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1 Introduction

This study investigates the behavior of the change-point estimators obtained by maximizing the

weighted objective function, proposed by Baek (2023), when estimating the breaks one at a time

for the level-shift model with two breaks.

The estimation of the change point has been investigated for more than 50 years and early contri-

butions include Hinkley (1970) and Yao (1987) who studied the maximum likelihood estimator (MLE)

of the break point, and Bai (1994, 1997b), who developed the asymptotic property of the least squares

estimator (LSE). Further, multiple breaks were investigated by Bai and Perron (1998) and Qu and

Perron (2007), among others. These studies considered estimating the break dates simultaneously,

whereas Chong (1995) and Bai (1997a) proposed to estimate the change points step by step; first, the

largest break is estimated, and then, the second break is estimated from the subsample. They consid-

ered a level-shift model and proposed to fit the model with only one break. Although the estimation

model is misspecified in that it includes only a one-time break, they proved that the estimated break

fraction, which is defined as the proportion of the break date that is relative to the whole sample

size, is consistent for the largest break fraction. This step-by-step method was further extended to

the regression model with multiple breaks by Bai et al. (2008). For a review of testing and estimating

structural changes, see, for example, Perron (2006), Aue and Horváth (2013), and Casini and Perron

(2019).

These studies demonstrate that the asymptotic distribution of the break point estimator(s) based

on the least squares method is typically unimodal under the long-span scheme, wherein both the

subsamples before and after the break go to infinity at the same rate, and the finite sample distribution

of the estimator is approximated effectively by the asymptotic counterpart when the magnitude of

the break is large. However, this is not the case when the break size is small. For the one-time

break model, the finite sample distribution of the break point estimator tends to have three peaks at

around the true break point and the beginning and end of the sample points; see Jiang et al. (2018,

2020) and Casini and Perron (2021a,b, 2022). These authors explained this finite sample property by

introducing the in-fill asymptotic scheme, whereby the sampling frequency goes to infinity in the fixed

interval or, equivalently, the sampling interval goes to zero. Casini and Perron (2021b, 2022) proposed

a Laplace-based procedure to estimate the break point estimator, which is defined by an integration.
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Recently, Baek (2023) tackled this problem from a different perspective by noting that the break

point estimator at the beginning or end of the sample point has no information regarding a structural

break, and this lowers the probability of estimating the true change point. Baek (2023) proposed

to estimate the break date by maximizing the objective function weighted by the positive weight

function, which places more weights at around the middle, but less weights at the beginning and end,

of the sample points. Baek (2023) shows that the new estimator is easy to calculate and consistent

for the true break fraction, that both the finite and asymptotic distributions of the estimators have

only one peak around the true break point, and that the mean squared error tends to be smaller than

that of the LSE.

In this study, we consider the level-shift model with two breaks and estimate each break point

step by step, as in Chong (1995), Bai (1997a), and Tayanagi and Kurozumi (2023), who estimate each

break date based on the least squares method; however, we estimate it by maximizing the weighted

objective function proposed by Baek (2023). We investigate the asymptotic property of the step-by-

step estimators under the long-span scheme and demonstrate that the break fraction estimated at first

is consistent for the largest one in the sense of the weighted objective function and that the second

estimator from the subsample split by the first estimator is also consistent for the other break fraction.

Further, we also derive the asymptotic distributions of the two estimators, which are unimodal and

approximate the finite sample distribution effectively when the magnitude of the breaks is large. When

the magnitude of the breaks is small, the finite sample distribution of the first estimator based on the

least squares method tends to have four peaks at around two break dates and the beginning and end

of the sample points, as demonstrated by Tayanagi and Kurozumi (2023), whereas the corresponding

estimator based on the weighted objective function is demonstrated as having only two peaks at around

the true break points. We demonstrate that this finite sample property can be approximated under the

in-fill asymptotic scheme. By Monte Carlo simulations, the estimators based on the weighted objective

function tend to have the smaller root mean squared error and the standard deviation compared to

those based on the least squares method, while the former estimator is slightly more biased than the

latter.

The remainder of the paper is organized as follows: The model and assumptions are introduced

in Section 2. The estimators estimated one at a time based on the weighted objective function are

investigated under the long-span scheme in Section 3. We consider the small shift case and develop
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asymptotic theory under the in-fill asymptotic scheme in Section 4. The finite sample property is

investigated using Monte Carlo simulations in Section 5. Concluding remarks are provided in Section

6. All the proofs are relegated to the Appendix.

2 Model and Assumptions

Let us consider the following level-shift model comprising two breaks:

yt = µt +Xt for 1, 2, . . . , T, (1)

where

µt =


µ1 = µ0 + δ1λT 1 ≤ t ≤ k01,
µ2 = µ0 + δ2λT k01 < t ≤ k02,
µ3 = µ0 + δ3λT k02 < t ≤ T

(2)

with δ1 6= δ2 and δ2 6= δ3, and λT controls the magnitude of the breaks. In model (1), the level of yt

shifts from µ1 to µ2 at t = k01 + 1 and from µ2 to µ3 at t = k02 + 1. We define the break fractions

corresponding to k0j as τ0j = k0j/T for j = 1, 2, and 3, respectively. Without loss of generality, we

assume that [Tτj ] is an integer value and, thus, k0j = [Tτ0j ] holds for j = 1, 2, and 3, respectively.

The stochastic part {Xt} is a sequence of unobservable disturbances generated as the linear process

expressed as follows:

Xt =

∞∑
j=0

ajεt−j , where

∞∑
j=0

j|aj | <∞ and a(1) =

∞∑
j=0

aj 6= 0.

Assumption 1 {εt} is a martingale difference sequence satisfying E[εt|Ft−1] = 0, E[ε2t ] = σ2, and

supt[E|εt|2+ν ] <∞ for some ν > 0, where Ft is the σ-field generated by εs for s ≤ t.

For the break fractions, we assume throughout this study that they are distinct, which is a standard

assumption in the literature, while the magnitude of the breaks is assumed to either be fixed or shrink

to zero.

Assumption 2 0 < τ01 < τ02 < 1.

Assumption 3 (i) λT is fixed. (ii) λT → 0 as T →∞ and T
1
2−γλT →∞ for some γ ∈

(
0, 12
)
.
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When Assumption 3(i) holds, we set λT = 1, µ0 = 0, and µi = δi for i = 1, 2, and 3, respectively,

without loss of generality. This is called the “fixed shift case,” whereas the “shrinking shift case”

corresponds to Assumption 3(ii). As elucidated in the following section, the restriction on the shrinking

speed of λT guarantees the consistency of the break date estimators.

3 Asymptotics under the Long-Span Scheme

3.1 Estimation method of the break points

In this section, we investigate the asymptotic properties of the break point estimators based on the

weighted objective function proposed by Baek (2023) when estimating the break dates one at a time,

as in Bai (1997a). The motivation for the new estimation method is that it is expected to reduce

the mean squared error (MSE) of the break date estimators, in particular when the magnitude of the

breaks is not excessively large, as demonstrated by Baek (2023) for a model with a one-time break.

First, we briefly review the estimation method of the break point by Baek (2023) and consider the

model with only a one-time break. As investigated by Bai (1994), the natural estimator for the break

date is the minimizer of the sum of the squared residuals (SSR) given by S2
T (k):

k̂LS,1 = arg min
1≤k<T

S2
T (k), (3)

where

S2
T (k) =

k∑
t=1

(yt − Ȳk)2 +

T∑
t=k+1

(yt − Ȳ ∗k )2, (4)

with Ȳk being the average of the first k observations and Ȳ ∗k being that of the last T −k observations:

Ȳk =
1

k

k∑
t=1

yt, Ȳ ∗k =
1

T − k

T∑
t=k+1

yt.

We note that, as indicated by Bai (1994), because
∑T
t=1(yt − ȲT )2 = S2

T (k) + TV 2
T (k) holds where

VT (k) is defined below, k̂LS,1 in (3) is equivalent to

k̂LS,1 = arg max
1≤k<T

V 2
T (k), where VT (k) =

√
k(T − k)

T 2

∣∣Ȳ ∗k − Ȳk∣∣ . (5)

Denote τ̂LS,1 = k̂LS,1/T . Bai (1994) demonstrated that τ̂LS,1 is consistent for the true break fraction

and derived its limiting distribution under the assumption of the shrinking shift.
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Instead of minimizing the SSR or maximizing V 2
T (k), Baek (2023) proposed modifying the objective

function V 2
T (k) to improve the efficiency of the break point estimator.1 More precisely, Baek (2023)

proposed maximizing the weighted objective function given by Q2
T (k/T ), which is defined as follows:

Q2
T (k/T ) =wT (k)V 2

T (k) where wT (k) =
k(T − k)

T 2
. (6)

Then, the new estimator, which we call the weighted estimator in this study, expressed as follows:

k̂W,1 = arg max
1≤k≤T−1

Q2
T (k/T ). (7)

We define τ̂W,1 = k̂W,1/T . Figure 1 illustrates the weight function wT (τ) for 0 ≤ τ ≤ 1, which clearly

imposes greater weight on the middle, and less weight on both ends, of the sample. Motivation for

this weight is that, because the finite sample distribution of k̂LS,1 tends to have peaks at both the

ends of the sample, in particular, when the break size is small, even if the true break point is located

at an inner point of the sample, placing less weight on the sample ends results in unimodality of k̂W,1

in finite samples. As demonstrated by Baek (2023), the MSE of k̂W,1 tends to be smaller than that of

k̂LS,1.

Let us now consider the case wherein the model has two breaks, as in (1)–(2). Following Chong

(1995) and Bai (1997a), we propose estimating each break point step by step, which, compared to

the simultaneous estimation of breaks, is computationally less expensive and makes it easier to obtain

the estimators. In this study, we consider maximizing the objective function given by (6), instead

of V 2
T (k), following Baek (2023). More precisely, first, we fit the model with a one-time break and

obtain k̂W,1 as defined in (7). Although the number of the breaks is misspecified in this case, it is

presented in the following subsection that k̂W,1, is consistent (in the sense of the fraction relative to

the sample size T ) for the largest break among the two breaks in model (1)–(2). We call k̂W,1 the

first-step estimator. Given the first-step estimator, the second break date is estimated similarly from

either t = 1, . . . , k̂W,1 or t = k̂W,1 +1, . . . , T , by maximizing the corresponding objective function (6).2

We denote the second break point estimator as k̂W,2 and call it the second-step estimator. Notably,

the difference between Bai (1997a) and this study is that the former estimates the break dates based

on the objective function V 2
T (k), whereas we use Q2

T (k/T ). We denote the step-by-step estimators

1Baek (2023) proposed a general weight function but recommended wT (k) = k(T − k)/T 2 for a level-shift model.
2In practice, we may test for structural change in the subsamples, and if we find statistical evidence of the additional

break, we estimate the second break in the corresponding subsample.
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proposed by Bai (1997a) as k̂LS,1 and k̂LS,2, respectively. As in the case of the model with a one-time

structural change, the weighted estimators are expected to have the smaller MSE, which is confirmed

in finite samples in a later section.

3.2 Asymptotic property of the first-step estimator

Suppose that (1)–(2) is a true model and estimate the break dates one at a time using (7). Let

plimλ−2T Q2
T (k/T ) = Q2(τ), where

Q2(τ) =


τ2
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]2
: 0 ≤ τ ≤ τ01[

τ(1− τ02 )(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1)
]2

: τ01 < τ ≤ τ02
(1− τ)2

[
τ02 (δ3 − δ2) + τ01 (δ2 − δ1)

]2
: τ02 < τ ≤ 1.

