
A Case for Term Weighting using a Dictionary
on GPUs

Toshiaki Wakatsuki, Atsushi Keyaki, and Jun Miyazaki

Department of Computer Science, School of Computing,
Tokyo Institute of Technology

wakatsuki@lsc.cs.titech.ac.jp, keyaki@lsc.cs.titech.ac.jp,

miyazaki@cs.titech.ac.jp

Abstract. This paper demonstrates a fast Okapi’s BM25 term weight-
ing method on GPUs for information retrieval by combining a GPU-
based dictionary using a succinct data structure and data parallel prim-
itives. The problem of handling documents on GPUs is to processing
variable length strings such as a document itself and a word. Processing
variable size of data causes many idle cores, i.e., load imbalances among
threads, due to the SIMD nature of GPU architecture. Our term weight-
ing method is carefully composed of efficient data parallel primitives to
avoid load imbalance. Additionally, we implemented a haigh performance
compressed dictionary on GPUs. By using this dictionary, words are con-
verted into IDs so that costly string comparisons can be avoided. Our
experimental results revealed that the proposed term weighting method
on GPUs performs up to 5x faster than the MapReduce-based one on
multi-core CPUs.

Keywords: GPGPU, term weighting, dictionary, parallel primitive

1 Introduction

With the spread of computers and the Web, large amounts of documents have
been created. In order to process these large amounts of documents in a practical
time, a method for high throughput document processing is necessary. Many
researches have been carried out utilizing commodity hardware to address to
this issue. MapReduce is one of the parallel programming models for processing
large-scale data on large computer clusters [2]. MapReduce has widely been used
for processing documents such as term weighting and inverted index construction
[8].

On the other hand, GPUs have widely been adopted in many researches and
applications, because they offer high performance computing by many cores and
high memory bandwidth. Emerging general-purpose computing on GPUs has
led to the drastic expansion of application field. For example, many high perfor-
mance numerical calculation libraries support GPUs for their floating point oper-
ations 1. Furthermore, even high performance non-numerical calculation libraries

1 https://developer.nvidia.com/gpu-accelerated-libraries

2

become to support GPUs. For instance, a graph processing library utilizes GPU
computing primitives and optimization strategies to achieve a balance between
performance and expressiveness [18]. The effective use of data parallel primitives
is the keys to construct an high performance program. Although string pro-
cessing has been recognized to be unsuitable for GPUs, some GPU-accelerated
algorithms were proposed such as string matching for database applications [16].

There have been some variations of MapReduce for various platforms such
as GPUs [3] as well as shared memory processors [17] and clusters 2. However,
MapReduce cannot draw out the potential power of GPUs due to the load im-
balance among tasks.

In this paper, we propose an implementation of an efficient dictionary on
GPUs as a new data parallel primitive for document processing, and a method-
ology to construct efficient document processing by using the dictionary and
existing data parallel primitives on GPUs. We then discuss on its applicability
to a realistic application. In particular, we focus on the high performance cal-
culation of Okapi’s BM25 term weighting by using these primitives on GPUs
as an example, rather than a simple string match computation. In document
processing, many string comparisons need to be performed, for example, exact
matches of two words and sorting a set of words. However, comparing strings are
very costly calculation on GPUs, because of their variable size. The dictionary
is very useful when handling many strings in document processing, because it
efficiently converts each words in a document into the corresponding integer ID
so that costly comparisons of strings are replaced to low cost comparisons of
integers on GPUs.

When Web pages are processed, the size of vocabulary becomes very large
because they contain numerous proper nouns such as names, URLs, etc. The
dictionary size, however, must keep small even for large vocabulary due to the
memory size limitation of GPUs. Therefore, we improved a compressed dic-
tionary algorithm with a succinct data structure [7] for implementing a GPU-
accelerated dictionary, so that a large vocabulary can be handled even with the
limited memory size of GPUs.

We also conducted experiments to reveal the power of our dictionary and
the suitability of its combination with other existing data parallel primitives for
calculating BM25 term weights as an example of document processing.

The rest of the paper is organized as follows. Section 2 refers to the back-
ground of this study including parallel primitives, and Section 3 describes an
implementation of the BM25 term weighting with our dictionary on GPUs. Ex-
perimental results are discussed in Section 4, followed by concluding remarks in
Section 5.

