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Abstract

In the classical bargaining problems, we characterize the Nash so-
lution (Nash, 1950) by a very mild condition of individual rational-
ity called Possibility of Utility Gain and continuity with respect to
feasible sets or disagreement points together with Nash’s axioms ex-
cept Weak Pareto Optimality. We also provide alternative and unified
proofs for other efficiency-free characterizations of the Nash solution.

1 Introduction
Nash (1950) formulated the bargaining problems and characterized a bargain-
ing solution satisfying the axioms of Scale Invariance, Symmetry, Contraction
Independence, and Weak Pareto Optimality. This solution is called the Nash
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solution. Since then, many researchers have investigated the properties of
this solution and provided other characterizations.

In the real world, people sometimes reach inefficient agreements. Even
when the resulting outcome is physically efficient, they often spend consid-
erable time resolving conflicts. When the timing of agreements affects their
utility levels, conflicts may be resolved at inefficient points in the utility space.
Given these considerations, it is important to investigate solutions without
imposing Weak Pareto Optimality a priori. Some researchers have character-
ized the Nash solution without Weak Pareto Optimality. Roth (1977) showed
that Weak Pareto Optimality can be replaced by Strong Individual Rational-
ity. Anbarci and Sun (2011, 2013), Rachmilevitch (2015), and Mori (2018)
also provided efficiency-free characterizations of the Nash solution. Lens-
berg and Thomson (1988) examined the role of Weak Pareto Optimality in
a model with a variable number of players. Vartiainen (2007) discussed the
limited significance of Weak Pareto Optimality in bargaining problems with-
out disagreement points. For a survey of the literature about efficiency-free
characterizations, see Thomson (2022).

In this paper, we propose a very mild condition of individual rationality
called Possibility of Utility Gain. This requires that there exists at least
one bargaining problems in which at least one player improves his or
her utility at the agreement. Were it violated, in any bargaining problem,
no player could achieve a utility gain over the disagreement point. This
condition is weaker than the axioms of individual or collective rationality
that are used to characterize the Nash solution by Roth (1977), Anbarci and
Sun (2011, 2013), Rachmilevitch (2015), and Mori (2018).

We also consider continuity with respect to feasible sets or disagreement
points. These axioms of continuity require that small changes in the bargain-
ing situation do not lead to large changes in the solution outcome. Continuity
may be also justified from the perspective of uncertainty about bargaining
situations. In real life, we can only approximate what agreements are feasible
and how much utility levels can be achieved through agreements. Continuity
demands that even if the actual bargaining problem varies slightly from our
predictions, the outcome of the solution does not alter considerably.

Many researchers have studied axioms related to uncertainty, including
Perles and Maschler (1981), Chun and Thomson (1990a,b), Peters and van
Damme (1991), Bossert and Peters (2002, 2022), and others. Thomson (1994)
reviewed the related literature up to the mid-1990s.

This paper makes three contributions. First, we provide novel charac-
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terizations of the Nash solution with almost no individual or collective ra-
tionality. We use the aforementioned axioms of individual rationality and
continuity with respect to feasible sets or disagreement points in conjunction
with Nash’s axioms except Weak Pareto Optimality. In addition, we provide
an alternative characterization using an axiom introduced by Rachmilevitch
(2015).

Second, we show that a solution satisfies continuity with respect to feasi-
ble sets and Nash’s three axioms, Scale Invariance, Symmetry, and Contrac-
tion Independence if and only if it satisfies Weak Individual Rationality and
these three axioms. This result means that two quite different conditions—
continuity with respect to feasible sets and Weak Individual Rationality—play
the same role if we impose either of them together with the three standard
axioms.

Finally, we provide unified proofs of other efficiency-free characterizations
by using several lemmas that we show to prove our main results. We clarify
the role of each axiom introduced in the related literature. Another new
characterization is provided in line with this discussion.

This paper is organized as follows. In Section 2, we introduce the bar-
gaining problem. Section 3 defines several axioms, including a novel axiom
called Possibility of Utility Gain. In Section 4, we characterize the Nash
solution and classes of solutions that include it. Section 5 provides unified
proofs of related results, and also presents another new axiomatization of the
Nash solution. Finally, Section 6 has some concluding comments.

2 The Bargaining Problems
This paper considers n-person bargaining problems. Let N = {1, 2, · · · , n}
be the set of players. The n players can attain some utility levels if they reach
an agreement, but stay at the disagreement point, represented by d ∈ Rn, if
they do not agree. Let S ⊂ Rn be the set of all utility vectors that can be
achieved by an agreement.1 A bargaining problem is a pair (S, d). We assume
that S is a compact and convex set, and that there exists s ∈ S such that

1Let R (resp. R+, R++, R−, R−−) denote the set of real numbers (resp. non-
negative numbers, positive numbers, nonpositive numbers, negative numbers). Let
Rn (resp. Rn

+, Rn
++, Rn

−, Rn
−−) denote the n-fold Cartesian product of R (resp.

