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Abstract

In this study, we investigate the least squares (LS) estimator of a structural change point by
the in-fill asymptotic theory, which has been recently used by Jiang, Wang and Yu (2018, 2020),
when the model with two structural changes is estimated as the model with only a one-time
structural change. We, hence, show that the finite sample distribution of the estimator has four
peaks, which is different from the classical long-span asymptotic distribution, which contains only
one peak. Conversely, the in-fill asymptotic distribution of the estimator has four peaks and can
approximate the finite sample distribution very well. We also demonstrate that the estimator
is consistent in the in-fill asymptotic framework with a relatively large magnitude of the break.
In the latter case, the finite sample distribution of the estimator has only one peak and is well
approximated by both the in-fill and long-span asymptotic theory.
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1 Introduction

This study investigates the break point estimator by the least squares method under continuous record

asymptotics or the in-fill asymptotic scheme developed by such as Phillips (1987), Perron (1991), and

Jiang, Wang and Yu (2018), among others. We suppose the level-shifts model, that has two break

points and consider the case where they are estimated one at a time.

The break point estimator has been investigated in the statistics and econometrics literature. For

example, Hinkley (1970) and Yao (1987) investigated the change point estimator using the maximum

likelihood method. Conversely, Bai (1994) applied the least squares method for the estimation. He

showed, by assuming that the samples before and after the break increase proportionally to the whole

sample size while the break fraction is fixed–sometimes called the long-span asymptotic scheme–that

the break fraction estimator is consistent, unimodal, and symmetric. However, the corresponding finite

sample distribution can be trimodal and asymmetric, particularly when the break size is relatively

small.

To explain the discrepancy between the finite sample and asymptotic distributions, Jiang, Wang

and Yu (2018, 2020) investigated the break point estimator of the continuous time model with a

one-time break and of the corresponding discrete model under the other scheme, called the in-fill

asymptotic scheme. Here, sampling frequency goes to infinity in the fixed interval, or equivalently,

the sampling interval becomes zero.1 Under the in-fill asymptotic scheme, Jiang, Wang and Yu

(2018) derived the asymptotic distribution of the break point estimator for the level shift model,

which can successfully replicate the important properties of finite sample distribution; trimodality

and asymmetry. 2

In this study, we extend the methodology of Jiang, Wang and Yu (2018) to the local level model

with twice shifts. Although two change points exist in the model, they can be estimated one at a

time as considered by Chong (1995) and Bai (1997). They then fit the model with a one-time break

to the two breaks model and showed that the estimated break fraction is consistent with either of

the true break fractions. Using the long-span asymptotic scheme, Bai (1997) derived the asymptotic

distribution of this break point estimator, which is unimodal and asymmetric. However, as the later

1Yu (2014) and Zhou and Yu (2015) also used the same technique.
2Casini and Perron (2018, 2021) studied a feasible break point estimator of the continuous time model; however, we

do not cover this in the study.
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section demonstrates, the corresponding finite sample distribution of the estimator can have four

modes and be asymmetric. Hence, we use the in-fill asymptotic scheme and investigate the same

break point estimator. We will show that the in-fill asymptotic scheme can capture the important

properties of the finite sample distribution such as four peaks and asymmetry when the level shifts

shrink to zero at the rate of the square root of the sampling interval (called “small shift” in this

paper). Additionally, we investigate the case where the break size shrinks to zero at a slower rate

than in the above case (called “large shift” in this paper). We derive the asymptotic distribution of

the break point estimator under the in-fill asymptotic scheme, which is the same as that obtained by

Bai (1997); it is unimodal and asymmetric. We will demonstrate that when the break size is relatively

large, the finite sample distribution of the estimator has the same properties. Therefore, both the

in-full and long-span asymptotic schemes can explain the finite sample properties of the estimator in

this case.

The rest of the paper is organized as follows. In Section 2, we review the long-span scheme and

demonstrate discrepancy between the finite sample and limiting distributions. In Section 3, we derive

the in-fill asymptotic distribution in the case of the “small shift”. Conversely, Section 4 deals with

the case of the “large shift.” Concluding remarks are given in Section 5. All proofs of the theoretical

results are relegated to Appendix.

2 Long-span Asymptotic Theory and Finite Sample Distribu-
tions

In this section, we briefly review the long-span asymptotic theory developed by Bai (1997) and compare

the limiting distribution of the break point estimator with the finite sample distribution. Consider

the level-shifts model given by

yt =


µ1 +Xt for 1 ≤ t ≤ k01,
µ2 +Xt for k01 + 1 ≤ t ≤ k02,
µ3 +Xt if k02 + 1 ≤ t ≤ T,

(2.1)

where {Xt} is a linear process satisfying the conditions given in the next section. Chong (1995) and

Bai (1997) proposed estimating break dates one at a time despite the two breaks and showed that the

estimator is consistent with one of the two break fractions. Hence, they fit the model with a one-time
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break and the (first) break point estimator is given by

k̂ = arg min
k=1,··· ,T−1

{ST (k)}. (2.2)

where ST (k) is the sum of the squared residuals given by

ST (k) =

k∑
t=1

(yt − Ȳk)2 +

T∑
t=k+1

(yt − Ȳ ∗k )2, where Ȳk =
1

k

k∑
t=1

yt and Ȳ ∗k =
1

T − k

T∑
t=k+1

yt.

Proposition 4 in Bai (1997) gives the limiting distribution of k̂ − k01 when

τ01
τ02

(µ1 − µ2)2 >
1− τ02
1− τ01

(µ2 − µ3)2. (2.3)

Figure 1 demonstrates the histogram of the corresponding limiting distribution under Gaussian as-

sumption with τ01 = 0.33, τ02 = 0.67, µ1 = 0, µ2 = 4, and µ3 = 1. The limiting distribution is unimodal

and skewed. Conversely, the finite sample distribution with the same parameters with T = 120 (the

number of replication is 10, 000) is asymmetric and has four modes (Figure 2). As the finite sample

distribution is rather different from the asymptotic distribution, we use the in-fill asymptotic theory

in the next section.

3 In-fill Asymptotic Distribution with Small Shifts

In this section, we develop the in-fill asymptotic theory and show that the limiting distribution devel-

oped in this section has four modes, as in the case of finite samples given in Figure 2.

Let {ỹth} for t = 1, 2, . . . , T be the discrete time observations of a continuous time process on [0, 1],

where h is the sampling interval and Th = 1. By extending Jiang, Wang and Yu (2018), we consider

the discretized model with twice level shifts given by the following:

ỹth − ỹ(t−1)h =


µ1

√
h+
√
hXt for 1 ≤ t ≤ k01,

µ2

√
h+
√
hXt for k01 + 1 ≤ t ≤ k02,

µ3

√
h+
√
hXt for k02 + 1 ≤ t ≤ T,

where k01 and k02 are the break dates and µi for i = 1, 2, and 3 are defined below. Corresponding break

fractions are given by τ01 = k01/T and τ02 = k02/T , which we assume holds not only asymptotically but

also in finite samples for simplicity. By letting yt = (ỹth − ỹ(t−1)h)/
√
h, the model is expressed as

yt =


µ1 +Xt for 1 ≤ t ≤ k01,
µ2 +Xt for k01 + 1 ≤ t ≤ k02,
µ3 +Xt for k02 + 1 ≤ t ≤ T,

(3.1)
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where µi =

(
µ+

δi
ε

)√
h

for i = 1, 2, and 3. We allow for serial correlation in Xt by considering a linear process provided by

Xt =

∞∑
j=0

ajεt−j , where a(1) =

∞∑
j=0

aj 6= 0 and

∞∑
j=0

j|aj | <∞.

