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Abstract
The minimal econometric interpretation (MEI) of DSGE models provides a formal model evalu-
ation and comparison of misspecified nonlinear dynamic stochastic general equilibrium (DSGE)
models based on atheoretical reference models. The MEI approach recognizes DSGE models as
incomplete econometric tools that provide only prior distributions of targeted population moments
but have no implications for actual data and sample moments. This study, based on the MEI ap-
proach, develops a Bayesian posterior inference method. Prior distributions of targeted population
moments simulated by the DSGE model restrict the hyperparameters of Dirichlet distributions.
These are natural conjugate priors for multinomial distributions followed by corresponding poste-
rior distributions estimated by the reference model. The Pólya marginal likelihood of the resulting
restricted Dirichlet-multinomial model has a tractive approximated log-linear representation of the
Jensen-Shannon divergence, which the proposed distribution-matching posterior inference uses as
the limited information likelihood function. Monte Carlo experiments indicate that the MEI poste-
rior sampler correctly infers calibrated structural parameters of an equilibrium asset pricing model
and detects the true model with posterior odds ratios.
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“And now here is my secret, a very simple secret: It is only with the heart that one

can see rightly; what is essential is invisible to the eye.” (Saint-Exupéry, The Little

Prince).

“Assuming the population moment is equal to the sample moment can be treacherous.”

(Geweke 2010).

1. Introduction

In his seminal study, Geweke (2010) develops the minimal econometric interpretation (MEI)

of dynamic stochastic general equilibrium (DSGE) models, generalizing the Bayesian calibration

approach of DeJong et al. (1996) as a crucial predecessor. What makes the MEI approach sharply

distinct from the conventional likelihood-based inferences and standard moment-matching calibra-

tion exercises is its central premise. In the MEI approach, DSGE models only need to provide prior

distributions of unobservable population moments. These are dimensions of the macroeconomic

reality that DSGE modelers intend to mimic. The MEI approach treats DSGE models as incomplete

econometric tools, assuming that they have no direct implications on either actual data or sample

moments. This perspective of MEI on incomplete structural models enables formal implementa-

tion of Bayesian evaluation and comparison of nonlinear DSGE models even under potential model

misspecification (e.g., stochastic singularity).1

However, population moments are unobservable. Hence, the MEI approach requires a densely

parameterized atheoretical econometric model as a statistical reference to establish the posterior

distributions of targeted population moments from observed data. Essentially, the reference model

acts as a hypothetical bridge between DSGE models and actual data through posterior distributions

of targeted population moments.

The MEI approach evaluates a DSGE model by measuring the degree of overlap between

prior distributions of the targeted population moments implied by the DSGE model and the corre-

sponding posterior distributions estimated by the reference model. The higher the degree of overlap,

the better the fit of the DSGE model to the macroeconomic reality of interest. Hence, when con-

ducting formal model evaluation and comparison of the DSGE model, the MEI approach utilizes

1Canova (2007), DeJong and Dave (2011), Del Negro and Schorfheide (2011), and Fernández-Villaverde et al.
(2016) review the MEI approach as a Bayesian model comparison method of DSGE models subject to model mis-
specifciation.
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the sampling variation of the targeted population moments implied by the statistical reference model

and places much weaker weight on the corresponding sample moments and the underlying observed

data.2 This characteristic of the MEI approach formalizes the critical point made by Eichenbaum

(1991), and reemphasized by Geweke (2010), with the epigram for empirical DSGE research that

assuming that the population moment is equal to the sample moment can be treacherous; observed

data and macroeconomic reality of interest are distinct objects.3

This study aims to develop a posterior inference method based on the MEI approach. The

key idea behind the proposed method is to update the prior distributions of the structural param-

eters by matching the synthetic distributions of the targeted population moments implied by the

DSGE model (hereafter, theoretical moment distribution) with the corresponding posterior distri-

butions estimated using the statistical reference model (hereafter, empirical moment distribution) as

closely as possible. Essentially, this study formalizes distribution-matching, not moment-matching

posterior inference of the DSGE model.

While the MEI approach provides a formal, explicit, simple, and easy model evaluation,

comparison, and development method, a practical concern for the intrinsic nature of MEI is that

the resulting decision-making could be affected by implausibly assumed prior distributions of the

structural parameters of the DSGE model. For instance, when facing a significant deviation in

the synthetic distribution of a targeted population moment simulated by the DSGE model from

the corresponding posterior distribution estimated with the reference model, an MEI user cannot

distinguish a priori whether this failure stems from the misspecification of the proposed DSGE

model or implausible prior distributions of its structural parameters. As a formal Bayesian decision-

making scheme, the MEI approach requires a parameter-updating process to avoid this ambiguity.

The proposed distribution-matching posterior inference method starts by discretizing the em-

2Close cousins of the MEI approach are the prior-predictive analysis (Box 1980; Canova 1994; Lancaster 2004;
Geweke 2005) and posterior-predictive analysis (Gelman et al. 2003; Faust and Gupta 2012). These specification
tests measure how well prior and posterior distributions of the targeted sample moments (i.e., the checking functions)
implied by the DSGE models contain their observed values with data, calculating prior and posterior predictive p-
values. Geweke (2010), however, argues that the prior predictive check is Bayesian but the posterior predictive check
is not (see also Lancaster 2004). Faust and Gupta (2012) discusses the practical advantage of the posterior predictive
check for DSGE modelers and policy makers.

3The MEI approach is applied by Nason and Rogers (2006) and Kano and Nason (2014) to model evaluation and
comparisons among small open-economy models and new Keynesian monetary models, respectively. Loria et al.
(2022) also exploit the MEI approach to construct from calibrated DSGE models mixture priors for population param-
eters of statistical unobserved component models.
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pirical and theoretical moment distributions over finite grid points. The discretized empirical distri-

bution of a targeted population moment is assumed to follow a multinomial distribution conditional

on a mass probability vector attached to finite grid points. This study assumes that the sole role

of the DSGE model is to provide the prior distribution of the mass probability vector. In Bayesian

literature, a Dirichlet distribution with hyper-parameters considered the concentration parameters

acts as a natural conjugate prior for the multinomial distribution’s mass probability vector. The

DSGE model then imposes restrictions reflected in the discretized theoretical moment distribution

on Dirichlet concentration parameters. Hence, based on the MEI approach, this study emphasizes

that the DSGE model has no direct implications for the actual data and sample moments.

The resulting restricted Dirichlet distribution and empirical multinomial distribution jointly

constructs the Dirichlet-multinomial (DM) model. Importantly, after integrating out the mass prob-

ability vector, the DM model yields the marginal likelihood of the empirical moment distribution,

conditional on the theoretical counterpart with a Pólya distribution. This DM marginal likelihood

plays a crucial role as a likelihood function in the proposed MEI posterior inference method. More-

over, as a mathematical proposition, this study shows that the logarithmic kernel of the resulting

DM marginal likelihood has a tractable approximated representation of the Jensen-Shannon (JS)

divergence between the empirical and theoretical moment distributions.

The shape of the JS divergence depends on the relative size of the simulated draws for the

theoretical moment distribution compared to that of the empirical one. When the number of draws

for the theoretical moment distribution is sufficiently large relative to that of the empirical one, JS

divergence converges to the Kullback-Leibler (KL) divergence of the empirical moment distribution

from the theoretical one. This establishes a quasi-likelihood function calculated from the multino-

mial distribution with mass probabilities restricted by theoretical moment distribution. However,

when the number of draws for the theoretical distribution is minimum and equal to one, JS diver-

gence converges to the predictive density function of the DM model, which closely traces out the

empirical moment distribution. Hence, JS divergence offers a density kernel for a minimum dis-

tance (MD) estimator in this extreme case. This novel finding extends the central propositions Del

Negro and Schorfheide (2004) established in their DSGE-VAR framework toward more flexibly

selected population moments that only nonlinear DSGE models can target.
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This study proposes a two-step Markov chain Monte Carlo (MCMC) procedure as the MEI

posterior inference method. This treats JS divergence as the logarithm of the likelihood function

(hereafter, JS likelihood). The first step applies a conventional MCMC sampler for the reduced-form

parameters of the statistical reference model and constructs posterior distributions of the targeted

population moments as empirical moment distributions. Given the resulting empirical moment dis-

tributions, the second step implements a posterior sampler induced by the JS likelihood to jointly

simulate the theoretical moment distributions and posterior distributions of the structural parame-

ters of the underlying DSGE model. The proposed MEI posterior sampler draws targeted population

moments from the DSGE model and calculates the JS likelihood. Premultiplied by suitable prior

distributions of structural parameters, the constructed JS likelihood then yields the kernel of the

posterior probability density for a random-walk Metropolis-Hastings (RW-MH) algorithm for the

theoretical moment distributions and posterior distributions of structural parameters. Moreover,

the MEI posterior sampler enables the estimation of the marginal likelihood of the underlying data,

conditional on DSGE and reference models, leading to formal Bayesian posterior model evaluation,

comparison, and criticism.

To investigate how the proposed MEI posterior sampler works, this study conducts Monte

Carlo experiments with Labadie’s (1989) equilibrium consumption-based asset-pricing model, which

Geweke (2010) exercises with the MEI approach. Labadie’s (1989) model is notable for two rea-

sons. First, this single-shocked model is subjected to the stochastic singularity problem for con-

ventional full-information likelihood inference with multiple time-series data. Second, the model

is nonlinear in deriving the equilibrium price of the risky asset. Hence, the linear inference method

(e.g., the DSGE-VAR method) cannot be applied.