2 http://hadoop.apache.org/

3

2 Background

2.1 Notations

Let Σ be a finite set of alphabets. We denote the text of length n by T =
c1c2c3 . . . cn, ci ∈ Σ. For the English text, we have Σ = {a, b, . . . , z}, |Σ| =
26. When T is written in a natural language, it is assumed that almost T is
composed of a finite vocabulary Vk where k = |Vk|. Then T is expressed as
T = w1w2w3 . . . wm, wi ∈ Vk. Let d be the ID of a document and t be the ID of
a term.

2.2 Term weighting

The weight of term t in document d on Okapi’s BM25 term weighting scheme
[15] is defined by Equation (1).

wtd = log
N

dft
· (k1 + 1)tftd
k1((1− b) + b× (Ld/Lave)) + tftd

(1)

where N is the number of documents, dft is the number of documents that
contain a term t, tftd is the frequency of term t in document d, Ld is the length
of document d, and Lave is the average of all Ld. The variables k1 and b are
tuning parameters.

2.3 Term weighting method using MapReduce

Map Each document is assigned to a map worker. The map worker extracts
terms from the document assigned, and then, generates key-value pairs, each
of which contains term t as a key document ID d as a value. If the same term
appears multiple times, pairs are generated multiple times. The generated pairs
are stored, and the length of pairs is equal to that of document d.

Reduce A reduce worker processes the group of key-value pairs that have the
same term t as a key. From aggregated values, the list of document ID d is
obtained. When term t appears multiple times in document d, the same number
of d exist in the list. For each d, tftd is obtained by counting the number of d in
the list. In addition, dft is calculated by counting the number of unique d in the
list.

We sort the list of d and use the sorted list of d to obtain tftd, dft, and wtd.
First, the whole list is scanned to obtain dft. Then, the list is scanned again to
obtain the tftd, while wtd is calculated in each time.

2.4 Dictionary

A dictionary is a data structure that handles a set of strings. A set of strings with
supplementary information such as ID and description is stored in the dictionary

4

0

1

a

4

b

8

c

5

b

2

a

6

b

7

b

9

c

3

a

Fig. 1. A example of trie.

C[b]=4

 a ab aba b ba bb bc c cc

b ba bb bc

0 1 2 3

Fig. 2. A example transition from each
node by b.

Table 1. A example of STT.

N 0 1 2 3 4 5 6 7 8 9

a 1 -1 -1 -1 2 3 -1 -1 -1 -1
b 4 5 -1 -1 6 -1 -1 -1 7 -1
c 8 -1 -1 -1 -1 -1 -1 -1 9 -1

beforehand. After that, we can use this dictionary to judge whether a certain
string is included in the dictionary or not. If the string is included, its supple-
mentary information is retrieved. In the areas managing large-scale vocabulary
and/or requiring limited memory capacity, the ideal dictionary algorithm needs
to have the features that achieve minimal memory footprint and fast lookup
operation. Mart́ınez-Prieto et al. conducted a comparative study of compressed
string dictionaries from the viewpoint of both theoretical and practical perfor-
mances [9].

Dictionary Encoding Let us consider a mapping that converts a word w into
the corresponding ID t. Using this mapping, T is expressed as a dictionary-
encoded sequence of integers T = t1t2t3 . . . tm.

Instead of expressing T as string, dictionary encoding enables an efficient
comparison of words and saving memory space in most situations.

STT Trie is one of the data structures that support retrieving information
using variable length keys [4]. It is represented as a tree structure. The edges
are labeled with a character. Each node corresponds to a prefix of the key. The

5

information associated with the key can be retrieved by tracing the edges from
the root. The state transition table (STT) stores the next node ID for all nodes
and for all characters explicitly.

For example, Figure 1 and Table 1 show the trie and the corresponding STT
that has aba, ba, bb, cb, and cc as keys. In this example, −1 denotes that the
transition is unavailable.

XBW In this paper, we apply compressed prefix matching with XBW proposed
by Hon et al. [7] to convert words on GPUs. Note that we use the algorithm with-
out further compression because of noticeable overhead. For theoretical details,
see [7].

The reverse prefix is defined as the concatenation of characters from the
node to the root. The ID of each node is assigned by lexicographical order of the
associated reverse prefix. Note that the ID of the root node is 0. An example of
the assigned IDs appears in Figure 1.