R+, R++, R−, R−−).
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s � d.2 The set of all bargaining problems is denoted by Bn.
A (bargaining) solution is a function f : Bn → Rn such that f(S, d) ∈ S

for all (S, d) ∈ Bn. For each (S, d) ∈ Bn and for each i ∈ N , fi(S, d) represents
player i’s utility level thorough the agreements. Nash (1950) characterized
the following solution fNash. For all (S, d) ∈ Bn,

fNash(S, d) = arg max
d≤s∈S

Πi∈N(si − di).

This solution is called the Nash solution. The disagreement solution fdis is
defined as fdis(S, d) = d for all (S, d) ∈ Bn. We define the anti-Nash solution
fAN on B2 as follows:

• If there exists a point s ∈ S such that s � d, then

fAN(S, d) = arg max
d≥s∈S

(s1 − d1)(s2 − d2).

• If d is on the boundary of S and there is no point s ∈ S\{d} such that
s ≤ d, then fAN(S, d) = d.

• If d is on the boundary of S and there is a point s ∈ S\{d} such that
s1 < d1 and s2 = d2, then fAN(S, d) = (mins1<d1,s2=d2 s1, d2).

• If d is on the boundary of S and there is a point s ∈ S\{d} such that
s1 = d1 and s2 < d2, then fAN(S, d) = (d1, mins1=d1,s2<d2 s2).

This solution extends the maximizer of the product (s1 − d1)(s2 − d2) in
s ∈ {s′ ∈ S | s′ � d} to the case where d is on the boundary of S.

For simplicity, we introduce the following notations. For all x ∈ R, let
x = (x, x, · · · , x) ∈ Rn. For example, 0 represents (0, 0, · · · , 0) ∈ Rn. For
all A ⊂ Rn, ch(A) is the convex hull of the set A. For all s, α, β ∈ Rn, let
αs = (α1s1, α2s2, · · · , αnsn) and αs+β = (α1s1+β1, α2s2+β2, · · · , αnsn+βn).
Also, let αS = {αs ∈ Rn | s ∈ S} and αS + β = {αs + β ∈ Rn | s ∈ S} for
all α ∈ Rn

++, β ∈ Rn.
2We write a � b if ai > bi for all i ∈ N , and a ≥ b if ai ≥ bi for all i ∈ N . We define

� and ≤ in the same way.
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3 Axioms for Solutions
Natural or reasonable properties of solutions, which we call axioms, have
been considered in the literature. Nash (1950) introduced the following four
axioms to characterize the Nash solution.

Scale Invariance. For all (S, d) ∈ Bn and for all α ∈ Rn
++, β ∈ Rn, f(αS+

β, αd+ β) = αf(S, d) + β.

Weak Pareto Optimality. For all (S, d) ∈ Bn, if there exists y such that
y � x, then f(S, d) 6= x.

We say that a bargaining problem (S, d) is symmetric if for all one-to-
one functions π : N → N , S = {(sπ(1), sπ(2), · · · , sπ(n)) | s ∈ S} and for all
i, j ∈ N , di = dj.

Symmetry. If (S, d) ∈ Bn is symmetric, then fi(S, d) = fj(S, d) for all
i, j ∈ N .

Contraction Independence. For all (S, d), (T, d) ∈ Bn, if S ⊂ T and
f(T, d) ∈ S, then f(S, d) = f(T, d).

In the real-life bargainings, there are cases where people do not reach
Pareto optimal agreements. Therefore, it is important to explore bargaining
solutions without imposing Weak Pareto Optimality a priori. Roth (1977)
showed that Weak Pareto Optimality can be replaced by the following axiom.

Strong Individual Rationality. For all (S, d) ∈ Bn, f(S, d) � d.

Strong Individual Rationality requires that all players receive utility levels
strictly higher than the disagreement point.

Roth (1979) used a weaker version of individual rationality.

Weak Individual Rationality. For all (S, d) ∈ Bn, f(S, d) ≥ d.

Roth (1979) showed that if we impose Weak Individual Rationality on a
solution along with Nash’s axioms other than Weak Pareto Optimality, then
the solution is either the Nash solution fNash or the disagreement solution
fdis. We call this class of solutions the Roth class.

5



We now introduce a new axiom. It requires that there exists at least
one bargaining problem such that at least one player can gain more utility
than the disagreement point. If a solution f violates this condition, then
f(S, d) ≤ d holds for each (S, d) ∈ Bn, which means that any player cannot
improve their utility levels in any situation. This axiom is logically weaker
than Strong Individual Rationality and the axioms introduced by Anbarci
and Sun (2011), Rachmilevitch (2015) or Mori (2018).

Possibility of Utility Gain. There exists (S, d) ∈ Bn such that fi(S, d) >
di for some i ∈ N .

We also introduce axioms of continuity. They require that small changes
in the bargaining situation do not lead to large changes in the outcome of
the solution. These axioms are motivated by uncertainty in the bargaining
situation, as discussed in Section 1.