For the innovations {εt}, we make the following assumption:

Assumption 1 Innovations {εt} are martingale differences satisfying E[εt|Ft−1] = 0, E[ε2t ] = σ2,

and there exists a δ > 0 such that suptE[|εt|2+δ] < ∞, where Ft is the σ-filed generated by εs for

s ≤ t.

For two structural change points, the following assumption is made throughout the study.

Assumption 2 (i) τ0i ∈ (0, 1) for i = 1 and 2 with τ01 < τ02 . (ii) δ1 6= δ2 and δ2 6= δ3.

Assumption 2(i) implies that the break fractions are distinct and k01 and k02 are not too close each

other. In contrast, Assumption 2(ii) guarantees that the structural changes occurred twice and there

are three regimes.

We investigate the asymptotic behavior of k̂ given by (2.2), the (first) break point estimator

considered by Bai (1997), wherein break dates are estimated one at a time. As shown by Bai (1994),

the least squares estimator k̂ can be expressed as follows:

k̂ = arg max
k

{(√
TVT (k)

)2}
, where VT (k) =

√
k(T − k)

T 2

(
Ȳ ∗k − Ȳk

)
. (3.2)

To develop the in-fill asymptotic theory, we assume that the sampling interval h goes to 0, whereas

ε in µi is different from 0.

Assumption 3 h→ 0 and ε 6= 0 is fixed.

As Th = 1, h→ 0 implies that T →∞. Under Assumption 3, the magnitudes of the breaks are of

order
√
h = 1/

√
T and thus, as discussed in Elliott and Mller (2007) and Jiang, Wang and Yu (2018),

τ̂ = k̂/T cannot be consistent with τ01 and τ02 , as provided in the following theorem.3

3Bai (1997) proposed to estimate the second break point by splitting the sample at the first estimator k̂. However,
because the first break fraction estimator is inconsistent, there is no room for estimating the second break point in our
setting, thus we focus on only the first break date estimator k̂.
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Theorem 1 Under Assumptions 1–3, the in-fill asymptotic distribution of τ̂ is given by the following:

τ̂
d−→ arg max

0<τ<1

{(√
τ(1− τ)J(τ)

)2}
, (3.3)

where J(τ) =


J1(τ) if τ ≤ τ01 ,
J2(τ) if τ01 < τ ≤ τ02 ,
J3(τ) if τ02 < τ,

J1(τ) = B̃(τ, σ) +
δ1
ε
− τ01 − τ

1− τ
δ1
ε
− τ02 − τ01

1− τ
δ2
ε
− 1− τ02

1− τ
δ3
ε
,

J2(τ) = B̃(τ, σ) +
τ01
τ

δ1
ε

+
τ − τ01
τ

δ2
ε
− τ02 − τ

1− τ
δ2
ε
− 1− τ02

1− τ
δ3
ε
,

J3(τ) = B̃(τ, σ) +
τ01
τ

δ1
ε

+
τ02 − τ01

τ

δ2
ε

+
τ − τ02
τ

δ3
ε
− δ3

ε
,

and B̃(τ, σ) =
1

τ
σa(1)B(τ)− 1

1− τ
σa(1)(B(1)−B(τ)).

Remark 1 Our model (3.1) becomes a one-time structural break model when τ02 = 1 (k02 = T ) and

δ3 = δ2 (µ3 = µ2). In this case, if {Xt} is an i.i.d. sequence as considered in Jiang, Wang and Yu

(2018), we have a(1) = 1 and thus, by the straightforward calculation, we can show that

√
τ(1− τ)J1(τ) = σ

(
B(τ)− τB(1)√

τ(1− τ)
− (1− τ01 )

√
τ√

1− τ
(δ2 − δ1)

σε

)

= σ

(
B(τ01 + u)− (τ01 + u)B(1)√

(τ01 + u)(1− τ01 − u)
− (1− τ01 )

√
τ01 + u√

1− τ01 − u
δ∗

σε

)

for τ ≤ τ01 , where the second equality holds by defining τ = τ01 + u and δ∗ = δ2 − δ1. Conversely, for

τ > τ01 ,

√
τ(1− τ)J2(τ) = σ

(
B(τ)− τB(1)√

τ(1− τ)
−
τ01
√

(1− τ)√
τ

(δ2 − δ1)

σε

)

= σ

(
B(τ01 + u)− (τ01 + u)B(1)√

(τ01 + u)(1− τ01 − u)
− τ01

√
1− τ01 − u√
τ01 + u

δ∗

σε

)
.

These distributions are the same as those in Theorem 4.2 of Jiang, Wang and Yu (2018). Therefore,

our result in Theorem 1 includes the in-fill asymptotic theory developed by Jiang, Wang and Yu (2018).

To investigate distributional property (3.3), we draw the histogram with the same parameters as in

the previous section; τ01 = 0.33, τ02 = 0.67, σ2 = 1, a(1) = 1, δ1/ε = 0, δ2/ε = 4, and δ3/ε = 1. Figure

3 shows that the limiting distribution has four modes around two break points and the ends of the

samples. Hence, the in-full asymptotic distribution can successfully replicate the important property
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of the finite sample distribution in Figure 2. That is, in the case where break dates are estimated

one at a time with relatively small shifts, the in-fill asymptotics is useful to capture the distributional

property of the estimator in finite samples.

4 In-fill Asymptotic Distribution with Large Shifts

In this section, we investigate the asymptotic behavior of the break point estimator when the mag-

nitudes of the breaks are larger than those given by Assumption 3. While break fraction estimator

is inconsistent when the breaks are small under Assumption 3 (Theorem 1), we may expect that it

would be consistent with either of the two break fractions for the larger breaks.

To consider the in-full asymptotic theory with large breaks, we make the following assumption:

Assumption 4 (i) h→ 0 and ε→ 0. (ii) ε log T → 0. (iii)
√
h/ε→ 0.

As the magnitudes of the breaks are given by (δ2 − δ1)
√
h/ε and (δ3 − δ2)

√
h/ε, Assumption 4(i)

implies the larger break sizes compared to Assumption 3, in which ε is fixed. However, we still assume

the shrinking shifts of the breaks by (iii). Assumptions 4(ii) and (iii) impose the converging speed of

ε; it goes to zero strictly faster than 1/ log T = −1/ log h but slower than 1/
√
T =

√
h. This speed is

essentially the same as that supposed in Bai (1997).

Whether τ̂ converges to τ01 or τ02 depends on the relative magnitude of the two breaks. Let

UT (k/T ) = ST (k)/T .

Assumption 5

plim

(√
h

ε

)−2
[UT (k01/T )− UT (k02/T )] < 0.

