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Abstract

A new high-frequency realized stochastic volatility model is proposed. Apart

from the standard daily-frequency stochastic volatility model, the high-frequency

stochastic volatility model is fit to intraday returns by extensively incorporating

intraday volatility patterns. The daily realized volatility calculated using intraday

returns is incorporated into the high-frequency stochastic volatility model by con-

sidering the bias in the daily realized volatility caused by microstructure noise. The

volatility of intraday returns is assumed to consist of the autoregressive process,

the seasonal component of the intraday volatility pattern, and the announcement

component responding to macroeconomic announcements. A Bayesian method via

Markov chain Monte Carlo is developed for the analysis of the proposed model.

The empirical analysis using the 5-minute returns of E-mini S&P 500 futures pro-

vides evidence that our high-frequency realized stochastic volatility model improves

in-sample model fit and volatility forecasting over the existing models.

Key words : Bayesian analysis, High-frequency data, Markov chain Monte Carlo,

Realized volatility, Stochastic volatility model, Volatility forecasting.
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1 Introduction

Analysis of intraday time series of financial market variables has become popular and

often provided richer information about price and volatility dynamics than traditional

daily-frequency time series analysis. Realized volatility (RV) has been the main workhorse

of this context and a wide range of methodological improvements and applications have

been developed in the literature (e.g., Barndorff-Nielsen and Shephard, 2007; Andersen

and Benzoni, 2009; Andersen et al., 2010). Compared to the traditional daily time series

analysis with the stochastic volatility (SV) models (e.g., Ghysels et al., 2002; Shephard,

2005), the RV approach provides easily-computed measures of daily volatility based on the

intraday price information for understanding price dynamics and forecasting volatility.

A hybrid approach that builds on the SV model with the RV measure is also pro-

posed as the realized SV (RSV) models (e.g., Takahashi et al., 2009, 2016; Koopman and

Scharth, 2012). The RSV model utilizes the daily RV in the context of daily SV models

by formulating a measurement equation of the daily RV linked to the latent SV and

microstructure noise. Takahashi et al. (2021) show that this modeling strategy improves

the volatility forecasting performance of the daily SV model.

Stroud and Johannes (2014) shed light on the SV model in the context of high-

frequency intraday time series, proposing a new approach that directly models the in-

traday returns in the form of traditional daily SV models but with practically relevant,

intraday volatility patterns. The new model assumes that log-volatility of intraday (such

as 5-min) returns follow a sum of persistent autoregressive processes and other key ingre-

dients: seasonal components of the intraday volatility patterns and news announcement

effects. These ingredients are commonly observed in intraday behaviors of stock returns.

The seasonality of the intraday volatility pattern typically forms a U-shape, which char-

acterizes relatively more volatile trading time at the opening and closing of trading hours.

The stock market can be volatile at macroeconomic announcements such as releases of

GDP estimates and of the central bank’s monetary policy decisions. This news-effect

component enriches the high-frequency SV model with respect to temporal hikes of the

volatility following such announcements.

The current paper proposes a new high-frequency RSV model. We incorporate the

daily RV calculated using intraday returns into the high-frequency SV model, consider-

ing the bias in the daily RV caused by microstructure noise. In line with the idea of

the RSV models for daily returns, the daily RV in the proposed model is expected to
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play an important role to pin down the latent variables of intraday SV. We apply the

proposed model to the 5-minute returns of E-mini S&P 500 futures, following Stroud

and Johannes (2014). We compare the proposed high-frequency RSV models with the

high-frequency SV models to examine how introducing the daily RV works in the con-

text of the high-frequency SV models. The empirical analysis provides evidence that our

framework performs effectively in terms of model in-sample fit and volatility forecasting.

The empirical results of in-sample fit and forecasting accuracy indicate that the proposed

model dominates the high-frequency SV model.

As related literature, Bekierman and Gribisch (2021) propose a mixed-frequency in-

traday SV model, incorporating daily series of long-lived volatility factor and intraday

series of short-lived volatility factors. The long-lived volatility factor is assumed as the

latent variable which follows a simple AR(1) process evolving on a daily basis. In con-

trast, the current paper directly incorporates the daily RV with its measurement equation

linked to the latent SV process structured in the high-frequency context to exploit the

information in the daily RV for estimating the latent process and parameters in the

high-frequency SV model. From another perspective, Santos (2019) uses trading volume

to create a time-deformed series of intraday returns in the high-frequency SV models,

based on the idea that increasing trading volume reflects more information arriving to

the market, potentially yielding more changes in volatility.

The paper is organized as follows. Section 2 defines the high-frequency RSV models

and discusses about each component of the proposed model. Section 3 describes the

Bayesian computation for model fitting and forecasting. Section 4 provides an empirical

analysis of the proposed models for E-mini S&P 500 futures. Finally, Section 5 concludes.

2 The model

2.1 High-frequency SV model

Define a univariate time series of high-frequency intraday return, yt = log(Pt/Pt−1), for

t = 1, 2, . . . , T , where Pt is the price at time t. The sampling frequency is seconds or

minutes, such as 5 sec, 1 min, and 5 min. For the notation to describe both daily and

intraday returns, let y[k,τ ] denote the return for the k-th intraday period on the day τ ,

for k = 1, . . . , K, and τ = 1, . . . , N , where K is the number of intraday periods, and N

is the number of days. This notation implies y[1,1] = y1, and y[k,τ ] = yk+(τ−1)K .
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For instance, as for the dataset of 5-min returns of E-mini S&P 500 futures used in

the empirical analysis below, the time series covers the trading hours from 18:00 (EST)

to 17:00 in each day with a short break from 16:15 to 16:30. In our intraday 5-min return

series, we include two break-time returns from 16:15 to 16:30 and from 17:00 to 18:00. In

sum, the number of intraday periods is K = 275. The data series continues from 18:00

on Sunday and to 17:00 on Friday, with a weekend trading closure from 17:00 on Friday

to 18:00 on Sunday.

The return is modeled as

yt = Vtεt + JtZt, εt ∼ standardized t(ν), (1)

where Vt is the total volatility, and JtZt is the jump component for returns.

The total volatility consists of three components:

Vt = Xt · St · At,

where Xt is the autoregressive factor of the SV, St is the intraday seasonal effect, and At

is the announcement effect. Taking the log of the squared total volatility leads to

ht ≡ log(V 2
t ) = xt + st + at,

where xt = log(X2
t ), st = log(S2

t ), and at = log(A2
t ). We describe the ingredients of the

model in detail as follows.