Feasible Set Continuity. For all sequences {(Sk, d)}∞k=1 ⊂ Bn and for all
(S, d) ∈ Bn, if {Sk}∞k=1 converges to S in the Hausdorff topology, then
limk→∞ f(Sk, d) = f(S, d).

Disagreement Point Continuity. For all sequences {(S, dk)}∞k=1 ⊂ Bn

and for all (S, d) ∈ Bn, if {dk}∞k=1 converges to d, then limk→∞ f(S, dk) =
f(S, d).

4 Main Results
Our two main results are the following: the Nash solution is the unique
solution satisfying Possibility of Utility Gain and either of two continuity
axioms together with the Nash’s axioms except Weak Pareto Optimality.

Theorem 1. A bargaining solution f satisfies Scale Invariance, Symmetry,
Contraction Independence, Feasible Set Continuity, and Possibility of Utility
Gain if and only if f is the Nash solution fNash.

Theorem 2. A bargaining solution f satisfies Scale Invariance, Symmetry,
Contraction Independence, Disagreement Point Continuity, and Possibility
of Utility Gain if and only if f is the Nash solution fNash.

In this section, we also show several results related to these two theorems.
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4.1 Preliminary Lemmas
To establish our main theorems, we prove three preliminary lemmas, which
elucidate the implications of Scale Invariance, Symmetry and Contraction
Independence together. We use these lemmas again in Section 5 to prove
other characterizations in a unified way.

Lemma 1. Suppose that a bargaining solution f satisfies Scale Invariance
and Contraction Independence. If there exists a bargaining problem (S, d) ∈
Bn such that d is an interior point of S and that f(S, d) = d, then f(S ′, d′) =
d′ for all (S ′, d′) ∈ Bn.

Proof. Suppose that there exists a bargaining problem (S, d) ∈ Bn such that
d is an interior point of S and f(S, d) = d. Let (S ′, d′) be an arbitrary
element of Bn. By Scale Invariance, we can assume that d = 0 and d′ = 0.
We show that f(S ′,0) = 0.

Fix α ∈ Rn
++ such that S ′ ⊂ αS. (Note that there exists such an α since

d is an interior point of S.) By Scale Invariance, we have f(αS,0) = 0.
Since S ′ ⊂ αS and f(αS,0) = 0 ∈ S ′, Contraction Independence implies
f(S ′,0) = 0.

For all c ≤ 0, let 4(c) = {s ∈ Rn | s ≥ c and s1 + s2 + · · · + sn ≤
n}. (Figure 1 illustrates 4(c) in the two-person case.) For all a ∈ Rn

−, let
tr(a) = {s ∈ Rn | s ≥ a and s1 + s2 + · · ·+ sn ≤ n}. Note that for all c ≤ 0,
4(c) = tr(c).

For all symmetric bargaining problems (S, d), let l(S) = x where x =
max(y,y,··· ,y)∈S y and l(S) = x′ where x′ = min(y,y,··· ,y)∈S y.

Lemma 2. Suppose that a bargaining solution f satisfies Scale Invariance,
Symmetry and Contraction Independence. Then, for all symmetric bargain-
ing problems (S, d), f(S, d) is either l(S), d or l(S). In particular, f(4(c),0)
is either c, 0 or 1 for each c ≤ 0.

Proof. Let (S, d) be a symmetric bargaining problem. Since f satisfies Scale
Invariance, we can assume that d = 0. By Symmetry, there exists x ∈
[l1(S), l1(S)] with f(S,0) = x. Suppose to the contrary that x ∈ (l1(S), 0)∪
(0, l1(S)). Fix ε > 0 small enough that x ∈ αS where α = (1−ε, · · · , 1−ε) ∈
Rn. Scale Invariance implies f(αS,0) = αx. Since αS ⊂ S and f(S,0) =
x ∈ αS, Contraction Independence implies f(αS,0) = x, a contradiction.
Therefore, for all symmetric bargaining problems (S, d), f(S, d) is either l(S),
d or l(S).
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Figure 1: 4(c) in the case where n = 2

Lemma 3. Suppose that a solution f satisfies Scale Invariance and Con-
traction Independence. Then the following statements hold:

(L3-1) If f(4(c),0) = 0 for all c ≤ 0, then f = fdis.

(L3-2) If f(4(c),0) = 1 for all c ≤ 0, then f = fNash.

Proof. If f(4(c),0) = 0 for all c ≤ 0, then Lemma 2 implies f(S, d) = d for
all (S, d) ∈ Bn. Therefore, we have f = fdis.

When f(4(c),0) = 1 for all c ≤ 0, we prove f = fNash. Let (S, d)
be an arbitrary bargaining problem. By Scale Invariance, without loss of
generality, we can assume that d = 0 and fNash(S, d) = 1. There exists c < 0
such that S ⊂ 4(c). Since f(4(c),0) = 1 ∈ S, Contraction Independence
implies f(S, d) = 1 = fNash(S, d).

4.2 Characterization with Feasible Set Continuity
Next, we show that the Roth class can be characterized by replacing Weak
Individual Rationality with Feasible Set Continuity. Notice that the two
quite different axioms have the same implication when imposed together
with Nash’s three axioms except Weak Pareto Optimality.

