with Ω = diag(1, 1) and y0 = 0. The sample size is T ∈

{100, 200}. For the case of T = 100, the values of ω2 were chosen between 0 and 0.05, so that

they give c2 between 0 and 50 for the local model with T = 100. For the T = 200 experiment,

the values of ω2 were selected in the similar way. The results are shown in Figures 2 and 3.

The power function of each test is of similar shape in Figures 2 and 3, and thus we comment

only on Figure 2. As for size, all the tests considered have size around the nominal 5%

level (for LN, UR, Hausman, coefficient and MT tests, the sizes are 5.90%, 6.14%, 5.06%,
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6.10% and 4.15%, respectively, when T = 100). Overall, we conclude that these tests have

a reasonable size in finite samples. Power properties in finite samples are similar to those

under local asymptotics, but in finite samples, the dominance of the C test for large c2 almost

disappears.

We also apply the tests considered in preceding sections to monthly real effective exchange

rates of six countries. All the series begin in January 1994 and end in September 2021, giving

333 observations. Data were taken from Federal Reserve Economic Data. Results are given

in Table 3.

For Canada, Germany and Japan, the MT, LN, H and UR statistics reject the null,

whereas the C test does not reject the null for these countries. This would be caused by the

low power of the C test for the small variance of the coefficient. By contrast, all the tests do

not reject the null for the UK, which seems to be an evidence for the hypothesis that the real

effective exchange rate of the UK is a unit root process. Although the LN test does not reject

the null for US and Chinese real effective exchange rates, the MT and H tests reject the null.

Thus we could reject the null of difference stationarity in favor of the STUR alternative for

the US and China.

7 Conclusion

In this study, we have considered departures from a unit root other than conventional

ones, i.e., stochastic departures characterized by cvt/T
β. The stochastic departures can be

classified into two types, local and moderate deviations, by checking the asymptotic behavior

of tests of a unit root against the STUR alternative, such as the McCabe-Tremayne and

Lee-Nagakura tests. We have developed the asymptotic theory for β ∈ [1/2, 3/4] and it turns

out that the Op(T
−3/4) neighborhood of unity corresponds to local departures, and Op(T

−β)

neighborhoods with 1/2 ≤ β < 3/4 correspond to moderate deviations. For the former case,

while the Dickey-Fuller test statistic converges to its null limiting distribution, the MT and

LN test statistics have asymptotic distributions different from those under the null; for the

latter case, these test statistics diverge at a rate depending on β, a parameter determining

the distance from a unit root. The case β ∈ (0, 1/2) would be also included in the moderate-

deviations model, but in this case we need to develop the asymptotic theory different from

that established in this article. This is our future research.

Relying on the asymptotic theory for the moderate-deviations case developed here, we
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have also proposed three new unit root tests, one being based on the localizing coefficient

estimator, another the Hausman principle, and the other employing the union of rejections

by the Lee-Nagakura and coefficient tests. By comparing the power functions of these tests

with the Gaussian power envelope derived from an approximate model, it has been verified

that the union-of-rejections test can be used as an alternative test for a unit root against a

STUR.
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Appendix

Inspired by the proof of Theorem 1 of McCabe and Smith (1998), we give the following

lemmas as preliminary results.

Lemma A.1. For β ∈ [1/2, 3/4], under Assumption 2, with probability approaching one

(w.p.a 1), (1 + cT−βvt), t = 1, . . . , T , are all positive.

Proof. This can be shown by noting that

P

( T⋃
t=1

{1 + cT−βvt ≤ 0}
)

≤
T∑
t=1

P (1 + cT−βvt ≤ 0)

≤
T∑
t=1

P (|cT−βvt| ≥ 1)

≤
T∑
t=1

|c|3T−3βE[|vt|3]

= |c|3T−3β+1E[|vt|3] → 0 (T → ∞),
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where the last inequality holds by Markov’s inequality and the convergence by the fact −3β+

1 < 0 for β ∈ [1/2, 3/4] and E[|vt|3] is finite.

Lemma A.2. When 1/2 < β ≤ 3/4, we have, w.p.a one,

⌊Tr⌋∏
k=1

(
1 + cT−βvk

)
= 1 + cT−β

⌊Tr⌋∑
k=1

vk +Op(T
1−2β),

where the Op notation is used in the uniform sense, that is,

sup
0≤r≤1

∣∣∣∣ ⌊Tr⌋∏
k=1

(
1 + cT−βvk

)
−
(
1 + cT−β

⌊Tr⌋∑
k=1

vk
)∣∣∣∣ = Op(T

1−2β).

In what follows, the Op and op notations are used in the uniform sense unless otherwise

stated.

Proof. By Lemma A.1, log
∏⌊Tr⌋

k=1 (1 + cT−βvk), 0 ≤ r ≤ 1, exist w.p.a 1. Thus, we have, on

an event whose probability approaches one as T → ∞,

⌊Tr⌋∏
k=1

(1 + cT−βvk) = exp

(
log

⌊Tr⌋∏
k=1

(1 + cT−βvk)

)

= exp

(⌊Tr⌋∑
k=1

log(1 + cT−βvk)

)

= exp

(
cT−β

⌊Tr⌋∑
k=1

vk −
c2

2
T−2β

⌊Tr⌋∑
k=1

v2k
(1 + ζk)2

)
, (A.1)

where we used a Taylor expansion for the third equality and |ζk| < |cT−βvk|. As for the

remainder term, we have for any ϵ > 0,

P
(
max
1≤k≤T

|ζk| ≥ ϵ
)
≤ P

(
max
1≤k≤T

|cT−βvk| ≥ ϵ
)