Given the calibrated values of structural parameters, Labadie’s (1989) model simulates syn-

thetic time-series data of the risk-free rate, equity premium, and consumption growth rate with a

realistic sample length. Following Geweke (2010), this study adopts the first-order vector autore-

gression (VAR) as the statistical reference model. In the first step of the MCMC procedure, six

targeted population moments from the standard normal-inverted Wishart model are simulated and

empirical moment distributions are constructed. Under correctly specified informative prior dis-

tributions of structural parameters, the MEI posterior sampler in the second step of the MCMC

procedure generates theoretical moment distributions tightly overlapping their empirical counter-
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parts. Hence, resulting posterior distributions of structural parameters were close to corresponding

calibrated values. Moreover, the Monte Carlo investigation shows that this successful performance

of the MEI posterior sampler is robust against two different settings of prior distributions of struc-

tural parameters: uniform and misspecified prior distributions. The estimated posterior odds ratios

indicate that the model with correctly specified informative prior distributions dominates models

with the other two prior distributions.

This study emphasizes two novel aspects of the proposed MEI posterior sampler for literature

on the Bayesian inference of DSGE models. First, based on the MEI approach, the MEI posterior

sampler considers the sampling variations of the targeted unobservable population moments but

weakens dependence on actual data and sample moments. Essentially, the MEI posterior sampler

can be interpreted as a data augmentation technique using empirical moment distributions to avoid

overfitting actual data and enhance the generalization ability of the inferred DSGE model.

Second, the MEI posterior sampler is a limited-information Bayesian inference method that

does not rely on the full-information likelihood function of the underlying DSGE model.4 In

the extreme case with the minimum number of draws for theoretical moment distributions, the

MEI posterior sampler nests the approximated Bayesian computation with the MCMC sampler

(MCMC-ABC) of Marjoram et al. (2003) and Forneron and Ng (2018). Hence, it offers a Bayesian

distribution-matching indirect inference method, which can easily be implemented for invisible es-

sential population characteristics of macroeconomic reality using potentially misspecified nonlinear

DSGE models.

The remainder of this paper is organized as follows. Section 2 introduces the proposed MEI

posterior inference method. Section 3 discusses the construction and implementation of the Monte

Carlo experiments. Section 4 reports the results of the Monte Carlo experiments. Finally, Section

5 concludes the study.

4Kim (2002) developed a Bayesian posterior inference method with a limited information likelihood from the ob-
jective function of an extremum estimator. This resembles the Laplace type estimator of Chernozhukov and Hong
(2003). Inoue and Shintani (2018) showed that the resulting simulated quasi marginal likelihood can be used for for-
mal Bayesian model evaluation and comparison. Fernández-Villaverde et al. (2016) provided a compact survey of
Bayesian limited-information inference methods.
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2. The MEI posterior inference

Let A and E denote the DSGE and empirical models characterized by the parameter vectors

θA and θE , respectively. These two models can simulate the vector of unobservable population

moments M which a researcher explains as I distinct macroeconomic facts: M = E(Z), where Z

is the vector of the corresponding sample moments, and E is the mathematical expectations op-

erator. Let mi denote the i-th element of the population moment vector M = [m1,m2, · · · ,mI ].

The DSGE modelA is parsimonious and can be nonlinear when simulating the population moment

vector. Let mA,i denote the i-th element of the population moment vector MA, which is simulated

by the DSGE model A equipped with the structural parameter vector θA (hereafter the “theoreti-

cal” moment). The theoretical moment mA,i is a deterministic nonlinear function of the structural

parameter vector θA,mA,i(θA). The empirical model E is atheoretical with a higher degree of free-

dom to simulate the reduced-form posterior distribution of the population moment vector. Hence,

let mE,i represent the i-th element of the population moment vector ME , which is estimated by the

empirical model E equipped with the parameter vector θE (hereafter the “empirical” moment).

2.1. The Dirichlet-multinomial model for discretized population moment distributions

The most important device this study relies on is the Dirichlet-multinomial (DM) model,

which characterizes the probability distributions of the discretized population moment distribu-

tions.5 Assume that the population moment mi has the finite support Si = [si, s̄i]. Suppose that

support Si is decomposed into K mutually exclusive subintervals sk,i for k = 1, · · ·K. Let pk,i ≥ 0

denote the mass probability of the event wherein the population momentmi drops to the k-th subin-

terval sk,i. Letpi ≡ [p1,i,p2,i, · · · ,pK,i] denote a vector comprising pk,i that satisfies the regularity

condition
∑K

k=1 pk,i = 1.

Suppose that the two models A and E generate collections of theoretical and empirical mo-

ments, mA,i ≡ {mj
A,i}Mj=1 and mE,i ≡ {mj

E,i}Nj=1, where M ≥ 1 and N ≥ 1 are numbers of

elements in the theoretical and empirical moment collections, respectively. The former and lat-

ter collections are equivalent to the theoretical and empirical moment distributions. Let ΘA de-

note the collection of M structural parameter vectors, ΘA ≡ {θjA}Mj=1. Moreover, I define col-

lections MA and ME by horizontally stacking I theoretical and empirical moment distributions,

5The Dirichlet-multinomial model is introduced by Gelman et al. (2003) and Lancaster (2004).
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MA ≡ [mA,1, · · · ,mA,I ], and ME ≡ [mE,1, · · · ,mE,I ], respectively.

Consider the following discretization of the empirical moment distribution mE,i over mass

probability vector pi for i = 1, · · · , I . Let nk,i ≥ 0 for k = 1, · · · , K denote the number of

draws of mE,i that drop into the k-th subinterval sk,i. The condition
∑K

k=1 nk,i = N is satisfied.

The probability of mE,i conditional on pi is then characterized by a multinomial distribution with

parameter ni = [n1,i, n2,i, · · · , nK,i]:

p(mE,i|pi) =
Γ(N + 1)∏K

k=1 Γ(nk,i + 1)

K∏
k=1

(pk,i)
nk,i , (1)

where Γ(.) is the Gamma function.

Let αk,i ≥ 1 represent one plus the number of draws of the theoretical moment mA,i, which

drops into the k-th subinterval sk,i. Condition
∑K

k=1 αk,i = M + K is then satisfied. Consider a

joint event wherein αk,i−1 draws ofmA,i drop into the k-th subinterval sk,i with probability pk,i for

k = 1, · · · , K simultaneously. The joint probability of pi conditional on mA,i is then characterized

by the Dirichlet distribution with concentration parameter vector αi = [α1,i, α2,i, · · · , αK,i]:

p(pi|mA,i) =
Γ(M +K)∏K
k=1 Γ(αk,i)

K∏
k=1

(pk,i)
αk,i−1. (2)

The DSGE model A imposes theoretical restrictions on the concentration parameter vector αi.

The restricted Dirichlet distribution (2) acts as a natural conjugate prior distribution for multi-

nomial distribution (1). The Dirichlet-multinomial (DM) model consisting of eqs.(1) and (2) imply

that the conditional distribution of pi onmA,i andmE,i is characterized by the Dirichlet distribution

with parameter ni + αi:

p(pi|mA,i,mE,i) ∝ p(pi|mA,i)p(mE,i|pi) =
Γ(N +M +K)∏K
k=1 Γ(nk,i + αk,i)

K∏
k=1

(pk,i)
nk,i+αk,i−1. (3)

where nk,i + αk,i − 1 ≥ 1 for k = 1, · · · , K and
∑K

k=1(nk,i + αk,i) = N +M +K.

The DM model’s important property is its analytical representation of the marginal likeli-

hood function. Integrating out pi from the DM model provides the analytical form of the marginal

likelihood function with Pólya distribution
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p(mE,i|mA,i) =

∫
p(mE,i|pi)p(pi|mA,i)dpi =

Γ(N + 1)Γ(M +K)

Γ(N +M +K)

K∏
k=1

Γ(nk,i + αk,i)

Γ(nk,i + 1)Γ(αk,i)
.

(4)
The posterior inference of the DSGE modelA stems from the DM marginal likelihood function (4).

The difficulty is that the DM marginal likelihood (4) becomes infinite for large values of N

and M as Gamma functions explode. This study shows that the above DM marginal likelihood

(4) has a tractable approximation with the density kernel of the Jensen-Shannon (JS) divergence

between empirical and theoretical distributions.6 To establish the main proposition, the ratio of the

total number of draws in the theoretical moment distribution to that of the empirical one is defined

as λ(≡ (M +K)/N). For k = 1, · · · , K, let ζk,i and qk,i denote frequencies wherein the empirical

and theoretical moments drop into the k-th subinterval, ζk,i ≡ nk,i/N and qk,i ≡ αk,i/(M + K),

respectively. Particularly, ζk,i is equivalent to the maximum likelihood (ML) estimate of pk,i in

multinomial distribution (1). Let ζi andqi denote empirical and theoretical probability mass vectors

ζi ≡ [ζ1,i, ζ2,i, · · · , ζk,i] and qi ≡ [q1,i, q2,i, · · · , qK,i], respectively. Appendix A establishes the

following proposition:

Proposition 1. The logarithm of the marginal likelihood function of the DM model (4) is approxi-

mated as follows:

ln pλ(mE,i|mA,i) ≈ lnN − (1 + λ)N DJS(ζi || qi), (5)

where DJS(ζi || qi) denotes the JS divergence between the empirical and theoretical distributions.