Heavy-tailed errors

The heavy-tailedness of the error distribution is a well-known, important element in

modeling stock returns with the daily SV models (e.g., Chib et al., 2002; Nakajima and

Omori, 2009) and high-frequency intraday returns (e.g., Andersen et al., 2007, 2010). We

incorporate the Student-t distribution with the degree-of-freedom ν, standardized such

that the variance of εt is equal to one. Then, using the scale factor λt, we represent εt as

εt =
√
λtϵt,

ν − 2

λt
∼ χ2(ν), ϵt ∼ N(0, 1), and ν > 2.

This formulation makes the posterior computation of the model easy and efficient with

the latent variable λt. The distribution reduces to the normal distribution if ν is infinite.
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For the model with normal errors, we set λt = 1, for all t.

SV autoregressive process

For the autoregressive process {xt}, we specify a form of AR(1) model as

xt+1 = µ+ ϕ(xt − µ) + ηt, (2)

where (
ϵt

ηt

)
∼ N(0, S), S =

(
1 ρσ

ρσ σ2

)
, (3)

for t = 1, . . . , T − 1, and x1 ∼ N(µ, σ2/(1 − ϕ2)), with |ϕ| < 1. The leverage effect

between the high-frequency intraday returns and volatility process is described by a

negative correlation (ρ) between the shocks (ϵt, ηt) in Equation (3).

Stroud and Johannes (2014) assume that the SV component is the sum of two AR(1)

processes to capture long- and short-lived autoregressive factors, by defining xt = x1t+x2t,

x1,t+1 = ϕ1x1t+η1t, and x2,t+1 = µ+ϕ2(x2t−µ)+η2t, with 0 < ϕ2 < ϕ1 < 1. This type of

additive multi-process SV has been well studied and known as superposition models (e.g.,

Shephard, 1996; Omori et al., 2007). While Stroud and Johannes (2014) argue that the

two autoregressive processes improve in-sample model fit and volatility forecasting over

the single autoregressive process, Santos (2019) argues that estimating two autoregressive

processes in the high-frequency SV model can be difficult to appropriately estimate even

with strong priors and restriction on the parameters (ϕ2 < ϕ1), because the additive

model of two similar latent processes could be too flexible to identify. We also encountered

a situation that the MCMC algorithm does not safely converge when we formulate the

two autoregressive models in our intraday SV and RSV models. For these reasons, we

employ the single autoregressive process as above in this paper.

Jump component

Following a standard approach to modeling jumps in the context of daily SV models (Er-

aker et al., 2003; Chib et al., 2002; Nakajima and Omori, 2009), the jump component

JtZt in Equation (1) is governed by the jump indicator variable, Jt ∈ {0, 1}, and the jump

size denoted by Zt. The jump occurs with the probability 0 < κ < 1: Pr[Jt = 1] = κ, for
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t = 1, . . . , T . We assume that the jump size follows the normal distribution:

Zt ∼ N(µz, σ
2
z),

for t = 1, . . . , T .

Stroud and Johannes (2014) formulate another jump component in the volatility

equation (2), and assume that two jumps occur coincidently. We compared the model

with jumps only in returns and the one with two coincident jumps and found that the

jump in volatility has only a marginal gain for in-sample fit and out-of-sample forecasts.

Therefore, we select the formulation without the jump in volatility for parsimonious

modeling.

Intraday seasonal effect

Let βk denote the intraday seasonal effect at intraday period k, for k = 1, . . . , K. Define

Htk as an intraday-period indicator such that Htk = 1, if time t corresponds to the period

k, and zero otherwise. Then, the seasonal effect is specified by

st =
K∑
k=1

Htkβk, t = 1, . . . , T,

βk+1 = βk + ηβ,k, ηβ,k ∼ N(0, ckv
2
β), k = 1, . . . , K − 1.

For the dynamics of the βk process, Stroud and Johannes (2014) utilize a cubic smoothing

spline. Alternatively, we propose the simple random-walk process to reduce a computa-

tional burden. Note that ck denotes the time-varying part of the innovation variance. We

set a large value for ck for the time period k when we expect abrupt changes, such as an

opening time of a local and a major international market, and set ck = 1 for other k. To

identify the latent processes and parameters, the formulation requires some restriction

for {βk}. Although Stroud and Johannes (2014) propose the restriction, 1
K

∑K
k=1 βk = 0,

and use an ad-hoc sampling step to satisfy it, this approach makes an exact sampling

scheme intractable. In the current paper, we instead define β1 = 0.

Announcement effects

We consider the announcement effect for each macroeconomic announcement j = 1, . . . , J ,

where J denotes the number of announcements. Let αjℓ denote the effect of announce-

ment j at ℓ periods after the news release, for ℓ = 1, . . . , L. We set L = 24, which
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means that each announcement can impact on the volatility up to 2 hours after the an-

nouncement in case of 5-min returns. Further, define Ijtℓ as an announcement-period

indicator such that Ijtℓ = 1, if time t corresponds to the period ℓ after the announce-

ment j, and zero otherwise. Then, the announcement effect is specified by the first-order

autoregressive process, that is,

at =
J∑

j=1

L∑
ℓ=1

Ijtℓαjℓ, t = 1, . . . , T,

αj,ℓ+1 = φjαjℓ + ζjℓ, ζjℓ ∼ N(0, v2αj), ℓ = 1, . . . , L− 1,

where |φj| < 1, for j = 1, . . . , J . For modeling the announcement effect, Stroud and

Johannes (2014) use the cubic smoothing spline. For the same reason mentioned above,

we instead employ the simple autoregressive process to reduce a computational burden.

2.2 High-frequency RSV model

We introduce the daily series of RV to propose the high-frequency RSV model. A plain

RV is defined as

RVτ =
K∑
k=1

y2[k,τ ], τ = 1, . . . , N. (4)

In our empirical analysis, we compute this RV using 5-min returns only when the market

is open, i.e., excluding break-time returns.

A key equation in our high-frequency RSV model is the measurement of the RV:

log(RVτ ) = ξ + log
∑

t∈D(τ)

exp(ht) + uτ , uτ ∼ N(0, σ2
u), (5)

for τ = 1, . . . , N , where D(τ) denotes a set of intraday time points on Day τ . The

parameter ξ addresses the bias in the RV. If ξ = 0, log(RVτ ) is an unbiased estimator of

the log of the true daily volatility, log
∑

t∈D(τ) exp(ht).

This equation connects the RV calculated using intraday returns to the model-implied

true volatility with the bias correction. The RSVmodel for daily returns (Takahashi et al.,

2009; Koopman and Scharth, 2012) links the daily RV with the daily model-implied

volatility. In line with this idea, it could be effective to connect an intraday (say, 5-

min) RV to intraday model-implied volatility, exp(ht), in the high-frequency RSV model.
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However, such an intraday RV is difficult to compute properly due to the microstructure

noise. Therefore, we come up with daily RV for the link in the measurement equation of

our high-frequency RSV model. Another frequency (i.e., a half day) to compute the RV

may also work, which we will discuss later as future work.