Assumption 5 corresponds to Assumption B2 in Bai (1997). To obtain the probability limit given

in Assumption 5, we note that UT (k01/T ) and UT (k02/T ) can be expressed as, from (6.3) and (6.11) in
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the appendix,

UT (k01/T ) =
(k02 − k01)

T

(
1

T − k01
(T − k02)(µ2 − µ3)

)2

+
(T − k02)

T

(
1

T − k01
(k02 − k01)(µ3 − µ2)

)2

+
1

T

T∑
t=1

X2
t +R1T (k01),

=
(T − k02)(k02 − k01)

T (T − k01)

(
(δ2 − δ3)

√
h

ε

)2

+
1

T

T∑
t=1

X2
t +R1T (k01)

and

UT (k02/T ) =
k01(k02 − k01)

k02T

(
(δ1 − δ2)

√
h

ε

)2

+
1

T

T∑
t=1

X2
t +R2T (k02),

where R1T (k) and R2T (k) are defined by (6.4) and (6.12), which are shown to be Op(h/ε) in the

appendix. Then, we have the following:(√
h

ε

)−2 (
UT (k01/T )− UT (k02/T )

)
=

(T − k02)(k02 − k01)

T (T − k01)
(δ2 − δ3)

2 − k01(k02 − k01)

k02T
(δ1 − δ2)

2
+

(√
h

ε

)−2
(R1T (k01)−R2T (k02))

p−→ (1− τ02 )(τ02 − τ01 )

1− τ01
(δ2 − δ3)

2 − τ01
τ02

(τ02 − τ01 ) (δ1 − δ2)
2
.

Hence, Assumption 5 can be written as follows:

1− τ02
1− τ01

(δ2 − δ3)
2
<
τ01
τ02

(δ1 − δ2)
2
, (4.1)

which is equivalent to (2.3). Hence, Assumption 5 implies that the first break dominates the second

one in terms of break magnitude and the relative time span of the regimes.

To derive the in-fill asymptotic distribution of τ̂ , we first show that it is consistent with τ01 .

Proposition 1 Under Assumptions 1, 2, 4, and 5, we have the following:

τ̂ − τ01 = Op (ε) .

Note that because τ̂ is inconsistent when ε is fixed (Theorem 1), we observe that Assumption 5 is

key for the consistency.

Proposition 1 relies on the inequality given by Assumption 5. If the inequality is in the opposite

direction, τ̂ becomes consistent with τ02 . As discussed by Bai (1997), τ̂ will converge in probability to

either τ01 or τ02 with each probability 1/2 if the equality holds.
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As we obtained the consistency of τ̂ by Proposition 1, we can focus on the behavior of ST (k)

only in the small neighborhood of τ01 . Let us define DT = {k : Tη ≤ k ≤ Tτ02 (1 − η)}, where

η is a small positive value such that τ01 ∈ (η, Tτ02 (1 − η)) and DM =

{
k : |k − k01| ≤M

(√
h
ε

)−2}
for some given large value of M . Let us define the intersection DT and complement of DM as

DT,Mc = {k : Tη ≤ k ≤ Tτ02 (1 − η), |k − k01| > M
(√

h
ε

)−2
}. In the appendix, we show that ST (k)

cannot be minimized on DT,Mc with the probability approaching one. We then obtain the following

proposition.

Proposition 2 Under Assumptions 1, 2, 4, and 5, for every ε > 0, there exists an M <∞ indepen-

dent of T such that, for all large T ,

P

T |τ̂ − τ01 | > M

(√
h

ε

)−2 < ε.

Proposition 2 implies that

T

(√
h

ε

)2

(τ̂ − τ01 ) = Op(1)

and gives the asymptotic order to derive the limiting distribution. Note that because Th = 1, τ̂

approaches τ01 at a rate of ε2.

The in-fill asymptotic distribution of τ̂ is given by the following theorem.

Theorem 2 Under Assumptions 1, 2, 4, and 5, we have

T

(√
h

ε

)2

(δ2 − δ1)2(τ̂ − τ01 )
d−→ σ2a(1)2 arg min

u∈(−∞,∞)

{Γ(u, λ1)},

where

λ1 =
1− τ02
1− τ01

δ3 − δ2
δ2 − δ1

,

Γ(u, λ) =

{
2B1(u) + u(1− λ) if u ≥ 0,

2B2(−u) + |u|(1 + λ) if u < 0,

and B1(·) and B2(·) are two independent standard Brownian motions on [0,∞).

The in-fill asymptotic distribution derived in Theorem 2 is the same as the long-span asymptotic

distribution obtained in Proposition 8 of Bai (1997). This limiting distribution is generally unimodal
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and asymmetric. Figure 4 shows histograms of the asymptotic distribution obtained in Theorem 2 for

the same set of parameters as before. Moreover, the distribution in Figure 4 is unimodal and skewed

to the left, which is rather different from Figure 2. However, as demonstrated by Figure 5, in which

the data generating process is given by (3.1) for τ01 = 0.33, τ02 = 0.67, µ = 0, δ1 = 0, δ2 = 4, δ3 = 1,

h = 1/T = 1/120 and ε = h1/4 (large shifts), the finite sample distribution can be approximated well

by the in-fill asymptotic distribution with ε→ 0.

5 Concluding Remarks

In this study, we applied the in-fill asymptotic scheme to the level-shifts model when the break date

is estimated by fitting the misspecified one-time break model. We first showed that the finite sample

distribution of the break point estimator obtained by the least squares estimation has four modes,

which is quite different from the traditional asymptotic distribution by Bai (1997). We then derived the

in-fill asymptotic distribution with small shifts, which has four modes and is a better approximation

to the finite distribution than that in the long-span asymptotic scheme. Additionally, by considering

the model with large shifts, which still shrink to zero but at a slower rate than in the small shift case,

the in-fill asymptotic distribution was shown to become the same as that derived in the long-span

scheme. In this case, the break fraction estimator is consistent, unimodal, and asymmetric.

Although the finite sample properties of the break point estimator could be replicated using the in-

fill asymptotic scheme, constructing the confidence set under the assumption of small shifts is difficult

because the break fraction estimator is inconsistent, which results in the inconsistent estimation of

the nuisance parameters required for constructing the confidence set. We may need to impose some

mild regularity conditions on the model considered by Casini and Perron (2018, 2021), and this is our

future research.
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6 Appendix

Proof of Theorem 1: Following Bai (1994), (2.2) is expressed as

k̂ = arg min
k
{ST (k)} = arg max

k

{(√
TVT (k)

)2}
, (6.1)

where

VT (k) =

√
k(T − k)

T 2

(
Ȳ ∗k − Ȳk

)
, (6.2)

Ȳk =
1

k

k∑
t=1

yt, Ȳ ∗k =
1

T − k

T∑
t=k+1

yt.

Under Assumptions 1 and 2, we have, by the functional central limit theorem (FCLT),

√
T

k

k∑
t=1

Xt =
T

k

1√
T

k∑
t=1

Xt ⇒
1

τ
a(1)σB(τ),

√
T

T − k

T∑
t=k+1

Xt =
T

T − k
1√
T

T∑
t=k+1

Xt ⇒
1

1− τ
a(1)σ(B(1)−B(τ)),

for k = [τT ] with a given τ ∈ (0, 1), where B(·) is a standard Brownian motion on [0, 1]. We show

that the limiting distribution of (6.2) depends on the regime wherein k is located.