(8)

The derivation is provided in Appendix. Evidently, Q2(τ) is a piece-wise convex function of τ . To

identify “the largest break”, we make the following assumption:

Assumption 4

Q2(τ01 )−Q2(τ02 ) > 0. (9)

This assumption implies that the first break at k01 dominates the second break at k02 considering the

weighted objective function. Additionally, as presented in Appendix, (9) implies the following:

(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1) 6= 0, (10)

(1− τ02 )(δ3 − δ2)− τ01 (δ2 − δ1) 6= 0. (11)

Two relations (10) and (11) play an important role with respect to the proof of the consistency of the

estimator. They imply that Q2(τ) is strictly increasing and convex for τ ∈ [0, τ01 ], strictly convex for

τ ∈ [τ01 , τ
0
2 ], and non-increasing for τ ∈ [τ02 , 1] from (8). Notably, if

τ02 (δ3 − δ2) + τ01 (δ2 − δ1) 6= 0, (12)

Q2(τ) for τ ∈ [τ02 , 1] is strictly decreasing and convex and, thus, (8) becomes bimodal with two peaks

at τ01 and τ02 ; by contrast, if the inequality in (12) is replaced by the equality, Q2(τ) = 0 for τ ∈ [τ02 , 1]

and, thus, Q2(τ) is unimodal with the peak at τ01 . Therefore, the largest break point τ01 can be

identified by the weighted objective function under Assumption 4. Later, we discuss the case wherein

Assumption 4 does not hold.
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Proposition 1 Under Assumptions 1–4, we have

τ̂W,1 − τ01 = Op

(
λ−1T T−1/2

)
.

Proposition 1 implies that the break fraction estimator τ̂W,1 converges in probability to the true break

fraction τ01 , irrespective of whether λT is fixed or shrinks to zero. Notably, if inequality (9) is reversed,

τ̂W,1 becomes consistent for τ02 .

The convergence rate in Proposition 1 is not sharp, and we can refine it by focusing on maximizing

Q2
T (k/T ) around the neighborhood of k01. Let η be a small value such that τ01 ∈

(
η, τ02 (1− η)

)
, DT ={

k : Tη ≤ k ≤ Tτ02 (1− η)
}

, and DM =
{
k : |k − k01| ≤Mλ−2T

}
for some given large value of M <

∞. Define DT,Mc =
{
k : Tη < k < Tτ02 (1− η), |k − k01| > Mλ−2T

}
. In Appendix, we demonstrate

that Q2
T (k/T ) cannot be maximized on DT,Mc with probability approaching one, which implies the

following result:

Proposition 2 Under Assumptions 1–4, for every ε > 0, there exists an M < ∞ independent of T ,

such that, for all large T ,

P
(
T |τ̂W,1 − τ01 | > Mλ−2T

)
< ε. (13)

Proposition 2 implies Tλ2T (τ̂W,1− τ01 ) = Op(1). Notably, if λT = T−1/2, τ̂W,1 is not consistent. Hence,

we need a restriction of γ in Assumption 3(ii). This convergence rate is the same as τ̂LS,1, as proved

by Bai (1997a).

Once the refined rate of convergence is obtained, we can derive the limiting distribution of k̂W,1

under the assumption of the shrinking shift.

Theorem 1 Under Assumptions 1, 2, 3(ii), and 4,

λ2T (k̂W,1 − k01)⇒ σ2a2(1) arg max
u∈(−∞,∞)

{Γ(u)}, (14)

where ⇒ signifies weak convergence of the associated probability measures,

Γ(u) =

{
B1(u)− |g||u| if u ≤ 0

B2(u)− |h||u| if u > 0
, (15)

g =(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1), (16)

h =(1− τ02 )(δ3 − δ2)− τ01 (δ2 − δ1), (17)

and B1(·) and B2(·) are two independent standard Brownian motions on [0,∞).
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Figure 2 depicts the histogram of the finite sample distribution of λ2T (k̂W,1 − k01) in the shrinking

shift case with τ01 = 0.3, τ02 = 0.7, µ0 = 0, δ1 = 0, δ2 = 4, δ3 = 1, σ = 1, λT = T−1/4, T = 100 with 5,000

replications, and Figure 3 illustrates its asymptotic distribution given by Theorem 1 with the same

parameters. Evidently, the distribution in Figure 3 is unimodal and asymmetric, with a shape similar

to that of the left peak in Figure 2. Figure 4 presents the histograms of the finite sample distribution

of τ̂W,1 for the same parameters with different sample sizes given by T = {100, 200, 600, 1000}. We

observe that the peak of the histogram becomes higher as T increases while the small right spike tends

to disappear.

3.3 Asymptotic property of the second-step estimator

Having shown that the first step break fraction estimator τ̂W,1 is consistent, we subsequently investigate

the behavior of the second-step estimator k̂W,2. As a preparation, we define the weighted objective

function QT ′(k/T ) in the subsample of k̂W,1 + 1 ≤ t ≤ T as follows:

Q2
T ′(k/T ) =wT ′(k)V 2

T ′(k), (18)

where T ′ = T − k̂W,1, wT ′(k) =
(k − k̂W,1)(T − k)

(T − k̂W,1)2
,

VT ′(k) =

√
(k − k̂W,1)(T − k)

(T − k̂W,1)2

∣∣Ȳ ∗k − Ȳ ′k∣∣ , Ȳ ′k =
1

k − k̂W,1

k∑
t=k̂W,1+1

yt,

and Ȳ ∗k is defined identically as previously stated. The second-step estimator k̂W,2 is defined as the

location that maximizes (18):

k̂W,2 = arg max
k̂W,1+1≤k≤T−1

Q2
T ′(k/T ), (19)

and the second step break fraction estimator is defined as τ̂W,2 = k̂W,2/T . In exactly the same manner

as that applied in the previous section, it can be shown using k̂W,1/T
p−→ τ01 that

Q2
T ′(k/T )/λ2T

p−→


(τ−τ0

1 )
2(1−τ0

2 )
2

(1−τ0
1 )

4 (δ3 − δ2)2 : τ01 ≤ τ ≤ τ02
(1−τ)2(τ0

2−τ
0
1 )

2

(1−τ0
1 )

4 (δ3 − δ2)2 : τ02 ≤ τ ≤ 1

uniformly and, thus, the second break date can be identified by the function Q2
T ′(k/T ).

As in the case of the first-step estimator, first, we show the consistency of the second-step estimator.

Proposition 3 Under Assumptions 1–4, τ̂W,2 is consistent.
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Subsequently, we improve the order of convergence rate to derive the asymptotic distribution.

Using the same manner as that used in Proposition 2, we can obtain the exact order of τ̂W,2 − τ02 ,

but we need a slight modification because the second-step estimator is defined on the post k̂W,1

samples. Let DT ′ = {k;Tη ≤ k ≤ Tη}, DM ′ = {k; |k − k02| ≤ M ′λ−2T } and DT ′,M ′c = {k : Tη ≤ k ≤

Tη, |k − k02| > M ′λ−2T }, where τ01 < η < τ02 < η < 1. These sets are modifications of DT , DM , and

DT,Mc in Proposition 2 to accommodate the theory to the post k̂W,1 sample.

Proposition 4 Under Assumptions 1–4, for every ε > 0, there exists an M ′ <∞ independent of T ,

such that, for all large T ,

P
(
T (τ̂W,2 − τ02 ) > M ′λ−2T

)
< ε,

and this is equivalent to

τ̂W,2 − τ02 = Op
(
T−1λ−2T

)
.

Using Proposition 4, we can derive the asymptotic distribution.

Theorem 2 Under Assumptions 1, 2, 3(ii), and 4, we have

λ2T

(
k̂W,2 − k02

)
⇒ (1− τ01 )2

(δ3 − δ2)2
σ2a2(1) arg max

u∈(−∞,∞)

W (u),

where

W (u) =

{
B1(|u|)− (1− τ02 )|u| if u ≤ 0

B2(|u|)− (τ02 − τ01 )|u| if u > 0
, (20)

and B1(·) and B2(·) are two independent standard Brownian motions on [0,∞).

Notably, (20) is assymetric, and this result differs from the asymptotic distribution of the second-

step estimator with the LSE, which is symmetric. Figure 5 depicts histograms of the finite sample

(T = 100) and asymptotic distributions in Theorem 2 with δ1 = 0, δ2 = 4, δ3 = 1, τ01 = 0.33, τ02 =

0.67, λT = T−1/4, and Xt ∼ i.i.d.N(0, 1), with 5,000 replications, while Figures 6 and 7 correspond

to the cases wherein (τ01 , τ
0
2 ) are (0.33, 0.80) and (0.33, 0.54), respectively. Considering these results,

we can observe that both the finite sample and the asymptotic distributions are skewed depending on

the location of τ02 relative to τ01 . If τ02 − τ01 is large (small), there are less (more) observations after

[Tτ02 ] and, thus, the distribution tends to be skewed to the left (right), as in Figure 6 (Figure 7). In

the case wherein τ02 is located in the middle of the [τ01 , 1] interval, the distribution is symmetric as in

Figure 5.
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3.4 Violation of the identification condition

We have investigated the asymptotic property of the weighted estimators under Assumption 4. This

assumption is required to identify the “largest break.” However, considering the case wherein the

objective function assumes the same value at τ01 and τ02 is possible. In this case, the two breaks have

the same size and thus, the first-step estimator is expected to converge to either τ01 or τ02 . In fact,

Proposition 3 of Bai (1997a) indicates that this is the case with equal probability for the first-step

estimator k̂W,1.

Assumption 5

Q2(τ01 ) = Q2(τ02 ), (21)

and (11) holds.

Following the proof of (10) and (11), it can be demonstrated that (21) implies (10) and (12),

but not necessarily (11). From (8), it is observed that under Assumption 5, the objective function

is asymptotically a piece-wise, strictly convex function with two peaks at τ01 and τ02 with the same

height implying that the first-step estimator is consistent for either of the break fractions.

Theorem 3 Under Assumptions 1, 2, 3(i), and 5, we have

τ̂W,1 ⇒

{
τ01 with probability 1

2

τ02 with probability 1
2

.

Theorem 3 is essentially the same as Proposition 3 in Bai (1997a) for k̂LS,1. That is, the weighted

estimator k̂W,1 possesses the desirable property that the estimated break fraction is consistent for either

of the true break fractions with equal probability when the objective function becomes indifferent

between the two break dates.