Assume that p(t), denoting the log of an asset price, follows a jump-diffusion process:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dN(t), (6)

where t is continuous time, µ(t) is drift, σ(t) is instantaneous volatility, κ(t) is the jump

size, and N(t) is counting measure. If p(t) does not include noise,

plim
K→∞

RVτ =

∫ τ

τ−1

σ2(t)dt+
∑

τ−1<t≤τ

κ2(t)dt. (7)

The first term of the right-hand side is called the integrated volatility or continuous

component, which corresponds to
∑

t∈D(τ)exp(ht). The second term is called the jump

component. There are some methods available for separating RVτ into the estimate of

the continuous component, Ĉτ and that of the jump component Ĵτ (Barndorff-Nielsen

and Shephard, 2004, 2006; Corsi et al., 2010). Strictly speaking, equation (5) should be

replaced by

log(Ĉτ ) = ξ1 + log
∑

t∈D(τ)

exp(ht) + u1,τ , u1,τ ∼ N(0, σ2
1),

log(1 + Ĵτ ) = ξ2 + log

1 +
∑

t∈D(τ)

(JtZt)
2

+ u2,τ , u2,τ ∼ N(0, σ2
2).

Since it makes the estimation difficult, we simply use equation (5), so that the jump

component is included in ξ and uτ in equation (5).

3 Bayesian analysis and computation

3.1 Model estimation

Based on observation y ≡ (y1, . . . , yT ), we consider model fitting using the Bayesian

MCMC methods including conditional samplers for each model component. The al-
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gorithm is implemented with collections of the samplers for the daily SV models with

leverage, jumps, and heavy-tailed errors (Chib et al., 2002; Omori and Watanabe, 2008;

Nakajima and Omori, 2009) and for the state space dynamic models (e.g., Prado and

West, 2010).

The full set of posterior computations consists of the following conditional samplers

for latent processes and model parameters:

1. The latent autoregressive SV process: x ≡ (x1, . . . , xT ).

2. The jump components: J ≡ (J1, . . . , JT ) and Z ≡ (Z1, . . . , ZT ).

3. The intraday seasonal and announcement effects: β ≡ (β1, . . . , βK) and α =

{α1, . . . ,αJ}, where αj ≡ (αj1, . . . , αjL), for j = 1, . . . , J .

4. The mixing latent process: λ ≡ (λ1, . . . , λT ).

5. The parameters defining the latent SV process: θX ≡ (ϕ, σ, ρ, µ).

6. The jump parameters: θJ ≡ (κ, µz, σz).

7. The parameters defining the intraday seasonal and announcement effects: v ≡
(vβ, vα1, . . . , vαJ) and φ ≡ (φ1, . . . , φJ).

8. The degree of freedom for the Student-t distribution: ν.

9. The parameters defining the RV measurement equation: (ξ, σu)

This algorithm generates samples from the full posterior distribution π(ψ,θ|y), where
ψ = {x,J ,Z,λ}, and θ = {β,α,θX ,θJ ,v,φ, ν, ξ, σu}. Details of the MCMC computa-

tion are documented in Appendix.

Stroud and Johannes (2014) employ the so-called mixture sampler developed by Kim

et al. (1998), and Omori et al. (2007) in their MCMC algorithm for the high-frequency

SV model. The main challenge to generating the posterior sample from the SV model

is the nonlinearity of the return equation in terms of volatility. Kim et al. (1998) take

the logarithm of both sides of the equation to make the model linear and approximate

the log chi-squared distribution by a normal mixture distribution. Conditional on an

auxiliary variable associated with the mixture distribution, the model reduces to a linear

Gaussian state space representation, and we can apply an efficient sampler such as the

simulation smoother (e.g., de Jong and Shephard, 1995). Although it is well known that
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an approximation error is negligible (Omori et al., 2007), Stroud and Johannes (2014)

mix up the mixture sampler and other conditional samplers based on the exact model

specification. Therefore, the current paper proposes the exact algorithm fully based on

the original model representation using the efficient multi-move sampler (Shephard and

Pitt, 1997; Omori and Watanabe, 2008).

3.2 Model evaluation

For the model comparison exercises, we consider in-sample fit and out-of-sample forecasts.

This subsection describes methods to compute measures for the model comparison.

3.2.1 In-sample fit

In a Bayesian framework, we can compare models based on a posterior probability that

is proportional to the product of the prior probability of the model and the marginal

likelihood. A Bayes factor, which is the ratio of two posterior probabilities, is often used

to measure he relative degree of in-sample fit. However, a computation of the marginal

likelihood requires considerable a computation burden when the model includes many

parameters. Therefore, we instead calculate the BIC, which is a good approximation of

the Bayes factor when the number of observations is quite large as in our analysis.

The likelihood of the proposed high-frequency RSV model is estimated using the

auxiliary particle filter (e.g., Pitt and Shephard, 1999; Chib et al., 2002; Omori et al.,

2007; Stroud and Johannes, 2014). Define Y t ≡ (y1, . . . , yt), as the data up to time t.

The likelihood of the high-frequency RSV model for Y T is given by

L(Y T |θ) =
T−1∏
t=0

f(yt+1 |θ,Y T ),

where the right-hand side of this equation is the product of the predictive density:

f(yt+1 |θ,Y t) =

∫
p(yt+1 |θ,Y t,ψt+1) · p(ψt+1 |θ,Y t)dψt+1,

where ψt = (xt, λt, Jt, Zt). In the auxiliary particle filter, we use the posterior mean θ̂

estimated by the MCMC algorithm to approximate the likelihood density.

To compute the BIC, let Li and di denote the likelihood and the number of parameters
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in Model i. The BIC for Model i is defined by BICi = −2 logLi(Y T |θ̂) + di log(T ). The

second term of this criterion is the penalty for a more flexible model that includes more

parameters. Note that we treat β and α as the parameters in θ, making them fixed

at their posterior means in the auxiliary particle filter, and also counting them in the

number of parameters (di).

3.2.2 Out-of-sample volatility forecasting

To compare the out-of-sample fit among competing models, we conduct a recursive fore-

casting exercise based on one-day-ahead daily volatility forecast. Given the data up

to day τ , we run the MCMC algorithm and generate ψ[k,τ+1], y[k,τ+1], and V[k,τ+1], for

k = 1, . . . , K, at each MCMC iteration. The resulting posterior predictive density of

these variables reflects parameter uncertainty in the specified model. Let σ2
τ+1 and σ̂2

τ+1

denote the true volatility and the volatility forecast for day τ + 1, respectively. We

compute the quadratic variation as the forecast of one-day-ahead volatility:

Q̂V
(i)

τ+1 =
K∑
k=1

(y
(i)
[k,τ+1])

2, and σ̂2
τ+1 =

1

I

I∑
i=1

Q̂V
(i)

τ+1,

where (i) and I denote the i-th iteration of the MCMC algorithm and the total number

of iterations, respectively, and y
(i)
[k,τ+1] denotes a draw from the posterior predictive distri-

bution of y[k,τ+1] at the i-th iteration. We run the MCMC algorithm to estimate model

parameters and latent variables and to obtain the one-day-ahead volatility forecast for

each business day. We recursively conduct this computation every business day for the

forecasting period.

