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Abstract. In this paper, we propose a score fusion method using a
mixture copula that can consider complex dependencies between multi-
ple relevance scores in order to improve the effectiveness of information
retrieval. The combination of multiple relevance scores has been shown
to be effective in comparison with a single score. Widely used score fu-
sion methods are linear combination and learning to rank. Linear com-
bination cannot capture the non-linear dependency of multiple scores.
Learning to rank yields output that makes it difficult to understand the
models. These problems can be solved by using a copula, which is a
statistical framework, because it can capture the non-linear dependency
and also provide an interpretable reason for the model. Although some
studies apply copulas to score fusion and demonstrate the effectiveness,
their methods employ a unimodal copula, thus making it difficult to cap-
ture complex dependencies. Therefore, we introduce a new score fusion
method that uses a mixture copula to handle the complicated dependen-
cies of scores; then, we evaluate the accuracy of our proposed method.
Experiments on ClueWeb’09, a large-scale document set, show that in
some cases, our proposed method significantly outperforms linear com-
bination and others existing methods that use a unimodal copula.

Keywords: copulas, information retrieval, dependencies between relevance scores

1 Introduction

Given a user query, search systems calculate the relevance scores of documents
with respect to the query and return a list of documents ranked by relevance. In
order to improve search accuracy, many IR models that calculate relevance scores
have been proposed [3,22,27,30,32–38]. Owing to the diverse and complex nature
of the information needs of users, it is difficult to determine an appropriate IR
model that always yields the most accurate search results. In order to address
this challenge, many studies have combined multiple relevance scores obtained
from multiple IR models [11,18,20].

Relevance scores can be combined using various approaches, such as function-
based methods [2, 9, 10, 41, 43], learning to rank [6, 7, 21, 28], and score fusion

⋆ This work was conducted while the author was at Tokyo Institute of Technology.
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methods using a copula [15]. Linear combination, which is one of the representa-
tive function-based methods, cannot capture the non-linear dependency between
relevance scores. In addition, the output of learning to rank is complex with re-
spect to understanding the model. These problems can be solved with a copula,
which is a statistical framework used for analyzing complex multi-dimensional
dependencies [15]. A copula is a model that represents the relationship between
a multidimensional distribution and the marginal distributions. By applying a
copula to a score fusion method, we can build a model that captures the non-
linear dependency and is easy to understand intuitively.

Existing score fusion methods using a copula [15] cannot capture complex
dependencies easily because these methods employ a unimodal copula that is
assumed to model a unimodal distribution. For example, Figure 1 shows a dis-
tribution of two relevance scores. In the figure, each point denotes a document;
the vertical axis represents the relevance scores x from an IR model X, and the
horizontal axis represents the relevance scores y from a model Y . The set of doc-
uments exhibits some correlations locally around (x, y) = (0.3, 0.5), (0.8, 0.1),
and (0.8, 0.8). From Figure 1(a), the contour plot of the distribution estimated
by using a unimodal copula cannot capture these correlations.

In this paper, we propose a score fusion method using a mixture copula
that consists of multiple unimodal copulas. Mixture copulas can capture com-
plex dependencies; therefore, they can estimate multimodal distribution accu-
rately. Figure 1(b) shows that the distribution estimated by a mixture copula
can capture complex dependencies between multiple relevance scores. Further,
we evaluate the effectiveness of our proposed method by demonstrating that the
consideration of complex dependencies can improve search accuracy.

Section 2 provides a basic introduction to copulas, and Section 3 reviews
related work. Section 4 describes a score fusion method using a mixture cop-
ula, and Section 5 presents the evaluation method and results for the proposed
method. In Section 6, the conclusion is stated, and plans for future work are
described.
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(a) Distribution using a Unimodal Copula
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(b) Distribution using a Mixture Copula

Fig. 1: Examples of Complex Distribution
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2 Copulas

Before applying copulas to an IR model, we provide a basic introduction of
copulas that have been used in other research fields such as finance. For more
detail, refer to the book by Nelsen [25].