For k = [τT ] ≤ k01, we have, by the FCLT,

√
T

(
1

k

k∑
t=1

yt −
1

T − k

T∑
t=k+1

yt

)

=
√
T

1

k

k∑
t=1

yt −
1

T − k

 k01∑
t=k+1

yt +

k02∑
t=k01+1

yt +

T∑
t=k02+1

yt


=

√
T

k

k∑
t=1

Xt +
√
T

(
µ+

δ1
ε

)√
h

−
√
T

T − k

(
T∑

t=k+1

Xt + (k01 − k)

(
µ+

δ1
ε

)√
h+ (k02 − k01)

(
µ+

δ2
ε

)√
h+ (T − k02)

(
µ+

δ3
ε

)√
h

)

=

√
T

k

k∑
t=1

Xt −
√
T

T − k

T∑
t=k+1

Xt

+
δ1
ε

√
h
√
T −

√
T

T − k
(k01 − k)

δ1
ε

√
h−

√
T

T − k
(k02 − k01)

δ2
ε

√
h−

√
T

T − k
(T − k02)

δ3
ε

√
h

⇒1

τ
a(1)σB(τ)− 1

1− τ
a(1)σ(B(1)−B(τ)) +

δ1
ε
− τ01 − τ

1− τ
δ1
ε
− τ02 − τ01

1− τ
δ2
ε
− 1− τ02

1− τ
δ3
ε
.
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Similarly, for k01 < k ≤ k02, we have

√
T

(
1

k

k∑
t=1

yt −
1

T − k

T∑
t=k+1

yt

)

=
√
T

1

k

 k01∑
t=1

yt +

k∑
t=k01+1

yt

− 1

T − k

 k02∑
t=k+1

yt +

T∑
t=k02+1

yt


=

√
T

k

(
k∑
t=1

Xt + kµ
√
h+ k01

δ1
√
h

ε
+ (k − k01)

δ2
√
h

ε

)

−
√
T

T − k

(
T∑

t=k+1

Xt + (T − k)µ
√
h+ (k02 − k)

δ2
√
h

ε
+ (T − k02)

δ3
√
h

ε

)

=

√
T

k

k∑
t=1

Xt −
√
T

T − k

T∑
t=k+1

Xt

+

√
T

k
k01
δ1
√
h

ε
+

√
T

k
(k − k01)

δ2
√
h

ε
−
√
T

T − k
(k02 − k)

δ2
√
h

ε
−
√
T

T − k
(T − k02)

δ3
√
h

ε

⇒1

τ
a(1)σB(τ)− 1

1− τ
a(1)σ(B(1)−B(τ))

+
τ01
τ

δ1
ε

+
τ − τ01
τ

δ2
ε
− τ02 − τ

1− τ
δ2
ε
− 1− τ02

1− τ
δ3
ε
,

and for k02 < k,

√
T

(
1

k

k∑
t=1

yt −
1

T − k

T∑
t=k+1

yt

)
=

√
T

k

 k01∑
t=1

yt +

k02∑
t=k01+1

yt +

k∑
t=k02+1

yt

− √
T

T − k

T∑
t=k+1

yt

=

√
T

k

(
k∑
t=1

Xt + kµ
√
h+ k01

δ1
ε

√
h+ (k02 − k01)

δ2
√
h

ε
+ (k − k02)

δ3
√
h

ε

)

−
√
T

T − k

(
T∑

t=k+1

Xt + (T − k)µ
√
h+ (T − k)

δ3
√
h

ε

)

⇒1

τ
a(1)σB(τ)− 1

1− τ
a(1)σ(B(1)−B(τ))

+
τ01
τ

δ1
ε

+
τ02 − τ01

τ

δ2
ε

+
τ − τ02
τ

δ3
ε
− δ3

ε
.

Therefore, we have

τ̂
d−→ arg max

0<τ<1

{(√
τ(1− τ)J(τ)

)2}
,

where J(τ) is defined in the main statement of Theorem 1.�

We need several lemmas to prove Propositions 1, 2, and Theorem 2.

Lemma 1 Under Assumption 1, there exists an M <∞ such that, for all i and all j > i

12



(a)
∣∣∣E [(∑i

t=1Xt

)(∑j
s=i+1Xs

)]∣∣∣ ≤M,

(b)

∣∣∣∣E [ 1
j−i

(∑j
t=i+1Xt

)2]∣∣∣∣ ≤M.

Proof: (a) and (b) are given by Lemma 11 and (A.12) in Bai (1997), respectively.�

Lemma 2 Under Assumptions 1 and 2, there exists an M <∞ such that, for i = 1, 2, and 3,

T |E[RiT (k)]− E[RiT (k01)]| ≤ |k
0
1 − k|
T

M.

Proof: These relations are given by (A.14) in Bai (1997).�

Lemma 3 Under Assumptions 1,2,4, and 5 in which ε→ 0 and h→ 0, the following relations hold:

(a) sup1≤k≤T

∣∣∣UT (k/T )− E[UT (k/T )]− T−1
∑T
t=1(X2

t − E[X2
t ])
∣∣∣ = Op(h/ε).

(b) There exists C > 0 for all large T such that

E[ST (k)]− E[ST (k01)] ≥ C(
√
h/ε)2|k − k01|.

Proof: (a) Let

ATk =
1

k

k∑
t=1

Xt and A∗Tk =
1

T − k

T∑
t=k+1

Xt.

To prove (a), we consider the three cases; (i) k ≤ k01, (ii) k01 < k ≤ k02, and (iii) k02 < k. For k ≤ k01, it

can be shown that∣∣∣∣∣UT (k/T )− E[UT (k/T )]− T−1
T∑
t=1

(X2
t − E[X2

t ])

∣∣∣∣∣ = |R1T (k)− E[R1T (k)]| ,

13



where, as given by (A5) in Bai (1997),

UT (k/T ) =
1

T
ST (k)

=
(k01 − k)

T
a2Tk +

(k02 − k01)

T
b2Tk +

(T − k02)

T
c2Tk +

1

T

T∑
t=1

X2
t +R1T (k), (6.3)

R1T (k) =
1

T

2aTk

k01∑
t=k+1

Xt + 2bTk

k02∑
t=k01+1

Xt + 2cTk

T∑
t=k02+1

Xt


− 2

T
[(k01 − k)aTk + (k02 − k01)bTk + (T − k02)cTk]A∗Tk

− k

T
(ATk)2 − T − k

T
(A∗Tk)2, (6.4)

aTk =
1

T − k
{(T − k01)(µ1 − µ2) + (T − k02)(µ2 − µ3)}, (6.5)

bTk =
1

T − k
{(k01 − k)(µ2 − µ1) + (T − k02)(µ2 − µ3)}, (6.6)

cTk =
1

T − k
{(k01 − k)(µ2 − µ1) + (k02 − k)(µ3 − µ2)}. (6.7)

Note that aTk, bTk, and cTk are O(
√
h/ε) from the definitions of µi for i = 1, 2, and 3, respectively.