Remark 1 Suppose that Q2(τ01 ) = Q2(τ02 ) but that (11) does not hold. In this case, (1 − τ02 )(δ3 −

δ2) − τ01 (δ2 − δ1) = 0 and, thus, Q2(τ) = (τ01 )2(δ2 − δ1)2 for τ ∈ [τ01 , τ
0
2 ]. That is, the objective

function is asymptotically flat between the two breaks, as demonstrated in Figure 8, wherein τ01 = 0.2

and τ02 = 0.8. As the objective function attains its maximum at any point between 0.2 and 0.8, our

first-step estimator cannot be consistent in this case. In fact, this is confirmed by Figure 9 with

τ01 = 0.2, τ02 = 0.8, µ0 = 0, δ1 = 0.3, δ2 = 0.6, δ3 = 0.3, T = 100.
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4 Asymptotics under the In-fill Asymptotic Scheme

We have investigated the break point estimators under the so-called long-span asymptotic scheme,

wherein the break fractions are fixed and the samples before and after the breaks increase proportion-

ally to the whole sample size. As demonstrated in the previous section, the asymptotic distribution

of each break point estimator can approximate the finite sample distribution relatively well. How-

ever, it is known in the the literature that this approximation under the long-span asymptotic scheme

deteriorates when the break size is small. In the case of a one-time break model, the finite sample

distribution of the break point estimator based on the minimization of the SSR tends to be trimodal

(one peak at the true break point and two peaks at both of the ends of the sample) as demonstrated

by Jiang et al. (2018) for a break in the mean, Jiang et al. (2020) for a break in the autoregressive

coefficient, and Casini and Perron (2021a,b, 2022) for a regression model. To explain this finite sam-

ple property of the estimator theoretically, these authors introduced the in-fill asymptotic scheme,

under which the sampling interval is fixed but the sampling frequency goes to infinity. They demon-

strated that the limiting distribution derived under the in-fill asymptotic scheme can approximate

the finite sample distribution highly effectively. Recently, Tayanagi and Kurozumi (2023) applied this

technique to investigate k̂LS,1, the first-step estimator based on the minimization of the SSR in the

level-shift model with two breaks, and demonstrated that the limiting distribution derived under the

in-fill asymptotic scheme can replicate the important finite sample distributional property; the finite

sample distribution has four modes, as follows: two peaks at the true break points and the others at

both ends of the sample.

The finite sample distribution of k̂W,1 based on the weighted objective function differs from that of

k̂LS,1 when the breaks are small; the former has two peaks at the true break points, as demonstrated

in Figure 10, whereas the latter has four peaks, as observed in Tayanagi and Kurozumi (2023). In this

section, we derive the limiting distribution of k̂W,1 under the in-fill asymptotic scheme and demonstrate

that the in-fill asymptotic scheme can replicate the finite sample property observed in Figure 10.

To establish the in-fill asymptotic scheme, suppose that the sampling interval h→ 0 with Th = 1,

which suggests that the sampling span is fixed, but the sample size T increases as h → 0. Following

Jiang et al. (2018), we begin with the discretization of the continuous time model with level shifts
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given by

Yth − Yth−1 = µih+
√
hυt, (22)

for t = 1, . . . , T , where Yth is a continuous time observation and υt ∼ i. i.d.N(0, σ2). Let yt =

(Yth − Yth−1)/
√
h, and we divide both sides of (22) by

√
h. Then, (22) becomes

yt = µi
√
h+ υt. (23)

By replacing {υt} with {Xt} considered in the previous section, the model under the in-fill asymptotic

scheme is expressed as follows:

yt = µi
√
h+Xt, where µi =


δ1 : 1 ≤ k ≤ k01,
δ2 : k01 < k ≤ k02,
δ3 : k02 < k ≤ T.

(24)

Notably, model (24) differs slightly from (1)–(2) and the magnitude of the breaks shrinks to zero

at a rate of
√
h, which corresponds to the rate of 1/

√
T because Th = 1, implying that we cannot

consistently estimate the break fraction.

Like Assumption 4, we suppose that the first break dominates the second one under the in-fill

asymptotic scheme.

Assumption 6

plim
(√

h
)−2 [

Q2
T (k01/T )−Q2

T (k02/T )
]
> 0. (25)

Theorem 4 Under Assumptions 1, 2, and 6

τ̂W,1 − τ01 ⇒ arg max
τ∈(0,1)

J2(τ), (26)

where

J(τ) =


J1(τ) if 0 < τ ≤ τ01
J2(τ) if τ01 < τ ≤ τ02
J3(τ) if τ02 < τ < 1

,

with

J1(τ) =B̃(τ) + τ(1− τ02 )(δ3 − δ2) + τ(1− τ01 )(δ2 − δ1),

J2(τ) =B̃(τ) + τ(1− τ02 )(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1),

J3(τ) =B̃(τ) + τ02 (1− τ)(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1),

and B̃τ = a(1)σ (−B(τ) + τB(1)).
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Remark 2 Theorem 4 evidently indicates that τ̂W,1 is inconsistent and, thus, there is no room for

estimating the second break point. However, as investigated in Tayanagi and Kurozumi (2023) for the

step-by-step estimator based on the SSR, we can consider the case wherein µi = µ0 + δi/ε and ε→ 0

as h→ 0 with
√
h/ε→ 0. This case indicates that τ̂W,1 is consistent for τ01 and has the same limiting

distribution as provided in Theorem 1. Consequently, we can consider the second step estimator k̂W,2,

which would have the same asymptotic distribution as provided in Theorem 2. That is, even under the

in-fill asymptotic scheme, the limiting distributions of the break point estimators are unimodal if the

break size is sufficiently large.

Figure 11 demonstrates the histogram of the in-fill asymptotic distribution of τ̂W,1 with the same

parameter as that used in Figure 10. We can observe that the in-fill asymptotic distribution is bimodal

as the finite sample distribution presented in Figure 10.

5 Simulation

In this section, we investigate the finite sample property of the break point estimators investigated

in the previous sections using Monte Carlo simulations. Throughout the simulations, we consider the

model specified by (1)–(2) with Xt ∼ i.i.d.N(0, 1).

First, we compare the shape of the finite sample distributions of the two first-step estimators.

Figure 12 demonstrates the histograms of the finite sample distributions with the parameter values

(τ01 , τ
0
2 ) = {(0.40, 0.60), (0.30, 0.70), (0.10, 0.90), (0.025, 0.975)}, µ0 = 0, δ1 = 0, δ2 = 0.4, δ3 = 0.1,

λT = 1, and T = 100 with 5, 000 replications. In the case wherein (τ01 , τ
0
2 ) = {(0.4, 0.6), (0.3, 0.7)}, the

τ̂LS,1 has four peaks, whereas τ̂W,1 has only two peaks, and we can observe that τ̂W,1 tends to estimate

the true break fraction more frequently than τ̂LS,1. On the contrary, when the true break points

are located near the boundaries, such as (τ01 , τ
0
2 ) = {(0.10, 0.90), (0.025, 0.975)}, the finite sample

distribution of the LSE becomes bimodal, whereas the peaks of the weighted estimator disappear

by the influence of the weight function. In this case, τ̂LS,1 estimates the true break fraction more

frequently than τ̂W,1.

To observe the finite sample performance of τ̂W,1 when the magnitude of the breaks is the same as

supposed in Assumption 5, we set (τ01 , τ
0
2 ) = (0.2, 0.8), µ0 = 0.0, δ1 = 0.1, δ2 = 0.4, δ3 = 0.1, λT = 1,

and T = {100, 300, 500, 2000}. Figure 13 demonstrates that the peaks are concentrated around the
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true break fractions with the same probability. We observe that the probability at one of the peaks

goes to 1/2 as T increases, which supports Theorem 3.

Subsequently, we compare the root mean squared error (RMSE), bias, and standard error (SE) of

the two first-step estimators. First, we set µ0 = 0.0 and select the shrinking speed at λT = 1 (the fixed

shift case). The results when T = 100 and 300 are summarized in Tables 1 and 2, wherein first-step

estimators based on the weighted function and SSR are denoted as WE and LE, respectively. Table 1

indicates that the RMSE and SE of k̂W,1 are smaller than those of k̂LS,1, whereas the bias of the former

estimator is larger than the latter one, except for the case wherein (τ01 , τ
0
2 ) = {(0.5, 0.7), (0.5, 0.9)}.

The relative performance is preserved when T = 300, as is observed in Table 2. This tendency is like

the case of the one-time break model investigated by Baek (2023).

Tables 3 and 4 correspond to the shrinking shift case with λT = T−1/4. The overall tendency is

like the fixed shift case, but the difference between the biases becomes marginal.

Once the first step estimator is obtained, we subsequently investigate the finite sample performance

of the second step estimator. In the experiment of the second-step estimator based on the least-squares

method, we skipped the replication when k̂LS,1 = T − 1 because estimating k̂LS,2 when k̂LS,1 = T − 1

is impossible. The number of the skipped replications among 5000 is reported in the “# of exclusion”

column of the tables. Tables 5 and 6 present the RMSE, bias, and SE of the second-step estimators

in the fixed shift case (λT = 1). In Table 5, for T = 100, the RMSE and SE of the weighted estimator

are smaller than those of the LSE, like the first-step estimators. Moreover, the bias of k̂W,2 is smaller

than or nearly equal to that of k̂LS,2 in most cases. In Table 6, for T = 300, we observe a similar

tendency to the case of T = 100.

Tables 7 and 8 correspond to the shrinking shift case with λT = T−1/4. Again, the relative

performance in this case is preserved compared to that in the fixed shift case.

6 Conclusion

In this study, we investigated the behavior of the break point estimator proposed by Baek (2023)

in the case wherein the level-shift model having two breaks is estimated one at a time. Under the

long-span scheme, we demonstrated that both the first-step and second-step weighted estimators are

consistent for the true break fractions and derived the limiting distributions, which are unimodal.
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This long-span asymptotic approximation works effectively when the magnitude of the breaks is not

excessively small. However, when it is excessively small, the finite sample distribution of the first-step

weighted estimator tends to have two peaks. We demonstrate that this bimodality can be captured

under the in-fill asymptotic scheme. Using Monte Carlo simulations, we compare the finite sample

performance of the first-step and second-step estimators based on the weighted objective function and

least squares method and found that the first-step weighted estimator has the smaller RMSE and SE

than the corresponding LSE, whereas the bias of the LSE tends to be smaller than that of the weighted

estimator. However, the advantage of the LSE disappears in the shrinking shift case; specifically, the

performance of the second-step weighted estimator is better than that of the LSE in most cases.

The model considered in this study is a simple level-shift model, and extending our result to the

regression model though, the proof would become significantly more complicated in such a case. This

alludes to our future research.
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7 Appendix

In this appendix, we denote C as a generic constant that differs by place.