DJS(ζi || qi) =
1

1 + λ

K∑
k=1

ζk,i

{
ln ζk,i − ln

(
1

1 + λ
ζk,i +

λ

1 + λ
qk,i

)}

+
λ

1 + λ

K∑
k=1

qk,i

{
ln qk,i − ln

(
1

1 + λ
ζk,i +

λ

1 + λ
qk,i

)}

with the standard regularity condition 0× ln 0 = 0.

The approximated DM marginal likelihood (i.e., the JS likelihood function (5)) has three important

properties. First, as the JS divergence is nonnegative, the JS likelihood (5) is maximized when

6The JS divergence is a generalized form of the Kullback-Leibler (KL) divergence with symmetry. Lin (1991)
discusses the properties of JS divergence.
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the empirical and theoretical distributions match exactly: limζi→qi
ln pλ(mE,i|mA,i) → lnN .7

Second, when the number of draws in the theoretical moment distribution,M , becomes sufficiently

large relative to that of the empirical one, N (i.e., λ→ ∞), it is the case that

lim
λ→∞

ln pλ(mE,i|mA,i) → lnN −N

K∑
k=1

ζk,i (ln ζk,i − ln qk,i) ∝ −NDKL(ζi || qi). (6)

Hence, the JS likelihood becomes proportional to the negative of the Kullback-Leibler (KL) diver-

gence of ζi from qi, denoted by DKL(ζi || qi). As the logarithm of multinomial distribution (1) is

represented by the KL divergence,

ln p(mE,i|pi) ≈ −N
K∑
k=1

ζk,i(ln ζk,i − lnpk,i) = −NDKL(ζi || pi),

Function (6) is obtained by replacing the unrestricted probability mass vector pi with its theoretical

counterpartqi. Hence, whenλ→ ∞, the JS likelihood (5) approaches the quasi-likelihood function

constructed by the multinomial distribution imposing the theoretical restriction of the DSGE model

A. Notably, this second property corresponds to the first proposition established by Del Negro and

Schorfheide (2004, Proposition 1).

Third, as Appendix B shows, when the number of draws in the theoretical moment distri-

bution M takes the minimum value of 1, or equivalently, λ → (K + 1)/N , the JS likelihood (5)

becomes
lim

λ→K+1
N

ln pλ(mE,i|mA,i) →
K∑
k=1

I[mA,i ∈ sk,i] ln

(
nk,i + 2

N +K + 1

)
, (7)

where I[mA,i ∈ sk,i] is the indicator function that takes the value of 1 if mA,i drops into the subin-

terval sk,i and 0 otherwise. The term
(

nk,i+2

N+K+1

)
is the predictive density of the DM model (3),

at which the theoretical moment that draws mA,i drops into the k-th subinterval sk,i.8 For a suffi-

ciently large N , predictive density is approximated well by the frequency of the empirical moment

distribution ζk,i. Hence, the theoretical moment that draws mA,i from the JS likelihood (7) closely

7If the empirical and theoretical distributions are uniform, ζk = qk = 1/K, the JS divergence becomes minimized
and the JS likelihood (5) is maximized to lnN .

8The DM model (3) implies that the predictive density of a new draw mA,i conditional on mE,i and mA,i is

pλ(mA,i ∈ sk,i|mE,i,mA,i) =
1

1 + λ
ζk,i +

λ

1 + λ
qk,i.

The predictive probability is the weighted average between the ML estimate ζk,i of the multinomial distribution (1)
and the expectation of the Dirichlet distribution (2) with relative weights 1/(1 + λ) and λ/(1 + λ). As qk,i > 0, the
JS likelihood function (7) is well-defined even when the ML estimate ζk,i is zero.
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traces the shape of the empirical moment distribution mE,i. This third property echoes the sec-

ond proposition of Del Negro and Schorfheide (2004, Proposition 2). In this case, the posterior

estimate of the structural parameter θA can be interpreted as a minimum distance (MD) estimate

with KL divergence. This is obtained by fitting the theoretical moment distribution to the empirical

counterpart as closely as possible.9

2.2. The posterior joint distributions of ΘA, mA,i, mE,i, and pi

This subsection introduces the joint posterior distribution of ΘA, mA,i, mE.i, and pi condi-

tional on data y and the empirical and DSGE modelsE andA. In doing so, this subsection borrows

Condition 4.1 and Proposition 4.2 of Geweke (2010), which are cornerstones of the MEI approach:

Condition 4.1 (Geweke 2010). Conditional on the empirical and DSGE models, E and A,

p(mi, θE,y|A,E) = p(mi|A)p(θE|mi, E)p(y|θE,mi, E).

Condition 4.1 of Geweke (2010) implies that the sole function of the DSGE model A is to provide

a prior distribution of population moment mi. Empirical model E is incomplete as it provides no

proper prior distribution of mi: p(mi|E) ∝ const. Then, the following proposition holds:

Proposition 4.2 (Geweke 2010). Under Condition 4.1,

p(y|mi, A, E) =

∫
p(mi, θE,y|A,E)dθE

p(mi|A,E)
,

=

∫
p(mi|A)p(θE|mi, E)p(y|θE,mi, E)dθE

p(mi|A)
,

=

∫
p(θE|mi, E)p(y|θE,mi, E)dθE,

= p(y|mi, E).

This proposition guarantees the core argument of the MEI approach; the DSGE model A has no

direct implication on the data probability y.

The joint distribution of ΘA, mA,i, mE,i, pi, and y conditional on the two models E and A

then are characterized as follows:

9Appendix B also shows that function (7) is proportional to the KL divergence DKL(qi || 1
1+λζi +

λ
1+λqi).
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p(ΘA,mA,i,mE,i,pi,y|A,E) = p(ΘA|A) p(mA,i|ΘA, A) p(mE,i,pi,y|mA,i, A, E)

= p(ΘA|A) p(pi|mA,i(ΘA)) p(mE,i,y|pi, A, E)

= p(ΘA|A) p(pi|mA,i(ΘA)) p(mE,i|pi) p(y|mE,i, E). (8)

Particularly, the first equality stems from Condition 4.1, and the sole role of DSGE model A is to

generate the prior distribution of the population moment p(mA,i|A) =
∫
p(mA,i|ΘA, A)p(ΘA|A)dΘA.

As the theoretical moment mA,i is provided as a deterministic nonlinear function of the structural

parameter θA, the distribution p(mA,i|ΘA, A) degenerates to a mass point. The second term of the

second equality results from the distribution of pi conditional on mA,i and is given by the Dirich-

let distribution (2). The third term of the third equality stems from multinomial distribution (1).

Finally, the fourth term of the third equality reflects Proposition 4.2, which guarantees equality

p(y|mE,i, A, E) = p(y|mE,i, E).10

From Bayes’ law, p(y|mE,i, E) =
p(mE,i|y,E)p(y|E)

p(mE,i|E)
, by substituting this result into eq.(8) and

dividing the result by the marginal data density p(y|A,E) yields the posterior joint distribution of

ΘA, mA,i, mE,i, and pi on the data y and the two models A and E:

p(ΘA,mA,i,mE,i,pi|y, A, E) =
p(ΘA,mA,i,mE,i,pi,y|A,E)

p(y|A,E)

= p(ΘA|A) p(pi|mA,i(ΘA)) p(mE,i|pi)
p(mE,i|y, E) p(y|E)
p(mE,i|E)p(y|A,E)

∝ p(ΘA|A) p(pi|mA,i(ΘA)) p(mE,i|pi) p(mE,i|y, E),

10To show that the joint distribution (8) indeed leads to the MEI approach, confirm that marginalizing out ΘA, mA,i,
mE,i, and pi from the joint distribution (8) yields the marginal data density of y conditional on the two models A and
E:

p(y|A,E)

=

∫
mE,i

∫
mA,i

∫
pi

∫
ΘA

p(ΘA|A)p(mA,i|ΘA, A)p(pi|mA,i)p(mE,i|pi)p(y|mE,i, E)dΘAdpidmA,idmE,i,

=

∫
mE,i

∫
mA,i

∫
pi

p(mA,i|A)p(pi|mA,i)p(mE,i|pi)p(y|mE,i, E)dpidmA,idmE,i,

=

∫
mE,i

∫
mA,i

p(mA,i|A)p(mE,i|mA,i)p(y|mE,i, E)dmA,idmE,i,

=

∫
mE,i

p(mE,i|A)p(y|mE,i, E)dmE,i.

As established in Proposition 4.3 by Geweke (2010), marginal data density p(y|A,E) is given by the convolution of
two densities. This is the same marginal data density that the MEI approach uses for formal model comparison.
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where the proportionality in the third line results from p(mE,i|E) ∝ const. If pi is marginalized

out, then the joint distribution becomes the following:

p(ΘA,mA,i,mE,i|y, A, E) ∝ p(ΘA|A) pλ(mE,i|mA,i(ΘA)) p(mE,i|y, E), (9)

where the second term of the RHS results from the DM marginal likelihood (4) and JS likelihood

(5) in Proposition 1.