≤
T∑

k=1

P (|cT−βvk| ≥ ϵ)

≤ c2ϵ−2T−2β
T∑

k=1

E[v2k] → 0 as T → ∞,
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since E[v2k] = 1 and 1− 2β < 0. Hence, ζk is op(1). It follows that

sup
0≤r≤1

∣∣∣∣T−2β

⌊Tr⌋∑
k=1

v2k
(1 + ζk)2

∣∣∣∣ = T−2β
T∑

k=1

v2k
(1 + ζk)2

≤ 1

min1≤k≤T (1 + ζk)2
· T 1−2β · T−1

T∑
k=1

v2k = Op(T
1−2β),

for which we used min1≤k≤T (1 + ζk)
2 = 1 + min1≤k≤T (2ζk + ζ2k)

p→ 1 and T−1
∑T

k=1 v
2
k

p→
E[v2k] = 1 by the law of large numbers (LLN). Applying this result to (A.1) yields

⌊Tr⌋∏
k=1

(1 + cT−βvk) = exp

(
cT−β

⌊Tr⌋∑
k=1

vk

)
exp

(
−c

2

2
T−2β

⌊Tr⌋∑
k=1

v2k
(1 + ζk)2

)

=

(
1 + cT−β

⌊Tr⌋∑
k=1

vk +Op(T
1−2β)

)(
1 +Op(T

1−2β)

)

= 1 + cT−β

⌊Tr⌋∑
k=1

vk +Op(T
1−2β),

since

sup
0≤r≤1

∣∣∣∣T−β

⌊Tr⌋∑
k=1

vk

∣∣∣∣ = T 1/2−β sup
0≤r≤1

∣∣∣∣T−1/2

⌊Tr⌋∑
k=1

vk

∣∣∣∣ = Op(T
1/2−β)

by the FCLT.

Lemma A.3. The stochastic process
∏⌊Tr⌋

k=1 (1 + cT−1/2vk) weakly converges to the process

exp
(
cWv(r)− c2r/2

)
in D[0, 1] under Assumption 2.

Proof. As in the proof of Lemma A.2,

⌊Tr⌋∏
k=1

(1 + cT−1/2vk) = exp

(⌊Tr⌋∑
k=1

log
(
1 + cT−1/2vk

))

= exp

(
cT−1/2

⌊Tr⌋∑
k=1

vk −
c2

2
T−1

⌊Tr⌋∑
k=1

v2k +
c3

3
T−3/2

⌊Tr⌋∑
k=1

v3k
(1 + ζk)3

)
(A.2)

= exp

(
cT−1/2

⌊Tr⌋∑
k=1

vk −
c2

2
T−1

⌊Tr⌋∑
k=1

v2k

)(
1 +RT (r)

)
,
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w.p.a. one, where RT (r) is the remainder term associated with a Taylor expansion for

exp( c
3

3 T
−3/2

∑⌊Tr⌋
k=1

v3k
(1+ζk)3

). Notice that for any ϵ > 0,

P
(
max
1≤k≤T

|ζk| ≥ ϵ
)
≤ P

(
max
1≤k≤T

|cT−1/2vk| ≥ ϵ
)

≤
T∑

k=1

P (|cT−1/2vk| ≥ ϵ)

≤ |c|3ϵ−3T−3/2
T∑

k=1

E[|vk|3] → 0 as T → ∞.

Therefore the remainder term RT satisfies

sup
0≤r≤1

∣∣RT (r)
∣∣ ≤ |c|3

3
· 1

min1≤k≤T |1 + ζk|3
· T−1/2 · T−1

T∑
k=1

|vk|3 = Op(T
−1/2),

from which we deduce, by the continuous mapping theorem (CMT),

⌊Tr⌋∏
k=1

(1 + cT−1/2vk) = exp

(
cT−1/2

⌊Tr⌋∑
k=1

vk −
c2

2
T−1

⌊Tr⌋∑
k=1

v2k

)(
1 +RT (r)

)
⇒ exp

(
cWv(r)−

c2

2
r
)
,

in D[0, 1].

Proof of Lemma 1. Consider model (9). Let β ∈ (1/2, 3/4]. To prove part (a), by

backward substitution, yt can be written as

yt =

t∏
k=1

(
1 + cT−βvk

) t∑
s=1

{ s∏
k=1

(
1 + cT−βvk

)}−1

εs + y0

t∏
k=1

(
1 + cT−βvk

)
.

By Lemma A.2, we obtain, w.p.a. one,

T−1/2y⌊Tr⌋ =

(
1 + cT−β

⌊Tr⌋∑
k=1

vk +Op(T
1−2β)

) ⌊Tr⌋∑
s=1

(
1− cT−β

s∑
k=1

vk +Op(T
1−2β)

)(
T−1/2εs

)
+ T−1/2y0

(
1 + cT−β

⌊Tr⌋∑
k=1

vk +Op(T
1−2β)

)

= T−1/2

⌊Tr⌋∑
s=1

εs +A1,T (r) +A2,T (r) +A3,T (r) + op(1), (A.3)
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where

A1,T (r) := −cT 1/2−β

⌊Tr⌋∑
s=1

(
T−1/2

s∑
k=1

vk +Op(T
1/2−β)

)
(T−1/2εs),

A2,T (r) := cT 1/2−β

(
T−1/2

⌊Tr⌋∑
k=1

vk +Op(T
1/2−β)

)
(T−1/2

⌊Tr⌋∑
s=1

εs),

and

A3,T (r) := −c2T 1−2β

(
T−1/2

⌊Tr⌋∑
k=1

vk +Op(T
1/2−β)

) ⌊Tr⌋∑
s=1

(
T−1/2

s∑
k=1

vk +Op(T
1/2−β)

)
(T−1/2εs).