Probability limit of the objective function: It is not difficult to observe that the objective

function Q2
T (k/T ) is expressed as follows:

Q2
T (k/T ) =

k2(T − k)2

T 4

(
Ȳ ∗k − Ȳk

)2
=

 w2
T (k)a2T (k) + 2wT (k)aT (k)RT (k) +R2

T (k) : 1 ≤ k ≤ k01
w2
T (k)b2T (k) + 2wT (k)bT (k)RT (k) +R2

T (k) : k01 < k ≤ k02
w2
T (k)c2T (k) + 2wT (k)cT (k)RT (k) +R2

T (k) : k02 < k ≤ T,
(27)

where

aT (k) =
T − k02
T − k

(µ3 − µ2) +
T − k01
T − k

(µ2 − µ1), (28)

bT (k) =
T − k02
T − k

(µ3 − µ2) +
k01
k

(µ2 − µ1), (29)

cT (k) =
k02
k

(µ3 − µ2) +
k01
k

(µ2 − µ1), (30)

RT (k) =
k(T − k)

T 2
(X̄∗k − X̄k), (31)

with

X̄k =
1

k

k∑
t=1

Xt and X̄∗k =
1

T − k

T∑
t=k+1

Xt. (32)

We derive the probability limit of Q2
T (k/T )/λ2T . Let k = [τT ] for τ ∈ [0, 1]. From Assumption 1, the

functional central limit theorem (FCLT) holds

1√
T

k∑
t=1

Xt ⇒ a(1)σB(τ),

where B(·) is a standard Brownian motion on [0, 1], and thus, it can be demonstrated that RT (k)

converges to zero in probability uniformly. Hence, we have

Q2
T (k/T )/λ2T

p−→ Q2(τ) =


τ2
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]2
: 0 ≤ τ ≤ τ01[

τ(1− τ02 )(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1)
]2

: τ01 < τ ≤ τ02
(1− τ)2

[
τ02 (δ3 − δ2) + τ01 (δ2 − δ1)

]2
: τ02 < τ ≤ 1

uniformly. Notably, when (10) holds, Q2(τ) is strictly convex and increasing in τ ∈ [0, τ01 ]. Similarly,

when (11) holds, Q2(τ) is strictly convex in τ ∈ [τ01 , τ
0
2 ]. On the contrary, when τ02 (δ3 − δ2) + τ01 (δ2 −

δ1) 6= 0, which is not necessarily guaranteed by Assumption 4, Q2(τ) is strictly convex and decreasing
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in τ ∈ [τ02 , 1]; otherwise, it equals 0. We can observe that τ01 is uniquely identified by Q2(τ) under

Assumption 4.

Proof of (10) and (11): The left-hand side of (9) becomes

Q2(τ01 )−Q2(τ02 )

=(τ01 )2
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]2 − [τ02 (1− τ02 )(δ3 − δ2) + τ01 (1− τ02 )(δ2 − δ1)
]2

=(1− τ02 )2[(τ01 )2 − (τ02 )2](δ3 − δ2)2 + (τ01 )2
[
(1− τ01 )2 − (1− τ02 )2

]
(δ2 − δ1)2

+ 2
(
τ01 (1− τ01 )− τ02 (1− τ02 )

)
τ01 (1− τ02 )(δ3 − δ2)(δ2 − δ1)

=(τ02 − τ01 )
[
(τ01 )2(2− τ01 − τ02 )(δ2 − δ1)2 − (1− τ02 )2(τ01 + τ02 )(δ3 − δ2)2

+2τ01 (1− τ02 )(τ01 + τ02 − 1)(δ3 − δ2)(δ2 − δ1)
]

=(τ02 − τ01 )LR,

where

L =τ01 (δ2 − δ1)− (1− τ02 )(δ3 − δ2),

R =τ01 (2− τ01 − τ02 )(δ2 − δ1) + (1− τ02 )(τ01 + τ02 )(δ3 − δ2)

=τ01
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

)
+ (1− τ01 )

(
(τ01 (δ2 − δ1) + τ02 (δ3 − δ2)

]
=τ01R1 + (1− τ02 )R2,

with

R1 =(1− τ01 )(δ2 − δ1) + (1− τ02 )(δ3 − δ2),

R2 =τ01 (δ2 − δ1) + τ02 (δ3 − δ2).

Thus, condition (9) is equivalent to (i) L > 0 and R > 0 or (ii) L < 0 and R < 0.

First, we consider the case of (i) L > 0 and R > 0. If R1 = 0, we have

(1− τ02 )(δ3 − δ2) = −(1− τ01 )(δ2 − δ1) (33)

and thus, L = δ2 − δ1. As L is supposed to be positive, we have δ2 − δ1 > 0. From this result and

0 < 1− τ02 < 1− τ01 < 1, (33) implies δ2 − δ3 > δ2 − δ1, leading to R2 = τ01 (δ2 − δ1) + τ02 (δ3 − δ2) < 0.

Then, from the definition, we have R < 0 in this case, which contradicts R > 0. Hence, when R1 = 0,

(i) L > 0 and R > 0 do not hold.
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Next, we consider the case of (ii) L < 0 and R < 0. If R1 = 0, (33) holds again, and thus,

L = δ2− δ1. As L is supposed to be negative, we have δ2− δ1 < 0, which implies R > 0; however, this

contradicts R < 0.

In sum, we find that L 6= 0 and R1 6= 0 are necessary conditions for Assumption 4, and thus, we

obtain (10) and (11). �

To prove Proposition 1, we need several lemmas.

Lemma 1 Under Assumption 1, there exists an M <∞ such that, for all i, j, k, l with i < j < k < l,∣∣∣∣∣E
[(

j∑
t=i

Xt

)(
l∑

s=k

Xs

)]∣∣∣∣∣ < M, i < j < k < l,∣∣∣∣∣∣ 1

j − i
E

( j∑
t=i

Xt

)2
∣∣∣∣∣∣ < M.

Proof of Lemma 1: See Bai (1997a). �

Lemma 2 Under Assumptions 1 and 2, there exists an M <∞ such that

|E[R2
T (k01)]− E[R2

T (k)]| ≤ |k − k
0
1|

T

1

T
M.

Proof of Lemma 2: From (31), we have

E[R2
T (k01)]

=E

k012(T − k01)2

T 4


 1

T − k01

T∑
t=k01+1

Xt

2

+

 1

k01

k01∑
t=1

Xt

2

− 2

 1

k01

k01∑
t=1

Xt

 1

T − k01

T∑
t=k01+1

Xt



 ,

(34)

E[R2
T (k)]

=E

k2(T − k)2

T 4


(

1

T − k

T∑
t=k+1

Xt

)2

+

(
1

k

k∑
t=1

Xt

)2

− 2

(
1

k

k∑
t=1

Xt

)(
1

T − k

T∑
t=k+1

Xt

)
 .

(35)

We consider the case of 1 ≤ k ≤ k01. The difference between the two first terms on the right-hand side
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of (34) and (35) is∣∣∣∣∣∣∣
k01

2
(T − k01)2

T 4

1

(T − k01)2
E


 T∑
t=k01+1

Xt

2
− k2(T − k)2

T 4

1

(T − k)2
E

( T∑
t=k+1

Xt

)2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
k01

2

T 4
E


 T∑
t=k01+1

Xt

2
− k2

T 4
E


 k01∑
t=k+1

Xt +

T∑
t=k01+1

Xt

2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
k01

2

T 4
E


 T∑
t=k01+1

Xt

2
− k2

T 4
E


 T∑
t=k01+1

Xt

2
− k2

T 4
E


 k01∑
t=k+1

Xt

2


−2
k2

T 4
E

 T∑
t=k01+1

Xt

 k01∑
t=k+1

Xt

∣∣∣∣∣∣
≤ (k01

2 − k2)(T − k01)

T 4

1

T − k01

∣∣∣∣∣∣∣E

 T∑
t=k01+1

Xt

2

∣∣∣∣∣∣∣+

k2(k01 − k)

T 4

1

k01 − k

∣∣∣∣∣∣∣E

 k01∑
t=k+1

Xt

2

∣∣∣∣∣∣∣

+ 2
k2

T 4

∣∣∣∣∣∣E
 T∑

t=k01+1

Xt

 k01∑
t=k+1

Xt

∣∣∣∣∣∣
≤ (k01

2 − k2)(T − k01)

T 4
M +

k2(k01 − k)

T 4
M + 2

k2

T 4
M

=
|k − k01|

T
O(T−1), (36)

where the second inequality holds by Lemma 1.
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Similarly, the difference between the two second terms on the right-hand side of (34) and (35) is∣∣∣∣∣∣∣
k01

2
(T − k01)2

T 4
E

 1

k01
2

 k01∑
t=1

Xt

2
− k2(T − k)2

T 4
E

 1

k2

(
k∑
t=1

Xt

)2

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
(T − k01)2

T 4
E


 k∑
t=1

Xt +

k01∑
t=k+1

Xt

2
− (T − k)2

T 4
E

( k∑
t=1

Xt

)2

∣∣∣∣∣∣∣

≤ (T − k01)2

T 4
E


 k01∑
t=k+1

Xt

2
+

∣∣(T − k01)2 − (T − k)2
∣∣

T 4
E

( k∑
t=1

Xt

)2


+ 2
(T − k01)2

T 4
E

∣∣∣∣∣∣
 k01∑
t=k+1

Xt

( k∑
t=1

Xt

)∣∣∣∣∣∣


≤|k − k
0
1|

T

1

T
M +

|k − k01|
T

k

T 2
M +

1

T 2
M

=
|k − k01|

T
O(T−1), (37)

and the difference between the two third terms on the right-hand side of (34) and (35) is∣∣∣∣∣∣2k
0
1
2
(T − k01)2

T 4

1

k01(T − k01)
E

 k01∑
t=1

Xt

 T∑
t=k01+1

Xt

∣∣∣∣∣∣− 2
k2(T − k)2

T 4

1

k(T − k)
E

[(
k∑
t=1

Xt

)(
T∑

t=k+1

Xt

)]

≤ 1

T 2
M +

k

T 3
M = O(T−2). (38)

From (36), (37), and (38), there exists an M <∞ such that

∣∣E[R2
T (k01)]− E[R2

T (k)]
∣∣ ≤ |k − k01|

T

1

T
M.

The proof for k ≥ k01 + 1 is analogous and omitted. �

Lemma 3 Under Assumptions 1–4, there exists a C > 0 for all large T such that

E[Q2
T (k01/T )]− E[Q2

T (k/T )] ≥ |k − k
0
1|

T
λ2TC.
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Proof of Lemma 3: For 1 ≤ k ≤ k01, we have

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
=
(
Q2(τ01 )−Q2(τ)

)
λ2T + E[R2

T (k01)]− E[R2
T (k)]

=(τ01 − τ)(τ01 + τ)
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]2
λ2T

+ E[R2
T (k01)]− E[R2

T (k)]

≥|k − k
0
1|

T
Cλ2T +

|k − k01|
T

O(T−1)

≥|k − k
0
1|

T
Cλ2T

for all sufficiently large T , where the first inequality holds by Lemma 2.

For k01 + 1 ≤ k ≤ k02, we have

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
=
(
Q2(τ01 )−Q2(τ)

)
λ2T + E[R2(k01)]− E[R2(k)].

As Q2(τ) is a quadratic and convex function of τ and maximized at τ = τ01 in τ ∈ [τ01 , τ
0
2 ], we can

observe that [Q2(τ)−Q2(τ01 )]/(τ − τ01 ) takes negative values and increases in τ . This implies that, by

letting −C = [Q2(τ02 )−Q2(τ01 )]/(τ02 − τ01 ),

Q2(τ)−Q2(τ01 )

τ − τ01
< −C or equivalently, Q2(τ01 )−Q2(τ) > C(τ − τ01 )

on τ ∈ [τ01 , τ
0
2 ]. Using this relation and Lemma 2, we have

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
≥ |k − k

0
1|

T
Cλ2T +

|k − k01|
T

O(T−1) ≥ |k − k
0
1|

T
Cλ2T .