Stroud and Johannes (2014) use the particle filtering method to obtain the out-of-

sample forecast with all the parameters fixed in their forecasting exercise. In contrast,

we conduct the rolling estimation with MCMC sampling and obtain the posterior pre-

dictive mean as a point forecast. Note that our method takes account uncertainty in the

parameters.
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Figure 1: 5-min intraday returns (top) and log of daily RV (bottom) of E-mini S&P
500 futures from January 1 to December 31 in 2015. The RV series is plotted in a step
function with the intraday 5-min frequency.

4 Empirical analysis

4.1 Data and setup

The high-frequency RSV model is fit to 5-min intraday returns of E-mini S&P 500 futures,

which are traded on the Chicago Mercantile Exchange’s Globex platform. As mentioned

above, our dataset covers the prices from 18:00 (EST) on Sunday and to 17:00 on Friday,

for 24 hours including two breaks from 16:15 to 16:30 and 17:00 to 18:00. We count each

business day from 18:00 to 18:00, and create 5-min return series including two break-time

returns to obtain K = 275 intraday returns. The sample period spans from January 1,

2015, to December 31, 2019. We divide this sample period into the first year and the

rest four years as the pre-analysis and the forecasting exercise periods, respectively. The

number of business days is N = 249 and 996 for these two periods, respectively. The

whole sample is N = 1,245 and T = 342,375.
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Figure 2: Standard deviations of 5-min intraday returns of E-mini S&P 500 futures in
percent, by the period of day (top) and by date (bottom) for the full sample period, from
January 1, 2015, to December 31, 2019. In the top panel, the horizontal axis shows an
hour during the day in EST.

Figure 1 plots the 5-min intraday returns for the pre-sample period, which shows

considerably time-varying volatility. It also plots the daily RV calculated using the 5-

min intraday returns. It markedly hikes in the second half of the sample, reflecting a

high volatility period as in the top panel. To illustrate intraday and interday volatility

patterns, Figure 2 plots the standard deviation of returns (y[k,τ ]) by the period of day

(horizontal for k = 1, . . . , K) and by date (for τ = 1, . . . , N), which are computed using

the full-sample period. The intraday pattern in the top panel highlights some hikes which

mostly reflect openings in international financial markets. That is, we find small hikes at

3:00, 4:00, 20:00, when Frankfurt, London, and Hong Kong markets open, respectively,

and a relatively larger increase at 9:30, corresponding to the opening of the New York

market. During the New York trading hours that end at 16:00, we observe a U-shaped

pattern where the prices tend to be more volatile around the opening and closing times.

Table 1 reports summary statistics for the intraday returns in the pre-analysis and
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Period Mean Stdev. Skewness Kurtosis Min. Max.

(a) 2015/Jan – 2015/Dec 0.000 0.061 -0.543 84.40 -1.819 2.160

(b) 2016/Jan – 2019/Dec 0.000 0.052 -1.061 87.48 -3.067 1.328

Table 1: Summary statistics for 5-min intraday returns of E-mini S&P 500 futures, in
percent, for the (a) pre-analysis period (N = 259, T = 68,475) and (b) forecasting
exercise period (N = 996, T = 273,900).

1 ADP Employment (monthly)
2 Consumer Price Index (monthly)
3 Durable Goods (monthly)
4 GDP Advance Estimate (quarterly)
5 Monthly Payrolls (monthly)
6 Empire State Manufacturing (monthly)
7 Consumer Confidence (monthly)
8 Philadelphia Fed Manufacturing Index (monthly)
9 ISM Manufacturing Index (monthly)
10 ISM Services Index (monthly)
11 FOMC Minutes (twice a quarter)
12 FOMC Announcements (twice a quarter)

Table 2: Macroeconomic statistics for announcements effect.

forecasting exercise periods. For both periods, the skewness is negative, and the kurtosis

is remarkably high. This fact implies that the 5-min return distribution has considerably

heavy tails. We examine how the leverage effects, heavy-tailed errors, and jumps capture

these characteristics of high-frequency intraday stock returns.

For the Bayesian inference, the following priors are used: (ϕ+1)/2 ∼ B(20, 1.5), σ2 ∼
IG(40, 0.2), (ρ + 1)/2 ∼ B(1, 1), µ ∼ N(−5, 1), ν ∼ G(16, 0.8)I[ν > 2], κ ∼ B(1, 500),

µz ∼ N(0, 1), σ2
z ∼ IG(20, 4), ξ ∼ N(0, 1), σ2

u ∼ IG(2.5, 0.025), v2β ∼ IG(40, 1), β2 ∼
N(0, 100), v2αj ∼ IG(40, 1), αj1 ∼ N(0, 100), and (φj + 1)/2 ∼ B(10, 1.5), for j =

1, . . . , J , where B and G denote the beta and gamma distributions, respectively. From

the observation of the intraday volatility pattern in Figure 2, we set ck = 100 for k =

1, 25, 109, 121, 187, 265, 271, which correspond to the opening and closing time of relevant

international financial markets mentioned above, including the times 16:30 and 18:00,

which corresponds to the time after the breaks of S&P E-mini futures trading. For the

daily series of RV, we calculate it using the 5-minute returns only for trading hours as

explained above.
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For the macroeconomic announcements, we use releases of major economic statistics

and Federal Reserve Boards’ announcements listed in Table 2, which are the same as used

by Stroud and Johannes (2014) with one exception that we exclude Jobless Claims as

its announcement effects are statistically not relevant in our high-frequency SV and RSV

models, through the pre-sample and forecasting exercise periods. We assume J = 24,

which implies the announcement effects can be alive for 2 hours after the announcement.

Following Stroud and Johannes (2014), we include Sunday opens as it tends to be volatile

responding to information gathered during the weekend. Note that we do not take into

account how different the released number of the macroeconomic statistics or contents

of the policy announcements is, compared to market expectations. It is reasonable to

consider that the larger the “market surprise” is, the higher the volatility gets. Examining

the relationship between the market surprise and volatility is of interest, which is left as

future work.

The MCMC analysis was run for a burn-in period of 2,000 samples prior to saving the

following 20,000 samples. We use every fifth draw of them for the posterior inferences. To

check the convergence of the MCMC algorithm, we compute the convergence diagnostic

(CD) of Geweke (1992). With the MCMC sample size specified here, the resulting CDs

indicate that the null hypothesis that the Markov chain converges is not rejected at a

5 percent statistical significance level in our analysis. The computational results are

generated using Ox version 7.0 (Doornik, 2006).