We show Ai,T = op(1), i = 1, 2, 3, thereby obtaining, by applying the CMT to (A.3), YT ⇒
σεWε, where YT (r) = T−1/2y⌊Tr⌋. Now, as for A1,T , we have

⌊Tr⌋∑
s=1

(
T−1/2

s∑
k=1

vk +Op(T
1/2−β)

)
(T−1/2εs)

= T−1

⌊Tr⌋∑
s=1

vsεs +

⌊Tr⌋∑
s=1

(
T−1/2

s−1∑
k=1

vk +Op(T
1/2−β)

)
(T−1/2εs)

⇒ rE[εtvt] + σε

∫ r

0
Wv(s)dWε(s),

by the LLN and Theorem 2.1 of Hansen (1992). This result, combined with cT 1/2−β → 0,

gives A1,T = op(1). A2,T also vanishes because cT 1/2−β → 0 and

(
T−1/2

⌊Tr⌋∑
k=1

vk +Op(T
1/2−β)

)(
T−1/2

⌊Tr⌋∑
s=1

εs

)
⇒ σεWv(r)Wε(r).

That A3,T = op(1) can be verified by a similar argument.

Given that YT ⇒ σεWε, it is straightforward to show the consistency of σ̂2T and κ̂2T . For

part (b), we have

σ̂2T = T−1
T∑
t=1

(∆yt)
2

= c2T−1−2β
T∑
t=1

y2t−1v
2
t + 2cT−1−β

T∑
t=1

yt−1vtεt + T−1
T∑
t=1

ε2t . (A.4)
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The first term is

T−1−2β
T∑
t=1

y2t−1v
2
t ≤ sup

0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣2 · T 1−2β · T−1

T∑
t=1

v2t = Op(T
1−2β).

The second term is

∣∣T−1−β
T∑
t=1

yt−1vtεt
∣∣ ≤ sup

0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣T 1/2−β · T−1

T∑
t=1

|εtvt| = Op(T
1/2−β).

Substituting these results into (A.4), we have

σ̂2T = T−1
T∑
t=1

ε2t + op(1)
p→ σ2ε ,

since 1/2− β < 0 when β ∈ (1/2, 3/4].

For part (c), we write κ̂2T as

κ̂2T = T−1
T∑
t=1

{(
∆yt

)2 − σ̂2T

}2

= T−1
T∑
t=1

(
∆yt

)4 − σ̂4T . (A.5)

The first term is

T−1
T∑
t=1

(
∆yt

)4
= c4T−1−4β

T∑
t=1

y4t−1v
4
t + 4c3T−1−3β

T∑
t=1

y3t−1εtv
3
t + 6c2T−1−2β

T∑
t=1

y2t−1ε
2
t v

2
t

+ 4cT−1−β
T∑
t=1

yt−1ε
3
t vt + T−1

T∑
t=1

ε4t ,

for which we have∣∣∣∣T−1−4β
T∑
t=1

y4t−1v
4
t

∣∣∣∣ ≤ sup
0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣4T 2−4β · T−1

T∑
t=1

v4t = Op(T
2−4β),

∣∣∣∣T−1−3β
T∑
t=1

y3t−1εtv
3
t

∣∣∣∣ ≤ sup
0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣3T 3/2−3β · T−1

T∑
t=1

|εtv3t | = Op(T
3/2−3β),

∣∣∣∣T−1−2β
T∑
t=1

y2t−1ε
2
t v

2
t

∣∣∣∣ ≤ sup
0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣2T 1−2β · T−1

T∑
t=1

|ε2t v2t | = Op(T
1−2β),

and ∣∣∣∣T−1−β
T∑
t=1

yt−1ε
3
t vt

∣∣∣∣ ≤ sup
0≤r≤1

∣∣T−1/2y⌊Tr⌋
∣∣T 1/2−β · T−1

T∑
t=1

|ε3t vt| = Op(T
1/2−β).
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Thus, the first term of (A.5) is

T−1
T∑
t=1

(
∆yt

)4
= T−1

T∑
t=1

ε4t + op(1)
p→ E[ε4t ].

Hence

κ̂2T
p→ E[ε4t ]− σ4ε = κ2ε.

Proof of Lemma 2. We prove this lemma under a more general condition, replacing

σεv = E[εtvt] = 0 with σεv ̸= 0.8 According to Theorem 3.1 of Föllmer and Schweizer

(1993), part (a) could be proved if what they call goodness condition is seen to hold under

Assumption 2. However, instead of relying on their result, we here take an approach similar

to the proof of Lemma 1 of Lieberman and Phillips (2020), which relies on the standard

continuous mapping argument. As in the proof of part (a) of Lemma 1, we write yt as

yt =
t∏

k=1

(
1 + cT−1/2vk

) t∑
s=1

{ s∏
k=1

(
1 + cT−1/2vk

)}−1

εs + y0

t∏
k=1

(
1 + cT−1/2vk

)
.