For k02 + 1 ≤ k ≤ T , we have

E[Q2
T (k01/T )]− E[Q2

T (k/T )] =
(
E[Q2

T (k01/T )]− E[Q2
T (k02/T )]

)
+
(
E[Q2

T (k02/T )]− E[Q2
T (k/T )]

)
.
(39)

The second term on the right-hand side of (39) is

E[Q2
T (k02/T )]− E[Q2

T (k/T )] =
(
Q2(τ02 )−Q2(τ)

)
λ2T + E[R2

T (k02)]− E[R2
T (k)]

≥E[R2
T (k02)]− E[R2

T (k)]

=O(T−1),

whereas the first term on the right-hand side of (39) becomes, again by Lemma 2,

E[Q2
T (k01/T )]− E[Q2

T (k02/T )] =
(
Q2(τ01 )−Q2(τ02 )

)
λ2T + E[R2

T (k01)]− E[R2
T (k02)]

≥Cλ2T +
|k − k01|

T
O(T−1) ≥ |k − k

0
1|

T
Cλ2T ,
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because |k − k01|/T ≤ 1. The above two results yield

E[Q2
T (k01/T )]− E[Q2

T (k/T )] ≥ |k − k
0
1|

T
Cλ2T

and we obtain the lemma. �

Lemma 4 Under Assumptions 1–3, we have

sup
1≤k≤T−1

∣∣Q2
T (k/T )− E[Q2

T (k01/T )]
∣∣ = Op

(
λTT

−1/2
)
.

Proof of Lemma 4: The first term on the right-hand side of (27) is non-stochastic and hence, for

k ≤ k01, we have

Q2
T (k/T )− E[Q2

T (k/T )]

=R2
T (k)− E[R2

T (k)] + 2wT (k)aT (k)RT (k)

=
k2(T − k)2

T 4

(
X̄∗t − X̄t

)2 − k2(T − k)2

T 4
E
[(
X̄∗t − X̄t

)2]
+ 2

k2(T − k)2

T 4

(
T − k02
T − k

(δ3 − δ2)λT +
T − k01
T − k

(δ2 − δ1)λT

)(
X̄∗t − X̄t

)
. (40)

It can be shown that the first and second terms on the right-hand side of (40) are Op(T
−1) and

O(T−1), respectively, whereas the third term is Op(λTT
−1/2). The proof for k ≥ k01 + 1 is analogous

and omitted. �

Proof of Proposition 1: The proof proceeds similarly to that of Corollary 1 in Bai (1997a). We

note the following:

Q2
T (k/T )−Q2

T (k01/T ) =Q2
T (k/T )− E[Q2

T (k/T )]

+ E[Q2
T (k/T )]− E[Q2

T (k01/T )] + E[Q2
T (k01/T )]−Q2

T (k01/T )

≤2 sup
1≤k≤T−1

|Q2
T (k/T )− E[Q2

T (k/T )]| − (E[Q2
T (k01/T )]− E[Q2

T (k/T )]). (41)

As Q2
T (k̂W,1/T )−Q2

T (k01/T ) ≥ 0, (41) implies that

E[Q2
T (k01/T )]− E[Q2

T (k̂W,1/T )] ≤2 sup
1≤k≤T−1

∣∣Q2
T (k/T )− E[Q2

T (k/T )]
∣∣ .
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Using Lemmas 3 and 4, we have

|τ̂W,1 − τ01 | ≤ Op(λ−1T T−1/2) = op(1).

�

To refine the convergence order, we focus on the neighborhood of k01. As the consistency of τ̂ is

established by Proposition 1, we consider the interval given by DT = {k : Tη ≤ k ≤ Tτ02 (1 − η)}

such that P (k̂W,1 ∈ DT ) ≥ 1 − ε for all large T and a given ε > 0, where η is a small positive

value satisfying τ01 ∈ (η, τ02 (1− η)). We demonstrate that Q2
T (k/T ) is hardly maximized on DT,Mc ={

k : Tη ≤ k ≤ Tτ02 (1− η), |k − k01| > Mλ−2T
}

. Noting that the maximization of Q2
T (k/T ) is equivalent

to the minimization of Q2
T (k01/T )−Q2

T (k/T ), we present the following lemma:

Lemma 5 Under Assumptions 1–4, for every ε > 0, there exists an M > 0 such that

P

(
min

k∈DT,Mc

{
Q2
T (k01/T )−Q2

T (k/T )
}
≤ 0

)
< ε.

Proof of Lemma 5: By Lemma 3, we have

Q2
T (k01/T )−Q2

T (k/T ) =Q2
T (k01/T )− E[Q2

T (k01/T )]− (Q2
T (k/T )− E[Q2

T (k/T )])

+ E[Q2
T (k01/T )]− E[Q2

T (k/T )]

≥Q2
T (k01/T )− E[Q2

T (k01/T )]− (Q2
T (k/T )− E[Q2

T (k/T )]) +
|k − k01|

T
λ2TC.

Then, Q2
T (k01/T )−Q2

T (k/T ) ≤ 0 implies

Cλ2T ≤
∣∣Q2

T (k01/T )− E[Q2
T (k01/T )]− (Q2

T (k/T )− E[Q2
T (k/T )])

∣∣ T

|k − k01|
.

Therefore, it is sufficient to prove that for any given value of κ,

P

(
sup

k∈DT,Mc

{∣∣Q2
T (k01/T )− E[Q2

T (k01/T )]− (Q2
T (k/T )− E[Q2

T (k/T )])
∣∣ T

|k − k01|

}
> κλ2T

)
< ε.

Notably,

∣∣Q2
T (k01/T )− E[Q2

T (k01/T )]− (Q2
T (k/T )− E[Q2

T (k/T )])
∣∣

=
∣∣R2

1,T (k)−R2
i,T (k)−

(
E[R2

T (k01)]− E[R2
T (k)]

)∣∣
≤
∣∣R2

1,T (k)−R2
i,T (k)

∣∣+
∣∣E[R2

T (k01)]− E[R2
T (k)]

∣∣ , (42)
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where, for k ≤ k01,

R2
i,T (k) = R2

1,T (k) = 2w2
T (k)aT (k)(X̄∗k − X̄Tk) +R2

T (k), (43)

and, for k01 + 1 ≤ k < k02,

R2
i,T (k) = R2

2,T (k) = 2w2
T (k)bT (k)(X̄∗k − X̄k) +R2

T (k). (44)

By Lemma 2, the second term on the right-hand side of (42) multiplied by T/|k − k01| is evaluated as

T

|k − k01|
∣∣E[R2

T (k01)]− E[R2
T (k)]

∣∣ ≤ T

|k − k01|
|k − k01|

T
O(T−1) = O(T−1),

which suggests that the left-hand side converges to 0 faster than λ2T . Therefore, it suffices to show

that, for any κ > 0 and ε > 0,

P

(
sup

k∈DT,Mc

{∣∣R2
1,T (k01)−R2

i,T (k)
∣∣ T

|k − k01|

}
> κλ2T

)
< ε (45)

for i = 1 and 2. We demonstrate that the left-hand side of the inequality is op(λ
2
T ).

Notably, for k ≤ k01,

∣∣R2
1,T (k01)−R2

i,T (k)
∣∣ T

|k − k01|∣∣∣2w2
T (k01)aT (k01)(X̄∗k01

− X̄k01
) +R2

T (k01)−
[
2w2

T (k)aT (k)(X̄∗k − X̄k) +R2
T (k)

]∣∣∣ T

|k − k01|

=

∣∣∣∣∣2k01
2
(T − k01)2

T 4
aT (k01)(X̄∗k01

− X̄k01
) +R2

T (k01)−
(

2
k2(T − k)2

T 4
aT (k)(X̄∗k − X̄k) +R2

T (k)

)∣∣∣∣∣ T

|k − k01|

≤

∣∣∣∣∣2
(
k01

2
(T − k01)

T 4
(X̄∗k01

− X̄k01
)− k2(T − k)

T 4
(X̄∗k − X̄k)

)(
(δ3 − δ2)(T − k02) + (δ2 − δ1)(T − k01)

)
λT

∣∣∣∣∣ T

|k − k01|

+
∣∣R2

T (k01)−R2
T (k)

∣∣ T

|k − k01|

≤

∣∣∣∣∣
(
k01

2
(T − k01)

T 4
(X̄∗k01

− X̄k01
)− k2(T − k)

T 4
(X̄∗k − X̄k)

)∣∣∣∣∣CTλT T

|k − k01|
+
∣∣R2

T (k01)−R2
T (k)

∣∣ T

|k − k01|
.

(46)
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The first term on the right-hand side of (46) is(
k01

2
(T − k01)

T 4
(X̄∗k01

− X̄k01
)− k2(T − k)

T 4
(X̄∗k − X̄k)

)
CTλT

T

|k − k01|

=

k012
T 4

T∑
t=k01+1

Xt −
k01(T − k01)

T 4

k01∑
t=1

Xt −
k2

T 4

T∑
t=k+1

Xt +
k(T − k)

T 4

k∑
t=1

Xt

CTλT
T

|k − k01|

=

k012 − k2
T 4

T∑
t=k01+1

Xt −
k01(T − k01) + k2

T 4

k01∑
t=k+1

Xt −
k01(T − k01)− k(T − k)

T 4

k∑
t=1

Xt

CTλT
T

|k − k01|
.

(47)

We can observe that the first term on the right-hand side of (47) is

CTλT
T

|k − k01|
k01

2 − k2

T 4

T∑
t=k01+1

Xt =CλT
k01 + k

T 3/2

1

T 1/2

T∑
t=k01+1

Xt

=Op(λTT
−1/2) = op(λ

2
T ),

while the third term becomes

CTλT
T

|k − k01|
k01(T − k01)− k(T − k)

T 4

k∑
t=1

Xt =CλT
(T − k01 − k)

T 3/2

1

T 1/2

k∑
t=1

Xt

=Op(λTT
−1/2) = op(λ

2
T ).

On the contrary, the second term is

CTλT
T

|k − k01|
k01(T − k01) + k2

T 4

k01∑
t=k+1

Xt = O(1)
λT

|k − k01|

k01∑
t=k+1

Xt.

Using Hájek-Rényi inequality (HRI) in Bai (1994), we have

P

 sup
k≤k01−Mλ−2

T

 1

|k − k01|

∣∣∣∣∣∣
k01∑

t=k+1

Xt

∣∣∣∣∣∣
 > κλT

 <
C

κ2M
. (48)

Taking a large value of M , (48) becomes sufficieintly small, which implies that the second term is

op(λ
2
T ).

For the second term on the right-hand side of (46), we observe that R2
T (k01) − R2

T (k) is Op(T
−1)

because (31) is Op(T
−1/2) uniformly in DT,Mc . Then, we have

∣∣R2
T (k01)−R2

T (k)
∣∣ T

|k − k01|
≤ Op(T−1)

T

Mλ−2T
= Op(1)

λ2T
M
.

By taking a sufficiently large value of M , the left-hand side is shown to be op(λ
2
T ).
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In exactly the same manner, we can show that (45) holds for i = 2 (k01 + 1 ≤ k < k02), and thus,

the lemma is established. �

Proof of Proposition 2: Under Assumptions 1–4, for all ε, there exists an M <∞ such that

P
(∣∣∣k̂W,1 − k01∣∣∣ > Mλ−2T

)
≤P

(
k̂W,1 /∈ DT

)
+ P

(
k̂W,1 ∈ DT ,

∣∣∣k̂W,1 − k01∣∣∣ > Mλ−2T

)
≤ε+ P

(
min

k∈DT,Mc

{
Q2
T (k01/T )−Q2

T (k/T )
}
≤ 0

)
≤2ε,

where the last inequality holds by Lemma 5. �

Proof of Theorem 1: By Proposition 2, we can focus on the O(λ−2T ) neighborhood of k01. Thus, let

us define k = k01 + ` where ` = sλ−2T with s ∈ [−M,M ] for some large value of M . Then, we have

k̂ = k01 + ˆ̀. To investigate the behavior of k̂, we consider the behavior of ˆ̀ defined as follows:

ˆ̀= arg max
`∈(−∞,∞)

{
Q2
T ((k01 + `)/T )−Q2

T (k01/T )
}

= arg max
`∈(−∞,∞)

{
T
(
Q2
T ((k01 + `)/T )−Q2

T (k01/T )
)}
.