2.1 Definitions and Properties

Copulas are models that describe the relationship between a multivariate dis-
tribution and the marginal distributions. Let X be a k-dimensional random
vector X = (x1, x2, ..., xk). Further, let a function Fk(x) be a marginal cumu-
lative distribution function for an element xk of the random vector X, where
Fk(x) = P [Xk ≥ x]. Then, we can map X to a k-dimensional unit cube [0, 1]k

as U = (u1, u2, ..., uk) = (F1(x1), F2(x2), ..., Fk(xk)). A k-dimensional copula
C is described as a joint cumulative distribution function of the normalized
random vector U . Most importantly, it has been proved that there exists a
copula C that satisfies F (x1, x2, ..., xk) = C(F1(x1), F2(x2), ..., Fk(xk)) in any
k-dimensional joint cumulative distribution function F (x1, x2, ..., xk) [25]. This
general fact indicates the high applicability of copulas. In addition, copulas fa-
cilitate our analysis of the structure of joint distribution because we separately
estimate each marginal distribution Fk(.) and the dependency structure between
the marginal distributions.

2.2 Copulas and Dependency of Relevance Scores

Let us introduce the constraint for copulas, assuming that the dependency be-
tween relevance scores is for extreme conditions such as independent, completely
positive correlation, and completely negative correlation.

When the dependency between relevance scores is independent, the copulas
are described as independent copulas Cindep.

Cindep(U) = exp(−
∑k

i=1
− log ui)

Thus, independent copulas are equivalent to the product of all elements of U . It
must be noted that while independence is frequently assumed in IR theory, it is
a naive assumption.

When the dependency between relevance scores is a completely positive cor-
relation, the copulas can be represented by the formula below.

CcoMono(U) = min{u1, u2, ..., uk}

When the dependency between relevance scores is a completely negative cor-
relation, the copulas can be represented by the formula below.

CcounterMono(U) = max{
∑k

i=1
ui + 1− k, 0}

Copulas have parameters that provide an interpretable reason for the depen-
dency structure of marginal distributions. Therefore, we can understand joint
distribution clearly. The parameters can be estimated by using maximum likeli-
hood estimation or the Monte Carlo method [8].
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2.3 Typical Families of Copulas

Families of copulas are of various types, such as elliptical copulas, Archimedean
copulas and empirical copulas.

– Elliptical Copulas
An elliptical copula is a copula derived from standard distribution, such as
Gaussian distribution and t distribution. Equation (1) shows the formula for
a Gaussian copula.

CGaussian(U) = ΦΣ(Φ−1(u1), ..., Φ
−1(uk)) (1)

where ΦΣ denotes a cumulative distribution function of standard normal dis-
tribution, and Φ−1 denotes its inverse function. A Gaussian copula requires
a parameter Σ ∈ Rk×k, which shows the observed covariance matrix.

– Archimedean Copulas
Let ϕ be a continuous, strictly decreasing function from I to [0,∞] such that
ϕ(1) = 0. Then,

Cϕ(U) = ϕ−1(ϕ(u1) + ϕ(u2) + ...+ ϕ(uk)), U ∈ (0, 1]k

This formula represents a k-dimensional Archimedean copula, where ϕ is a

generator of Cϕ. For ϕ(t) =
t−θ−1

θ , (−logt)θ,−log eθt−1
eθ−1

, the copulas are called
Clayton copulas, Gumbel copulas and Frank copulas, respectively. Further,
Clayton, Gumbel and Frank copulas are defined by Equations (2), (3) and
(4), respectively, and their corresponding contour plots are shown in Figures
2(a), 2(b) and 2(c), respectively.

CClayton(U) = (1 + θ(

k∑
i=1

1

θ
(u−θ

i − 1)))
−1
θ (2)

CGumbel(U) = exp(−(

k∑
i=1

(−log(ui))
θ)

1
θ ) (3)

CFrank(U) =
1

θ
log(1 +

∏k

i=1
(exp(−θ ui)− 1)

exp((−θ)− 1)k−1
) (4)

As seen in Figure 2, different copulas have different features. For example,
in Figure 2(a), we assume that for a Clayton copula, the dependency of
the lower region is strong whereas the dependency of the upper region is
independent. The use of a Clayton copula is effective if the dependency of
relevance scores is strong in cases where relevance scores is low.