In the following analysis, the following four types of high-frequency RSV models are

considered:

• RSV: normal distribution, no jumps (λt = 0 and Jt = 0, for all t);

• RSVt: Student t-distribution, no jumps (Jt = 0, for all t);

• RSVJ: normal distribution, with jumps in return (λt = 0, for all t);

• RSVJt: Student t-distribution, with jumps in return.

All the models described here include the leverage effect, the intraday volatility pattern,

and the macroeconomic announcement effects. For each formulation above, we consider

the high-frequency SV model, which excludes the measurement equation of the daily RV.
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RSV RSVJ RSVt RSVJt

0.981 (0.001) 0.986 (0.001) 0.989 (0.001) 0.989 (0.001)
ϕ [0.979, 0.983] [0.984, 0.989] [0.987, 0.990] [0.988, 0.991]

13.2 24.0 10.7 16.1

0.219 (0.008) 0.182 (0.009) 0.160 (0.003) 0.157 (0.006)
σ [0.198, 0.229] [0.160, 0.194] [0.154, 0.164] [0.143, 0.166]

26.3 28.2 23.0 31.0

-0.064 (0.013) -0.100 (0.014) -0.106 (0.016) -0.112 (0.015)
ρ [-0.087, -0.040] [-0.129, -0.076] [-0.134, -0.079] [-0.142, -0.082]

2.3 3.1 9.2 3.2

-7.641 (0.185) -6.301 (0.094) -7.287 (0.091) -5.566 (0.390)
µ [-7.856, -7.248] [-6.481, -6.138] [-7.440, -7.102] [-6.324, -5.041]

42.4 23.2 22.3 47.3

0.252 (0.016) 0.244 (0.015) 0.304 (0.028) 0.241 (0.013)
vβ [0.225, 0.287] [0.219, 0.274] [0.255, 0.349] [0.219, 0.269]

11.6 1.2 34.9 0.4

0.313 (0.052) 0.305 (0.041) 0.310 (0.045) 0.311 (0.050)
vα1 [0.234, 0.435] [0.232, 0.393] [0.231, 0.408] [0.236, 0.441]

1.2 2.6 2.5 1.0

0.896 (0.104) 0.891 (0.111) 0.832 (0.146) 0.854 (0.190)
φ1 [0.625, 0.998] [0.600, 0.996] [0.470, 0.996] [0.280, 1.000]

2.3 1.1 3.2 0.7

0.0032 (0.0005) 0.0005 (0.0002)
κ [0.0023, 0.0044] [0.0002, 0.0009]

13.9 25.2

-0.005 (0.022) -0.072 (0.114)
µz [-0.050, 0.039] [-0.307, 0.140]

0.4 3.3

0.264 (0.024) 0.412 (0.044)
σz [0.223, 0.313] [0.340, 0.514]

8.7 8.0

7.672 (0.588) 8.673 (0.654)
ν [6.912, 8.946] [7.942, 10.152]

46.4 41.2

-0.078 (0.012) -0.036 (0.014) -0.119 (0.016) -0.113 (0.015)
ξ [-0.101, -0.055] [-0.059, -0.004] [-0.163, -0.093] [-0.139, -0.061]

2.8 2.2 11.4 23.4

0.109 (0.009) 0.139 (0.014) 0.159 (0.015) 0.164 (0.015)
σu [0.093, 0.128] [0.115, 0.166] [0.134, 0.193] [0.137, 0.195]

4.3 8.8 2.7 2.9

The first row: posterior mean and standard deviation in parentheses.
The second row: 95% credible interval in square brackets.
The third row: inefficiency factor.

Table 3: Posterior estimates of the selected parameters for the high-frequency RSV
models for E-mini S&P 500 futures, obtained from the pre-sample period: January 1 to
December 31 in 2015 (N = 259 and T = 68,475).

15



4.2 Posterior estimates

Table 3 reports the posterior estimates of selected parameters for the high-frequency

RSV models fit to the pre-analysis period. Note that for vαj and ψj, we report their first

elements (j = 1). The posterior mean of the AR(1) coefficient ϕ in the latent SV process

indicates a considerable persistence, ranging from 0.98 to 0.99. The posterior means of

(ϕ, σ) are (0.981, 0.219) for the RSV model, while (0.989, 0.157) for the RSVJt model.

The latter model includes heavier tails of the error distribution and jump components,

which makes the autoregressive component more persistent with a smaller variance.

The posterior mean of ρ is around −0.1, with the credible intervals excluding zero,

which indicates that the leverage effect exists as commonly observed for the daily stock

return and volatility. The posterior mean of ν, estimated around 8, indicates that the

error distribution requires considerably heavy tails. In the jump models, the posterior

mean of κ is about 0.3% for the RSVJ model and 0.05% model for the RSVJt model.

The lower probability of jumps in the RSVJt model implies that some large returns in

absolute value are captured by the heavy-tailed error distribution. For the same reason,

the posterior mean of σz for the RSVJt model is higher than that for the RSVJ model

as estimated jumps are averagely larger in the RSVJt model than the RSVJ model.

For the parameters in the measurement equation of the RV, the posterior mean of ξ

is from −0.119 to −0.036 with the credible intervals excluding zero, which indicates that

the bias underlying the measurement equation is negative. The bias in RV caused by

microstructure noise can be positive or negative (Hansen and Lunde, 2005). As mentioned

above, we use the RV calculated using intraday returns only when the market is open,

while the model-implied true daily volatility is a whole day’s (24-hour’s) volatility, which

causes a negative in RV. The estimation result suggests that the negative bias derived

from non-trading hours dominates.

The table also reports the inefficiency factor to check the efficiency of the MCMC

algorithm. This factor is defined by 1+2
∑∞

s=1 ρs where ρs is the sample autocorrelation

at lag s, estimating the ratio of the numerical variance of the posterior sample mean to

the variance of the sample mean from uncorrelated draws, as a measure of how well the

MCMC chain mixes (see, e.g., Chib, 2001). We compute the inefficiency factor using a

Parzen window with bandwidth bw = 1,000. The resulting inefficiency factors are all less

than 100, which is as modest as for the standard SV models for daily stock returns. This

result indicates that the MCMC algorithm developed in this paper mixes well enough to

16



0 2 4 6 8 10 12 14 16 18 20 22 24

-1

0

1

2

3

Figure 3: Intraday volatility pattern: posterior means (solid) and 95% credible intervals
(dotted) for the volatility intraday seasonal effects (β1, . . . , βK), obtained from the RSVJt
model for the pre-analysis period. The horizontal axis shows an hour during the day in
EST. Breaks of market trading occur from 16:00 to 16:15 and from 17:00 to 18:00.

be practically applied to the real-data analysis.