For ` ≤ 0, we have

Q2
T ((k01 + `)/T ) = w2

T (k01 + `)a2T (k01 + `) + 2wT (k01 + `)aT (k01 + `)RT (k01 + `) +R2
T (k01 + `), (49)

Q2
T (k01/T ) = w2

T (k01)a2T (k01) + 2wT (k01)aT (k01)RT (k01) +R2
T (k01). (50)

The difference between the two first terms on the right-hand side of (49) and (50) is

w2
T (k01 + `)a2T (k01 + `)− w2

T (k01)a2T (k01)

=
(k01 + `)2 − k01

2

T 4
[(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)]2

=
2k01s+ s2λ−2T

T 2
[(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)]2

=
2τ01 s

T
[(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)]2 +Op(T

−2λ−2T ). (51)

Notably, the first term on the right-hand side of (51) dominates the second term.
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The difference between the two third terms on the right-hand side of (49) and (50) becomes

R2
T (k01 + `)−R2

T (k01)

=
(k01 + `)2(T − k01 − `)2

T 4

 1

T − k01 − `

T∑
t=k01+`+1

Xt −
1

k01 + `

k01+`∑
t=1

Xt

2

− k01
2
(T − k01)2

T 4

 1

T − k01

T∑
t=k01+1

Xt −
1

k01

k01∑
t=1

Xt

2

=

k01 + `

T 2

T∑
t=k01+1

Xt +
k01 + `

T 2

k01∑
t=k01+`+1

Xt −
T − k01 − `

T 2

k01+`∑
t=1

Xt

2

−

 k01
T 2

T∑
t=k01+1

Xt −
T − k01
T 2

k01∑
t=k01+`+1

Xt −
T − k01
T 2

k01+`∑
t=1

Xt

2

=
2k01`+ `2

T 4

 T∑
t=k01+1

Xt

2

+
(k01 + `)2 − (T − k01)2

T 4

 k01∑
t=k01+`+1

Xt

2

+
2(T − k01)`+ `2

T 4

k01+`∑
t=1

Xt

2

+
2
(
(k01 + `)2 + k01(T − k01)

)
T 4

 T∑
t=k01+1

Xt

 k01∑
t=k01+`+1

Xt


+

2
(
−(k01 + `)(T − k01 − `)− (T − k01)2

)
T 4

 k01∑
t=k01+`+1

Xt

k01+`∑
t=1

Xt


+

2
(
−(k01 + `)(T − k01 − `) + k01(T − k01)

)
T 4

 T∑
t=k01+1

Xt

k01+`∑
t=1

Xt


=Op(λ

−1
T T−3/2), (52)

and thus, T
(
R2
T (k01 + `)−R2

T (k01)
)

= op(1).
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The difference between the two second terms on the right-hand side of (49) and (50) becomes

2wT (k01 + `)aT (k01 + `)RT (k01 + `)− 2wT (k01)aT (k01)RT (k01)

=2
(k01 + `)2(T − k01 − `)

T 4

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

) 1

T − k01 − `

T∑
t=k01+`+1

Xt −
1

k01 + `

k01+`∑
t=1

Xt


− 2

k01
2
(T − k01)

T 4

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

) 1

T − k01

T∑
t=k01+1

Xt −
1

k01

k01∑
t=1

Xt


=2

λT
T 3

(
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

)
×

(2k01`+ `2)

T∑
t=k01+1

Xt + (k01T + `)

k01∑
t=k01+`+1

Xt − `(T − 2k01 − `)
k01∑
t=1

Xt

 . (53)

By the FCLT, we observe that

(2k01`+ `2)
T∑

t=k01

Xt =Op(T
3/2λ−2T ), (54)

(k01T + `)

k01∑
t=k01+`+1

Xt =OP (T 2λ−1T ), (55)

`(T − 2k01 − `)
k01+`∑
t=1

Xt =Op(T
3/2λ−2T ), (56)

and hence, (55) dominates (54) and (56). Therefore, (53) becomes

2
λT
T 3

(
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

)(k01T + `)

k01∑
t=k01+`+1

Xt +Op(T
3/2λ−2T )

 . (57)

By (51), (52), and (57), we can derive the asymptotic distribution for ` ≤ 0 as follows:

T (Q2
T ((k01 + `)/T )−Q2

T (k01/T ))⇒2τ01 s
[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]2
+ 2τ01

[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

]
σa(1)B1(|s|)

=2τ01 (g2s+ σa(1)gB1(|s|))

d
=2τ01 (−g2|s|+ σa(1)|g|B1(|s|)), (58)

where B1(·) is a standard Brownian motion on [0,∞),
d
= denotes equality in distribution, and the last

expression holds because s ≤ 0 and gB1(·) d
= |g|B1(·) as B1(·) is symmetrically distributed.
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For ` > 0, we consider the difference between the following equations:

Q2
T ((k01 + `)/T ) = w2

T (k01 + `)b2T (k01 + `) + 2wT (k01 + `)bT (k01 + `)RT (k01 + `) +R2
T (k01 + `),

Q2
T (k01/T ) = w2

T (k01)b2T (k01) + 2wT (k01)bT (k01)RT (k01) +R2
T (k01).

Then, we can derive the asymptotic distribution analogously to the case of ` ≤ 0 as follows:

T (Q2
T ((k01 + `)/T )−Q2

T (k01/T ))

⇒
{

2τ01 (1− τ02 )2s(δ3 − δ2)2 − 2τ01
2
(1− τ01 )s(δ2 − δ1)2 + 2τ01 (1− 2τ01 )(1− τ02 )s(δ3 − δ2)(δ2 − δ1)

}
− 2

[
τ01 (1− τ02 )(δ3 − δ2) + τ01 (1− τ01 )(δ2 − δ1)

)
σa(1)B2(s)

=2τ01 (ghs− σa(1)gB2(s)),

d
=2τ01 (−|gh|s+ σa(1)|g|B2(s)), (59)

where B2(·) is a standard Brownian motion on [0,∞) independent of B1(·) and the last expression

holds because −gB2(·) d
= |g|B2(·) as B2(·) is symmetrically distributed and gh takes negative values

as 2τ01 ghs corresponds to the limit of w2
T (k01 + `)b2T (k01 + `) − w2

T (k01)b2T (k01), which takes negative

values because w2
T (k01 + `)b2T (k01 + `) attains its maximum at ` = 0. Applying the continuous mapping

theorem (CMT) to (58) and (59) and using the change in variable with s = σ2a2(1)u, we obtain the

theorem. �

To prove Theorem 2, we begin with the proof of the following lemma. Notably, we maximize

Q2
T ′(k/T ) or |QT ′(k/T )| in (18) to estimate the second break point.

Lemma 6 Under Assumptions 1–3, there exists a C > 0 such that

∣∣E[QT ′0(k02/T )]
∣∣− ∣∣E[QT ′0(k/T )]

∣∣ ≥ C |k − k02|
T

λT ,

for k01 + 1 ≤ k ≤ T −MT , where MT is a monotonically increasing sequence as defined in the proof of

Proposition3 below and

QT ′0(k/T ) =
(T − k)(k − k01)

(T − k01)2
(
Ȳ ∗k − Ȳ ′0,k

)
with Ȳ ′0,k =

1

k − k01

k∑
t=k01+1

yt. (60)
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Proof of Lemma 6: From (60), we have

E[QT ′0(k/T )] =


(k−k01)(T−k

0
2)

(T−k01)2
(µ3 − µ2) for k01 ≤ k ≤ k02

(k02−k
0
1)(T−k)

(T−k01)2
(µ3 − µ2) for k02 + 1 ≤ k < T −MT

, (61)

E[QT ′0(k02/T )] =
(k02 − k01)(T − k02)

(T − k01)2
(µ3 − µ2). (62)

The difference between (61) and (62) is, for k01 + 1 ≤ k ≤ k02,

∣∣E[QT ′0(k02/T )]
∣∣− ∣∣E[QT ′0(k/T )]

∣∣ =
(T − k02)(k02 − k)

(T − k01)2
|δ3 − δ2|λT

≥k
0
2 − k
T

CλT

and for k02 + 1 ≤ k < T −MT ,

∣∣E[QT ′0(k02/T )]
∣∣− ∣∣E[QT ′0(k/T )]

∣∣ =
(k02 − k01)(k − k02)

(T − k01)2
|δ3 − δ2|λT

≥k − k
0
2

T
CλT .

The above two results yield

∣∣E[QT ′0(k02/T )]
∣∣− ∣∣E[QT ′0(k/T )]

∣∣ ≥ C |k − k02|
T

λT

and we obtain the lemma. �

Proof of Proposition 3: Let MT be an increasing sequence such that MT → ∞, λ2TMT → ∞,

and MT /T → 0. First, we show that |QT ′(k/T )| cannot be maximized asymptotically for k in the

neighborhood of both of the end points: k̂W,1, k01, and T .

Let us consider the neighborhood of the left end point given by k̂W,1 < k ≤ max(k01, k̂W,1) +MT .

We note that max(k01, k̂W,1) + MT < k02, at least asymptotically, because of the consistency of τ̂W,1

and the definition of MT . This implies that k takes values less than k02 in this neighborhood. When

k̂W,1 < k01, we have, for k̂W,1 < k ≤ k01,

Ȳ ∗k =
1

T − k

 k01∑
t=k+1

µ1 +

k02∑
t=k01+1

µ2 +

T∑
t=k02+1

µ3 +

T∑
t=k+1

XT


= µ0 +

k01 − k
T − k

δ1λT +
k02 − k01
T − k

δ2λT +
T − k02
T − k

δ3λT +
1

T − k

T∑
t=k+1

Xt,
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Ȳ ′k =
1

k − k̂W,1

k∑
t=k̂W,1+1

(µ1 +Xt) = µ0 + δ1λT +
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt,

and thus,

Ȳ ∗k − Ȳ ′k =
1

T − k
[
(T − k02)(δ3 − δ2) + (T − k01)(δ2 − δ1)

)
λT +

1

T − k

T∑
t=k+1

Xt−
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt.

Notably, the coefficient of λT does not equal zero by (10). Using the above result, we obtain

QT ′(k/T ) =
(k − k̂W,1)(T − k)

(T − k̂W,1)2

(
Ȳ ∗k − Ȳ ′k

)
=Op

(
λTMTT

−1)+Op

(
MTT

−3/2
)

+Op

(
M

1/2
T T−1

)
=op(λT ). (63)

We have the same order for the case where k01 < k ≤ k01 +MT .

On the contrary, we have

Ȳ ∗k02
=

1

T − k02

T∑
t=k02+1

(µ3 +Xt) = µ0 + δ3λT +
1

T − k02

T∑
t=k02+1

Xt,

Ȳ ′k02
=

1

k02 − k̂W,1

 k01∑
t=k̂W,1+1

µ1 +

k02∑
t=k01+1

µ2 +

k02∑
t=k̂W,1+1

Xt


= µ0 +

k01 − k̂W,1
k02 − k̂W,1

δ1λT +
k02 − k01
k02 − k̂W,1

δ2λT +
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt,

and thus,

Ȳ ∗k02
− Ȳ ′k02 = (δ3 − δ2)λT +

k01 − k̂W,1
k02 − k̂W,1

(δ2 − δ1)λT +
1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k∑
k̂W,1+1

Xt.