Proposition 1. A bargaining solution f satisfies Scale Invariance, Symme-
try, Contraction Independence, and Feasible Set Continuity if and only if f
is the Nash solution fNash or the disagreement solution fdis.
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Since fdis does not satisfy Possibility of Utility Gain, we obtain Theorem
1 as a corollary of this proposition.

Then we show Proposition 1. To use Lemma 3, we prove that either (i)
f(4(c),0) = 0 for all c < 0 or (ii) f(4(c),0) = 1 for all c < 0 holds.

Lemma 4. Suppose that a bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence and Feasible Set Continuity. There is
no f such that f(4(c),0) = c for all c ≤ 0.

Proof. Suppose to the contrary that f(4(c),0) = c for all c ≤ 0.
Step 1. First, consider an arbitrary bargaining problem (S, d) such that

d is on the boundary of S and there is no point s ∈ S\{d} with s ≤ d. We
show f(S, d) = d. By Scale Invariance, we can, without loss of generality,
assume that d = 0 and S ⊂ {s ∈ Rn | s1 + s2 + · · ·+ sn ≥ 0}.

(We show the existence of such a positive affine transformation τ . With-
out loss of generality, we can assume d = 0. By the hyperplane separation
theorem, there exists k = (k1, k2, · · · , kn) ∈ Rn

++ such that k1s1+k2s2+ · · ·+
knsn ≥ 0 for all s ∈ S. Let τ(x) = kx for all x ∈ Rn. We have τ(0) = 0 and
for all s ∈ S, τ1(s)+τ2(s)+τn(s) = k1s1+k2s2+ · · ·+knsn ≥ 0, as required.)

Take a symmetric bargaining problem (T,0) satisfying the following con-
ditions:

• S ⊂ T ⊂ {s ∈ Rn | s1 + s2 + · · ·+ sn ≥ 0}.

• T ∩ Rn
+ = x4(0) for some x ∈ R++.

(See Figure 2 for the two-person case.) By Lemma 2, f(T,0) is either 0
or x. If f(T,0) = x, Scale Invariance and Contraction Independence imply
that f(4(0),0) = 1, a contradiction to f(4(0),0) = 0. Thus, we have
f(T,0) = 0. By Contraction Independence, it follows that

f(S,0) = 0. (1)

Step 2. We show that for all a ∈ Rn
−, f(tr(a),0) = a.

For all a ∈ Rn
−−, Scale Invariance and Contraction Independence imply

f(tr(a),0) = a.3 For each b ∈ Rn
−, consider a sequence {bk}∞k=1 ⊂ Rn

−− such
3Consider the positive affine transformation τ : Rn → Rn such that τ(a) = c for some

c < 0 and τ(0) = 0. Also, consider a bargaining problem (e4(γ),0) with eγ = c and
τ(tr(a))(= {τ(s) | s ∈ tr(a)}) ⊂ e4(γ). By Scale Invariance, we have f(e4(e),0) =
(eγ, eγ, · · · , eγ) = c. Contraction Independence implies f(τ(tr(a)), τ(0)) = c. By Scale
Invariance, it follows that f(tr(a),0) = a.
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that {bk}∞k=1 converges to b. Since f satisfies Feasible Set Continuity, it follws
that f(tr(b),0) = limk→∞ f(tr(bk),0) = limk→∞ bk = b.

Step 3. Consider the sequence {ak}∞k=1 ⊂ R2 with ak = (1/k,−1,−1, · · · ,−1).
Let a∗ = (0,−1,−1, · · · ,−1)(= limk→∞ ak). Let Sk = ch(4(0) ∪ {ak}) for
each k ∈ N. This sequence converges to S∗ = ch(4(0) ∪ {a∗}).

Since S∗ ⊂ tr(a∗), the result of Step 2 and Contraction Independence
imply f(S∗,0) = a∗. Since (Sk,0) is categorized to the case of Step 1,
f(Sk,0) = 0 holds for each k ∈ N. Feasible Set Continuity implies f(S∗,0) =
0, a contradiction. Thus, there is no f such that f(4(c),0) = c for all
c ≤ 0.

Lemma 5. Suppose that a bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence and Feasible Set Continuity. Then,
either of following statements holds:

(L5-1) f(4(c),0) = 0 for all c ≤ 0.

(L5-2) f(4(c),0) = 1 for all c ≤ 0.

Proof. By Lemma 1, if there exists c < 0 such that f(4(c),0) = 0, then
f(4(c′),0) = 0 for all c′ ≤ 0, i.e., (L5-1) holds.

Consider the case where there is no c < 0 such that f(4(c),0) = 0.
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First, we show that, if f(4(e),0) = e for some e < 0, then f(4(e′),0) =
e′ for all e′ < e. Suppose to the contrary that f(4(e′),0) 6= e′. By Lemma 1
and Lemma 2, f(4(e′),0) = 1�holds. Since 4(e) ⊂ 4(e′) and f(4(e′),0) =
1 ∈ 4(e), Contraction Independence implies f(4(e),0) = 1, a contradiction.