For each character c, the bit-vector Bc is constructed. The i-th element of
the bit-vector Bc indicates the node i can transition by a character c if the i-th
element is 1. The function rank(i, Bc) is defined as the number of 1s in Bc[0, i).
Additionally, for each character c, the smallest node ID that node’s reverse prefix
begins c is stored as C[c].

The node transition by c from the node x is obtained by the following pro-
cedure.

1. If x-th element of the Bc is 0, there is no valid transition.

2. If there is valid transition, the next node ID is calculated by rank(x,Bc) +
C[c].

Figure 2 shows example transitions from each node by b. The nodes that can
transition by b have an arrow labeled with a rank. Some examples are shown
below:

– Bb = 1100100010

– Transition by b from root node.
rank(0, Bb) + C[b] = 0 + 4 = 4

– Transition by b from node 8.
rank(8, Bb) + C[b] = 3 + 4 = 7

bit-vector For the bit-vector supporting rank in O(1) time, RRR [14] is used.
The bit-vector is divided into blocks of length t bits. The block is classified
according to the number of 1s in the bits. Thus,

(
t
k

)
blocks belong to class k

and each block has unique index r. Therefore, the pair (k, r) identifies the block.
For decoding from the pair to bits, there are two methods, using a pre-computed
table or computing on the fly [12]. Additionally, a superblock groups some blocks
and stores rank and pointer at beginning bit of the superblock.

6

Fig. 3. Example behavior of parallel primitives.

2.5 GPU Architecture

In this paper, we used a GTX 970, which is a GPU with Maxwell architecture,
for evaluation and the program is written using CUDA. For further details of
the GPU architecture, see the official documents [13].

All threads within a warp perform one common instruction in a lockstep.
When the threads within a warp follow different execution paths, each path is
executed one by one while the threads following the others discard the results.
This is called warp divergence which is one of the causes of low performance.

Global memory is basically accessed via 128-byte memory transaction. When
all threads within a warp access continuous 128-byte memory region, these mem-
ory accesses are coalesced. This coalesced access is important to achieve maxi-
mum performance of memory access.

2.6 Data parallel primitives

Data parallel primitives on GPUs are the fundamental algorithms that are used
as building blocks for constructing programs. There has been proposed some
efficient algorithms such as sort [11], scan [6], and merge [5]. In addition, there
are several implementations and libraries available. In this paper, we use Mod-
ernGPU [1] library.

In this section, we describe data parallel primitives composing our proposed
term weighting method. Figure 3 shows an example behavior of each primitive.

Scan Scan, or prefix sum, takes an associative binary operator ⊕ and an
array[a0, a1, a2, ..., an−1] as input, and then generates an array [a0, (a0⊕a1), ..., (a0⊕
a1 ⊕ ...⊕ an−1)]. If the i-th output includes the i-th input, it is called inclusive
scan. Instead, if the i-th output does not include the i-th input, it is called
exclusive scan.

7

Fig. 4. Overview of proposed term weighting method using data parallel primitives.

Sort It is considered that radix sort [11] is the fastest sorting algorithm on
GPUs. However, there is a limitation on the property of keys to perform the
radix sort. For example, the radix sort cannot perform with variable length keys
such as strings. In comparison sorting algorithms, merge sort based on efficient
merge [5] is competitive with the radix sort. Still sorting variable length keys
with the merge sort yields suboptimal performance on GPUs. We used the merge
sort [1] as an implementation of sort primitive.

Compact Compact, or filter, extracts the elements that satisfy a predicate from
input arrays. It consists of three steps. First, it marks the elements that satisfy
a condition. Then, it calculates their indices. Finally, it generates output arrays
using the indices.

Load balancing search Load balancing search takes an array of length k
in which elements represent the positions of boundary of an array of length n
that desired to be generated. Then, it generates an array of length n in which
elements represent the indices to denote what part of an array of length k. It
can be regarded as a special case of a vectorized sorted search [1].

Count Count is the operation that counts the numbers of unique keys in an
input array. It is not so much primitive as composition of primitives. However,
we describe it here because we employ it several times in our proposed method.
First, it sorts an input array if needed. Then, it extracts the indices of boundaries
using compact. The predicate for compact is whether the key is not equal to the
preceding key. After that, it calculates the number of keys by subtracting the
index from the succeeding index for each index. The corresponding key with the
number can be retrieved by using the indices of boundaries.