Notably, the first term on the right hand side does not equal zero. Using the above result, we obtain

QT ′(k
0
2/T ) =

(k02 − k̂W,1)(T − k02)

(T − k̂W,1)2

(
Ȳ ∗k02
− Ȳ ′k02

)
=Op(λT ) +Op(λ

−1
T T−1) +Op(T

−1/2)−Op(T−1/2) = Op(λT ). (64)

From (63) and (64), it is observed that QT ′(k
0
2/T ) dominates QT ′(k/T ) uniformly over k̂W,1 < k ≤

k01 +MT . We can show that the same relation is obtained when k01 ≤ k̂W,1.
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In exactly the same manner, it can be shown that QT ′(k
0
2/T ) = Op(λT ) dominates QT ′(k/T ) =

op(λ) uniformly over T −MT ≤ k ≤ T −1. Therefore, QT ′(k/T ) cannot be maximized asymptotically

in the neighborhood of both of the end points.

Now we focus on k satifying max(k01, k̂W,1) + MT < k < T −MT . By the triangle inequality, we

have

|QT ′(k/T )| − |QT ′(k02/T )|

≤|QT ′(k/T )−QT ′0(k/T )|+ |QT ′(k02/T )−QT ′0(k02/T )|+
(
|QT ′0(k/T )| − |QT ′0(k02/T )|

)
. (65)

According to Bai (1994), the third term of the right-hand side of (65) is bounded by

|QT ′0(k/T )| − |QT ′0(k02/T )|

≤|QT ′0(k/T )−QT ′0(k02/T )|

≤|QT ′0(k/T )− E[QT ′0(k/T )]|+ |E[QT ′0(k/T )]| − (|E[QT ′0(k02/T )]| − |QT ′0(k02/T )− E[QT ′0(k02/T )]|)

≤2 sup
k
|QT ′0(k/T )− E[QT ′0(k/T )]|+ |E[QT ′0(k/T )]| − |E[QT ′0(k02/T )]|. (66)

where k in the supremum ranges from max(k01, k̂W,1) +MT to T −MT . By (65), (66), Lemma 6, and

|QT ′(k̂2/T )| − |QT ′(k02/T )| ≥ 0, we have

|τ̂W,2 − τ02 | ≤C−1λ−1T
{

2 sup
k
|QT ′(k/T )−QT ′0(k/T )|}+ 2 sup

k
|QT ′0(k/T )− E[QT ′0(k/T )]|

}
. (67)

As k̂W,1 = k01 +Op(λ
−2
T ), we have

QT ′(k/T ) =
(k − k̂W,1)(T − k)

(T − k̂W,1)2
(Ȳ ∗k − Ȳ ′k)

=
(k − k01)(T − k)

(T − k01)2
(1 + op(1))(Ȳ ∗k − Ȳ ′k)

=
(k − k01)(T − k)

(T − k01)2
(Ȳ ∗k − Ȳ ′k) + op(1)(Ȳ ∗k − Ȳ ′k). (68)

As µi = µ0 + δiλT , µ0 is canceled out in Ȳ ∗k − Ȳ ′k, and thus, we can observe that

Ȳ ∗k − Ȳ ′k =Op(λT ) +
1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt

=Op(λT ) +Op

(
1√
MT

)
= Op(λT ), (69)
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by the HRI. Then, the first term in the curly braces of (67) is

QT ′(k/T )−QT ′0(k/T ) =
(k − k̂W,1)(T − k)

(T − k̂W,1)2
(Ȳ ∗k − Ȳ ′k)− (k − k01)(T − k)

(T − k01)2
(Ȳ ∗k − Ȳ ′0,k)

=
(k − k01)(T − k)

(T − k01)2
(Ȳ ′0,k − Ȳ ′k) + op(λT ). (70)

When k01 ≤ k̂W,1, we have, by Proposition 2 and because µ0 in yt is canceled out,

Ȳ ′0,k − Ȳ ′k =
1

k − k01

k∑
t=k01+1

yt −
1

k − k̂W,1

k∑
t=k̂W,1+1

yt

=

(
1

k − k01
− 1

k − k̂W,1

)
k∑

t=k̂W,1+1

yt +
1

k − k01

k̂W,1∑
t=k01+1

yt

=
k01 − k̂W,1

(k − k01)(k − k̂W,1)

k∑
t=k̂W,1+1

(µt +Xt) +
1

k − k01

k∑
k01+1

(µt +Xt)

=Op

(
λ−2T
MT

λT

)
+Op

(
λ−2T

M
3/2
T

)
+Op

(
λ−2T
MT

λT

)
+Op

(
λ−1T
MT

)
=op(λT )

uniformly over k. The same result is obtained when k̂W,1 < k01. That is, we have

Ȳ ′0,k − Ȳ ′k = op(λT )

uniformly over k and, thus,

sup
k
|QT ′(k/T )−QT ′0(k/T )| = op(λT ).

Subsequently, we consider the second term in the curly braces of (67). By its definition, we have

QT ′0(k/T )− E[QT ′0(k/T )] =
(k − k01)(T − k)

(T − k01)2

 1

T − k

T∑
t=k+1

Xt −
1

k − k01

k∑
k01+1

Xt

 = op(λT ), (71)

uniformly over k.

Using the above two results, we conclude that

|τ̂W,2 − τ02 | ≤ C−1λ−1T op(λT ) = op(1).

�
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Proof of Proposition 4: Under Assumptions 1–4, for all ε, there exists an M ′ <∞ such that

P (T |τ̂W,2 − τ02 | > M ′λ−2T ) ≤ P (k̂W,2 /∈ DT ′) + P (k̂W,2 ∈ DT ′,M ′c) ≤ ε+ P (k̂W,2 ∈ DT ′,M ′c),

where the last inequality holds by Proposition 3. Then, it is sufficient to show that

P (k̂W,2 ∈ DT ′,M ′c) ≤P

(
sup

DT ′,M′c

|QT ′(k/T )| ≥ |QT ′(k02/T )|

)
≤ ε. (72)

Notably, by Proposition 2,

QT ′(k/T )−QT ′0(k/T ) =
(k − k̂W,1)(T − k)

(T − k̂W,1)2
(Ȳ ∗k − Ȳ ′k)− (k − k01)(T − k)

(T − k01)2
(Ȳ ∗k − Ȳ ′0,k)

=
(k − k01)(T − k)

(T − k01)2
(
1 +Op

(
λ−2T T−1

))
(Ȳ ∗k − Ȳ ′k)− (k − k01)(T − k)

(T − k01)2
(Ȳ ∗k − Ȳ ′0,k)

=
(k − k01)(T − k)

(T − k01)2
(Ȳ ′0,k − Ȳ ′k) +

(k − k01)(T − k)

(T − k01)2
Op
(
λ−2T T−1

)
(Ȳ ∗k − Ȳ ′k)

=
(k − k01)(T − k)

(T − k01)2
(Ȳ ′0,k − Ȳ ′k) +Op(λ

−1
T T−1)

uniformly over k ∈ DT ′,Mc , where the last equality holds because the difference between the partial

means is

Ȳ ∗k − Ȳ ′k =
1

T − k

T∑
t=k+1

µt +
1

T − k

T∑
t=k+1

Xt −
1

k − k̂

k∑
t=k̂+1

µt −
1

k − k̂

k∑
t=k̂+1

Xt

=Op(λT ) +Op(T
−1/2) = Op(λT ).

Next, we evaluate Ȳ ′0,k − Ȳ ′k. When k01 ≤ k̂, we have, by Proposition 2,

Ȳ ′0,k − Ȳ ′k =
1

k − k01

k∑
t=k01+1

yt −
1

k − k̂W,1

k∑
t=k̂W,1+1

yt

=

(
1

k − k01
− 1

k − k̂W,1

)
k∑

t=k̂W,1+1

yt +
1

k − k01

k̂W,1∑
t=k01+1

yt

=
k01 − k̂W,1

(k − k01)(k − k̂W,1)

k∑
t=k̂W,1+1

yt +
1

k − k01

k̂W,1∑
t=k01+1

yt

=
k01 − k̂

(k − k01)(k − k̂W,1)

k∑
t=k̂W,1+1

µt +
1

k − k01

k̂W,1∑
t=k01+1

µt

+
k01 − k̂W,1

(k − k01)(k − k̂W,1)

k∑
t=k̂W,1+1

Xt +
1

k − k01

k̂W,1∑
t=k01+1

Xt

=Op(λ
−1
T T−1),
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uniformly. Similarly, when k̂ ≤ k01, it holds that Ȳ ′0,k − Ȳ ′k = Op(λ
−1
T T−1). Hence, we obtain

QT ′(k/T )−QT ′0(k/T ) = Op(λ
−1
T T−1) (73)

uniformly over DT ′,M ′c . In exactly the same manner, we can show that QT ′(k
0
2/T ) − QT ′0(k02/T ) =

Op(λ
−1
T T−1). Therefore, from (72), we will show that

P

(
sup

DT ′,M′c

|QT ′0(k/T )| ≥ |QT ′0(k02/T )|+Op(λ
−1
T T−1)

)
≤ ε. (74)

To prove (74), note that

QT ′0(k/T ) =QT ′0(k/T )− E[QT ′0(k/T )] + E[QT ′0(k/T )]

=
(k − k01)(T − k)

(T − k01)2

 1

T − k

T∑
t=k+1

Xt −
1

k − k01

k∑
t=k01+1

Xt

+ E[QT ′0(k/T )]

=Op(T
−1/2) + E[QT ′0(k/T )] (75)

uniformly by the FCLT. The expectation is evaluated as, for k ∈ DT ′,M ′c and k < k02,

E[QT ′0(k/T )] =
(k − k01)(T − k)

(T − k01)2

 1

T − k

k02∑
k+1

µ2 +
1

T − k

T∑
k02+1

µ3 −
1

k − k01

k∑
k01+1

µ2


=

(k − k01)(T − k02)

(T − k01)2
(δ3 − δ2)λT ,

which dominates the Op(T
−1/2) term in (75). Then, we have

|QT ′0(k/T )| =(k − k01)(T − k02)

(T − k01)2
|δ3 − δ2|λT (1 + op(1)),

|QT ′0(k02/T )| =(k02 − k01)(T − k02)

(T − k01)2
|δ3 − δ2|λT (1 + op(1)),

and thus,

|QT ′0(k/T )| − |QT ′0(k02/T )| =(k − k02)(T − k02)

(T − k01)2
|δ3 − δ2|λT (1 + op(1))

≤− C
M ′λ−2T (T − k02)

(T − k01)2
|δ3 − δ2|λT

≤− CM ′ 1

λTT
< 0

over k ∈ DT ′,M ′c and k < k02. This implies that sup |QT ′0(k/T )|−|QT ′0(k02/T )| is negative and dominates

the Op(λ
−1T−1) term in (74) when M ′ is sufficiently large. Therefore, (74) holds for k < k02.
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Similarly, for k > k02, it can be shown that

|QT ′0(k/T )| − |QT ′0(k02/T )| =(k02 − k)(T − k02)

(T − k01)2
|δ3 − δ2|λT (1 + op(1)) (76)

≤− CM ′ 1

λTT
(77)

over k ∈ DT ′,M ′c and k > k02. Therefore, (74) holds for k > k02, and the proof is completed. �

Proof of Theorem 2: By Proposition 4, we focus on the O(λ−2T ) neighborhood of k02. Thus, let us

define k = k02 + sλ−2T with s ∈ [−M,M ] for some large value of M . Then, we have k̂W,2 = k02 + ŝλ−2T .