2.3. An MCMC procedure for the posterior joint distribution

This study proposes the posterior inference of the MEI approach using the following two-step

MCMC procedure:

Two-step MCMC procedure� �
Step 1. Given y and the empirical model E, draw mE,i from p(mE,i|y, E) for i = 1, · · · , I .

Step 2. Given ME, draw ΘA and MA, from p(ΘA|A)ΠI
i=1pλ(mE,i|mA,i(ΘA)).

Resulting draws of ΘA and MA construct the posterior draws from p(ΘA,MA|y, A, E).� �
The posterior draws of mE,i in Step 1 are implemented using the Gibbs sampling procedure with

an atheoretical empirical model. Let p(y|θE, E) denote the likelihood function of empirical model

E with parameter θE given data y. Given prior distribution p(θE|E), parameter θE is drawn from

the posterior kernel
p(θE|y, E) ∝ p(y|θE, E)p(θE|E).

Given a draw of θE , the empirical moment mE,i is simulated as a deterministic nonlinear func-

tion, mE,i(θE). This process is repeated N times to construct a draw of mE,i from the conditional

distribution p(mE,i|y, E).

To implement Step 2, this study focuses on the case with M = 1 because it is computa-

tionally infeasible to simultaneously draw a large number of theoretical moments mA,i by solving

the underlying nonlinear DSGE model for different values of the structural parameters ΘA. With

M = 1, collection ΘA degenerates to a single vector θA. Hence, the conditional density becomes:

pλ(θA|ME) = p(θA|A)ΠI
i=1pλ(mE,i|mA,i(θA)).

Because there is no analytical representation of pλ(θA|ME), Step 2 adopts the following RW-MH

12



algorithm.

The RW-MH algorithm in Step 2� �
Given the initial draw θoldA and corresponding conditional probability p(θoldA |ME),

2(a). Draw a new candidate of the structural parameter θnewA from

θnewA = θoldA + v, v ∼ i.i.d.(0, τΩ)

where, v is a random variate drawn from an i.i.d. with the mean of zero and diagonal

variance-covariance matrix Ω accompanied by the configuration parameter τ .

2(b). Calculate the conditional probability pλ(θnewA |ME). Compute

r(θnewA |θoldA ) = min

{
1,
pλ(θ

new
A |ME)

pλ(θoldA |ME)

}
.

2(c). Draw a uniform random variate u ∼ U [0, 1]. Accept θA = θnewA if r(θnewA |θoldA ) ≥ u.

Keep θA = θoldA otherwise.

2(d). Set θoldA = θA. Repeat 2(a)-(d) many times.� �
The proposed RW-MH procedure can be interpreted as a generalization of the approximated

Bayesian computation with the MCMC sampler (MCMC-ABC) developed by Marjoram et al.

(2003) and extended by Forneron and Ng (2018). To understand this interpretation, suppose that

the empirical moment distribution mE,i degenerates to a single scaler value of the sample moment

mE,i. The JS likelihood (7) then becomes:

lim
λ→K+1

ln pλ(mE,i|mA,i) →
K∑
k=1

I[mA,i ∩mE,i ∈ sk,i] ln

(
3

K + 2

)
= I

[
|mA,i −mE,i| ≤

Si

K

]
ln

(
3

K + 2

)
.

This function takes the value of ln
(

3
K+2

)
if the simulated moment mA,i drops to the same subin-

terval sk,i, where the sample moment mE,i resides, and 0 otherwise. Essentially, only when the

absolute distance between mA,i and mE,i is less than the width of the subinterval Si/K does the

JS likelihood take a positive value of 3
K+2

. Given this particular distance function, the proposed

RW-MH procedure yields the same Markov kernel as the MCMC-ABC.
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2.4. The marginal likelihood estimation and model comparison

In the MEI approach, the marginal likelihood of the DSGE model A is evaluated relative to

that of the empirical model E. This relative marginal likelihood ψλ(y|A,E) ≡ p(y|A,E)/p(y|E)

is approximated by the modified harmonic mean estimator by Geweke (1999): for J posterior draws,

ψ̂λ(y|A,E) =

[
1

J

J∑
j=1

f(θjA)

pλ(θ
j
A|ME)

]−1

,

where θjA is drawn from the posterior joint distribution (9) using the MCMC procedure. Following

the recommendation of Geweke (1999), this study uses, for the function f(θA), a truncated normal

approximation of the posterior distribution for θA.

The formal model comparison between the two nonlinear DSGE models A1 and A2 is im-

plemented with the estimated relative marginal likelihoods ψ̂λ(y|A1, E) and ψ̂λ(y|A2, E). Given

the prior model probabilities p(A1) and p(A2), the posterior odds ratio of A1 versus A2 conditional

on the reference model E is

p(A1)ψ̂λ(y|A1, E)

p(A2)ψ̂λ(y|A2, E)
=
p(A1)p(y|A1, E)

p(A2)p(y|A2, E)
.

When greater than one, the posterior odds ratio is in favor of the model A1. The nonlinear DSGE

model A1 can then replicate the empirical moment distributions estimated by the reference model

E better than the other nonlinear DSGE model A2.

3. Monte Carlo experiments on the MEI posterior sampler with an
equilibrium asset-pricing model

To show how the proposed MEI posterior inference method works practically, this study

conducts Monte Carlo experiments with an equilibrium consumption-based asset-pricing model

by Labadie (1989) as a simple example. Generally, an equilibrium asset-pricing model prices a

risky asset based on the conditional covariance between the stochastic discount factor and future

risky returns. The implied multiplicity makes it infeasible for a linearized model to price a risky

asset in equilibrium. As a result, drawing a Bayesian posterior inference of an equilibrium asset-

pricing model conditional on time-series data of asset prices becomes quite difficult. This section

shows that the proposed MEI posterior sampler easily draws a posterior inference of a nonlinear
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equilibrium asset-pricing model, as in Labadie (1989).

The population moment vector M investigated in this section is a six-dimensional column

vector. This includes the population means of the risk-free rate E(rft ), equity premium E(ept), and

consumption growth rate E(ln κt), the population variances of the equity premium V(ept) and con-

sumption growth rate V(ln κt), and the population first-order autocorrelation of the consumption

growth rate Cor(ln κt);

M ≡ [mi] = [E(rft ),E(ept),V(ept),E(ln κt),V(ln κt),Cor(ln κt)]
′.

Geweke (2010) focuses on the population means of the risk-free rate and equity premium. This

is because the standard equilibrium asset pricing models, as in Mehra and Prescott (1985) and

Labadie (1989), are not intended to explain higher-order population moments of two asset prices.

Additionally, this study includes the population variance of the equity premium and the population

first and second moments related to the consumption growth rate to more precisely identify the

consumption growth rate process.

3.1. Labadie’s (1989) model and the true distributions of population moments

Labadie’s (1989) model is a continuous state-space generalization of Mehra and Prescott’s

(1985) equilibrium consumption-based asset-pricing model. While Labadie (1989) investigates

the role of inflation tax in the equity premium puzzle, the Monte Carlo exercises focus only on the

implications of the model for the real rates of return, following Geweke (2010).11

A representative investor maximizes the lifetime utility function

Et

∞∑
i=0

βi c
1−γ
t+i − 1

1− γ
, 0 < β < 1, γ > 0, (10)

where β, γ, and Et are the subjective discount factor, degree of relative risk aversion, and mathe-

matical conditional expectation operator, respectively. The objective function (10) is maximized,

subject to the budget constraint as follows:

qtzt+1 + ptbt+1 + ct ≤ (qt + et)zt + bt,

where ct, et, qt, pt, zt, and bt are consumption, stochastic endowment, price of the risky equity,

11Geweke (2010) investigates four distinct consumption-based equilibrium asset-pricing models for the real rates of
return of risk-free and risky assets.
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price of the risk-free bond, amount of risky equity, and amount of risk-free bonds, respectively.

The growth rate of endowment lnκt follows the AR(1) process:

lnκt ≡ ln et/et−1 = δ0 + δ1 lnκt−1 + υt, υt ∼ i.i.d.N(0, σ2
e), (11)

where δ0, δ1, and υt are the unconditional mean and AR root of the endowment growth rate and

endowment growth shock, respectively. Endowment growth rate shock υt is assumed to follow a

normal distribution with a mean of zero and variance of σ2
e . Thus, κt follows a lognormal process.

Hence, the model contains five structural parameters: θA = [β, γ, µ, δ0, δ1, σ
2
e ].

In equilibrium, consumption should be equal to the endowment ct = et. Imposing this

market-clearing condition on the first-order necessary conditions (FONCs) for equity holdings and

risk-free bond holdings gives the following:

qte
−γ
t = βEte

−γ
t+1(qt+1 + et+1), (12)

and
pte

−γ
t = βEte

−γ
t+1. (13)

If a new variable ht is defined by qte−γ
t , then the FONC for equity holdings (12) can be rewritten

as follows:
ht = βEt(ht+1 + e1−γ

t+1 ). (14)

Eq.(14) is a linear rational expectation model with respect to ht. Solving eq.(14) for ht by forward

iterations yields the fundamental solution:

ht =
∞∑
i=1

βiEte
ρ
t+i, (15)

where ρ ≡ 1− γ.