Suppose that there exists c, c′ < 0 such that f(4(c),0) = 1 and f(4(c′),0) =
c′. Let c∗ = sup{e < 0 | f(4(e),0) = e}(< 0). By the result of the last
paragraph, the set {e < 0 | f(4(e),0) = e} is either (i) (−∞, c∗) or (ii)
(−∞, c∗].

(i) When {e < 0 | f(4(e),0) = e} = (−∞, c∗), consider a sequence
{ck}∞k=1 ⊂ R with ck → c∗ as k → ∞ and ck < c∗ for all k ∈ N. Since ck ∈
(−∞, c∗) = {c < 0 | f(4(c),0) = c}, we have f(4(ck),0) = (ck, ck, · · · , ck)
for all k ∈ N. Feasible Set Continuity implies f(4(c∗),0) = c∗. However,
since c∗ /∈ (−∞, c∗), f(4(c∗),0) = 1 holds, a contradiction.

(ii) When {e < 0 | f(4(e),0) = e} = (−∞, c∗], consider a sequence
{ck}∞k=1 ⊂ R with ck → c∗ as k → ∞ and ck > c∗ for all k ∈ N. Since
ck /∈ (−∞, c∗] = {c < 0 | f(4(c),0) = c}, we have f(4(ck),0) = 1 for
all k ∈ N. Feasible Set Continuity implies f(4(c∗),0) = 1. However, since
c∗ ∈ (−∞, c∗], f(4(c∗),0) = c∗ holds, a contradiction.

Therefore, if there is no c < 0 such that f(4(c),0) = 0, then either of
the followings holds: f(4(c′),0) = 1 for all c′ < 0 or f(4(c′),0) = c′ for all
c′ < 0. By Feasible Set Continuity, we have either (a) f(4(c′),0) = 1 for all
c′ ≤ 0 or (b) f(4(c′),0) = c′ for all c′ ≤ 0. By Lemma 4, (b) does not hold.
Hence, if there is no c < 0 such that f(4(c),0) = 0, then (L5-2) holds.

Proof of Proposition 1. It is clear that fNash and fdis satisfy four axioms.
Suppose that f satisfies four axioms: Scale Invariance, Symmetry, Contrac-
tion Independence, and Feasible Set Continuity. By Lemma 3 and Lemma 5,
f is the Nash solution fNash or the disagreement solution fdis.

4.3 Characterization with Disagreement Point Conti-
nuity

In two-person bargaining problems, if we impose Disagreement Point Conti-
nuity instead of Feasible Set Continuity, then a different class of solutions is
characterized.

Proposition 2. In two-person bargaining problems, a bargaining solution
f satisfies Scale Invariance, Symmetry, Contraction Independence, and Dis-
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agreement Point Continuity if and only if f is the Nash solution fNash, the
disagreement solution fdis or the anti-Nash solution fAN .

See Appendix for a proof. (Note that in the proof, we use the result of
Lemma 6 and the argument of Lemma 7.) This proposition implies that at
least in the two-person case, Disagreement Point Continuity does not play
the same role as Feasible Set Continuity (or Weak Individual Rationality)
together with Nash’s axioms except Weak Pareto Optimality. On the other
hand, in Theorem 1, Feasible Set Continuity can be replaced by Disagreement
Point Continuity. This result is described in Theorem 2. The rest of this
section provides a proof of this theorem.

First, we consider bargaining problems represented by (4(c),x) with c ≤
x ≤ 0. Set αi = 1/(1− x) and βi = −x/(1− x) for each i ∈ N . Note that

(α4(c) + β, αx+ β) =
(
4
( c− x

1− x

)
,0

)
.

If f satisfies Scale Invariance, then we have

fi(4(c),x) = (1− x)fi

(
4
( c− x

1− x

)
,0

)
+ x (2)

for each i ∈ N .

Lemma 6. Suppose that a bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence and Disagreement Point Continuity.
Then, either of following statements holds:

(L6-1) f(4(c),0) = 0 for all c ≤ 0.

(L6-2) f(4(c),0) = 1 for all c ≤ 0.

(L6-3) f(4(c),0) = c for all c ≤ 0.

Proof. By Lemma 1, if there exists c < 0 such that f(4(c),0) = 0, then
f(4(c′),0) = 0 for all c′ ≤ 0, i.e., (L6-1) holds.

Suppose that there exists c, c′ < 0 such that f(4(c),0) = 1 and f(4(c′),0) =
c′. Let c∗ = sup{e < 0 | f(4(e),0) = e}(< 0). In the same way as the proof
of Lemma 5, the set {e < 0 | f(4(e),0) = e} is either (i) (−∞, c∗) or (ii)
(−∞, c∗].
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(i) When {e < 0 | f(4(e),0) = e} = (−∞, c∗), consider a sequence
{xk}∞k=1 ⊂ R with xk → 0 as k → ∞ and 0 < xk < 1 for all k ∈ N. Since
0 < xk < 1, we have c∗−xk

1−xk < c∗ for each k ∈ N. By (2), we have

fi(4(c∗), (xk, xk, · · · , xk)) = (1− xk)
c∗ − xk

1− xk
+ xk = c∗

for each i ∈ N and for each k ∈ N. By Disagreement Point Continuity,
f(4(c∗),0) = (c∗, c∗). However, since c∗ /∈ (−∞, c∗), f(4(c∗),0) = 1 holds,
a contradiction.