– Empirical Copulas
An empirical copula refers to a copula that is derived from an empirical
joint distribution whose marginal distributions are estimated by empirical
distribution. Thus, an empirical copula is a nonparametric joint distribution
that is based on observations, without assuming any specific distribution. A
k-dimensional empirical copula Ĉ(U) is described as Equation (5)

Ĉ(U) =
1

N

N∑
n=1

k∏
i=1

1{tni ≤ ui} (5)
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(b) Gumbel Copulas
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(c) Frank Copulas

Fig. 2: Contour Plots of 2-dimension Joint Distribution using different Copulas

where N denotes the number of observations to estimate the empirical cop-
ula, and tni represents a score of the i-axis of the nth observation. The prob-
ability of a k-dimensional joint cumulative distribution derived from an em-
pirical copula is calculated by dividing the number of training data, such
that (tn1 ≤ u1, t

n
2 ≤ u2, ..., t

n
k ≤ uk) by the number of all training data N .

We need to select an appropriate model from the various types of copulas. A
model of copulas can be selected based on certain criteria such as tail dependence
coefficient and rank correlation coefficient [17]. The tail dependence coefficient
is an indicator of the dependence structure at the end points of the probability,
i.e., for probability around 0 or 1. If we use the tail dependence coefficient for the
selection of a model, it implies that we focus on the dependency between high
relevance (or low relevance). The rank correlation coefficient is an indicator of the
dependence structure in the entire distribution. If we select a model based on the
rank correlation coefficient, it implies that we focus on the average dependency
in the overall distribution.

2.4 Mixture Copula

A mixture copula is a copula that is composed of several copulas. By using a
mixture copula, we can build a multimodal joint distribution that enables us to
capture a complex dependency.

A mixture copula is described as the weighted sum of k copulas as shown in
Equation (6).

Cmix(U) =

k∑
i=1

piCi(U) (6)

In order to construct a mixture copula, each copula Ci and its weight pi should
be estimated. These parameters can be estimated by using approaches based on
clustering [12, 40]. Thus, we can construct a mixture copula by performing the
following steps: (1) the training data to estimate the mixture copula is split into
k clusters, (2) the data in each cluster is fit to a unimodal copula. The number
of clusters k is determined in advance. One of the methods to decide the value
of k is the usage of an information criterion such as AIC (Akaike Information
Criterion) [5].
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3 Related Work

3.1 IR models

Many IR models that calculate the relevance scores of a document have been
proposed [3,22,36–38]. BM25, one of the classical probability models [30,32], has
demonstrated high effectiveness [33]. Ponte and Croft proposed a probabilistic
language model [27] which is developed in a mathematical framework, while
vector space models [34,35] and classical probability models have been proposed
as heuristic approaches.

3.2 Fusion of IR Models

Although many IR models exist, it is difficult to determine an appropriate model
because the information needs of a user are diverse and complex. In order to
address this challenge, various studies have focused on the fusion of multiple
relevance scores calculated by several IR models. For example, some meta search
engines have attempted to improve the accuracy by combining the results from
multiple engines. These studies are known as score fusion of relevance scores
[1, 11,18,20,24].

The retrieval of structured documents such as XML posed a challenge in
combining the structure information with the relevance scores of a document
with respect to a query. Robertson et al. explain the difficulty in combination
of document’s structure information [31]. In the case of information retrieval
for children, it is important to consider the credibility and readability of the
document, as well as the relevance scores for a query [13].

3.3 Fusion of Relevance Scores

Advances of Score Fusion Although score fusion is often achieved by obtain-
ing the sums or products of results from individual systems [18], probabilistic
approaches also exist [11, 20]. Aslam and Montague proposed a probabilistic
model based on ranking [1]. They improve their model by incorporating a ma-
jority method [24]. Further, they attempted to make the model robust against
outliers by normalizing the scores [23].