Figure 3 shows the posterior estimates for the intraday volatility pattern with the

posterior mean and 95% credible intervals of β, obtained from the RSVJt model. The

result shows a marked intraday pattern of volatility, which shifts up from 9:30 to 16:00

reflecting the trading hours of the New York market. The credible intervals are quite

narrow, which suggests that this intraday pattern is empirically relevant.

Figure 4 plots the posterior estimates for the macroeconomic announcement effects,

which indicate that the influence of releases of CPI and Employment are statistically

important for the intraday volatility. While the effects of the other announcements seem

to be modest, we find that the effects change over time as some of them become significant,

with the credible intervals excluding zero when the estimation period is changed. For the

impact of Sunday open, the posterior estimate suggests it should be distinguished.
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Figure 4: Macroeconomic announcement effects: posterior means (solid) and 95% credible
intervals (dashed) of αjℓ, obtained from the RSVJt model for the pre-analysis period.

4.3 Model comparisons

4.3.1 Result of in-sample fit

Table 4 reports the estimated BICs for the high-frequency SV and RSV models obtained

from the full sample period. Due to a computational burden, we fit the competing models

to the data separately in each calendar year from 2015 to 2019 and sum them up. Because

the high-frequency RSV models specify the additional measurement equation of the daily

RV, we use a partial likelihood only for the measurement of intraday returns (yt) in the

high-frequency RSV models to compare the in-sample fit between the high-frequency SV

and RSV models.

The estimated BIC indicates that using daily series of RV improves the in-sample fit.

Based on the BIC, the RSVJt model is the best model, and the RSVt model is the second

among the competing models. In the class of the high-frequency RSV model, the model

with Student t-error distribution (RSVt and RSVJt) fits the data better than that with

the normal error distribution (RSV and RSVJ).
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Model BIC MSE QLIKE

RSV -682037 [6] 2.198 [6] 0.748 [3]*

RSVJ -678130 [7] 2.048 [3]* 0.763 [4]*

RSVt -693029 [2] 1.937 [1]* 0.718 [2]*

RSVJt -696145 [1] 1.951 [2]* 0.702 [1]*

SV -683399 [5] 2.352 [8] 0.821 [8]

SVJ -677555 [8] 2.325 [7] 0.782 [7]*

SVt -683883 [4] 2.089 [4] 0.774 [6]*

SVJt -692880 [3] 2.179 [5] 0.774 [5]*

Table 4: Result of model comparison: BIC for in-sample model fit, and MSE and QLIKE
for one-day-ahead volatility forecasts. The sample period is 2015/Jan to 2019/Dec (N =
1,245) for BIC and 2016/Jan to 2019/Dec (N = 996) for MSE and QLIKE. Rankings
are in square brackets. The model with the “*” mark is in the 90% model confidence set
(MCS).

4.3.2 Result of out-of-sample forecast performance

We compare the predictive ability of one-day-ahead volatility among the competing mod-

els, based on the mean squared error (MSE) and quasi likelihood (QLIKE) as loss func-

tions, following Patton (2011):

MSE =
1

N1

N0+N1∑
τ=N0+1

(
Q̂V

2

τ −QV2
τ

)2
, QLIKE =

1

N1

N0+N1∑
τ=N0+1

(
QV2

τ

Q̂V
2

τ

+ log Q̂V
2

τ

)
.

Since the true QV is unobserved, we must use the proxy. Patton (2011) shows that the

MSE and QLIKE are robust loss functions in the sense that they lead to the same ranking

as the one when the true volatility is used if the proxy is the unbiased estimator of the

true volatility. In our analysis, we calculate the RV using 30-min returns, including the

break-time returns.

In our out-of-sample forecasting exercise, we employ a rolling-window forecasting

strategy. First, we estimate the model using data for N0 = 249 business days, which

corresponds to the pre-analysis period, January 1 to December 31, 2015, and forecast

the volatility on the next business day, January 3, 2016. Next, we roll the data window

by one business day with the sample size kept the same (N = 249) and forecast the

one-day-ahead volatility. We repeat this procedure until all the data are used in the
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forecasting exercise period, which ends on December 31, 2019. In sum, we obtain the

forecasted volatility for N1 = 996 business days.

Table 4 reports the MSE and QLIKE obtained from the forecasting exercise. The MSE

and QLIKE suggest that the RSVt and RSJt models provide the best performance of

volatility forecasting, respectively. The class of high-frequency RSV models is uniformly

better than that of high-frequency SV models based on both measures. The models with

Student t-error distribution perform better than those with the normal error distribution.

The influence of introducing the jump component on the predictive ability is marginal,

based on the MSE and QLIKE.

To evaluate the MSE and QLIKE further, we compute the model confidence set

(MCS) proposed by Hansen et al. (2011). Following Takahashi et al. (2021), the MCS

is estimated with 1, 000 bootstrap replications and 10 blocks, using R package MCS. In

Table 4, the models indicated by the “*” mark are in the 90% MCS. Based on QLIKE,

the SV model is excluded for the best set of models. Based on MSE, all the specifications

without the RV are excluded, and the MCS consists of the RSVJ, RSVt, and RSVJt

models.

To further assess whether the difference in QLIKE is critical in the model comparison,

we examine the hypothesis testing proposed by Giacomini and White (2006), which we

call the GW tests hereafter. For two candidate models i and j, we define dij,t as a loss

difference on the day t. Giacomini and White (2006) propose two types of hypothesis

tests, unconditional and conditional.

To test equal unconditional predictive ability, the following null hypothesis is consid-

ered:

H0 : E[dij,t] = 0, ∀i, j ∈M1, i > j.

The test statistics for this null hypothesis are computed with the Newey-West het-

eroscedasticity and autocorrelation consistent estimator.

The conditional predictive ability is examined using the following null hypothesis:

H0 : E[dij,t+1|It] = 0,

where It is the information set up to the day t. This hypothesis testing bases the expected

loss difference between two models on the day t+1 given the information up to the day t.

Following Takahashi et al. (2021), we define qt = (1, dij,t)
′ and arrange the null hypothesis
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Model SVt SVJt RSVt RSVJt

SVt 0.46* 0.89* 0.93**

SVJt −0.03 1.00* 1.00**

RSVt −2.00** −2.57** 0.68*

RSVJt −2.74** −3.70** −0.83

Table 5: Result of model comparison in the GW tests for the QLIKE loss function. Lower
triangular elements: the test statistics (t-value) of the unconditional GW tests; upper
triangular elements: the proportion for which the row model has higher predicted losses
than the column model on the conditional GW tests. Values with the “**” and “*”
marks indicate the statistical significance with the 1% and 5% levels, respectively.

as

H0 : E[qtdij,t+1] = 0.