Under the assumption of log-normality of the endowment growth rate, Labadie (1989) proves

that if the long-run average growth rate of the marginal utility times the real dividend eρt is of

exponential order less than β−1, the variable ht in eq.(15) can be solved with respect to the equity

price qt as follows:
qt = et

∞∑
j=1

Ajκ
aj
t , (16)

where A1 = β exp[ρ(δ0 + 0.5ρσ2)] and a1 = ρδ1, and for j > 1,

Aj+1 = Ajβ exp[(aj + ρ)(δ0 + 0.5(aj + ρ)σ2)], and aj+1 = (aj + ρ)δ1.
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Labadie (1989) provides an algorithm to find fixed points A∗, a∗, and Ht = A∗κa
∗

t that satisfy

qt = etHt and solves the nonlinear equation (16). The real rate of equity return rqt is then given by

the following:
1 + rqt =

qt + et
qt−1

= κt
Ht + 1

Ht−1

= κt
A∗κa

∗
t + 1

A∗κa
∗

t−1

. (17)

From eq.(13), the risk-free rate rft is as follows:

1

1 + rft
= pt = βEtκ

−γ
t+1 = β exp(−γδ0 + 0.5γ2σ2)κ−γδ1

t . (18)

Equity premium ept is defined by the difference between the two rates of returns rqt and rft : ept ≡

rqt −r
f
t . The rate of equity return (17) and risk-free rate (18) are nonlinear functions of the structural

parameters θA and the state variable κt.

To construct the true model denoted by R, this study follows Labadie’s (1989) calibration.

The true value of β is set to 0.980, that of γ is 2.000, that of δ0 is 0.017, that of δ1 is 0.180, and

that of σ2
e is 0.003. Four true moments E(rft |R), E(ln κt|R), V(ln κt|R), and Cor(ln κt|R) can be

calculated using analytical values.

E(rft |R) = β−1 exp

(
γδ0

1− δ1
+

γ2σ2
e

1− δ21
(δ21 − 0.5)

)
− 1,

E(ln κt|R) =
δ0

1− δ1
, V(ln κt|R) =

σ2
e

1− δ21
, and Cor(ln κt|R) = δ1.

The true population mean and variance of the equity premium, E(ept|R) and V(ept|R), have no

analytical representations. Given the corresponding initial state variable lnκ0 = δ0/(1 − δ1),

eqs.(11), (17), and (18) generate a synthetic time series of ept for Ttrue = 1, 000 quarter-periods.

Then, the true population moments E(ept|R) and V(ept|R) are approximated as the time-series

mean and variance of the synthetic data of ept: E(ept|R) = T−1
true

∑Ttrue

t=1 ept and V(ept|R) =

T−1
true

∑Ttrue

t=1 (ept − E(ept|R))2. The true moment vector MR is then constructed as follows:

MR ≡ 100× [E(rft |R),E(ept|R),V(ept|R),E(ln κt|R),V(ln κt|R),Cor(ln κt|R)].

The second column of Table 1 displays the true population moments MR. For example, the

true model yields 5.725 % of a mean risk-free rate E(rft |R), 0.493 % of the mean equity premium

E(ept|R), and 27.5% of the variance in the equity premium V(ept|R). Particularly, the small mean

equity premium of 0.493 % implies that Labadie’s (1989) model suffers from an equity premium
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puzzle.

3.2. Posterior inference of the empirical model E: Step 1

Step 1 of the MEI posterior inference method employs empirical model E to infer the em-

pirical moment distributions from the actual data. Following Geweke (2010), this study utilizes

first-order vector autoregression (VAR) as the empirical modelE to simulate the posterior distribu-

tion of the empirical moment vector mE . Information set yt = [rft , ept, lnκt]
′ follows a trivariate

first-order VAR(1)
yt − µ = F (yt−1 − µ) + ut, ut ∼ i.i.d.N(0,Σ), (19)

where µ is the 3 × 1 column vector of the unconditional mean of yt, F is the 3 × 3 coefficient

matrix, and ut is the 3 × 1 reduced-form disturbance vector that follows the multivariate normal

distribution with a mean of 0 and the variance-covariance matrix Σ. The empirical moment vector

ME is a linear mapping of VAR parameters µ, F , and Σ;

ME = 100× [E(rft |E),E(ept|E),V(ept|E),E(ln κt|E),V(ln κt|E),Cor(ln κt|E)]

= 100× [µ1, µ2, σ
2
ep, µ3, σ

2
lnκ, ρlnκ],

where µi for i = 1, 2, 3 is the i-th element of the constant vector µ, and σ2
ep and σ2

lnκ are the (2,2)th

and (3,3)th elements of the variance-covariance matrix Σy, which is given as the solution of the

discrete Lyapunov equation Σy = FΣyF
′+Σ. Finally, ρlnκ is the (3,3)th element of the first-order

autocorrelation matrix from the VAR (19).

This study implements the draws of the VAR parameters from the posterior distribution

p(θE|y, E) using the Gibbs sampling procedure for the standard Normal-inverted Wishart model.

The prior joint distributions of µ, F , and Σ are set to be improper. The resulting posterior distribu-

tion of Σ follows an inverted Wishart distribution. Conditional on a draw of Σ, the posterior joint

distribution of µ and F is a multivariate normal. The realistic sample length is set to TE = 200

at a quarterly frequency. From synthetic data with 10,000 sample lengths simulated from the true

model, the last 200 data points are extracted to construct data y. The Gibbs sampling procedure for

the Normal-inverted Wishart model simulates posterior distributions of θE and mE conditional on

the synthetic data y. The number of Gibbs sampling draws N is set to 30,000.

Figure 1 shows the empirical moment distribution ME . Each window plots the kernel-

smoothed densities of the posterior distribution of an empirical moment and the corresponding true
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moment as solid gray and vertical dashed blue lines, respectively. The upper-left, upper-middle,

upper-right, lower-left, lower-middle, and lower-right windows correspond to E(rft |E), E(ept|E),

V(ept|E), V(ln κt|E), V(ln κt|E), and Cor(ln κt|E), respectively. The third and fourth columns

of Table 2 report the posterior means and standard deviations of the empirical population moments,

respectively.

Figure 1 shows that the empirical model E suffers from small-sample bias in inferring the

true population moments from the synthetic data y. The upper-left window of Figure 1 shows that

the posterior mean of E(rft |E) was slightly larger than the true value E(rft |R). The third column

of Table 2 reports that the posterior mean of E(rft |E) is 5.813, which overestimates the true value

of 5.725. However, the degree of the small-sample bias is not so severe: the posterior standard

deviation of E(rft |E) is 0.173. This implies that the 90 % Bayesian credible interval sufficiently

includes the true value. Regarding the five other empirical moments, the upper-middle, upper-right,

lower-left, lower-middle, and lower-right windows of Figure 1 show that the posterior distributions

of E(ept|E), E(ln κt|E), V(ept|E), V(ln κt|E), and Cor(ln κt|E) contain corresponding true

values close to their modal values within the 90% Bayesian credible intervals. Thus, even with a

small sample bias and posterior uncertainty, owing to the short length of data y, empirical model

(19) infers the true values of the targeted population moments with high precision. This property of

the empirical model E is necessary for the successful inference of the true values of the structural

parameters through the MEI posterior sampler.

3.3. Posterior inference of the structural model A: Step 2

Step 2 implements the RW-MH algorithm to infer the DSGE model A. Given a draw of θA

from the candidate distribution in Step 2(a), the four theoretical moments E(rft |A), E(ln κt|A),

V(ln κt|A), and Cor(ln κt|A) are calculated using their analytical values.

E(rft |A) = β−1 exp

(
γδ0

1− δ1
+

γ2σ2
e

1− δ21
(δ21 − 0.5)

)
− 1,

E(ln κt|A) =
δ0

1− δ1
, V(ln κt|A) =

σ2
e

1− δ21
, and Cor(ln κt|A) = δ1.

The theoretical population mean and variance of the equity premium, E(ept|A) andV(ept|A), have

no analytical representations. Given the corresponding initial state variable lnκ0 = δ0/(1 − δ1),

eqs.(11), (17), and (18) generate a synthetic time series of ept for TA = 1, 000 sample periods.
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Theoretical moments E(ept|A) and V(ept|A) are then approximated as the time-series mean and

variance, respectively, of the synthetic data of ept; E(ept|A) = T−1
A

∑TA

t=1 ept and V(ept|A) =

T−1
A

∑TA

t=1(ept − E(ept|A))2. The theoretical moment vector MA(θA) is given by the following:

MA(θA) ≡ 100× [E(rft |A),E(ept|A),V(ept|A),E(ln κt|A),V(ln κt|A),Cor(ln κt|A)].

Eq.(7) provides the JS likelihoodΣI
i ln pλ(mE,i|mA,i(θA)), given the empirical moment distribution

ME .

To construct prior distributions of the structural parameters p(θA|A), this study adopts three

strategies. The first strategy (the third-fifth columns of Table 2), denoted “Prior I,” assumes the

correctly specified informative prior distributions for the structural parameters θA with the prior

means matching the true values; the prior distribution of β is the Beta distribution with a mean of

0.980 and standard deviation of 0.001; that of γ is the Gamma distribution with a mean of 2.000

and standard deviation of 1.500; that of δ0 is the normal distribution with a mean of 0.017 and

standard deviation of 0.005; that of δ1 is the normal distribution with a mean of 0.180 and standard

deviation of 0.100; and that of σ2
e is the inverted Gamma distribution with a mean of 0.003 and

standard deviation of 0.001.