Linear Combination Vogt et al. introduced linear combination in informa-
tion retrieval [41]. The suitability of linear combination has been demonstrated
[2, 9, 10, 43]. Gerani et al. applied nonlinear transformation to relevance scores
before applying linear combination [19]. Gerani et al. showed that their method
outperformed standard linear combination. This result demonstrates the need
for a model that can capture complex and nonlinear dependency.

Learning to rank Learning to rank is a ranking model that uses machine
learning and enables easy unification to obtain one score from a large number of
document features [6, 7, 21, 28]. This approach extracts the features of relevant
documents from a set of documents that are labeled as either relevant or irrel-
evant. The disadvantage of this approach is the difficulty in understanding the
resulting model.
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Copulas In general, copulas are widely used in quantitative finance and in
portfolio management [4,17]. Some recent studies have applied copulas in other
research fields [26,29,39]. Vrac et al. applied a mixture copula to a global climate
dataset and showed that a mixture copula can group the climate of the world
correctly in terms of meteorology [42].

Eickhoff et al. applied copulas to score fusion and their proposed method
outperformed the baselines as a result of combining two relevant features in
some cases [15]. They verified the effectiveness of the approach when the number
of relevant features was increased from 2 to 136. The result showed that their
proposed method is more effective than linear combination as the number of
relevant criteria increases [14]. In addition, they applied copulas to language
models in which independence is frequently assumed. Their proposed method
showed that it has competitive performance when compared with naive language
models and some learning to rank methods [16].

Although the approaches proposed by Eickhoff et al. have demonstrated the
effectiveness of copulas, their methods cannot estimate a joint distribution cor-
rectly when the distribution is complex, as shown in Figure 1(a), because the
complexity of the dependency makes it difficult to estimate the joint distribution
precisely. One of the solutions to the problem is the use of multiple copulas to
estimate a multimodal distribution.

4 Proposed Approach

We propose a score fusion method that uses a mixture copula. We use mixture
copulas to precisely estimate a joint distribution of relevant documents which
has some strong correlations locally as shown in Figure 1(b). In Figure 1(b), for
example, the distribution is accurately captured by three copulas, although its
right two areas have strong correlations locally.

In our method, first, a mixture copula is estimated; then, models of score
fusion are constructed by using the mixture copula. As we mentioned in Section
2.4, a mixture copula is composed of multiple unimodal copulas. During the
process, clustering is useful in estimating a mixture copula [12, 40]. We use a
clustering approach in our method.

The process for constructing the proposed model is described below;

1. Apply a clustering algorithm to relevant documents.
2. In each cluster, estimate a joint distribution using a unimodal copula.
3. Combine the unimodal copulas estimated in the previous step and construct

a mixture copula.
4. Create a score fusion method by using the estimated mixture distribution.

Figure 3(a) shows the process for constructing a model by using our method,
and Figure 3(b) shows the process that uses the method of Eickhoff et al [15].
Our proposed method begins with the clustering of relevant documents and
estimates joint distribution of relevant documents in individual clusters using
unimodal copulas, whereas Eickhoff et al. estimate a joint distribution of relevant
documents using one unimodal copula.
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2. Estimating  
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5. Constructing of a model  

1. Clustering Relevant Documents 

4. Mixing Joint Distributions 

(a) Our Method

Estimating a Joint Distribution 
 
 1. Estimating  
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3. Constructing of a model  

(b) Method of Eickhoff et al.

Fig. 3: Processes for Constructing a Model using Copulas

4.1 Clustering Relevant Documents

A group-average agglomerative clustering method is used as a clustering algo-
rithm. The group-average agglomerative clustering method merges two clusters
whose distance is the closest until the number of clusters reaches k determined in
advance. The distance between two clusters is defined as the average of distances
between all pairs of documents except for pairs from the same cluster. Although
we employ a group-average agglomerative clustering method, any clustering al-
gorithms can be used in our method.

4.2 Estimating Joint Distribution in Individual Clusters

In individual clusters, joint distributions are obtained by performing the follow-
ing two steps: (1) estimating the marginal distributions, and (2) estimating the
dependency structure between the marginal distributions by using a copula.