3 Term weighting method using data parallel primitives

Assumption We calculate all wtd corresponding to the pair ⟨t, d⟩ when doc-
ument d contains term t. A set of documents is represented as a sequence of

8

terms separated by a space. The boundary between documents is represented as
a blank line.

Step 1: Extract word In order to calculate term weights, extracting terms
from a document is needed. We assume that documents are preprocessed by the
method as described in above, hence the following conditions hold:

1. The character is the first character of a word, if the character is an alphabet
and the preceding is a blank character.

2. The character is the first character of a document, if the character is an
alphabet and the preceding is a new line character.

An array of indices denoting the positions of the first character of each term can
be obtained by compact using predicate 1. Additionally, an array of Boolean
denoting whether the corresponding term is the first term in the document. It
is used to generate a document index in the next step.

Step 2: Assign document ID We have no information on which term belongs
which document. Using the inclusive scan of sum, we can obtain an array of
monotonic values that the terms within the same document have the same value.
We use these values as document ID d.

Step 3: Calculate document length For calculating BM25, the number of
terms in each document is needed. It can be obtained by count primitive to an
array of document IDs.

Step 4: Sort In this step, the positions of terms and the document IDs are
sorted by the position of the term as the key and the document ID as the value.
The position of the term is compared with the corresponding term by string
comparison. We use stable sort so that document IDs can preserve monotonic
order within the same terms.

Step 5: Calculate tftd The number of elements that have the same term and
document ID is tftd, which is obtained by count primitive.

Step 6: Calculate dft In the previous step, the array of unique pairs of term t
and document ID d is obtained. The number of the elements that have the same
term is dft in this array. In the same way, dft is obtained by count primitive.

Step 7: Assign dft In order to calculate wtd, we need both tftd and dft. If
one thread handles one dft, it is easy to obtain tftd from dft by calculating
offsets and iterating dft times. In this way, however, some threads may calculate
large amounts of BM25 weights while others do a few. Thus, a significant load
imbalance occurs and the warp divergence hurts performance.

9

To evade this and balance the load, we create an expanded array of dft of
which element has a one-to-one correspondence to tftd. This array is generated
by load balancing search.

Step 8: Calculate BM25 Since the values necessary for the calculation are
obtained by the above steps, BM25 weights are calculated with Equation (1).

3.1 Implementation of the dictionary

We implemented the dictionary with XBW as described in section 2.4. First, the
block size is set to 15. Class k ranges [0, . . . , 15]. Thus, class k is represented as a
4-bit integer. The superblock groups 16 blocks. A rank, a pointer, and 16 classes
are stored in a structure. The size of the structure is 16 bytes. This structure is
handled as built-in vector type uint4 so that it can be fetched in a single memory
transaction.

We use the table for decoding a pair (k, r). The number of entries is 215 and
the size of each entry shares 2 bytes. Thus, the size of the table is 64 KB in
total. The constant ⌈log

(
t
k

)
⌉ and offsets for accessing the table are cached in the

shared memory.

Modification to term weighting method It is assumed that the dictionary
is constructed in advance and resided in CPU side memory. The dictionary
is transferred to GPU side memory along with input documents. We add the
converting step before the sort step. This step converts the positions of terms
into IDs using the dictionary. After this step, comparisons of the terms are
replaced by those of IDs.

If there is a term that is not listed in the dictionary, this term is treated as
an unknown term, and the same ID is assigned for all unknown terms. Note that
the existence of unknown terms never affects the term weight of other terms,
although the term weight of unknown terms becomes the same value.

4 Evaluation

In this section, we compare the following four methods and evaluate the perfor-
mance:

MapReduce Phoenix++ (MRP)
This is a MapReduce based method on multi-core processors using Phoenix++
[17]. We conduct experiments using 8 threads, which is the same as the num-
ber of logical cores.

MapReduce Mars revised (MRM)
This is a MapReduce based method on GPUs using Mars [3]. We replaced the
original sort algorithm to the merge-based sort primitive for fair comparison.
The overhead of sorting is a bottleneck in the shuffle step.