Setting t = ⌊Tr⌋ and using (A.2) give

T−1/2y⌊Tr⌋ =

⌊Tr⌋∏
k=1

(
1 + cT−1/2vk

) ⌊Tr⌋∑
s=1

exp

(
−cT−1/2

s∑
k=1

vk +
c2

2
T−1

s∑
k=1

v2k

− c3

3
T−3/2

s∑
k=1

v3k
(1 + ζk)3

)(
T−1/2εs

)
+ T−1/2y0

⌊Tr⌋∏
k=1

(
1 + cT−1/2vk

)
=: D1,T (r)×D2,T (r) + op(1),

in view of Lemma A.3 and the fact that y0 = op(T
1/2). From Lemma A.3

D1,T (r) =

⌊Tr⌋∏
k=1

(
1 + cT−1/2vk

)
⇒ exp

(
cWv(r)−

c2

2
r
)

in D[0, 1]. (A.6)

8Note that when proving the other results, we maintain σεv = 0, i.e., Assumption 2. We consider the case
σεv ̸= 0 only for Lemma 2.
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To deal with D2,T , we note

D2,T (r) =

⌊Tr⌋∑
s=1

exp

(
− c√

T

s∑
k=1

vk +
c2

2T

s∑
k=1

v2k +Op(T
−1/2)

)(
T−1/2εs

)
=

⌊Tr⌋∑
s=1

exp

(
− c√

T

s∑
k=1

vk +
c2

2T

s∑
k=1

v2k

)(
1 +Op(T

−1/2)

)(
T−1/2εs

)
=

⌊Tr⌋∑
s=1

exp

(
− c√

T

s∑
k=1

vk +
c2

2T

s∑
k=1

v2k

)(
T−1/2εs

)
+ op(1).

The dominant term is

⌊Tr⌋∑
s=1

exp

(
− c√

T

s∑
k=1

vk +
c2

2T

s∑
k=1

v2k

)(
T−1/2εs

)
=

⌊Tr⌋∑
s=1

exp

(
− c√

T

s−1∑
k=1

vk +
c2

2T

s−1∑
k=1

v2k

)(
1− cvs√

T
+
c2v2s
2T

+Op(T
−1)

)(
T−1/2εs

)
= σε

∫ r

0
exp

(
−cWT,v(s) +

c2

2
s
)
dWT,ε(s)− cσεv

∫ r

0
exp

(
−cWT,v(s) +

c2

2
s
)
ds

− c√
T
E[(εsvs − σεv)

2]1/2
∫ r

0
exp

(
−cWT,v(s) +

c2

2
s
)
dWT,εv(s) + op(1),

where

WT,εv(r) := E[(εsvs − σεv)
2]−1/2T−1/2

⌊Tr⌋∑
s=1

(εsvs − σεv).

Since {εsvs − σεv} is i.i.d and has zero mean and finite variance under Assumption 2, WT,εv

weakly converges by the FCLT. Thus

D2,T (r) ⇒ σε

∫ r

0
exp

(
−cWv(s) +

c2

2
s
)
dWε(s)− cσεv

∫ r

0
exp

(
−cWv(s) +

c2

2
s
)
ds (A.7)

in D[0, 1]. By (A.6), (A.7) and the CMT, we deduce

T−1/2y⌊Tr⌋ ⇒ exp
(
cWv(r)−

c2

2
r
){
σε

∫ r

0
exp

(
−cWv(s) +

c2

2
s
)
dWε(s)− cσεv

∫ r

0
exp

(
−cWv(s) +

c2

2
s
)
ds

}
,

for which letting σεv = 0 produces σεYc defined by (10).
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For part (b), we have

σ̂2T = c2T−2
T∑
t=1

y2t−1v
2
t + 2cT−3/2

T∑
t=1

yt−1vtεt + T−1
T∑
t=1

ε2t

= c2
∫ 1

0
Y 2
T (r)dr + c2T−1/2

∫ 1

0
Y 2
T (r)dWT,v2(r) + 2cσεv

∫ 1

0
YT (r)dr

+ 2cσεT
−1/2

∫ 1

0
YT (r)dWT,εv(r) + σ2ε + op(1)

⇒ c2σ2ε

∫ 1

0
Y 2
c (r)dr + 2cσεσεv

∫ 1

0
Yc(r)dr + σ2ε . (A.8)

When σεv = 0, the limit reduces to c2σ2ε
∫ 1
0 Y

2
c (r)dr + σ2ε .

For part (c), we write κ̂2T as

κ̂2T = T−1
T∑
t=1

(
∆yt

)4 − σ̂4T

= c4T−3
T∑
t=1

y4t−1v
4
t + 4c3T−5/2

T∑
t=1

y3t−1v
3
t εt + 6c2T−2

T∑
t=1

y2t−1v
2
t ε

2
t

+ 4cT−3/2
T∑
t=1

yt−1vtε
3 + T−1

T∑
t=1

ε4t − σ̂4T

= c4E[v4t ]
∫ 1

0
Y 4
T (r)dr + 4c3E[v3t εt]

∫ 1

0
Y 3
T (r)dr + 6c2E[v2t ε2t ]

∫ 1

0
Y 2
T (r)dr

+ 4cE[vtε3t ]
∫ 1

0
YT (r)dr + σ4ε − σ̂4T + op(1),

since E[|vt|8] <∞. Then, we obtain

κ̂2T ⇒ c4σ4εE[v4t ]
∫ 1

0
Y 4
c (r)dr + 4c3σ3εE[v3t εt]

∫ 1

0
Y 3
c (r)dr + 6c2σ2εE[v2t ε2t ]

∫ 1

0
Y 2
c (r)dr

+ 4cσεE[vtε3t ]
∫ 1

0
Yc(r)dr + σ4ε −

[
c2σ2ε

∫ 1

0
Y 2
c (r)dr + 2cσεσεv

∫ 1

0
Yc(r)dr + σ2ε

]2
. (A.9)

Proof of Theorem 5. Consider model (9) and let β ∈ (1/2, 3/4]. For part (a), we write
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MTT as

MTT = κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

y2t−1

{(
∆yt

)2 − σ̂2T

}

= κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

){(
∆yt

)2 − σ̂2T

}

= κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

){(
∆yt

)2 − σ2ε

}
.