We infer a marginal distribution by using a marginal distribution function.
Equation (7) shows a Gaussian cumulative distribution function as an example
of a marginal distribution function:

F̂ (x) =
1√
2πσ

∫ x

−∞
exp(− (t−m)2

2σ2
) dt (7)

where m denotes the mean of the distribution and σ represents the variance
of the distribution. A cumulative distribution function is used because copulas
require a random vector whose component is a cumulative score.

Next, we estimate the dependency between the marginal distributions by us-
ing copulas. The best copula is determined by comparing the performance of
each copula. As mentioned in Section 2, although we must select an appropri-
ate copula from various copulas, this challenge will be addressed in the future.
In order to estimate the parameters of a copula, we use maximum likelihood
estimation.

4.3 Constructing a Mixture Copula

Individual unimodal copulas are mixed by applying Equation (6). The weight pi
of a mixture copula is considered to be the probability that indicates how much
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each document contributes to the ith cluster. Therefore, we set weight pi as the
ratio between the number of relevant documents assigned to the ith cluster and
the total number of relevant documents.

4.4 A Model for Score Fusion

A method to apply copulas to a score fusion method in an effective manner is
unknown. Thus, we propose two models and evaluate their effectiveness.

The first model is a cumulative joint distribution function estimated by a
mixture copula, which is in Equation (6). In comparison with a unimodal copula,
a mixture copula can be precisely fitted to data when the dependency structure
is complex. We evaluate its effect on accuracy improvement when estimating
joint distribution more precisely.

The second model is the product of the likelihood of a normalized random
vector U and a cumulative score derived from a mixture copula Cmix(U), as
shown in Equation (8).

Cmix−prod = Cmix(U)

k∏
i=1

ui (8)

The likelihood of U is calculated based on an assumption that individual com-
ponents of U occur independently. This assumption is very naive. In order to
consider the dependency of the components, we multiply the likelihood by the
mixture copula Cmix(U) for which the correlation among individual components
is considered. Eickhoff et al. multiplied the likelihood by a single copula; however,
we use a mixture copula instead of a single copula.

5 Evaluation

We evaluate the effectiveness of our models proposed in Section 4.4 when com-
bining the relevance scores of two IR models.

5.1 Setup for Evaluation

– Dataset
The dataset that we use is the Category B of ClueWeb’093, excludingWikipedia
documents. ClueWeb’09 is a dataset used for the Web Track in TREC 2009-
2012. Category B, a subset of ClueWeb’09, contains approximately 44 million
English documents.

– Queries
We used 45 out of 50 queries for ad-hoc tasks of the Web Track in TREC2011.
We omitted five queries: four queries that do not have relevant documents
in the dataset and one query that includes a numeric term.

3 http://lemurproject.org/clueweb09/



10

– Measures for Evaluation

The evaluation measures that we use are: Precision (P@k) and normalized
Discounted Cumulative Gain (nDCG@k) in the top-k documents; Interpo-
lated Precision (IP@i), where i is recall level; and Mean Average Interpolated
Precision (MAIP). Further, we set k = 5, 10, 15, 20 and i = 0.0, 0.1,..., 0.5.

P@k is the ratio between the number of relevant documents in the top-k
documents and the total number of top-k documents; it is defined as:

P@k =
|A ∩B|
|A| (9)

where A is a set of top-k documents, and B is a set of relevant documents.

Equation (10) shows nDCG@k where iDCG@k is the maximum score of
DCG@k, defined as Equation (11). In Equation (11), reli denotes a binary
variable for the ith document, such that when the ith document is relevant,
reli equal to 1; otherwise, reli is equal to 0. nDCG increases as relevant
documents are ranked higher.

nDCG@k =
DCG@k

iDCG@k
(10)

DCG@k =

k∑
i=1

2reli − 1

log2(i+ 1)
(11)

IP@k is defined as shown in Equation (12) where R@r is the value of Recall
in the top r documents.

IP@i = max
r

{P@r|R@r ≥ i} (12)

MAIP is the average of 11 points of Interpolated Precision, as defined in
Equation (13).