10

Table 2. Statistics of datasets.

nw ndl ntf ndf

100MB 17,881,505 24,411 11,029,756 447,663
200MB 35,767,202 48,725 22,074,419 687,255
300MB 53,651,412 73,163 33,119,396 882,477
400MB 71,532,437 97,683 44,123,823 1,051,534
500MB 89,409,102 122,178 55,165,752 1,203,716

Parallel Primitives (PP)
This is a data parallel primitives based method on GPUs without a dictio-
nary.

Parallel Primitives with Dictionary (PPD)
This is a data parallel primitives based method on GPUs with the dictionary
to convert terms into IDs.

We measured the execution times from when all inputs reside in CPU side
memory until calculated results are stored back to CPU side memory. Hence,
data transfer time between the CPU and the GPU is included if a GPU is used.

4.1 Setup

We collect frequencies of terms from around 50 million English pages in TREC
ClueWeb09 Category B3. The terms are case insensitive and consist of only
alphabets. Thus, Σ = {a, b, . . . , z} and |Σ| = 26. We used top-k terms when the
vocabulary size is k.

We used artificially created documents for evaluation. The words in the doc-
ument are randomly selected by using discrete distribution based on the above
frequencies of terms. The lengths of the documents are randomly determined by
using lognormal distribution of which parameters are µ = 6.0, σ = 1.1. Table 2
shows the statistics of the datasets generated. Here, nw is the total number of
words, ndl is the number of documents, ntf is that of tftd, and ndf is that of dft.

The experiments were conducted on a PC with an Intel Core i7-6700K, 16GB
of DDR4 memory, and an NVIDIA GeForce GTX 970, running on Ubuntu 14.04
and CUDA 7.5.

4.2 Results

Figure 5 compares the performances of four methods. Both the proposed methods
based on parallel primitives on GPUs perform better than multi-core CPUs.
In particular, PPD, which uses the dictionary, outperforms MRP by a factor
of 5.0-5.1 in terms of runtime. The effect of using the dictionary is observed
by comparing PPD and PP. PPD achieves reduction of overall runtime by a
factor of 3.8-4.5. By contrast, MRM, which uses Mars on GPUs, fails to achieve

3 http://trec.nist.gov/

11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

100 200 300 400 500

ti
m

e
 (

s)

MB

MRP(CPU)
MRM(GPU)

PP(GPU)
PPD(GPU)

Fig. 5. Execution time of methods.

performance gain against MRP. Furthermore, the memory requirement is larger
than the other methods; therefore, MRM cannot run with more than 400MB of
datasets.

Figure 6 shows breakdowns of the execution times of MapReduce-based MRP
and MRM running on CPUs and GPUs, respectively. The shuffle step aggregates
key-value pairs. This step is implemented by sort in Mars and hash tables in
Phoenix++, respectively. Thus, the time for shuffle is included within map and
reduce steps in Phoenix++. The merge step gathers the results of each reduce
worker into one list of key-value pairs. Although the reduce step of MRMdoes
not contain any operation handling strings, this step occupies a large portion of
execution time. This is due to load imbalance within threads which detoriorates
performance.

Figure 7 shows breakdowns of the execution times of data parallel primi-
tives based methods. In PP method, the steps handling variable length strings
such as sort, the calculations of tf and df occupy a large portion of execution
time. In particular, sorting dominates overall execution time. By contrast, PPD
method which employs the dictionary reduces the overheads of costly sorting
and comparing of strings by converting terms into IDs beforehand. Although
the converting step is added, the cost of converting and sorting by IDs is small
enough compared to sorting by strings.

PPD achieves a significant speedup by using the dictionary. In compensa-
tion for using the dictionary, there are two disadvantages. First, an additional
cost for converting is involved. Second, it cannot calculate weights of the terms
that are not listed in the dictionary. Moreover, the execution time without data
transfer occupies about 45%. However, it is important to use a fast and compact

12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

MRP(CPU) MRM(GPU)

ti
m

e
 (

s)

merge
reduce
shuffle

map

Fig. 6. Breakdown of excexution time of MapReduce based methods.

dictionary for the applications which need to handle large vocabulary such as
information retrieval.

4.3 Evaluation of Dictionary

In this section, we compare the proposed implementation of the dictionary with a
naive one based on a trie using a state transition table (STT). STT is the fastest
method if memory access cost is constant. In reality, the memory subsystem of
GPU is complicated and varies depending on architecture [19, 10]. It must be
noted that these algorithms for dictionary are inherently inevitable to random
access. Hence, their performances are heavily influenced by memory hierarchy
and cache replacement algorithm of hardware.