In deriving the above expression, we used the property of deviations from mean, noting

σ̂2T = T−1
∑T

t=1(∆yt)
2, as in McCabe and Tremayne (1995). Since(

∆yt
)2

= c2T−2βy2t−1v
2
t + 2cT−βyt−1εtvt + ε2t ,

we have

MTT = κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

)
(ε2t − σ2ε)

+ κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

)
(c2T−2βy2t−1v

2
t + 2cT−βyt−1εtvt)

= κ̂−1
T σ̂−2

T T−3/2
T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

)
(ε2t − σ2ε)

+ κ̂−1
T σ̂−2

T

(
c2T−3/2−2β

T∑
t=1

y4t−1v
2
t + 2cT−3/2−β

T∑
t=1

y3t−1εtvt

)

− κ̂−1
T σ̂−2

T T−2
T∑
t=1

y2t−1

(
c2T−1/2−2β

T∑
t=1

y2t−1v
2
t + 2cT−1/2−β

T∑
t=1

yt−1εtvt

)
=: B1,T +B2,T −B3,T .

One can easily verify that by the CMT

B1,T ⇒ κ−1
ε σ−2

ε

{
σ2εκε

∫ 1

0
W 2

ε (r)dWη(r)− σ2εκε

∫ 1

0
W 2

ε (r)drWη(1)

}
=

∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}
dWη(r), (A.10)

in view of Lemma 1. Note that this result holds for both the cases β = 3/4 and 1/2 < β < 3/4.
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The limiting behavior of B2,T and B3,T depends on the value of β. First consider the case

β = 3/4. In this case, we have

B2,T = κ̂−1
T σ̂−2

T

(
c2T−3

T∑
t=1

y4t−1 + c2T−3
T∑
t=1

y4t−1(v
2
t − 1) + 2cT−9/4

T∑
t=1

y3t−1εtvt

)

= κ̂−1
T σ̂−2

T

(
c2T−1

T∑
t=1

(T−1/2yt−1)
4 + c2T−1/2

T∑
t=1

(T−1/2yt−1)
4T−1/2(v2t − 1)

+ 2cT−1/4
T∑
t=1

(T−1/2yt−1)
3T−1/2εtvt

)
.

The first term in the parentheses weakly converges to c2σ4ε
∫ 1
0 W

4
ε (r)dr. To analyze the behav-

ior of the second and third terms, it should be noticed that the processes T−1/2
∑⌊T ·⌋

t=1 (v
2
t −1)

and T−1/2
∑⌊T ·⌋

t=1 εtvt on [0, 1] weakly converge under Assumption 2. It follows from Theorem

2.1 of Hansen (1992) that

T∑
t=1

(
T−1/2yt−1

)4
T−1/2(v2t − 1) ⇒ σ4εE[(v2t − 1)2]1/2

∫ 1

0
W 4

ε (r)dWv2(r)

and

T∑
t=1

(
T−1/2yt−1

)3
T−1/2εtvt ⇒ σ3εE[ε2t v2t ]1/2

∫ 1

0
W 3

ε (r)dWεv(r),

say. This leads to obtaining

B2,T = κ̂−1
T σ̂−2

T c2T−1
T∑
t=1

(
T−1/2yt−1

)4
+Op(T

−1/4) ⇒ c2σ2ε
κε

∫ 1

0
W 4

ε (r)dr. (A.11)

As for B3,T , note that

T−1
T∑
t=1

(
T−1/2yt−1

)2 ⇒ σ2ε

∫ 1

0
W 2

ε (r)dr,

T−2
T∑
t=1

y2t−1v
2
t = T−2

T∑
t=1

y2t−1 + T−2
T∑
t=1

y2t−1(v
2
t − 1) ⇒ σ2ε

∫ 1

0
W 2

ε (r)dr,

and

T−5/4
T∑
t=1

yt−1εtvt = T−1/4
T∑
t=1

(
T−1/2yt−1

)
T−1/2εtvt = Op(T

−1/4).
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Substituting these results into B3,T gives

B3,T ⇒ c2σ2ε
κε

(∫ 1

0
W 2

ε (r)dr

)2

. (A.12)

Combining (A.10) through (A.12), we have

MTT ⇒
∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) +

c2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr.

This proves part (a) under β = 3/4. For part (b), since

LNT = MTT ×
σ̂2T

{T−3
∑T

t=1 y
4
t−1 − (T−2

∑T
t=1 y

2
t−1)

2}1/2
, (A.13)

the convergence of MTT , Lemma 1 and the CMT yield, when β = 3/4,

LNT ⇒
∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)[∫ 1

0 {W 2
ε (r)−

∫ 1
0 W

2
ε (s)ds}2dr

]1/2 +
c2σ2ε
κε

[∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}2

dr

]1/2
.

Next, we prove parts (a) and (b) under 1/2 < β < 3/4. Multiplying B2,T and B3,T by

T 2β−3/2 leads to

T 2β−3/2B2,T = κ̂−1
T σ̂−2

T

(
c2T−3

T∑
t=1

y4t−1v
2
t + 2cT−3+β

T∑
t=1

y3t−1εtvt

)
⇒ c2σ2ε

κε

∫ 1

0
W 4

ε (r)dr,

and

T 2β−3/2B3,T = κ̂−1
T σ̂−2

T T−2
T∑
t=1

y2t−1

(
c2T−2

T∑
t=1

y2t−1v
2
t + 2cT−2+β

T∑
t=1

yt−1εtvt

)

⇒ c2σ2ε
κε

(∫ 1

0
W 2

ε (r)dr

)2

,

because −3 + β < −2 and −2 + β < −1. Therefore, we deduce

MTT = B1,T + T 3/2−2β × (T 2β−3/2B2,T + T 2β−3/2B3,T )

a∼
∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) + T 3/2−2β c

2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr.