See Takahashi et al. (2021) for the computation of the test statistics for this hypothesis.

Table 5 reports the test statistics of the unconditional GW tests in the lower triangular

elements, where a positive value indicates that the row model has a higher loss than the

column model. The table also reports, in its upper triangular elements, the proportion for

which the row model has higher predicted losses than the column model on the conditional

GW tests. Here, we compare only the candidate models with t-distribution because these

are mostly superior to the normal-error models in the analyses above. Evidently, the

RSVt and RSVJt models perform better than the SVt and SVJt models because both

the unconditional and conditional GW tests indicate that the null hypotheses are rejected

with the 1% significance level. The result for the difference in QLIKE between the RSVt

and RSVJt models is mixed. The conditional GW test indicates that the RSVJt model

is superior to the RSVt model with 5% statistical significance, while the unconditional

GW test does not reject the null hypothesis.

5 Conclusion

This paper proposes the high-frequency RSV model for intraday stock returns. The model

consists of the latent autoregressive SV process, seasonal components of the intraday

volatility patterns, and jumps in prices. The key aspect of the proposed model is to
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specify the measurement equation of RV, which links the daily RV and model-implied

true volatility with the bias of microstructure noise taken into account. We apply the

proposed model to the 5-min returns of E-mini S&P 500 futures and show that the daily

RV plays an important role in describing the intraday volatility. The model comparison

exercise indicates that the daily RV improves both the in-sample fit and performance of

one-day-ahead volatility forecasting.

Although we specify the daily frequency for the RV series, another frequency, such

as half-day, may also work. From the finding that the intraday volatility gets relatively

higher during the trading hours of the New York market, the RV computed using only the

intraday returns during these hours may be more relevant for the measurement equation

in the high-frequency RSV model. We leave this point as future work. From another

perspective, we can extend the high-frequency RSV model by incorporating a skewed

error distribution. It is of interest to investigate how the skewed distribution capture

the heavy tails and asymmetry of the return distribution (e.g., Takahashi et al., 2016;

Nakajima, 2017), which is relevant in volatility forecasting and risk management analysis.

Appendix. MCMC algorithm for the high-frequency

RSV model

In this appendix, we document details of the MCMC computation method for the high-

frequency RSV model, which is outlined in Section 3.1.

A.1 Stochastic volatility process

We derive a posterior sampler for the latent SV process x, conditional on other state

processes and parameters. Defining y∗t = (yt − JtZt) exp{−(µ + st + at)/2}/
√
λt, and

x̃t = xt − µ, we obtain a non-linear state-space model:

y∗t = exp(x̃t/2)ϵt,

x̃t+1 = ϕx̃t + ηt,

log(RVτ ) = ξ + log
∑

t∈D(τ)

exp(x̃t + µ+ st + at) + uτ ,
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where (ϵt, ηt)
′ ∼ N(0,S), and x̃1 ∼ N(0, σ2/(1−ϕ2)). We assume that ϵt (or ηt) and uτ are

uncorrelated for any t and τ . To implement the conditional sampler for (x̃1, . . . , x̃T ), we

arrange the multi-move sampler for the SV model with leverage (Omori and Watanabe,

2008).

A.2 Jump component

Define ŷt = yt −
√
λtrte

ht/2, rt = ρt(x̃t+1 − ϕx̃t)/σ, w
2
t = λt(1 − ρ2t )e

ht , where ρt =

ρ · I[t < T ], for t = 1, . . . , T ; and I[ · ] denotes the indicator function that takes one, if

the argument is true, and zero otherwise. Conditional on (y,x,θX ,θJ ,β,α), the joint

conditional posterior density of the jump indicator and size can be written as

π(Jt, Zt | · ) ∝ exp

{
−(ŷt − JtZt)

2

2w2
t

− (Zt − µz)
2

2σ2
z

}
× κJt(1− κ)1−Jt ,

for t = 1, . . . , T . Integrating this joint posterior density with respect to Zt, we obtain

π(Jt | · ) ∝
∫
π(Jt, Zt | · )dZt

∝ (w2
t + σ2

zJt)
−1/2 exp

{
− (ŷt − Jtµz)

2

2(w2
t + σ2

zJt)

}
× κJt(1− κ)1−Jt .

We generate the sample of Jt, following the posterior jump probability

Pr[Jt = 1 | · ] = κ · ϕN (ŷt |µz, w
2
t + σ2

z)

(1− κ) · ϕN (ŷt | 0, w2
t ) + κ · ϕN (ŷt |µz, w2

t + σ2
z)
,

for t = 1, . . . , T , where ϕN(ŷt |µ, σ2) denotes the density function of a normal distribution

N(µ, σ2) at ŷt.

Given the jump indicator, the posterior distribution of the jump size is given by

Zt | (Jt = 1) ∼ N(µ̂t, σ̂
2
t ),

where

σ̂2
t =

(
1

w2
t

+
1

σ2
z

)−1

, and µ̂t = σ̂2
t

(
ŷt
w2

t

+
µz

σ2
z

)
,

for t = 1, . . . , T .
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A.3 Intraday seasonal and announcement effects

Define h̃t = xt + at. The conditional posterior distribution of β is given by

π(β | · ) ∝ π(β | vβ)×
T∏
t=1

1

est/2
exp

{
−(yt −

√
λtrte

(h̃t+st)/2 − JtZt)
2

2λt(1− ρ2t )e
h̃t+st

}

∝ π(β | vβ)×
K∏
k=1

∏
Htk=1

1

eβk/2
exp

{
−(yt −

√
λtrte

h̃t/2eβk/2 − JtZt)
2

2λt(1− ρ2t )e
h̃teβk

}

∝ π(β | vβ)×
K∏
k=1

1

eNβk/2
exp

{
−
∑

Htk=1(ỹ
∗
t − gte

βk/2)2

2eβk

}
,

where

ỹ∗t =
yt − JtZt√

λt(1− ρ2t )e
h̃t/2

, gt =
rt√
1− ρ2t

.

It leads to the following non-linear state space model:

ỹ∗[k,τ ] = g[k,τ ]e
β̃k/2 + eβ̃k/2ε[k,τ ], k = 1, . . . , K, τ = 1, . . . , N,

βk+1 = βk + ηβ,k, k = 1, . . . , K − 1,(
ε[k,τ ]

ηβ,k

)
∼ N(0, V k), V k =

(
1 0

0 ckv
2
β

)
,

where β1 = 0, and ηβ,1 ∼ N(0, v2β0). We apply the multi-move sampler for the non-linear

state space model (Shephard and Pitt, 1997; Watanabe and Omori, 2004) to generate β.

The announcement effect α is sampled by the multi-move sampler in the same manner

by defining h̃t = xt + st.