To investigate R1T (k), we observe, by the FCLT, that

1

T

k01∑
t=k+1

Xt = Op(T
−1/2),

1

T

k02∑
t=k01+1

Xt = Op(T
−1/2), and

1

T

T∑
t=k02+1

Xt = Op(T
−1/2).

Thus, the first term on the right-hand side of R1T (k) in (6.4) is Op(T
−1/2
√
h/ε) = Op(h/ε).

To evaluate the second term, because A∗Tk is Op(T
−1/2) = Op(h

1/2) uniformly in k ≤ k01 by the

FCLT, we can observe that the second term on the right-hand side of (6.4) is Op(h/ε) uniformly in

k ≤ k01.

For the third term, we use Hájek-Rényi inequality given in Proposition 1 in Bai (1994); for a given

α > 0, there exists some constant C1 > 0 such that

P

(
sup

k=1,··· ,T

1√
k

∣∣∣∣∣
k∑
t=1

Xt

∣∣∣∣∣ > α

)
≤C1

α2
log T. (6.8)

(6.8) implies that supk
1√
k

∣∣∣∑k
t=1Xt

∣∣∣ = Op
(√

log T
)

and thus

k

T
(ATk)2 =

1

T

(
1√
k

k∑
t=1

Xt

)2

=
1

T
Op

((√
log T

)2)
= op(h/ε)

uniformly in k ∈ [1, T ] under Assumption 4.

14



Because A∗Tk = Op(T
−1/2), the fourth term on the right-hand side of (6.4) becomes

T − k
T

(A∗Tk)
2

= Op(T
−1) = op(h/ε)

uniformly in k ∈ [1, k01].

Combining these results, we have

R1T (k) =Op(h/ε) uniformly in k ≤ k01. (6.9)

Next, we investigate E[R1T (k)]. Note that the expectations of the first and second terms on the

right-hand side of (6.4) are zero, while those of the last two terms are O(T−1) by Lemma 1(b). Then,

we observe that

E[R1T (k)] = O(T−1) = O(h) = o(h/ε) uniformly in k ≤ k01. (6.10)

From (6.9) and (6.10), we observe that

|R1T (k)− E[R1T (k)]| = Op(h/ε) uniformly in k ≤ k01.

In the case where k01 < k ≤ k02, UT (k/T ) can be expressed as (see (A.9) in Bai (1997)),

UT (k/T ) =
k01(k − k01)

kT
(µ2 − µ1)2 +

(k02 − k)(T − k02)

T (T − k)
(µ3 − µ2)2

+
1

T

T∑
t=1

X2
t +R2T (k), (6.11)

where

R2T (k) =
1

T

2dTk

k01∑
t=1

Xt + 2eTk

k∑
t=k01+1

Xt + 2fTk

k02∑
t=k+1

Xt + 2gTk

T∑
t=k02+1

Xt


− 2

T

[
k01dTk + (k − k01)eTk

]
ATk −

2

T

[
(k02 − k)fTk + (T − k02)gTk

]
A∗Tk

− k

T
(ATk)2 − T − k

T
(A∗Tk)2, (6.12)

dTk =[(k − k01)/k](µ1 − µ2),

eTk =(k01/k)(µ2 − µ1),

fTk =[(T − k02)/(T − k)](µ2 − µ3),

gTk =[(k02 − k)/(T − k)](µ3 − µ2),
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and we consider∣∣∣∣∣UT (k/T )− E[UT (k/T )]− T−1
T∑
t=1

(Xt − E[X2
t ])

∣∣∣∣∣ = |R2T (k)− E[R2T (k)]| .

In exactly the same manner as in the case of k ≤ k01, we can show that (a) holds.

For k02 < k, as given by (A.11) in Bai (1997),

UT (k/T ) =
k01
T
h2Tk +

k02 − k01
T

p2Tk +
k − k02
T

q2Tk +
1

T

T∑
t=1

X2
t +R3T (k), (6.13)

where

R3T (k) =
1

T

2hTk

k01∑
t=1

Xt + 2pTk

k02∑
t=k01+1

Xt + 2qTk

k∑
t=k02+1

Xt


−
(

2

T
[k01hTk + (k02 − k01)pTk + (k − k02)qTk]

)
ATk

− k

T
(ATk)2 − (T − k)

T
(A∗Tk)2, (6.14)

hTk =
1

k
[(k − k01)(µ1 − µ2) + (k − k02)(µ2 − µ3)],

pTk =
1

k
[k01(µ2 − µ1) + (k − k02)(µ2 − µ3)],

qTk =
1

k
[k01(µ2 − µ1) + k02(µ3 − µ2)],

and we consider∣∣∣∣∣UT (k/T )− E[UT (k/T )]− T−1
T∑
t=1

(Xt − E[X2
t ])

∣∣∣∣∣ = |R3T (k)− E[R3T (k)]| .

The order of the preceding equality is obtained in the same manner.

(b) For k ≤ k01, the left-hand side of Lemma 3(b) becomes, as given by (A.17) in Bai (1997),

E[ST (k)]− E[ST (k01)]

=
k01 − k

(1− k/T )(1− k01/T )

[
(1− k01/T )(µ1 − µ2) + (1− k02/T )(µ2 − µ3)

]2
+ T

(
E[R1T (k)]− E[R1T (k01)]

)
. (6.15)

We first note that

(1− k01/T )(µ1 − µ2) + (1− k02/T )(µ2 − µ3) 6= 0,
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which can be obtained in the same manner as (A.18) in Bai (1997). Therefore, there exists a C > 0

such that

k01 − k
(1− k/T )(1− k01/T )

[
(1− k01/T )(µ1 − µ2) + (1− k02/T )(µ2 − µ3)

]2
=

k01 − k
(1− τ)(1− τ01 )

(√
h

ε

)2 [
(1− τ01 )(δ1 − δ2) + (1− τ02 )(δ2 − δ3)

]2
≥|k01 − k|

(√
h

ε

)2

C.

On the other hand, for the second term on the right-hand side of (6.15), we observe by Lemma 2 that

T |E[R1T (k)− E[R1T (k01)]| ≤ |k
0
1 − k|
T

M = |k01 − k|Mh = |k01 − k| × o
(
h

ε2

)
.

Thus, we have

E[ST (k)]− E[ST (k01)] ≥ C

(√
h

ε

)2

|k − k01| − |k01 − k|Mh

≥ C

(√
h

ε

)2

|k − k01|/2.

For k01 < k ≤ k02, it can be shown that, as given by inequality below (A.20) in Bai (1997),

E[ST (k)]− E[ST (k01)] ≥(k − k01)
k02
k

[
k01
k02

(µ2 − µ1)2 − (T − k02)

(T − k01)
(µ3 − µ2)2

]
+ T

[
E[R2T (k)]− E[R2T (k01)]

]
.