Setup We used the following two types of text:

Tfreq

This is an artificial text using discrete distribution as same as the section
4.1.

Tunif

This is an artificial text using uniform distribution.

There are two parameters m and k for texts. The parameter m is the number of
words in a text and k is that of words in vocabulary.

The thread i converts the i+kN -th word, where N is the number of threads
and k is natural number. We measured execution times in changing the number
of threads and that of blocks. The minimal execution times are shown in the
following results.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

PP(GPU) PPD(GPU)

ti
m

e
 (

s)

dtoh
Step8

Step6,7
Step5
Step4

ID
Step3
Step2
Step1

htod

Fig. 7. Breakdown of execution time of data parallel primitive based mehods. dtoh:
data transfer time from GPU to CPU. htod: data transfer time from CPU to GPU.
each step corresponding to steps of section 3.

Results The memory footprint of the dictionary in our setup is shown in Figure
8. For large vocabulary, the XBW requires about 40x less memory footprint than
STT.

Seeing Figure 9, the execution time is proportional to the size of input in all
cases. The performance of STT is heavily depending on the vocabulary size. By
contrast, the proposed method slightly increases the execution time.

Figure 11 indicates the execution time per character, while total memory
usage is shown in Figure 10. The input text is Tfreq, m = 100M, and imitates
an actual text by using term frequencies. The execution time of STT increases
along with vocabulary size. For large vocabulary, the proposed method performs
better than STT in this scenario.

When the input text is Tunif , the behavior is shown in Figure 12. Both meth-
ods increase execution times along with vocabulary size. When using uniform
distribution, the characteristic of text changes according to vocabulary size. The
variance of length of words becomes larger because a rare word is often longer.
The mean and variance of length of words in a text are shown in Table 3. The
variance of length of words causes warp divergence. It is considered that the
proposed method suffers the more effect of warp divergence, since it requires
more operations than STT.

14

100 B

1kB

10kB

100kB

1MB

10MB

100MB

1GB

10GB

100GB

1 B
10 B

100 B

1kB
10kB

100kB

1M
B

10M
B

100M
B

1G
B

D
ic

ti
o

n
a

ry
 (

lo
g

 s
c

a
le

)

Vocabulary (log scale)

XBW
STT

Fig. 8. Memory footprint of the dictionary.

Table 3. Mean and variance of length of word in a text.

Vocabulary size k 10K 100K 1M 10M

Tfreq Mean 4.55 4.78 4.84 4.86
Variance 6.34 6.91 7.09 7.24

Tunif Mean 6.66 7.12 7.84 9.44
Variance 6.42 7.04 8.32 17.2

5 Conclusion

In this paper, we proposed an implementation of the efficient compressed dictio-
nary on GPUs and a methodology to construct a very fast BM25 term weighting
algorithm with a dictionary and existing data parallel primitives on GPUs as
an example of major document processing. The experimental results showed
that the proposed dictionary requires 40x less memory footprint than STT, and
that GPUs are able to achieve obvious speedup against CPUs on processing of
documents by properly composing the dictionary and data parallel primitives.

Although the performance for converting words into integer IDs depends
on characteristics of text and vocabulary, the proposed dictionary is competi-
tive with STT in our setup when the size of vocabulary is large. By using the
dictionary to avoid string comparison, GPUs with dictionary performs up to
5.1x faster than multi-core CPUs and up to 4.1x faster than GPUs without the
dictionary. Use of the dictionary has proven to be very effective in efficiently
performing the processing of documents, thereby the importance of a compact
and fast dictionary has been clarified.

Further studies are needed in order to conclude applicability of the data
parallel primitives and the dictionary to other document processing. In terms of
the dictionary, the simplest parallelization method is used for converting words
into IDs. Since the processing time of each word depends on the length of a
word, it is considered that some sophisticated scheduling method rearranging

15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200
 400

 600
 800

 1000

 1200

 1400

ru
n

ti
m

e
 (

m
s)

input size (MB)

STT(100K)
PROPOSED(100K)

STT(10M)
PROPOSED(10M)

Fig. 9. Runtime in milliseconds of convert-
ing words where Tfreq, k = 100K, 10M, and
varying the length of text m.