Using the relation (A.13) and the CMT, one can derive the asymptotic expression of LNT

under 1/2 < β < 3/4.
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To prove part (c), note that the DF test statistic is

DFT =
T−1

∑T
t=1 yt−1∆yt

T−2
∑T

t=1 y
2
t−1

=
cT−1−β

∑T
t=1 y

2
t−1vt

T−2
∑T

t=1 y
2
t−1

+
T−1

∑T
t=1 yt−1εt

T−2
∑T

t=1 y
2
t−1

.

The second term converges to the so-called Dickey-Fuller distribution when 1/2 < β ≤ 3/4,

in view of part (a) of Lemma 1. As for the first term, the numerator is

cT−1−β
T∑
t=1

y2t−1vt = cT 1/2−β
T∑
t=1

(
T−1/2yt−1

)2
T−1/2vt = op(1),

since 1/2− β < 0 when 1/2 < β ≤ 3/4. Therefore the first term is negligible, and it follows

that

DFT ⇒
∫ 1
0 Wε(r)dWε(r)∫ 1

0 W
2
ε (r)dr

,

which completes the proof.

Proof of Theorem 6. We imitate the proof of Theorem 5. To prove part (a), let us

express MTT as

MTT = B∗
1,T +B∗

2,T −B∗
3,T ,

where

B∗
1,T := κ̂−1

T σ̂−2
T T−3/2

T∑
t=1

(
y2t−1 − T−1

T∑
t=1

y2t−1

)(
ε2t − σ2ε

)
,

B∗
2,T := κ̂−1

T σ̂−2
T

(
c2T−5/2

T∑
t=1

y4t−1v
2
t + 2cT−2

T∑
t=1

y3t−1εtvt

)
,

and

B∗
3,T := κ̂−1

T σ̂−2
T T−2

T∑
t=1

y2t−1

(
c2T−3/2

T∑
t=1

y2t−1v
2
t + 2cT−1

T∑
t=1

yt−1εtvt

)
.

By the same argument as in the proof of Theorem 5, we have

B∗
1,T ⇒ κεσ

2
ε

κσ2

∫ 1

0

(
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

)
dWη(r),

T−1/2B∗
2,T ⇒ c2σ4ε

κσ2

∫ 1

0
Y 4
c (r)dr,
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and

T−1/2B∗
3,T ⇒ c2σ4ε

κσ2

(∫ 1

0
Y 2
c (r)dr

)2

,

where σ2 and κ2 are random variables that are distributed according to (A.8) and (A.9) with

σεv = 0, respectively. Therefore, we get

MTT
a∼ κεσ

2
ε

κσ2

∫ 1

0

(
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

)
dWη(r) + T 1/2 c

2σ4ε
κσ2

∫ 1

0

[
Y 2
c (r)−

∫ 1

0
Y 2
c (s)ds

]2
dr.

The result for LNT follows immediately in view of (A.13), which proves part (b).

Proof of Lemma 7. Divide both the numerator and denominator of (20) by T 4. Then,

the first term of the numerator is

T−1
T∑
t=1

(
∆yt

)2 · T−3
T∑
t=1

y4t−1 ⇒ σ6ε

(
c2

∫ 1

0
Y 2
c (r)dr + 1

)∫ 1

0
Y 4
c (r)dr, (A.14)

by Lemma 2 and the CMT. The second term of the numerator is

T−2
T∑
t=1

(
∆yt

)2
y2t−1 · T−2

T∑
t=1

y2t−1

=

(
c2T−3

T∑
t=1

y4t−1v
2
t + 2cT−5/2

T∑
t=1

y3t−1εtvt + T−2
T∑
t=1

y2t−1ε
2
t

)
T−2

T∑
t=1

y2t−1

⇒ σ6ε

(
c2

∫ 1

0
Y 4
c (r)dr +

∫ 1

0
Y 2
c (r)dr

)∫ 1

0
Y 2
c (r)dr. (A.15)

The denominator becomes

T−3
T∑
t=1

y4t−1 −
(
T−2

T∑
t=1

y2t−1

)2

⇒ σ4ε

{∫ 1

0
Y 4
c (r)dr −

(∫ 1

0
Y 2
c (r)dr

)2}
. (A.16)

Using (A.14) through (A.16), we obtain

σ̃2T ⇒
{
σ6ε

(
c2

∫ 1

0
Y 2
c (r)dr + 1

)∫ 1

0
Y 4
c (r)dr − σ6ε

(
c2

∫ 1

0
Y 4
c (r)dr +

∫ 1

0
Y 2
c (r)dr

)∫ 1

0
Y 2
c (r)dr

}
÷
{
σ4ε

∫ 1

0
Y 4
c (r)dr − σ4ε

(∫ 1

0
Y 2
c (r)dr

)2}
= σ2ε .
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Proof of equations (23) to (25). (23) is immediate from the definitions (5) and (6).