(ii) When {e < 0 | f(4(e),0) = e} = (−∞, c∗], consider a sequence
{xk}∞k=1 ⊂ R with xk → 0 as k → ∞ and xk < 0 for all k ∈ N. Since xk < 0,
we have c∗−xk

1−xk > c∗ for each k ∈ N. By (2), we have fi(4(c∗), (xk, xk, · · · , xk)) =

(1− xk)1 + xk = 1 for all i ∈ N and for each k ∈ N. By Disagreement Point
Continuity, f(4(c∗),0) = 1. However, since c∗ ∈ (−∞, c∗], f(4(c∗),0) = c∗

holds, a contradiction.
Therefore, if there is no c < 0 such that f(4(c),0) = 0, then either of

the followings holds: (a) f(4(c′),0) = 1 for all c′ < 0 or (b) f(4(c′),0) = c′

for all c′ < 0.
In the case (a), Contraction Independence implies that f(4(0),0) = 1. In

the case (b), consider a sequence {xk}∞k=1 ⊂ R with xk → −1 as k → ∞ and
xk ∈ (−1, 0). By Scale Invariance, it follws that f(4(−1), (xk, xk, · · · , xk)) =
−1 for all k ∈ N. By Disagreement Point Continuity, we have f(4(−1),−1) =
−1. Scale Invariance implies f(4(0),0) = 0.

Hence, either (L6-1), (L6-2) or (L6-3) holds.

Lemma 7. Suppose that a bargaining solution f satisfies Scale Invariance,
Symmetry, and Contraction Independence. If f(4(c),0) = c for all c ≤ 0,
then f(S, d) ≤ d for all (S, d) ∈ Bn.

Proof. Step 1. Consider bargaining problems (S, d) such that d is in the
interior of S. By Scale Invariance, we can assume that fAN(S, d) = −1
and d = 0. There exists symmetric bargaining problems (T 1,0) satisfying
following conditions:

• S ⊂ T 1 ⊂ {s ∈ Rn | s1 + s2 + · · ·+ sn ≥ −n}.

• T 1 ∩ Rn
+ = x4(0) for some x ∈ R++.
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S
T 1

(−1,−1)

Figure 3: (T 1, 0) in the case where n = 2

(See Figure 3 for (T 1,0) in the two-person case.) By Lemma 1 and Lemma
2, f(T 1,0) is either −1 or x. If f(T 1,0) = x, Scale Invariance and Con-
traction Independence imply that f(4(0),0) = 1, a contradiction. Thus,
f(T 1,0) = −1 holds. By Contraction Independence, we have f(S,0) =
−1 = fAN(S, d) ≤ 0(= d).

Step 2. Consider bargaining problems (S, d) such that d is on the bound-
ary of S and that there is no s ∈ S\{d} satisfying s ≤ d. In the same way
as the proof of Lemma 4, we obtain f(S, d) = d = fAN(S, d).

Step 3. Consider bargaining problems (S, d) such that d is on the bound-
ary of S and there is s ∈ S\{d} satisfying s ≤ d. By Scale Invariance, we can
set d = 0 without loss of generality. Suppose to the contrary that f(S,0) ≤ 0
does not hold. Let T 2 = ch((S∩Rn

+)∪{f(S,0)}) and consider the bargaining
problem (T 2,0). Contraction Independence implies that f(T 2,0) = f(S,0).
Since this bargaining problem is categorized to the case of Step 2, we have
f(T 2,0) = 0 6= f(S, d), a contradiction. Hence, we obtain f(S, d) ≤ d.

Proof of Theorem 2. It is clear that fNash satisfies five axioms. Suppose that
f satisfies five axioms: Scale Invariance, Symmetry, Contraction Indepen-
dence, Disagreement Point Continuity and Possibility of Utility Gain. By
Lemma 3, Lemma 6 and Lemma 7, f is the Nash solution fNash.

14



4.4 The Independence of axioms
In the following, we show the independence of the axioms in Theorem 1 and
Theorem 2.

Example 1. The egalitarian solution fE is defined as the maximizer of
mini∈N(si − di) in s ∈ S for each (S, d) ∈ Bn. (See Kalai, 1977a.) This
solution satisfies all of the axioms except Scale Invariance.

Example 2. Let θ ∈ Rn
++\{(1/n, 1/n, · · · , 1/n)} with

∑
i∈N θi = 1. The

asymmetric Nash solution f θ,N associated with θ is the maximizer of the
product Πi∈N(s1 − d1)

θi in s ∈ {s′ ∈ S | s′ ≥ d} for each (S, d) ∈ Bn. (See
Kalai, 1977b.) This solution does not satisfy Symmetry, but satisfies the
other axioms.