MAIP =

∑
i∈{0,0.1,...,1} IP@i

11
(13)

– Cross Validation

Some baselines and our proposed models have parameters that are estimated
with training data. We trained the models with a part of the dataset and
tested them with the other parts of the dataset. In our experiment, we di-
vided the dataset into 5 parts of training data, then used each parts of
training data for a test set. The accuracy of the models is calculated by the
average of 5 test results.

– Target Models for Combination

We combine two IR models: BM25 [33] and a query likelihood model [27].
Dirichlet smoothing is applied to the query likelihood model. BM25 parame-
ters b, k, and smoothing parameter µ are set to 0.75, 1.2 and 110, respectively.
During evaluation, we change the variations of marginal distributions, cop-
ulas, and the number of clusters for a mixture copula for as shown in Table
1. In our experiments, a cluster containing only one document is omitted
as an outlier. The selection of an appropriate model is a task that will be
considered in future work.
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Table 1: Model Parameters for Evaluation

Values Used in the Experiment

Marginal distributions Gaussian and Empirical Distribution
Copulas Clayton, Gumbel, Frank, Gaussian and Empirical Copula
The Number of Clusters 2-10

5.2 Baselines

We prepare five baselines for comparison with the performance of the two models
shown in Equations (6) and (8). The component xi of a random vectorX denotes
a normalized relevance score, and the component ui of a random vector U denotes
a score to which a cumulative distribution function Fi(.) maps the xi.

Linear combination:

LIN(X) =

k∑
i=1

λixi (14)

Harmonic mean:

HM(X) =
k ·

∏k

j=1
xj∑k

i=1

∏k

j=1
xj

xi

(15)

If random vector X contains at least one component whose score is low, the
final score obtained by combination using harmonic mean tends to be low. For
example, HM((0.5, 0.5)) = 0.5, whereas HM((0.9, 0.1)) = 0.18.

An independent copula is given by:

Cindep(U) =

k∏
i=1

ui (16)

An independent copula denotes the product of U indicating a cumulative score of
joint distribution based on the assumption that individual components U occur
independently.

A joint distribution using a single copula is given by:

Cmono(U) = C(U) (17)

The product of a likelihood of U and a score of the cumulative distribution
is given by:

Cmono−prod = Cmono(U)

k∏
i=1

ui (18)

5.3 Statistical Testing

We test the statistical significances by using a Wilcoxon signed-rank test at two
significance levels-0.01 and 0.05.

The three major observations are: (1) The models using a copula perform
significantly better than the models using linear combination, which has shown
high performance so far. (2) The models that consider dependency perform
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significantly better than the models that ignore dependency. (3) The models
that use a mixture copula perform significantly better than the models that use
a single copula.

In order to clearly demonstrate these three observations, we compare (1)
LIN with Cindep, Cmono, Cmono−prod, Cmix, Cmix−prod, and Cmix−prod, and
(2) Cindep with Cmono, Cmono−prod, Cmix, and Cmix−prod, and (3) Cmono,
Cmono−prod with Cmix, Cmix−prod.

5.4 Results

In order to determine the best combination of a marginal distribution, a copula,
and the number of clusters, we compared the performance of the proposed models
for each combination of parameters in Table 1.

We conducted preliminary experiments to determine the best marginal dis-
tribution models, copulas, and cluster sizes. Due to the page limitation, we only
show the summary of the best combinations in Table 2.

Next, we compare our models with baselines. Table 3 shows the results of
the performance. In Table 3, The symbols ∗, †, ‡, and § indicate statistically sig-
nificant improvements over LIN , Cindep, Cmono, and Cmono−prod, respectively.
A single symbol indicates statistically significant improvements at the 0.01-level
and a double symbol indicates statistically significant improvements at the 0.05-
level. A cumulative function of a joint distribution estimated by a mixture

Table 2: Best Combination for Methods with a Copula

Model Marginal Distribution Copulas Number of Clusters

Cmono Empirical Distribution Empirical Copulas -
Cmono−prod Empirical Distribution Empirical Copulas -
Cmix Gaussian Distribution Clayton Copulas 3
Cmix−prod Gaussian Distribution Clayton Copulas 6

copula Cmix gains of 10% and 15% over linear combination with respect to P@5
and nDCG@5, respectively. In particular, in terms of nDCG@5, Cmix shows a
statistically significant improvement over LIN , Cindep, Cmono, and Cmono−prod.
Among Cindep, Cmono, and Cmix, the performance of Cmix is the best, and the
performance of Cmono exceeds that of Cindep. This result indicates that a mul-
tidimensional cumulative distribution function can retrieve more relevant docu-
ments in the top-5 results when considering the dependency between marginal
distributions.