(24) can be derived by a direct calculation:

HT =

√
T (σ̂2T − σ̃2T )

κ̂T

=

√
T

κ̂T

{
T−1

T∑
t=1

(
∆yt

)2 − ∑T
t=1(∆yt)

2
∑T

t=1 y
4
t−1 −

∑T
t=1(∆yt)

2y2t−1

∑T
t=1 y

2
t−1

T
∑T

t=1 y
4
t−1 −

(∑T
t=1 y

2
t−1

)2 }

=

√
T

κ̂T

{∑T
t=1

(
∆yt

)2
y2t−1

∑T
t=1 y

2
t−1 − T−1

∑T
t=1

(
∆yt

)2(∑T
t=1 y

2
t−1

)2
T
∑T

t=1 y
4
t−1 −

(∑T
t=1 y

2
t−1

)2 }

=
√
T

T∑
t=1

y2t−1

∑T
t=1 y

2
t−1

{
(∆yt)

2 − T−1
∑T

t=1(∆yt)
2
}

κ̂T
{
T
∑T

t=1 y
4
t−1 −

(∑T
t=1 yt−1

)2}
= T−3/2κ̂−1

T σ̂−2
T

T∑
t=1

y2t−1{(∆yt)2 − σ̂2T } ×
σ̂2TT

−2
∑T

t=1 y
2
t−1

T−3
∑T

t=1 y
4
t−1 −

(
T−2

∑T
t=1 y

2
t−1

)2 ,
which is identical to (24). Equation (25) follows immediately from (24) and the fact that

CT = HT ×
σ̂2T

T−2
∑T

t=1 y
2
t−1

.

Proof of Theorem 9.

(a) In view of (24), (18) and Lemma 1, an application of the CMT gives

HT
a∼
{∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) + T 3/2−2β c

2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr

}
×

σ4ε
∫ 1
0 W

2
ε (r)dr

σ4ε
{ ∫ 1

0 W
4
ε (r)dr −

(∫ 1
0 W

2
ε (r)dr

)2}
=

∫ 1

0
W 2

ε (r)dr

∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)∫ 1

0 W
4
ε (r)dr −

(∫ 1
0 W

2
ε (r)dr

)2 + T 3/2−2β c
2σ2ε
κε

∫ 1

0
W 2

ε (r)dr.

(b) In view of (25), (18) and Lemma 1, an application of the CMT gives

CT
a∼
{∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) + T 3/2−2β c

2σ2ε
κε

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr

}
× σ4ε

σ4ε
{∫ 1

0 W
4
ε (r)dr −

(∫ 1
0 W

2
ε (r)dr

)2}
=

∫ 1
0

[
W 2

ε (r)−
∫ 1
0 W

2
ε (s)ds

]
dWη(r)∫ 1

0 W
4
ε (r)dr −

(∫ 1
0 W

2
ε (r)dr

)2 + T 3/2−2β c
2σ2ε
κε

.
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(c) The proof is similar to that of part (a) and hence is omitted.

(d) The proof is similar to that of part (b) and hence is omitted.

Proof of Proposition 11. First, note that T−1/2ỹt−1 ⇒ Wε(r). Using the Taylor

expansion for log(1 + x) and (1 + x)−1, qT (c̄
2, σ2ε) is expanded as

qT (c̄
2, σ2ε) = −

T∑
t=1

(
c̄2T−3/2ỹ2t−1 −

c̄4

2
T−3ỹ4t−1 +Op(T

−3/2)

)

−
T∑
t=1

(
∆ỹt

)2(
1− c̄2T−3/2ỹ2t−1 + c̄4T−3ỹ4t−1 +Op(T

−3/2)

)
+

T∑
t=1

(
∆ỹt

)2
= c̄2

[
T−3/2

T∑
t=1

ỹ2t−1

{
(∆ỹt)

2 − 1
}
− c̄2

2
T−3

T∑
t=1

ỹ4t−1

]
− c̄4T−3

T∑
t=1

ỹ4t−1

{
(∆ỹt)

2 − 1
}
+Op(T

−1/2)

=: c̄2
[
G1,T −G2,T

]
−G3,T +Op(T

−1/2). (A.17)

The first term satisfies

G1,T = T−3/2
T∑
t=1

ỹ2t−1

{
c2T−3/2ỹ2t−1 + c2T−3/2ỹ2t−1(v

2
t − 1) + 2cT−3/4ỹt−1ε̃tvt + (ε̃2 − 1)

}
= c2T−3

T∑
t=1

ỹ4t−1 +
1

σ2ε
T−3/2

T∑
t=1

ỹ2t−1(ε
2
t − σ2ε) +Op(T

−1/4)

⇒ c2
∫ 1

0
W 4

ε (r)dr +
κε
σ2ε

∫ 1

0
W 2

ε (r)dWη(r).

For the second term, it is easy to show G2,T ⇒ c̄2

2

∫ 1
0 W

4
ε (r)dr. The third term becomes

G3,T = c̄4T−3
T∑
t=1

ỹ4
{
c2T−3/2ỹ2t−1 + c2T−3/2ỹ2t−1(v

2
t − 1) + 2cT−3/4ỹt−1ε̃tvt + (ε̃2t − 1)

}
= Op(T

−1/2).

Thus, we arrive at

qT (c̄
2, σ2ε) ⇒ c̄2

[
κε
σ2ε

∫ 1

0
W 2

ε dWη(r) +

(
c2 − c̄2

2

)∫ 1

0
W 4

ε (r)dr

]
.

If (εt, vt) is Gaussian, then κε/σ
2
ε =

√
2, and Wε and Wη are independent.

Next, let ˆ̃yt := yt/σ̂T . Since T−1/2 ˆ̃y⌊Tr⌋ ⇒ Wε(r), which implies ˆ̃yt = Op(T
1/2), from the

calculation leading to (A.17), we obtain

qT (c̄
2, σ̂2T ) = c̄2

[
Ĝ1,T − Ĝ2,T

]
− Ĝ3,T +Op(T

−1/2),
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where

Ĝ1,T :=
1

σ̂4T
T−3/2

T∑
t=1

y2t−1

{
(∆yt)

2 − σ̂2T
}
,

Ĝ2,T :=
c̄2

2
T−3

T∑
t=1

ˆ̃y4t−1,

and

Ĝ3,T :=
c̄4

σ̂6T
T−3

T∑
t=1

y4t−1

{
(∆yt)

2 − σ̂2T
}
.