Because

k01
k02

(µ2 − µ1)2 − (T − k02)

(T − k01)
(µ3 − µ2)2 =

τ01
τ02

(µ2 − µ1)2 − (1− τ02 )

(1− τ01 )
(µ3 − µ2)2 > 0

as implied by (4.1), and using Lemma 2, we have

E[ST (k)]− E[ST (k01)] ≥(k − k01)

(√
h

ε

)2
τ02
τ

[
τ01
τ02

(δ2 − δ1)2 − (1− τ02 )

(1− τ01 )
(δ3 − δ2)2

]
+ T

[
E[R2T (k)]− E[R2T (k01)]

]
≥(k − k01)

(√
h

ε

)2

C −M |k01 − k|h

≥(k − k01)

(√
h

ε

)2

C/2
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for some M > 0 and C > 0.

For k > k02, ST (k) becomes, from (6.13),

ST (k) = k01h
2
Tk + (k02 − k01)p2Tk + (k − k02)q2Tk +

T∑
t=1

X2
t + TR3T (k).

Similarly to the case k < k01, it can be shown that

EST (k)− EST (k01) ≥ (k − k01)

(√
h

ε

)2

C

for some constant C.�

Lemma 4 Under Assumptions 1,2,4, and 5 in which ε → 0 and h → 0, for every ε, there exists an

M <∞ such that

P

(
min

k∈DT,Mc

{
ST (k)− ST (k01)

}
≤ 0

)
< ε,

where DT,Mc =

{
k : Tη ≤ k ≤ Tτ02 (1− η), |k − k01| > M

(√
h
ε

)−2}
.

Proof: The proof proceeds similarly to that of Lemma 4 of Bai (1997). For k ≤ k01,

ST (k)− ST (k01)

=ST (k)− E[ST (k)]− (ST (k01)− E[ST (k01)]) + E[ST (k)]− E[ST (k01)]

≥ST (k)− E[ST (k)]− (ST (k01)− E[ST (k01)]) + C|k − k01|

(√
h

ε

)2

(6.16)

for some C > 0, where the inequality holds by Lemma 3(b). Then, ST (k)− ST (k01) ≤ 0 implies that

C

(√
h

ε

)2

≤ 1

|k − k01|
∣∣ST (k)− E[ST (k)]−

(
ST (k01)− E[ST (k01)]

)∣∣ .
By Lemma 2, we have, for some M <∞,

∣∣ST (k)− E[ST (k)]− (ST (k01)− E[ST (k01)])
∣∣

=
∣∣T (R1T (k)− E[R1T (k)])− T (R1T (k01)− E[R1T (k01)])

∣∣
≤
∣∣T (R1T (k)−R1T (k01))

∣∣+M
|k − k01|

T
.

Therefore, it is sufficient to show that for every η > 0 and ε > 0, there exists an M > 0 such that

P

η(√h
ε

)2

< sup
k∈DTMc

{
1

|k − k01|
|T (R1T (k)− E[R1T (k)])|+ M

T

} < ε,
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but, because M/T = O(h) = o
(

(
√
h/ε)2

)
, we shall show that

P

 sup
k∈DTMc

{
1

|k − k01|
|T (R1T (k)− E[R1T (k)])|

}
> η

(√
h

ε

)2
 < ε.

For k ≤ k01, note that by (6.4),

T |R1T (k)−R1T (k01)|

=2aTk

k01∑
t=k+1

Xt + 2(bTk − bTk01 )

k02∑
t=k01+1

Xt + 2(cTk − cTk01 )

T∑
t=k02+1

Xt

− 2(k01 − k)aTkA
∗
Tk − 2(k02 − k01)(bTkA

∗
Tk − bTk01A

∗
Tk01

)

− 2(T − k02)(cTkA
∗
Tk − cTk01A

∗
Tk01

)

+
(
k01A

2
Tk01
− kA2

Tk

)
+
(

(T − k01)A∗2Tk01
− (T − k)A∗2Tk

)
. (6.17)

Subsequently, we shall show that each term on the right-hand side of (6.17) divided by k01 − k is of

smaller order than (
√
h/ε)2 uniformly.

As |aTk| ≤
√
h
ε C1 for some C1 < ∞ uniformly, the first term on the right-hand side of (6.17) is

evaluated as, by Hájek-Rényi inequality,

P

 sup

k≤k01−M
(√

h
ε

)−2

∣∣∣∣∣∣ aTk
k01 − k

k01∑
t=k+1

Xt

∣∣∣∣∣∣ > η

(√
h

ε

)2


≤P

 sup

k≤k01−M
(√

h
ε

)−2

 1

k01 − k

∣∣∣∣∣∣
k01∑

t=k+1

Xt

∣∣∣∣∣∣
 > η

(√
h

ε

)
C−11

 ≤ C2
1C

η2M
(6.18)

for some C <∞. By taking a large value of M , the right-hand side of (6.18) becomes small.

For the second term on the right-hand side of (6.17), because T − k02 < T − k01, we have

|bTk − bTk01 |

=

∣∣∣∣ 1

T − k
{

(k01 − k)(µ2 − µ1) + (T − k02)(µ2 − µ3)
}
− 1

T − k01
(T − k02)(µ2 − µ3)

∣∣∣∣
=

∣∣∣∣k01 − kT − k
(µ2 − µ1) +

k − k01
(T − k)(T − k01)

(T − k02)(µ2 − µ3)

∣∣∣∣
≤

∣∣∣∣∣k01 − kT − k
(δ2 − δ1)

√
h

ε

∣∣∣∣∣+

∣∣∣∣∣k01 − kT − k
(δ2 − δ3)

√
h

ε

∣∣∣∣∣
≤
∣∣∣∣k01 − kT − k

∣∣∣∣C2

√
h

ε
,
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for some C2 > 0. Then, we have∣∣∣∣∣∣bTk − bTk01k01 − k

k02∑
t=k01+1

Xt

∣∣∣∣∣∣ ≤C2
1

T − k

(√
h

ε

)∣∣∣∣∣∣
k02∑

t=k01+1

Xt

∣∣∣∣∣∣
≤C ×Op

(
h

ε

)

=op

(√h
ε

)2
 .

For the third term on the right-hand side of (6.17), we note that

|cTk − cTk01 |

=

∣∣∣∣ 1

T − k
{

(k01 − k)(µ2 − µ1) + (k02 − k)(µ3 − µ2)
}
− 1

T − k01
(k02 − k01)(µ3 − µ2)

∣∣∣∣
=

∣∣∣∣k01 − kT − k
(µ2 − µ1) +

(
k02 − k
T − k

− k02 − k01
T − k01

)
(µ3 − µ2)

∣∣∣∣
≤

∣∣∣∣∣k01 − kT − k
(δ2 − δ1)

√
h

ε

∣∣∣∣∣+

∣∣∣∣∣k01 − kT − k
(δ3 − δ2)

√
h

ε

∣∣∣∣∣
≤
∣∣∣∣k01 − kT − k

∣∣∣∣C3

√
h

ε
,

for some C3 > 0, where the first inequality holds because(
k02 − k
T − k

− k02 − k01
T − k01

)
=

(T − k02)(k01 − k)

(T − k)(T − k01)
≤ k01 − k

T − k
,

as
T−k02
T−k01

< 1. Then, it can be seen that∣∣∣∣∣∣cTk − cTk01k01 − k

T∑
t=k02+1

Xt

∣∣∣∣∣∣ ≤ C3

T − k

√
h

ε

∣∣∣∣∣∣
T∑

t=k02+1

Xt

∣∣∣∣∣∣
≤C ×Op

(
h

ε

)

=op

(√h
ε

)2
 .