However, in terms of P@k(≥ 10), we do not observe a tendency that the
performance of Cmix surpasses that of Cmono. Cmix is effective for the top-5
results, whereas Cmix−prod is relatively effective when retrieving 20% of relevant
documents. In terms of IP@i(= 0.1, 0.2), Cmix−prod outperforms the other mod-
els and shows a 5% improvement over LIN , Cindep, and Cmono−prod, Cmix is
the worst model. From these discussions, we conclude that (1) the performance
of Cmix tends to deteriorate when retrieving 10 or more documents, whereas it



13

Table 3: Evaluation Results

LIN HM Cindep Cmono Cmono−prod Cmix Cmix−prod

IP@0.0 0.4326 0.4228 0.4392 0.4367 0.4388 0.4603 0.4609
IP@0.1 0.2779 0.198 0.2799 0.2756 0.2797 0.2725 0.294
IP@0.2 0.2032 0.1196 0.2049 0.198 0.2019 0.1708 0.2207
IP@0.3 0.0846 0.056 0.0852 0.0874 0.089 0.0471 0.0814
IP@0.4 0.0366 0.0216 0.0382 0.0404 0.0398 0.0186 0.0306
IP@0.5 0.0141 0.0068 0.0146 0.0149 0.0156 0.0077 0.0111
MAIP 0.0963 0.0751 0.0974 0.0966 0.0976 0.0892 0.1003

P@5 0.236 0.236 0.212 0.228 0.228 0.26† 0.24†

P@10 0.232 0.2 0.206 0.226† 0.226† 0.218 0.224†

P@15 0.2187 0.1893 0.2027 0.2147† 0.2133 0.204 0.2227††

P@20 0.219 0.18 0.205 0.22† 0.219 0.196 0.22

nDCG@5 0.1616 0.1595 0.1529 0.1613 0.1615 0.1873∗†‡‡§§ 0.1685

nDCG@10 0.161 0.1472 0.1537 0.1613 0.1604 0.166 0.1644†

nDCG@15 0.1574 0.1442 0.1505 0.1576 0.1561 0.1595† 0.1634††

nDCG@20 0.1638 0.1426 0.1583 0.1661† 0.1663 0.1612 0.1711†

is effective in the top-5 results. (2) Cmix−prod is effective when retrieving 20%
of relevant documents.

6 Conclusion

In this paper, we proposed a score fusion method that uses a mixture copula.
Copulas, a family of robust statistical methods, can unify multidimensional rel-
evance scores into a single score, capturing the non-linear dependency among
relevance scores. In addition, copulas can provide an interpretable reason for the
final result by decomposing a joint distribution into individual marginal distri-
butions and their dependency structure. In the existing score fusion methods
that use a copula, it is difficult to capture complex dependencies because these
methods employ a unimodal copula, which is expected to be used for a unimodal
joint distribution. In contrast, our proposed method can capture complex depen-
dencies by using a mixture copula, which can accurately model a multimodal
distribution.

We used more than 44 million documents in ClueWeb’09, to compare our
method with linear combination and existing score fusion methods that use a
copula. For nDCG with the top-5 documents, the proposed method showed a
15% improvement in effectiveness when compared with linear combination.

In future work, the following challenges must be addressed: (1) In order to
construct a mixture copula automatically, we must determine a method to find
the appropriate number of copulas. For example, an information criterion such
as AIC can be adopted; and (2) We must determine a method to choose the
best family of copulas that precisely fits the documents by using certain criteria
such as tail dependence correlation and rank correlation coefficient.
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