Example 3. The Kalai-Smorodinsky solution satisfies all axioms other than
Contraction Independence. (See Kalai and Smorodinsky, 1975.)

Example 4. Let NP+(S, d) = maxd≤s∈S Πi∈N(si − di) and NP−(S, d) =
maxd≥s∈S Πi∈N |si − di|. Consider a solution f defined by, for all (S, d) ∈ Bn,

f(S, d) =

{
fNash(S, d) (NP+(S, d) ≥ NP−(S, d))
arg max

d≥s∈S
Πi∈N |si − di| (NP+(S, d) < NP−(S, d)).

This solution does not satisfy Feasible Set Continuity and Disagreement Point
Continuity, but satisfies the other axioms.

Example 5. The disagreement solution fdis satisfies all of the axioms except
Possibility of Utility Gain.

5 Unified Proofs of Other Characterizations
In this section, we use the lemmas in Section 4.1 to provide unified proofs
of other efficiency-free characterizations. This clarifies the technical role of
each axiom introduced in the literature.

Using these lemmas, we provide a new characterization of the Nash so-
lution. In Rachmilevitch (2015), the class of asymmetric Nash solutions is
characterized by several axioms. We demonstrate that if we impose Sym-
metry, one of these axioms becomes redundant. This result is presented in
Theorem 7.
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5.1 Two characterizations by Roth (1977, 1979)
First, we show two theorems shown by Roth (1977, 1979).

Theorem 3 (Roth, 1977). A bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence, and Strong Individual Rationality if
and only if f is the Nash solution fNash.

Proof of Theorem 3. By Lemma 2 and Strong Individual Rationality, we have
f(4(c),0) = 1 for each c ≤ 0. By Lemma 3, f = fNash holds.

Theorem 4 (Roth, 1979). A bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence, and Weak Individual Rationality if and
only if f is the Nash solution fNash or the disagreement solution fdis.

Proof of Theorem 4. By Lemma 2 and Weak Individual Rationality, f(4(c),0)
is either 0 or 1 for each c ≤ 0. By Lemma 1, either f(4(c),0) = 0 for all
c ≤ 0 or f(4(c),0) = 1 for all c < 0 holds. Contraction Independence im-
plies that either f(4(c),0) = 0 for all c ≤ 0 or f(4(c),0) = 1 for all c ≤ 0
holds. By Lemma 3, we have f = fNash or fdis.

5.2 Rachmilevitch (2015)
Let idi(S) = maxs∈S si and id(S) = (id1(S), id2(S), · · · , idn(S)). Rachmile-
vitch (2015) characterized the class of asymmetric Nash solutions with the
following axiom.

Conflict-Freeness. For all (S, d) ∈ Bn, if id(S) ∈ S, then f(S, d) = id(S).

This axiom is stronger than Possibility of Utility Gain. In Rachmilevitch
(2015), the class of asymmetric Nash solutions is characterized by Scale In-
variance, Contraction Independence, Feasible Set Continuity, and Conflict-
Freeness. As a corollary, if we impose Symmetry in addition to these axioms,
then the Nash solution is characterized.

By using the lemmas in Section 4.1, we can easily show the characteriza-
tion of the Nash solution. Moreover, Feasible Set Continuity is not necessary
for this result.

Theorem 5. A bargaining solution f satisfies Scale Invariance, Symmetry,
Contraction Independence, and Conflict-Freeness if and only if f is the Nash
solution fNash.
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Proof. For all c ≤ 0, let Tc = {s ∈ Rn | c ≤ s ≤ 1}. If f(4(c),0) = 0 or c,
then Contraction Independence implies that f(Tc,0) is either 0 or c. This is
a contradiction to Conflict-Freeness. By Lemma 2, we have f(4(c),0) = 1
for all c ≤ 0. Lemma 3 implies f = fNash.

5.3 Anbarci and Sun (2011)
Anbarci and Sun (2011) used the following axiom to characterize the Nash
solution.

Weakest Collective Rationality. For all (S, d) ∈ Bn and for all s ∈ S, if
there is no t ∈ S\{s} such that s ≥ t, then f(S, d) 6= s.

Theorem 6 (Anbarci and Sun, 2011). A bargaining solution f satisfies Scale
Invariance, Symmetry, Contraction Independence, and Weakest Collective
Rationality if and only if f is the Nash solution fNash.

Proof. We show that, for all c ≤ 0, f(4(c),0) = 1. By Lemma 2, f(4(c),0)
is c, 0 or 1 for each c ≤ 0. If there exists c < 0 such that f(4(c′),0) = 0,
then Lemma 1 implies f(4(0),0) = 0. This is a contradiction to Weakest
Collective Rationality. Also, by Weakest Collective Rationality, there is no
c′′ ≤ 0 satisfying f(4(c′′),0) = c′′. Therefore, f(4(c),0) = 1 holds for all
c ≤ 0. By Lemma 3, we have f = fNash.