The fourth term on the right-hand side of (6.17) divided by (k01 − k)
(√

h
ε

)2
is

(k01 − k)−1

(√
h

ε

)−2
(k01 − k)aTkA

∗
Tk = op(1),

because |aTk| = Op

(√
h
ε

)
and A∗Tk = Op(T

−1/2) = Op(h
1/2).
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For the fifth term on the right-hand side of (6.17), we observe that

(k02 − k01)(bTkA
∗
Tk − bTk01A

∗
Tk01

)

=(k02 − k01)[bTk − bTk01 ]A∗Tk − (k02 − k01)bTk01 [A∗Tk01
−A∗Tk]. (6.19)

The first term on the right-hand side of (6.19) divided by (k01 − k)(
√
h/ε)2 becomes(√

h

ε

)−2
k02 − k01
k01 − k

[bTk − bTk01 ]A∗Tk =

(√
h

ε

)−2
Op

(√
h

ε
T−1/2

)
= Op(ε),

while the second term is given by(√
h

ε

)−2
k02 − k01
k01 − k

bTk01 [A∗Tk01
−A∗Tk]

=

(√
h

ε

)−2
k02 − k01
k01 − k

1

T − k01
(T − k02)(µ2 − µ3)[A∗Tk01

−A∗Tk]

=

(√
h

ε

)−1
k02 − k01
k01 − k

T − k02
T − k01

(δ2 − δ3)[A∗Tk01
−A∗Tk].

Note that

k02 − k01
k01 − k

[A∗Tk01
−A∗Tk] =

k02 − k01
(T − k)(T − k01)

T∑
t=k01+1

Xt −
k02 − k01

(T − k)(k01 − k)

k01∑
t=k+1

Xt

= Op(
√
h)− op

(√
h

ε

)
. (6.20)

Here, the first term on the last expression holds by FCLT, and the order of the second term is obtained

from (6.18). Hence, the fifth term on the right-hand side of (6.17) divided by (k01−k)(
√
h/ε)2 is op(1).

The sixth term on the right-hand side of (6.17) divided by (k01 − k)(
√
h/ε)2 is treated similar to

the fifth term.

For the seventh term on the right-hand side of (6.17), we note that kA2
Tk = Op(1) uniformly on

DT,Mc because k is proportional to T on DT,Mc . Thus, we have

(k01 − k)−1

(√
h

ε

)−2 ∣∣∣k01A2
Tk01
− kA2

Tk

∣∣∣ ≤ 1

M

(√
h

ε

)2(√
h

ε

)−2
Op(1) =

1

M
Op(1),

which can be small for all large values of T by choosing a large value of M .

Similarly, the eighth term on the right-hand side of (6.17) can be evaluated as

(k01 − k)−1

(√
h

ε

)−2 ∣∣∣(T − k01)(A∗2Tk01
− (T − k)A∗2Tk

∣∣∣ ≤ 1

M
Op(1)
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on DT,Mc .

As all the terms on the right-hand side of (6.17) divided by (k01−k)(
√
h/ε)2 converge in probability

to 0, we have

P

 sup
k∈DTMc

{
1

|k − k01|
|T (R1T (k)− E[R1T (k)])|

}
> η

(√
h

ε

)2
 < ε.

The case where k01 < k is proved in the same manner and thus omitted.�

Proof of Proposition 1: The proof proceeds similarly to that of Corollary 1 in Bai (1997). For

some C > 0, we have

ST (k)− ST (k01)

=ST (k)− E[ST (k)]− [ST (k01)− E[ST (k01)]] + E[ST (k)]− E[ST (k01)]

+

(
T∑
t=1

X2
t − E[X2

t ]

)
−

(
T∑
t=1

X2
t − E[X2

t ]

)

≥− 2 sup
1≤j≤T

{∣∣∣∣∣ST (j)− E[ST (j)]−

(
T∑
t=1

X2
t − E[X2

t ]

)∣∣∣∣∣
}

+ E[ST (k)]− E[ST (k01)]

≥− 2 sup
1≤j≤T

{∣∣∣∣∣ST (j)− E[ST (j)]−

(
T∑
t=1

X2
t − E[X2

t ]

)∣∣∣∣∣
}

+ C

(√
h

ε

)2

|k − k01|,

where the last inequality holds by Lemma 3(b). As ST (k̂)− ST (k01) ≤ 0, the above inequality implies

|k̂ − k01| ≤ C−1
(√

h

ε

)−2
2 sup
1≤j≤T

{∣∣∣∣∣ST (j)− E[ST (j)]−

(
T∑
t=1

X2
t − E[X2

t ]

)∣∣∣∣∣
}
.

Dividing both sides by T , we have, by Lemma 3(a),

|τ̂ − τ01 | ≤ 2C−1

(√
h

ε

)−2
Op

(
h

ε

)
= Op (ε) .�

Proof of Proposition 2: As τ̂ is consistent with τ0 by Proposition 1, we can observe that, for any

given value of ε > 0, P (k̂ 6∈ DT ) ≤ ε for all large T . Thus, we have, using Lemma 4,

P

T |τ̂ − τ01 | > M

(√
h

ε

)−2 ≤ P (k̂ 6∈ DT ) + P

k̂ ∈ DT , |k̂ − k| > M

(√
h

ε

)−2
≤ ε+ P

(
min

k∈DTMc

{ST (k)− ST (k01)} ≤ 0

)
≤ 2ε.�

Proof of Theorem 2: The proof proceeds similarly to Proposition 8 in Bai (1997). Given the
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convergence order of τ̂ obtained in Proposition 2, we focus on the O((
√
h/ε)−2) neighborhood of k01.

More precisely, let M be an arbitrary large positive value and k be given by, for s ∈ [−M,M ],

k = k01 + `, ` = s

(√
h

ε

)−2
.

Then, we can observe that k̂ = k01 + ˆ̀ and

ˆ̀= k̂ − k01

= arg min
`
{ST (k01 + `)− ST (k01)}. (6.21)

Thus, we investigate the asymptotic behavior of ST (k01 + `)− ST (k01).

First, we consider the case where k > k01. This implies ` > 0 and s > 0.

For ` > 0, define

µ̂1 =
1

k01

k01∑
t=1

yt, µ̂2 =
1

T − k01

T∑
t=k01+1

yt,

µ̂∗1 =
1

k01 + `

k01+`∑
t=1

yt, µ̂∗2 =
1

T − k01 − `

T∑
t=k01+`+1

yt.

It is not difficult to show that

µ̂∗1 − µ1 = Op(T
−1/2) = Op(h

1/2), µ̂1 − µ1 = Op(T
−1/2) = Op(h

1/2),

µ̂2 − µ2 −
1− τ02
1− τ01

(µ3 − µ2) = Op(T
−1/2) = Op(h

1/2), µ̂∗i − µ̂i = Op(εh
1/2) for i = 1, 2.