Since Ĝ1,T = κ̂T σ̂
−2
T MTT , we have

Ĝ1,T ⇒ κε
σ2ε

∫ 1

0

(
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

)
dWη(r) + c2

∫ 1

0

[
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

]2
dr.

We also have Ĝ2,T ⇒ c̄2

2

∫ 1
0 W

4
ε (r)dr. Finally, for the third term Ĝ3,T , we get

Ĝ3,T =
c̄4

σ̂6T
T−3

T∑
t=1

(
y4t−1 − T−1

T∑
t=1

y4t−1

){
(∆yt)

2 − σ2ε

}

=
c̄4

σ̂6T
T−3

T∑
t=1

(
y4t−1 − T−1

T∑
t=1

y4t−1

){
c2T−3/2y2t−1 + c2T−3/2y2t−1(v

2
t − 1)

2cT−3/4yt−1εtvt + (ε2t − σ2ε)

}
= Op(T

−1/2).

Therefore, we obtain

qT (c̄
2, σ̂2T ) ⇒ c̄2

[
κε
σ2ε

∫ 1

0

(
W 2

ε −
∫ 1

0
W 2

ε (s)ds

)
dWη(r)

+ c2
∫ 1

0

{
W 2

ε (r)−
∫ 1

0
W 2

ε (s)ds

}2

dr − c̄2

2

∫ 1

0
W 4

ε (r)dr

]
.

Proof of Proposition 12. Note that

κ2ε
σ4ε
q∗T (c̄

2, σ2ε , κ
2
ε) =

c̄2

σ4ε

[
T−3/2

T∑
t=1

y2t−1

{
(∆yt)

2 − σ2ε
}
− c̄2

2
T−3

T∑
t=1

y4t−1

]
= c̄2

[
G1,T −G2,T

]
,
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where G1,T and G2,T are defined in (A.17). Thus

κ2ε
σ4ε
q∗T (c̄

2, σ2ε , κ
2
ε)− qT (c̄

2, σ2ε) = G3,T +Op(T
−1/2)

p→ 0.

The second statement is obtained by noting that κ̂2T
p→ κ2ε.

Proof of Theorem 13. Noting that

Q∗
T (c̄

2, κ2ε) =
c̄2

κ2ε

[
κ̂T σ̂

2
TMTT − c̄2

2

∫ 1

0

(
Y 2
T (r)−

∫ 1

0
Y 2
T (s)ds

)2

dr

]
,

the desired results follow from the consistency of κ̂2T , Theorem 5(a) and the CMT.
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Table 1: Selected quantiles of σ̂2T and σ̃2T
0% 1% 5% 25% 50% 75% 95% 99% 100%

c2 = 0

T = 102

σ̂2T 0.53 0.70 0.77 0.89 0.98 1.08 1.23 1.35 1.67

σ̃2T −0.10 0.55 0.68 0.85 0.98 1.12 1.36 1.56 2.44

T = 104

σ̂2T 0.95 0.97 0.98 0.99 1 1.01 1.02 1.03 1.06

σ̃2T 0.89 0.95 0.97 0.99 1 1.01 1.03 1.05 1.11

T = 105

σ̂2T 0.98 0.99 0.99 1 1 1 1.01 1.01 1.02

σ̃2T 0.97 0.98 0.99 1 1 1 1.01 1.02 1.03

c2 = 0.8

T = 102

σ̂2T 0.58 0.78 0.88 1.06 1.24 1.56 2.97 5.88 51.43

σ̃2T −21.53 0.05 0.54 0.82 0.98 1.14 1.46 1.89 12.52

T = 104

σ̂2T 0.98 1.02 1.04 1.11 1.23 1.53 2.87 5.56 48.89

σ̃2T 0.38 0.91 0.96 0.98 1.00 1.02 1.05 1.09 1.94

T = 105

σ̂2T 1.01 1.03 1.04 1.10 1.22 1.53 2.88 5.46 47.00

σ̃2T 0.64 0.97 0.99 0.99 1.00 1.01 1.01 1.03 1.22

Entries are based on 50,000 Monte Carlo replications where data are generated
from yt = (1 + cvt/

√
T )yt−1 + εt with y0 = 0 and (εt, vt)

′ ∼ i.i.d N(0,Ω) for
Ω = diag(1, 1)
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Table 2: Asymptotic critical values of the tests

10% 5% 1%

C 6.08 10.21 23.21

H 1.27 1.69 2.62

MT 0.49 0.84 1.93

Entries are based on 100,000
Monte Carlo replications.
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Table 3: Results of tests for real effective exchange rates

MT LN C H UR

CA 6.745*** 2.611*** 0.985 12.14*** **

CN 2.501*** 0.480 0.114 1.836** -

GM 14.29*** 2.686*** 0.471 18.28*** **

JP 9.421*** 4.957*** 2.595 12.61*** ***

UK -1.921 -0.618 -0.146 -2.094 -

US 3.495*** 1.047 0.334 6.853*** -
a CA, CN, GM, JP, UK, and US signifies Canada, China, Ger-
many, Japan, the United Kingdom and the United States,
respectively.

b *, **, *** denote significance at the 10%,5% and 1% levels,
respectively. - for UR means no significance at any level.
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Figure 1: Local asymptotic power functions and the Gaussian power envelope (GPE)
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Figure 2: Finite-sample size-adjusted power functions, T = 100
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Figure 3: Finite-sample size-adjusted power functions, T = 200
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