The second strategy assumes the uniform distributions with suitable supports for the five

structural parameters (the sixth and seventh columns of Table 2, denoted “Prior II”). The second

prior strategy checks how well the MEI posterior sampler recovers true values of the structural

parameters θA without any prior information. Finally, the third strategy (the eighth-tenth columns

of Table 2 denoted “Prior III”), sets the prior mean of the relative risk aversion parameter γ to an

incorrectly high value of 5.000 and keeps prior distributions of the other structural parameters to

the same as in Prior I. Hence, the third prior strategy scrutinizes how the MEI posterior sampler

updates the misspecified prior position of γ toward the true value of 2.000 exploiting the posterior

information of the empirical moment distributions ME .

4. Monte Carlo experiment results

This section reports the results of the Monte Carlo experiments with the MEI posterior sam-

pler. Given the empirical posterior moments ME (reported as solid gray lines in Figure 1), the

RW-MH algorithm in Step 2 simulates the posterior distributions of the structural parameters θA

through the theoretical moments MA.
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Initial values of θA,0 are set to be far from the true values for initiating the RW-MH algo-

rithms: β0 = 0.95, γ0 = 1.5, δ0,0 = 0.001, δ1,0 = 0.001, and σ2
e,0 = 0.001. Consequently, initial

values of the theoretical population moments mA,0 are distinct from their true values. Subsequent

MCMC draws are monitored to check how the theoretical moment distributions MA converge to

stationary distributions overlapping the empirical moment distributions ME and how closely sim-

ulated posterior distributions of the structural parameters θA recover the corresponding true values.

This study configures the MEI posterior sampler as follows. The finite support of E(rft ) is

[0.0, 20.0], that of E(ept) is [−1.0, 3.0], that of V(ept) is [0.0, 80.0], that of E(ln κt) is [0.0, 5.0],

that of V(ln κt) is [0.0, 80.0], and that of Cor(ln κt) is [−0.5, 0.5]. Grid numberK for discretizing

finite supports is set to 300. Number N of posterior draws for the empirical moment distribution is

set to 30,000. Subsection 2.1 shows that this study sets the number M for the theoretical moment

distribution to a minimum value of 1. In this case, weight λ becomes 0.01, and JS likelihood

(5) degenerates to eq.(7). The length of the MCMC sampling is set to 200,000. The first 20,000

MCMC samples are burned in to guarantee convergence to stationary distributions. The RW-MH

draws maintain a 40 % rejection rate by suitably setting the configuration parameter τ .12

4.1. MEI posterior inferences of θA and mA under Prior I

Figure 2 plots the kernel-smoothed densities of the empirical moment distributions ME as

solid grey lines and simulated theoretical moment distributions MA under Prior I as solid black

lines. The upper-left window corresponds to the population mean of the risk-free rate, E(rft );

the upper-middle window corresponds to the population mean of the equity premium, E(ept); the

upper-right window corresponds to the population variance of the equity premium, V(ept); the

lower-left window corresponds to the population mean of the consumption growth rate, E(ln κt);

the lower-middle window corresponds to the population variance of the consumption growth rate,

V(ln κt); and the lower-right window corresponds to the population first-order autocorrelation of

the consumption growth rate,Cor(ln κt). The fifth and sixth columns of Table 1 report the posterior

means and standard deviations of the theoretical moment distributions under Prior I.

The upper-left, upper-right, and lower-middle windows in Figure 2 clearly show that the the-

12This study executes the entire procedure of the proposed MEI posterior inference by Python 3.9 codes. A MacBook
Air with the M2 chip and 24GB RAM provides sufficiently quick implementation taking 149 minutes. Program codes
are available upon request.
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oretical posterior distributions of E(rft |A), V(ept|A), and V(ln κt|A) overlap with their empirical

counterparts of E(rft |E), V(ept|E), and V(ln κt|E). The third and fifth columns of Table 1 show

that the posterior means of these theoretical population moments, 5.805, 24.86, and 28.04, are

quite close to those of their empirical counterparts, 5.813, 24.86, and 29.12, respectively. Figure 2

also shows that the theoretical posterior distributions of the other population moments E(ept|A),

E(ln κt|A), and Cor(ln κt|A) overlap with their empirical counterparts E(ept|E), E(ln κt|E), and

Cor(ln κt|E). However, the cross-equation restrictions imposed by Labadie’s (1989) model lead to

fewer overlapping degrees. Note that in Table 1, for all theoretical moments, their posterior means

are close to not only those of the empirical moments but also true values; indeed, one posterior

standard deviation interval of the theoretical moment distributions contain the corresponding true

values.

Figure 3 depicts posterior distributions of the structural parameters θA. The upper-left, upper-

middle, upper-right, lower-left, and lower-middle windows correspond to β, γ, σ2
e , δ0, and δ1, re-

spectively. Each window plots the kernel-smoothed density of the posterior distribution of a struc-

tural parameter as a solid black line, the calibrated true value as the vertical dashed blue line, and

the prior distribution as the dashed red line. The third and fourth columns of Table 3 report the

posterior means and standard deviations of the structural parameters under Prior I, respectively,

with the corresponding calibrated true values in the second column.

The windows in Figure 3 show that the MEI posterior sampler successfully detects the cali-

brated true values of the structural parameters. All posterior distributions of the structural parame-

ters θA contain the corresponding true values close to their posterior means. Particularly, posterior

modal values of β, γ, and δ0 almost perfectly match the true values. The third column of Table 3

confirms that the posterior means of the structural parameters are almost identical to the true val-

ues. Moreover, posterior distributions of the structural parameters tend to be more symmetric and

narrower than their corresponding prior distributions. Hence, the MEI posterior sampler correctly

updates prior belief on the positions of the structural parameters toward the true values by exploiting

the empirical moment distributions ME effectively.

4.2. Convergence and efficiency of the MEI posterior sampler

To check the convergence and efficiency of the MEI posterior sampler, Figures 4 and 5 plot
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the time series of the simulated draws of the theoretical moments MA and structural parameters

θA, respectively. The upper-left, upper-middle, upper-right, and lower-middle windows in Figure

4 show that the posterior draws of E(rft |A), E(ept|A), V(ept|A), and V(ln κt|A), represented by

the gray-solid lines, quickly converge to stationary distributions around empirical means (black

solid lines) and true values (dotted black lines) with negligible autocorrelations. The lower-left

and lower-right windows of Figure 4 show that the posterior draws of E(ln κt|A) and Cor(ln κt|A)

converge to stationary distributions, although they are less efficient with higher autocorrelations.

Simulated posterior draws of the structural parameters β, γ, σ2
e , and δ0 reported in Figure 5 quickly

converged to stationary distributions around the calibrated true values with small autocorrelations,

except for the posterior draws of δ1 subject to high autocorrelation.13 Therefore, based on this visual

evidence, the MEI posterior sampler achieves stable convergence to stationary posterior distribu-

tions. However, it yields different degrees of efficiency over structural parameters and population

moments.

To check the convergence and efficiency of the MEI posterior sampler more formally, this

study calculates the convergence criterion |Z| proposed by Geweke (1992) and the inefficiency

factor proposed by Chib (2001) for each of the structural parameters as well as the population

moments.14 The second and third columns in Table 4 report the former and latter statistics, respec-

tively. For all structural parameters and population moments, convergence criteria are less than

1.959. Hence, the null of a convergence cannot be rejected at the conventional 5 % significance

level. However, as shown in the fourth column, inefficiency factors are large for most structural pa-

rameters and population moments. The minimum and maximum values of the inefficiency factors

are 91 and 14,754, respectively, for E(rft |A) and Cor(ln κt|A). Particularly, inefficiency factors

are greater than 2,000 for structural parameters, except σ2
e . Therefore, the proposed MEI poste-

rior sampler suffers from a substantial inefficiency problem; correct posterior inferences require

sufficiently long posterior simulations.

4.3. Robustness check with Priors II: Role of prior information

This subsection examines the extent to which successful posterior inferences of the MEI ap-

13By construction, simulated draws of δ1 are equivalent to those of Cor(lnκt|A).
14Particularly, in this study, Geweke’s convergence criterion uses the first 20 % and last 40% posterior draws for the

first and second distributions, respectively. The inefficient factor exploits the estimated autocorrelation coefficients up
to 20,000 lags.
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proach under Prior I depend on the correctly specified prior belief about the true values of structural

parameters. The sixth and seventh columns of Table 2 show that Prior II adopts uniform prior distri-

butions for all structural parameters. Hence, the results of the MEI posterior sampler under Prior II

reflect only information of the empirical moment distributions ME but are independent of any prior

belief in the positions of the structural parameters. Figure 6 depicts the kernel-smoothed densities

of the empirical moment distributions ME as solid gray lines and simulated theoretical moment

distributions MA under Prior II as solid black lines. The seventh and eighth columns of Table 1

report the posterior means and standard deviations of the theoretical moment distributions under

Prior II.