We decompose the sums of the squared residuals into

ST (k01 + `) =

k01∑
t=1

(yt − µ̂∗1)2 +

k01+`∑
t=k01+1

(yt − µ̂∗1)2 +

T∑
t=k01+`+1

(yt − µ̂∗2)2, (6.22)

ST (k01) =

k01∑
t=1

(yt − µ̂1)2 +

k01+`∑
t=k01+1

(yt − µ̂2)2 +

T∑
t=k01+`+1

(yt − µ̂2)2. (6.23)

The differences between the two first and third terms on the right-hand side of (6.22) and (6.23)

are given by

k01∑
t=1

(yt − µ̂∗1)2 −
k01∑
t=1

(yt − µ̂1)2 = k01(µ̂∗1 − µ̂1)2 = Op(T )(Op(ε
√
h))2 = Op(ε

2),
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and

T∑
t=k01+`+1

(yt − µ̂∗2)2 −
T∑

t=k01+`+1

(yt − µ̂2)2 =− (T − k01 − `)(µ̂2 − µ̂∗2)2

=Op(T )(Op(ε
√
h))2 = Op(ε

2).

Meanwhile, the difference between the two second terms on the right-hand side of (6.22) and (6.23)

becomes

k01+`∑
t=k01+1

(yt − µ̂∗1)2 −
k01+`∑
t=k01+1

(yt − µ̂2)2 =2(µ̂2 − µ̂∗1)

k01+`∑
t=k01+1

Xt + `
{

(µ2 − µ̂∗1)2 − (µ2 − µ̂2)2
}
.

Note that

µ̂2 − µ̂∗1 = {(µ2 − µ1) + (µ1 − µ̂∗1)} − (µ2 − µ̂2)

= {(µ2 − µ1) + (µ1 − µ̂∗1)}+
1− τ02
1− τ01

(µ3 − µ2) +Op(h
1/2)

= (µ2 − µ1) + λ1(µ2 − µ1) +Op(h
1/2)

= (1 + λ1)

(
(δ2 − δ1)

√
h

ε

)
+Op(h

1/2),

and

(µ2 − µ̂∗1)2 − (µ2 − µ̂2)2 ={(µ2 − µ1)− (µ̂∗1 − µ1)}2 − (µ2 − µ̂2)2

={(µ2 − µ1)−Op(h1/2)}2 − {λ1(µ2 − µ1) +Op(h
1/2)}2

=(µ2 − µ1)2 +Op(h)− 2(µ2 − µ1)Op(h
1/2)− (λ1(µ2 − µ1))2 −Op(h/ε)

=(µ2 − µ1)2(1− λ21) +Op(h/ε)

=

(
(δ2 − δ1)

√
h

ε

)2

(1− λ21) +Op(h/ε).

Thus,

2(µ̂2 − µ̂∗1)

k01+`∑
t=k01+1

Xt + `
{

(µ2 − µ̂∗1)2 − (µ2 − µ̂2)2
}

=2

{
(1 + λ1)

(
(δ2 − δ1)

√
h

ε

)
+Op(h

1/2)

} k01+`∑
t=k01+1

Xt + `


(

(δ2 − δ1)
√
h

ε

)2

(1− λ21) +Op(h/ε)


⇒2(1 + λ1)(δ2 − δ1)σa(1)B1(s) + s(δ2 − δ1)2(1− λ21), (6.24)
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where B1(·) is a standard Brownian motion on [0,∞). Then, we obtain

ŝ = arg min
s>0

{
2(1 + λ1)(δ2 − δ1)σa(1)B1(s) + s(δ2 − δ1)2(1− λ21)

}
= arg min

s>0

{
(1 + λ1){2σa(1)B1(s(δ2 − δ1)2) + s(δ2 − δ1)2(1− λ)}

}
= (δ2 − δ1)−2σ2a(1)2 arg min

u>0

{
2σa(1)B1(σ2a(1)2u) + σ2a(1)2u(1− λ)

}
= (δ2 − δ1)−2σ2a(1)2 arg min

u>0

{
σ2a(1)2{2B1(u) + u(1− λ)}

}
d
= (δ2 − δ1)−2σ2a(1)2 arg min

u>0
{Γ(u, λ1)} , (6.25)

where the last equality in distribution is obtained by letting u = s(δ2 − δ1)2σ−2a(1)−2.

Then, we consider the case where k = k01 − ` and ` = s(
√
h/ε)2 ≥ 0. As in the case of k > k01, we

observe that

ST (k01 − `) =

k01−`∑
t=1

(yt − µ̂∗1)2 +

k01∑
t=k01−`+1

(yt − µ̂∗2)2 +

T∑
t=k01+1

(yt − µ̂∗2)2, (6.26)

ST (k01) =

k01−`∑
t=1

(yt − µ̂1)2 +

k01∑
t=k01−`+1

(yt − µ̂1)2 +

T∑
t=k01+1

(yt − µ̂2)2. (6.27)

The difference between the two first and third terms on the right-hand side of (6.26) and (6.27) is

shown to be op(1) in the same manner as in the case of k > k01, whereas the difference between the

two second terms converges in distribution to

k01∑
t=k01−`+1

(yt − µ̂∗2)2 −
k01∑

t=k01−`+1

(yt − µ̂1)2

= 2(µ̂1 − µ̂∗2)

k01∑
t=k01−`+1

Xt + `((µ̂∗2 − µ1)2 − (µ̂1 − µ1)2)

⇒ 2(δ2 − δ1)(1 + λ1)σa(1)B2(s) + |s|(δ2 − δ1)2(1 + λ1)2, (6.28)

where B2(·) is a standard Brownian motion on [0,∞) independent of B1(·).Thus, we have

ŝ = arg min
s>0

{
2(δ2 − δ1)(1 + λ1)σa(1)B2(s) + |s|(δ2 − δ1)2(1 + λ21)

}
= arg min

s<0

{
2(δ2 − δ1)(1 + λ1)σa(1)B2(−s) + |s|(δ2 − δ1)2(1 + λ21)

}
d
=(δ2 − δ1)−2σ2a(1)2 arg min

u<0
{Γ(u, λ1)} . (6.29)

By definition, ŝ = ˆ̀
(√

h
ε

)2
= T

(√
h
ε

)2
(τ − τ01 ) and thus we obtain the theorem.�
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Figure 1: The long-span asymptotic distribution of Bai (1997) for τ01 = 0.33, τ02 = 0.67, µ = 0, δ1 = 0,
δ2 = 4, and δ3 = 1
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Figure 2: The finite sample distribution from DGP (2.1) for τ01 = 0.33, τ02 = 0.67, T = 120 ,µ = 0,
δ1 = 0, δ2 = 4, and δ3 = 1
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Figure 3: The in-fill asymptotic distribution with ε fixed for τ01 = 0.33, τ02 = 0.67, µ = 0, δ1 = 0,
δ2 = 4, δ3 = 1, and ε = 1
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Figure 4: The in-fill asymptotic distribution with ε → ∞ for τ01 = 0.33, τ02 = 0.67, µ = 0, δ1 = 0,
δ2 = 4, δ3 = 1, and ε = h1/4
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Figure 5: The finite sample distribution from GDP (3.1) for τ01 = 0.33, τ02 = 0.67, µ = 0, δ1 = 0,
δ2 = 4, δ3 = 1, h = 1/T = 1/120 and ε = h1/4
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