0.0 B

500.0MB

1.0GB

1.5GB

2.0GB

2.5GB

3.0GB

3.5GB

4.0GB

10K
50K

100K

500K

1M 2M 3M 4M 5M 7M 10M

m
e

m
o

ry
 u

sa
g

e

vocabulary k

STT
PROPOSED

Fig. 10. Total memory usage on GPUs of
converting words where Tfreq, m = 100M,
and varying the number of words in vocab-
ulary.

 0

 0.2

 0.4

 0.6

 0.8

 1

10K
50K

100K

500K

1M 2M 3M 4M 5M 7M 10M

ru
n

ti
m

e
 p

e
r

c
h

a
ra

c
te

r
(n

s)

vocabulary k

STT
PROPOSED

Fig. 11. Runtime per character in nanosec-
onds of converting words where Tfreq, m =
100M, and varying the number of words in
vocabulary.

 0

 0.2

 0.4

 0.6

 0.8

 1

10K
50K

100K

500K

1M 2M 3M 4M 5M 7M 10M

ru
n

ti
m

e
 p

e
r

c
h

a
ra

c
te

r
(n

s)

vocabulary k

STT
PROPOSED

Fig. 12. Runtime per character in nanosec-
onds of converting words where Tunif , m =
100M, and varying the number of words in
vocabulary.

16

words can balance the load among threads and achieve more improvement in its
performance.

References

1. Baxter, S.: moderngpu 2.0, https://github.com/moderngpu/moderngpu/

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6. pp. 10–10. OSDI’04, USENIX Association (2004)

3. Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: Accelerating mapreduce with
graphics processors. IEEE Transactions on Parallel and Distributed Systems 22(4),
608–620 (2011)

4. Fredkin, E.: Trie Memory. Communications of the ACM 3(9), 490–499 (Sept 1960)

5. Green, O., McColl, R., Bader, D.A.: GPU Merge Path: A GPU merging algorithm.
In: Proceedings of the 26th ACM International Conference on Supercomputing. pp.
331–340. ICS ’12, ACM (2012)

6. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with cuda. In:
Nguyen, H. (ed.) GPU Gems 3. Addison Wesley (Aug 2007)

7. Hon, W.K., Ku, T.H., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster compressed
dictionary matching. Theoretical Computer Science 475, 113 – 119 (2013)

8. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce. Morgan and
Claypool Publishers (2010)

9. Mart́ınez-Prieto, M.A., Brisaboa, N., Cnovas, R., Claude, F., Navarro, G.: Practical
compressed string dictionaries. Information Systems 56, 73 – 108 (2016)

10. Mei, X., Chu, X.: Dissecting GPU memory hierarchy through microbenchmarking.
IEEE Transactions on Parallel and Distributed Systems 28(1), 72–86 (2017)

11. Merrill, D., Grimshaw, A.: High performance and scalable radix sorting: a case
study of implementing dynamic parallelism for gpu computing. Parallel Processing
Letters 21(02), 245–272 (2011)

12. Navarro, G., Providel, E.: Fast, small, simple rank/select on bitmaps. In: Pro-
ceedings of the 11th International Conference on Experimental Algorithms. pp.
295–306. SEA’12, Springer-Verlag (2012)

13. NVIDIA: CUDA Toolkit Documentation. http://docs.nvidia.com/cuda/

14. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (Nov 2007), article No. 43

15. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M.: Okapi
at TREC-3. In: Proceedings of The 3rd Text REtrieval Conference. pp. 109–126
(1994)

16. Sitaridi, E.A., Ross, K.A.: GPU-accelerated string matching for database applica-
tions. The VLDB Journal 25(5), 719–740 (2016)

17. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++: Modular mapreduce for shared-
memory systems. In: Proceedings of the Second International Workshop on MapRe-
duce and Its Applications. pp. 9–16. MapReduce ’11, ACM (2011)

18. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: A
high-performance graph processing library on the gpu. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
pp. 11:1–11:12. PPoPP ’16, ACM (2016)

17

19. Wong, H., Papadopoulou, M., Sadooghi-Alvandi, M., Moshovos, A.: Demystifying
GPU microarchitecture through microbenchmarking. In: IEEE International Sym-
posium on Performance Analysis of Systems and Software. pp. 235–246. ISPASS
2010 (2010)