Notably, each window in Figure 6 is visually indistinguishable from the corresponding win-

dow in Figure 2. Particularly, the simulated posterior distributions of E(rft |A), V(ept|A), and

V(ln κt|A) overlap with their empirical counterparts, E(rft |E), V(ept|E), and V(ln κt|E), as

shown in Figure 2. The seventh and eighth columns of Table 1 also confirm this visual impres-

sion; the posterior means and standard deviations of the theoretical moment distributions under

Prior II are close and quite similar to those under Prior I.

Results from Prior II imply that the MEI posterior sampler successfully traces the empirical

moment distributions and, as a result, recovers the true positions of the structural parameters even

without any prior information of the structural parameters. Figure 7 shows simulated posterior

distributions of the structural parameters θA under Prior II. Construction of Figure 7 is identical

to that of Figure 3 under Prior I. The MEI posterior sampler under Prior II implies the kernel-

smoothed densities of the posterior distributions of the structural parameters (solid black lines) that

contain the corresponding true values (vertical blue dashed lines) close to their posterior means,

even with flat prior distributions (red dashed lines). However, several crucial differences in the

posterior inferences of the structural parameters between Priors I and II are shown. The fifth and

sixth columns of Table 3 show the posterior means and standard deviations of structural parameters

under Prior II. First, the posterior mean of γ under Prior II is 2.415, which is much larger than 2.076

under Prior I and the calibrated true value of 2.000. Second, posterior standard deviations under

Prior II were larger than those under Prior I.

These differences in the posterior inferences of the structural parameters are correctly re-
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flected in the lower marginal likelihood under Prior II than under Prior I. The last two rows of Table

3 show the estimated log relative marginal likelihood ln ψ̂λ(y|A,E) and the posterior odds ratio

(relative to Prior I) for each specification. The estimated log relative marginal likelihood under

Prior II is -719,685.2, which is much lower than that under Prior I (-719,673.8). The resulting pos-

terior odds ratio of Prior II relative to Prior I is 0.000. The result of the formal model comparison

validates the general conjecture that correct prior information leads to a higher posterior model

probability.

4.4. Robustness check with Priors III: Updating misspecified prior information

A major concern of the MEI approach originally developed by Geweke (2010) is that the

model evaluation and comparison depend on the prior information of the structural parameters be-

cause the original MEI approach is absent from the updating process of θA through data. Hence, if

prior information is crucially misspecified, the resulting model evaluation, comparison, and criti-

cism with the MEI approach are heavily distorted. The last subsection shows that the MEI posterior

sampler proposed in this study updates misspecified prior information correctly using information

of the empirical moment distributions. Simultaneously, the misspecified prior information of a par-

ticular structural parameter leads to biased posterior inferences of all other structural parameters

through the cross-equation restrictions of the DSGE model. The posterior odds ratio identifies the

distortion caused by the misspecification of prior information of the structural parameters.

Recall that Prior III sets the prior mean of γ to an incorrectly higher value of 5.000. Figure

8 plots the kernel-smoothed densities of the empirical and theoretical moment distributions, ME

and MA under Prior III, as shown in Figures 2 and 6 for Priors I and II. As observed in the lower-

right window, the MEI posterior sampler under Prior III results in the worst overlap of the theoretical

moment distribution with the empirical one with respect to E(ln κt). The last two columns of Table

1 also numerically confirm this property of Prior III; the posterior mean of E(ln κt|A) under Prior

III is 1.706, which is much lower than those of 2.119 and 2.007 under Priors I and II, respectively,

and far from its empirical counterpart of 2.256 as well.

Figure 9 plots the kernel-smoothed densities of the posterior distributions of the structural

parameters, as in Figures 3 and 7 for Priors I and II. The upper-middle window of Figure 9 confirms

that the prior distribution of γ is misspecified with a larger prior mean of 5.000. Two important
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results are worth mentioning. First, although the posterior distribution of γ remains biased to the

right, the MEI posterior sampler updates the misspecified prior distribution of γ correctly, toward

the true value of 2.000. The seventh column of Table 3 shows that the posterior mean of γ under

Prior III is 3.672, which is close to the true value of 2.000. Second, the misspecification of the

prior mean of γ results in biased posterior inferences on not only γ itself but also on other structural

parameters. Particularly, the posterior means of the consumption growth rate parameters δ0 and δ1

are biased downward, as shown in the last two columns of Table 3. Hence, the misspecified prior

belief about the position of a single structural parameter tends to distort the posterior inferences of

the entire parameter space of the DSGE model through cross-equation restrictions. The estimated

log relative marginal likelihood under Prior III is -719,675.3, which is significantly lower than that

under Prior I. The resulting posterior odds ratio of Prior III relative to Prior I was 0.223. Thus, the

formal Bayesian model comparison prefers Prior I to Prior III and correctly identifies the distorting

effect of the misspecified prior belief of the structural parameters.

5. Concluding remarks

This study developed a distribution-matching Bayesian indirect inference method extending

the MEI approach by Geweke (2010). Following the central premise of the MEI approach, the

proposed Bayesian strategy assumes that DSGE models only provide prior distributions of unob-

servable population moments. Based on a statistical reference model to estimate empirical moment

distributions, the developed MEI posterior sampler simulates the theoretical moment distributions

to overlap empirical moments as tightly as possible and, as a result, infers the posterior distributions

of the structural parameters of the DSGE model. Because deriving a full-information likelihood

is unnecessary, this simulation-based method makes drawing posterior inferences of potentially

misspecified nonlinear DSGE models with flexible exogenous impulses possible.

This study formalizes the MEI posterior sampler utilizing the restricted DM model and its ap-

proximated representation of JS divergence as a parametric probability model of mixing discretized

empirical and theoretical moment distributions. As an inheritance of the original MEI approach,

the proposed posterior inference method reflects sampling variations of the targeted population mo-

ments in the posterior inference of the DSGE model under investigation. Essentially, it acts as a data
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augmentation technique that avoids overfitting actual data and enhances the generalization ability

of the inferred DSGE model.

Monte Carlo experiments based on Labadie’s (1989) nonlinear equilibrium asset-pricing

model provide solid evidence that the proposed MEI posterior sampler successfully detects cali-

brated values of the structural parameters. Moreover, the estimated posterior odds ratios distinguish

the model with correctly specified prior distributions of the structural parameters from those with

uniform and misspecified prior distributions.

The MEI posterior inference scheme is not necessarily specific to DSGE models. Moreover,

it is applicable to the estimation and inference problems of structural models in broad fields of

economics. Particularly, its main characteristic of distribution matching enables researchers to draw

posterior inferences of structural models with heterogeneous economic agents, which have stringent

implications on distributions of household income and firm productivity.

Finally, the proposed MEI posterior inference scheme had several limitations. First, simul-

taneous draws of the theoretical population moments from a nonlinear DSGE model are compu-

tationally costly for a large number M. Hence, the MEI posterior sampler is practically infeasible

over continuous variations in the weight λ in the JS likelihood. This limitation implies that an MEI

user cannot infer the degree of misspecification of the DSGE model through the posterior odds

ratios calculated for different values of λ, as exercised in the DSGE-VAR method by Del Negro

and Schorfheide (2004). Second, more efficient candidate densities in the RW-MH algorithm are

needed to improve the inefficiency of the MEI posterior sampler (Section 4.2). These are the main

challenges that this study’s Bayesian strategy needs to address in the future.
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Appendix A: Proof of Proposition 1

In this appendix, I omit subscript i without loss of generality. To prove Proposition 1, first note that the Gamma
function Γ(x) is equal to the factorial (x− 1)! for variable x. Stirling’s approximation implies that for a large number
of x, lnx! ≈ x lnx− x+ 1

2 ln(2πx) = (x+ 1) lnx− x+ 1
2 ln(2π/x). As the last term is dominated for large x, it is

the case that
ln Γ(x+ 1) = lnx! ≈ (x+ 1) lnx− x.

Note that Pólya distribution (4) can be rewritten as

p(mE |mA) =
N !(M +K − 1)!

(N +M +K − 1)!

K∏
k=1

(nk + αk − 1)!

nk!(αk − 1)!

=
N !(M +K)!

(N +M +K)!

N +M +K

M +K

K∏
k=1

(nk + αk)!

nk!αk!

αk

nk + αk

=
N !(M +K)!

(N +M +K)!

1 + λ

λ

K∏
k=1

(nk + αk)!

nk!αk!

αk

nk + αk

Taking the logarithm of both sides of the above result and applying Stirling’s approximation of the factorial yields:

ln p(mE |mA) = ln
1 + λ

λ
+ lnN ! + ln(M +K)!− ln(N +M +K)!

+

K∑
k=1

ln(nk + αk)!−
K∑

k=1

lnnk!−
K∑

k=1

lnαk! +

K∑
k=1

lnαk −
K∑

k=1

ln(nk + αk)

≈ ln
1 + λ

λ
+ (N + 1) lnN + (M +K + 1) ln(M +K)− (N +M +K + 1) ln(N +M +K)

+

K∑
k=1

(nk + αk) ln(nk + αk)−
K∑

k=1

nk lnnk −
K∑

k=1

αk lnαk

= lnN +

K∑
k=1

(nk + αk) ln

(
nk + αk

N +M +K

)

−
K∑

k=1

nk ln
(nk

N

)
−

K∑
k=1

αk ln

(
αk

M +K

)

= lnN −
K∑

k=1

nk

[
ln
(nk

N

)
− ln

(
nk + αk

N +M +K

)]
−

K∑
k=1

αk

[
ln

(
αk

M +K

)
− ln

(
nk + αk

N +M +K

)]
(A.1)

Note that the term (nk + αk)/(N +M +K) in the third and fourth terms on the RHS of the last equality in eq.(A.1)
can be rewritten as the weighted average between ζk and qk with weights 1/(1 + λ) and λ/(1 + λ):(

nk + αk

N +M +K

)
=

1

1 + λ
ζk +

λ

1 + λ
qk.