5.4 Mori (2018)
Mori (2018) also characterized the Nash solution. He used an axiom that
requires that the solution outcome should not be weakly less than the dis-
agreement point (in the sense of vector inequality). He argues that this axiom
is more natural and intuitive than Weakest Collective Rationality.

Strong Undominatedness. For all (S, d) ∈ Bn, f(S, d) ≤ d does not hold.

Note that this axiom and Weakest Collective Rationality are indepen-
dent�of each other. Figure 4 illustrates the distinction between these axioms
in the case where n = 2. The colored area, including its boundary, is excluded
by each axiom. Since there is no relationship of inclusion, the independence
of these axioms is guaranteed.
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Figure 4: The difference between two axioms

Theorem 7 (Mori, 2018). A bargaining solution f satisfies Scale Invariance,
Symmetry, Contraction Independence, and Strong Undominatedness if and
only if f is the Nash solution fNash.

Proof. By Lemma 2, f(4(c),0) is c, 0 or 1 for each c < 0. By Strong
Undominatedness, we have f(4(c),0) = 1 for all c ≤ 0. Lemma 3 implies
that f = fNash.

6 Conclusion
In this paper, we have provided novel characterizations of the Nash solution
without Weak Pareto Optimality. Our new axiom, Possibility of Utility Gain,
requires weaker rationality than the axioms imposed to characterize the Nash
solution in the literature. We have also shown that Weak Individual Ratio-
nality can be replaced by Feasible Set Continuity in the theorem of Roth
(1979). The two quite different axioms have the same implication when each
is imposed in conjunction with Nash’s three axioms. Furthermore, we have
provided unified proofs of other efficiency-free characterizations of the Nash
solution. These proofs clarify the role of each axiom in the literature.

Our key axioms are Possibility of Utility Gain, Feasible Set Continu-
ity, and Disagreement Point Continuity. Although we have investigated the
properties of solutions satisfying either of two continuity axioms and Nash’s
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axioms except Weak Pareto Optimality, we have not examined solutions sat-
isfying Possibility of Utility Gain and these three axioms. Identifying the
class of solutions that satisfy these axioms will clarify the role of Feasible Set
Continuity and Disagreement Point Continuity in our results. We leave the
investigation of this question for future work.

Appendix: Proof of Proposition 2
Lemma 8. In two-person bargaining problems, suppose that a bargaining
solution f satisfies Scale Invariance, Symmetry, Contraction Independence
and Disagreement Point Continuity. If f(4(c),0) = c for all c ≤ 0, then
f = fAN holds.

Proof. Step 1. Consider bargaining problems (S, d) such that d is in the
interior of S. In the same way as Lemma 7, we have f(S, d) = fAN(S, d)

Step 2. Let (S, d) be a bargaining problem such that d is on the boundary
of S and that there is no s ∈ S\{d} satisfying s ≤ d. In the same way as the
proof of Lemma 4, we obtain f(S, d) = d = fAN(S, d).

Step 3. Consider bargaining problems (S, d) satisfying the following con-
ditions:

• The disagreement point d is on the boundary of S.

• There exists s ∈ S\{d} such as s1 ≤ d1 and s2 = d2.

By Scale Invariance, we can assume that d = 0. We show that f(S, d) =
(mind≥s s1, d2)(= fAN(S, d)).

Let S∗ = {s ∈ S | s ≥ (mind≥s s1, d2) (= fAN(S, d)) }. If S = S∗, there
exist a ∈ R2

− and β ∈ R2
++ such that βa(= fAN(S, d)) ∈ S and S ⊂ βtr(a).

In the same way as Lemma 4, f(tr(a),0) = a holds. (We use Disagreement
Point Continuity instead of Feasible Set Continuity.) Scale Invariance and
Contraction Independence imply that f(S,0) = βa = fAN(S, d).

When S 6= S∗, suppose to the contrary that f(S, d) 6= fAN(S, d). Note
that by Lemma 7, we have f(S, d) ≤ d, which implies that f(S, d) ∈ S∗

Contraction Independence implies that f(S∗,0) = f(S, d) 6= fAN(S, d) =
fAN(S∗, d). This is a contradiction to the result of the last paragraph. There-
fore, f(S, d) = (mind≥s s1, d2) = fAN(S, d) holds.

Step 4. Consider bargaining problems that satisfy the following condi-
tions:
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• The disagreement point d is on the boundary of S.

• There exists s ∈ S\{d} such as s1 = d1 and s2 ≤ d2.

In the same way as Step 3, we have f(S, d) = fAN(S, d) for all (S, d) satisfying
these conditions.

Hence, we have shown f(S, d) = fAN(S, d) for all (S, d) ∈ B2.

Proof of Proposition 2. It is clear that fNash, fdis and fAN satisfy four ax-
ioms. Suppose that f satisfies four axioms: Scale Invariance, Symmetry,
Contraction Independence, and Disagreement Point Continuity. By Lemma
3, Lemma 6 and Lemma 8, f is either of three solutions.
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