A.4 Mixing latent process

The conditional posterior density of λt is

π(λt | · ) ∝ λ
− ν+1

2
−1

t exp

(
−ν − 2

2λt

)
× f(λt),
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where

f(λt) = exp

{
−(yt −

√
λtrte

ht/2 − JtZt)
2

2λt(1− ρ2t )e
ht

}
.

The MH algorithm is employed to generate λt. We generate a candidate as λ∗t ∼ IG((ν+

1)/2, (ν−2)/2), and accept it the with probability: min{f(λ∗t )/f(λt), 1}, for t = 1, . . . , T .

A.5 SV parameters

For the SV parameter ϕ, let π(ϕ) denote the prior distribution. The conditional posterior

density of ϕ is

π(ϕ | · ) ∝ π(ϕ)
√

1− ϕ2 exp

{
−(1− ϕ2)x̃21

2σ2
−

T−1∑
t=1

(x̃t+1 − ϕx̃t − ȳt)
2

2σ2(1− ρ2)

}

∝ π(ϕ)
√

1− ϕ2 exp

{
−(ϕ− µϕ)

2

2σ2
ϕ

}
,

where ȳt = ρσ(yt − JtZt)e
−ht/2/

√
λt,

µϕ =

∑T−1
t=1 (x̃t+1 − ȳt)x̃t

s2x
, and σ2

ϕ =
σ2(1− ρ2)

s2x
,

with s2x = ρ2x̃21+
∑T−1

t=2 x̃
2
t . To sample from this conditional posterior distribution, we use

the MH algorithm. We propose a candidate, ϕ∗ ∼ TN(−1,1)(µϕ, σ
2
ϕ), where TN(a,b)(µ, σ

2)

denotes the normal distribution with mean µ and variance σ2 truncated on the interval

(a, b). Then, we accept it with probability

min

{
π(ϕ∗)

√
1− ϕ∗2

π(ϕ)
√

1− ϕ2
, 1

}
.

For the parameters, ϑ ≡ (σ, ρ), there is no explicit distribution form which we can

easily sample from. The conditional posterior density is given by

π(ϑ | · ) ∝ (1− ρ2)−
T−1
2 exp

{
−

T∑
t=1

(yt −
√
λtrte

ht/2 − JtZt)
2

2λt(1− ρ2t )e
ht

}

× σ−T exp

{
−(1− ϕ2)x̃21 +

∑T−1
t=1 (x̃t+1 − ϕx̃t)

2

2σ2

}
× π(ϑ),
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where π(ϑ) is the prior density. We generate a candidate from the normal distribution

based on the approximation of the posterior around the mode of the density. As an

alternative way, we can generate (ϕ, σ, ρ) jointly by the MH algorithm with the posterior

approximation around the mode, while we found that it is slightly less efficient than the

separate generation of ϕ and (σ, ρ), which we recommend as described here.

Assuming the prior, µ ∼ N(µ0, σ
2
µ0), we generate µ from its posterior density, µ | · ∼

N(µ̂, σ̂2
µ), where

σ̂2
µ =

{
1

σ2
µ0

+
1− ϕ2

σ2
+

(T − 1)(1− ϕ)2

(1− ρ2)σ2

}−1

,

µ̂ = σ̂2
µ

{
µ0

σ2
µ0

+
(1− ϕ2)x1

σ2
+

(1− ϕ)
∑T−1

t=1 (xt+1 − ϕxt − ρσêt)

(1− ρ2)σ2

}
,

and êt = (yt − JtZt)e
−ht/2/

√
λt.

A.6 Jump parameters

For the jump parameters θJ , the following priors are assumed: κ ∼ B(aκ0, bκ0), µz ∼
N(my0, cy0), and σ2

z ∼ IG(ny0/2, Sy0/2). Then, the sample generation from the condi-

tional posterior is as follows:

κ | · ∼ B(aκ0 + TJ , bκ0 + T − TJ),

where TJ =
∑T

t=1 Jt; and

µz | · ∼ N(m∗
y, c

∗
y), σ2

z | · ∼ IG(n∗
y/2, S

∗
y/2),

where

c∗y =

(
1

cy0
+
TJ
σ2
z

)−1

, m∗
y = c∗y

(
my0

cy0
+

∑T
t=1 ZtJt
σ2
z

)
,

n∗
y = ny0 + TJ , and S∗

y = Sy0 +
T∑
t=1

(Zt − µz)
2Jt.
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A.7 Seasonal- and announcement-effect parameters

We assume a prior, v2β ∼ IG(nβ0/2, Sβ0/2), and then simply generate the sample from

its posterior: v2β | · ∼ IG(n̂β/2, Ŝβ/2), where

n̂β = nβ0 +K − 1, Ŝβ = Sβ0 +
K−1∑
k=1

(βk+1 − βk)
2

ck
.

The posterior generation of v2αj can be implemented in the same manner.

To generate the parameter φj in the announcement effect, we assume a prior denoted

by π(φj). The conditional posterior distribution of φj is given by

π(φj | · ) ∝ π(φj) exp

{
−(φj − µφj)

2

2σ2
φj

}
,

where

µφj =

∑L−1
ℓ=1 αjℓαj,ℓ+1∑L−1

ℓ=1 α
2
jℓ

, and σ2
φj =

v2αj∑L−1
ℓ=1 α

2
jℓ

.

Using the MH algorithm, we propose a candidate, φ∗
j ∼ TN(−1,1)(µφj, σ

2
φj), and accept it

with probability: min{π(φ∗
j)/π(φj) , 1}.

A.8 Degree of freedom for Student-t distribution

The conditional posterior density of ν is

π(ν | · ) ∝ π(ν)
T∏
t=1

((ν − 2)/2)ν/2

Γ (ν/2)
λ
−ν/2
t exp

(
−ν − 2

2λt

)
,

where π(ν) denotes the prior distribution. Following Watanabe (2001), we use the MH

algorithm, where we generate a candidate from a normal distribution associated with the

approximation around the mode of the posterior.

A.9 Parameters for RV measurement

For the parameters in the measurement equation of RV, (ξ, σu), the following priors are

assumed: ξ ∼ N(ξ0, q
2
0), and σ2

u ∼ IG(nu0/2, Su0/2). Define Wτ = log
∑

t∈D(τ) exp(ht).
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We generate ξ and σu from the conditional posterior distribution: ξ | · ∼ N(ξ̂, q̂2), σ2
u | · ∼

IG(n̂u/2, Ŝu/2), respectively, where

q̂2 =

(
1

q20
+
N

σ2
u

)−1

, ξ̂ = q̂2

(
ξ0
q20

+

∑N
τ=1 {log(RVτ )−Wτ}

σ2
u

)
,

n̂u = nu0 +N, and Ŝu = Su0 +
N∑
τ=1

{log(RVτ )− ξ −Wτ}2 .
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