Substituting this relation into eq.(A.1) establishes Proposition 1:

ln p(mE |mA) ≈ lnN − (1 + λ)N

K∑
k=1

1

1 + λ
ζk

[
ln (ζk)− ln

(
1

1 + λ
ζk +

λ

1 + λ
qk

)]

− (1 + λ)N

K∑
k=1

λ

1 + λ
qk

[
ln (qk)− ln

(
1

1 + λ
ζk +

λ

1 + λ
qk

)]
.
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Appendix B: Approximated marginal density when λ → (K + 1)/N

Suppose that a single theoretical draw mA drops into the k′-th subinterval sk′ . For k ̸= k′, αk = 1 and
qk = 1/(K + 1). For k′, αk′ = 2 and qk′ = 2/(K + 1). When λ → (K + 1)/N , eq.(A.1) becomes:

lim
λ→K+1

N

ln p(mE |mA ∈ sk′) ≈ lnN +
∑
k ̸=k′

nk

[
ln

(
nk + 1

N +K + 1

)
− ln

(nk

N

)]
+

∑
k ̸=k′

[
ln

(
nk + 1

N +K + 1

)
− ln

(
1

K + 1

)]

+ nk′

[
ln

(
nk′ + 2

N +K + 1

)
− ln

(nk′

N

)]
+ 2

[
ln

(
nk′ + 2

N +K + 1

)
− ln

(
2

K + 1

)]
= lnN +

K∑
k=1

nk

[
ln

(
nk + 1

N +K + 1

)
− ln

(nk

N

)]
+

∑
k ̸=k′

[
ln

(
nk + 1

N +K + 1

)
− ln

(
1

K + 1

)]

+ 2

[
ln

(
nk′ + 2

N +K + 1

)
− ln

(
2

K + 1

)]
+ nk′

[
ln

(
nk′ + 2

N +K + 1

)
− ln

(
nk′ + 1

N +K + 1

)]
The first two terms on the RHS of the last equality are constant. The last term is approximately zero when N is
sufficiently high. Then it is the case that

lim
λ→K+1

N

ln p(mE |mA ∈ sk′) ∝
∑
k ̸=k′

[
ln

(
nk + 1

N +K + 1

)
− ln

(
1

K + 1

)]
+ 2

[
ln

(
nk′ + 2

N +K + 1

)
− ln

(
2

K + 1

)]

= −(K + 1)
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qk

[
ln (qk)− ln

(
1

1 + λ
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λ

1 + λ
qk

)]
∝ −DKL

(
q

∣∣∣∣∣∣∣∣ 1

1 + λ
ζ +

λ

1 + λ
q

)
∝ ln

(
nk′ + 2

N +K + 1

)
where DKL

(
q
∣∣∣∣∣∣ 1

1+λζ + λ
1+λq

)
denotes KL divergence from 1

1+λζ + λ
1+λq to q. This implies

lim
λ→K+1

N

ln p(mE |mA) ∝ −
K∑

k=1

I[mA ∈ sk]DKL

(
q

∣∣∣∣∣∣∣∣ 1

1 + λ
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∝
K∑
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I[mA ∈ sk] ln

(
nk + 2

N +K + 1

)
where I[mA ∈ sk] is the indicator function that takes the value of 1 if mA drops into the k-th subinterval sk and 0
otherwise. Note that when λ → (K +1)/N ≈ 0 the marginal likelihood is approximately proportional to the negative
KL divergence from the empirical distribution ζ to q.

Appendix C: Stationarity of the MEI sampler

The proposed MEI sampler satisfies the reversibility (detailed balance) condition:

pλ(θ
new
A |ME)r(θ

old
A |θnewA ) = pλ(θ

new
A |ME)min

{
1,

pλ(θ
old
A |ME)

pλ(θnewA |ME)

}
= min

{
pλ(θ

new
A |ME), pλ(θ

old
A |ME)

}
= pλ(θ

old
A |ME)min

{
1,

pλ(θ
new
A |ME)

pλ(θoldA |ME)

}
= pλ(θ

old
A |ME)r(θ

new
A |θoldA ). (C.1)
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For the Markov kernel K(θoldA |θnewA ) defined by

K(θoldA |θnewA ) = r(θoldA |θnewA ) +

∫
[1− r(θoldA |θnewA )]dθoldA × I[θoldA = θnewA ],

= r(θoldA |θnewA ) + α(θnewA )I[θoldA = θnewA ]

the posterior distribution satisfies∫
K(θoldA |θnewA )pλ(θ

new
A |ME)dθ

new
A

=

∫
r(θoldA |θnewA )pλ(θ

new
A |ME)dθ

new
A +

∫
α(θnewA )I[θoldA = θnewA ]pλ(θ

new
A |ME)dθ

new
A

=

∫
r(θoldA |θnewA )pλ(θ

new
A |ME)dθ

new
A + α(θoldA )pλ(θ

old
A |ME)

=

∫
r(θnewA |θoldA )pλ(θ

old
A |ME)dθ

new
A + α(θoldA )pλ(θ

old
A |ME) from eq. (C.1)

=

∫
r(θnewA |θoldA )pλ(θ
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A |ME)dθ
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A +

∫
[1− r(θnewA |θoldA )]dθnewA pλ(θ
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= pλ(θ
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A |ME) +
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A |ME)−
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r(θnewA |θoldA )dθnewA pλ(θ
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= pλ(θ
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Table 1: True, Empirical, and Theoretical Distributions of Population Moments m

True mR Empirical mE Theoretical mA Theoretical mA Theoretical mA

Prior I Prior II Prior III
Mean S.D. Mean S.D. Mean S.D. Mean S.D.

E(rft ) 5.725 5.813 0.173 5.805 0.196 5.821 0.330 5.836 0.203
E(ept) 0.493 0.619 0.313 0.471 0.130 0.510 0.181 0.647 0.174
V(ept) 27.50 24.86 2.603 24.86 2.027 27.17 2.197 24.93 2.198
E(ln κt) 2.075 2.256 0.456 2.119 0.312 2.007 0.436 1.706 0.213
V(ln κt) 31.03 29.12 3.143 28.04 2.269 28.27 2.326 28.03 2.252
Cor(ln κt) 0.180 0.129 0.077 0.178 0.047 0.174 0.052 0.135 0.039

Table 2: True Values and Prior Distributions of Structural Parameters

True Prior I Prior II Prior III
Dist. Mean S.D. Dist. Support Dist. Mean S.D.

β 0.980 Beta 0.980 0.001 Uniform [0.001, 0.999] Beta 0.980 0.001
γ 2.000 Gamma 2.000 1.500 Uniform [0.001, 10.00] Gamma 5.000 1.500
δ0 0.017 Normal 0.017 0.005 Uniform [0.001, 0.500] Normal 0.017 0.005
δ1 0.180 Normal 0.180 0.100 Uniform [0.001, 0.500] Normal 0.180 0.100
σ2
e 0.003 InvGam 0.003 0.001 Uniform [0.001, 0.100] InvGam 0.003 0.001

Table 3: Posterior Distributions of Structural Parameters

True Prior I Prior II Prior III
Mean S.D. Mean S.D. Mean S.D.

β 0.980 0.981 0.007 0.981 0.011 0.985 0.006
γ 2.000 2.076 0.533 2.415 1.044 3.672 0.856
δ0 0.017 0.017 0.002 0.016 0.003 0.014 0.002
δ1 0.180 0.178 0.047 0.174 0.052 0.137 0.040
σ2
e 0.003 0.003 0.000 0.003 0.000 0.003 0.001

ln ψ̂λ(y|A,E) -719673.8 -719685.2 -719675.3
Odds Ratio vs. Prior I 1 0.000 0.223
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Table 4: Convergence and Efficiency of MEI Posterior Simulator

Prior I Prior II Prior II
|Z| Inefficiency |Z| Inefficiency |Z| Inefficiency

β 0.089 2,058 0.752 6,201 0.396 1,854
γ 0.017 2,139 0.581 3,371 0.158 1,769
δ0 0.093 5,574 0.578 6,277 0.070 3,162
δ1 0.091 14,478 0.889 12,906 0.718 5,288
σ2
e 0.189 634 1.075 673 0.874 847

E(rft |A) 0.076 91 0.739 638 0.010 139
E(ept|A) 0.197 3,851 0.880 5,850 1.050 3,889
V(ept|A) 0.572 172 1.466 284 1.261 376
E(ln κt|A) 0.198 3,073 0.364 5,940 0.763 2,020
V(ln κt|A) 0.205 238 1.026 142 1.167 452
Cor(ln κt|A) 0.132 14,754 0.986 13,285 0.989 5,409
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