To derive the asymptotic distribution of k̂W,2, we investigate the behavior of ŝ defined as follows:

ŝ = arg max
s∈[−M,M ]

{Q2
T ′((k

0
2 + sλ−2T )/T )}

= arg max
s∈[−M,M ]

{T (Q2
T ′((k

0
2 + sλ−2T )/T )−Q2

T ′(k
0
2/T ))}.

First, we consider the case where k01 < k̂W,1. For s ≤ 0, we decompose the objective function into

Q2
T ′(k/T ) =

(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
T − k02
T − k

(µ3 − µ2)

)2

+ 2
(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
T − k02
T − k

(µ3 − µ2)

) 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt


+

(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt

2

, (78)

Q2
T ′(k

0
2/T ) =

(k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

2

+ 2
(k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k∑
t=k̂W,1+1

Xt


+

(k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt

2

. (79)
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The difference between the two third terms on the right-hand side of (78) and (79) is

(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt

2

− (k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt

2

=

(
(k − k̂W,1)2

(T − k̂W,1)4
− (k02 − k̂W,1)2

(T − k̂W,1)4

) T∑
t=k02+1

Xt

2

+

(
(k − k̂W,1)2

(T − k̂W,1)4
− (T − k02)2

(T − k̂W,1)4

) k02∑
t=k+1

Xt

2

+

(
(T − k)2

(T − k̂W,1)4
− (T − k02)2

(T − k̂W,1)4

) k∑
t=k̂W,1+1

Xt

2

+ 2

(
(k − k̂W,1)2

(T − k̂W,1)4
+

(k02 − k̂W,1)(T − k02)

(T − k̂W,1)4

) T∑
t=k02+1

Xt

 k02∑
t=k+1

Xt


+ 2

(
− (k − k̂W,1)(T − k)

(T − k̂W,1)4
− (T − k02)2

(T − k̂W,1)4

) k02∑
t=k+1

Xt

 k∑
t=k̂W,1+1

Xt


+ 2

(
− (k − k̂W,1)(T − k)

(T − k̂W,1)4
+

(k02 − k̂W,1)(T − k02)

(T − k̂W,1)4

) T∑
t=k02+1

Xt

 k∑
t=k̂W,1+1

Xt


=Op

(
λ−2T T−2

)
+Op

(
λ−1T T−3/2

)
. (80)

This suggests that (80) multiplied by T convergences to zero in probability.

The difference between the two first terms on the right-hand side of (78) and (79) multiplied by

T becomes

T

{
(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
T − k02
T − k

(µ3 − µ2)

)2

− (k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

2

}

=
T (T − k02)2

(T − k̂W,1)4

(
(k − k̂)2 − (k02 − k̂)2

)
(µ3 − µ2)2

=
T (T − k02)2

(T − k̂W,1)4
(s2λ−4T + 2sλ−2T (k02 − k̂W,1)λ2T )(δ3 − δ2)2λ2T

p−→2
(1− τ02 )2(τ02 − τ01 )

(1− τ01 )4
s(δ3 − δ2)2. (81)

The difference between the two second terms on the right-hand side of (78) and (79) multiplied by T
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becomes

T

2
(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
T − k02
T − k

(µ3 − µ2)

) 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt


− 2

(k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt


=2

T (T − k02)λT

(T − k̂W,1)4
(δ3 − δ2)

((k − k̂W,1)2 − (k02 − k)2
) T∑
t=k02+1

Xt

+
(

(k − k̂W,1)2 + (k02 − k̂W,1)(T − k02)
) k02+1∑
t=k+1

Xt

−
(

(k − k̂W,1)(T − k) + (k02 − k̂W,1)(T − k02)
) k∑
t=k̂W,1+1

Xt


⇒2(1− τ02 )

(1− τ01 )4
(δ3 − δ2)

(
(τ02 − τ01 )2 + (τ02 − τ01 )(1− τ02 )

)
σa(1)B1(|s|), (82)

where B1(·) is a standard Brownian motion on [0,∞).

For s > 0, we have

Q2
T ′(k/T ) =

(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
k02 − k̂W,1
k − k̂W,1

(µ3 − µ2)

)2

+ 2
(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
k02 − k̂W,1
k − k̂W,1

(µ3 − µ2)

) 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt


+

(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt

2

, (83)

while Q2
T ′(k

0
2/T ) is given by (79). The difference between the two third terms on the right-hand side

of (83) and (79) becomes op(T
−1) in the same manner as the case where k ≤ k02. The difference

between the two first terms on the right-hand side of (83) and (79) multiplied by T becomes

T

 (k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
k02 − k̂W,1
k − k̂W,1

(µ3 − µ2)

)2

− (k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

2


=T

(k02 − k̂W,1)2

(T − k̂W,1)4

(
(T − k)2 − (T − k02)2

)
(µ3 − µ2)2

p−→ (τ02 − τ01 )2

(1− τ01 )4
(−2(1− τ02 )s)(δ3 − δ2)2. (84)
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The difference between the two second terms on the right-hand side of (83) and (79) multiplied by T

becomes

T

2
(k − k̂W,1)2(T − k)2

(T − k̂W,1)4

(
k02 − k̂W,1
k − k̂W,1

(µ3 − µ2)

) 1

T − k

T∑
t=k+1

Xt −
1

k − k̂W,1

k∑
t=k̂W,1+1

Xt


− 2

(k02 − k̂W,1)2(T − k02)2

(T − k̂W,1)4
(µ3 − µ2)

 1

T − k02

T∑
t=k02+1

Xt −
1

k02 − k̂W,1

k02∑
t=k̂W,1+1

Xt


=2T

(k02 − k̂W,1)

(T − k̂W,1)4
λT (δ3 − δ2)

(
(k − k̂W,1)(T − k)− (k02 − k̂W,1)(T − k02)

) T∑
t=k+1

Xt

+ 2T
(k02 − k̂W,1)

(T − k̂W,1)4
λT (δ3 − δ2)

(
−(T − k)2 − (k02 − k̂W,1)(T − k02)

) k∑
t=k02+1

Xt

+ 2T
(k02 − k̂W,1)

(T − k̂W,1)4
λT (δ3 − δ2)

(
−(T − k)2 + (T − k02)2

) k02∑
t=k̂W,1+1

Xt

⇒− 2
(τ02 − τ01 )

(1− τ01 )4
(δ3 − δ2)

(
(1− τ02 )2 + (1− τ02 )(τ02 − τ01 )

)
σa(1)B2(s), (85)

where B2(·) is a standard Brownian motion on [0,∞) independent of B1(·).

Therefore, we have, by (80)–(85),

T
(
Q2
T ′(k/T )−Q2

T ′(k
0
2/T )

)
⇒W (s), (86)

where W (s) = W1(s) when k ≤ k02 and W2(s) when k > k02 with

W1(s) =2
(1− τ02 )2(τ02 − τ01 )

(1− τ01 )4
s(δ3 − δ2)2 +

2(1− τ02 )

(1− τ01 )4
(δ3 − δ2)

(
(τ02 − τ01 )2 + (τ02 − τ01 )(1− τ02 )

)
σa(1)B1(|s|),

W2(s) =− 2
(τ02 − τ01 )2(1− τ02 )

(1− τ01 )4
s(δ3 − δ2)2 − 2

(τ02 − τ01 )

(1− τ01 )4
(δ3 − δ2)

(
(1− τ02 )2 + (1− τ02 )(τ02 − τ01 )

)
σa(1)B2(s).

Similarly, it can be proved that we have the same limiting distribution when k̂W,1 ≤ k01. By the change

of variables with s =
(1−τ0

1 )
2

(δ3−δ2)2σ
2a2(1)u and the CMT to (86), we obtain

λ2T (k̂W,2 − k02)⇒
(

1− τ01
δ3 − δ2

)2

σ2a2(1) arg max
u∈(−∞,∞)

{Γ(u)},

where

Γ(u) =

{
B1(|u|)− (1− τ02 )|u| if u ≤ 0

B2(u)− (τ02 − τ01 )u if u > 0
.

�
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The proof of Theorem 3 proceeds similarly to the proof of Proposition 3 in Bai (1997a). Define

k̂∗i =


k̂∗1 = arg max

1≤k≤k∗0
Q2
T (k/T )

k̂∗2 = arg max
k∗0<k≤T−1

Q2
T (k/T )

where k∗0 = (k01 + k02)/2. We demonstrate that τ̂∗i = k̂∗i /T are consistent for k̂∗i for i = 1 and

2, implying that τ̂W,1 converges to either τ01 or τ02 . Therefore, we prove that the probability of

Q2
T (k̂∗1/T ) > Q2

T (k̂∗2/T ) approaches 1/2, which implies the theorem.

To prove the consistency of k̂∗i for i = 1 and 2, we need the following lemma.

Lemma 7 Under Assumptions 1, 2, 3(i), and 5, there exists a C > 0 such that

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
≥ C

∣∣k − k01∣∣
T

, if k ≤ k∗0 ,

E
[
Q2
T (k02/T )

]
− E

[
Q2
T (k/T )

]
≥ C

∣∣k − k02∣∣
T

, if k∗0 ≤ k.

Proof of Lemma 7: For k ≤ k01, by Lemma 2, we have

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
=
k01

2 − k2

T 4

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)2
+ E

[
R2
T (k01)

]
− E

[
R2
T (k)

]
≥k

0
1 − k
T

C − k − k01
T

O(T−1).

Similarly, for k01 < k ≤ k∗0 , we have

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
=

1

T 4

(
(T − k02)k01(δ3 − δ2) + (T − k01)k01(δ2 − δ1)

)2 − 1

T 4

(
(T − k02)k(δ3 − δ2) + (T − k)k01(δ2 − δ1)

)2
+ E

[
R2
T (k01)

]
− E

[
R2
T (k)

]
. (87)

The first and second terms on the right-hand side of (87) are, for a C > 0,

1

T 4

[
(T − k02)k01(δ3 − δ2) + (T − k01)k01(δ2 − δ1)

]2 − 1

T 4

[
(T − k02)k(δ3 − δ2) + (T − k)k01(δ2 − δ1)

]2
=

1

T 4

[
(T − k02)(k01 + k)(δ3 − δ2) + (2T − k01 − k)k01(δ2 − δ1)

]
×
[
(T − k02)(k01 − k)(δ3 − δ2) + (k − k01)k01(δ2 − δ1)

]
≥|k − k

0
1|

T
C, (88)
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because Assumption 5 ensures that Q2(τ) is strictly convex in τ ∈ [τ01 , τ
0
2 ].

Substituting (88) into (87), it can be shown that, by Lemma 2,

E
[
Q2
T (k01/T )

]
− E

[
Q2
T (k/T )

]
≥|k − k

0
1|

T
C − |k − k

0
1|

T
O(T−1). (89)

Similarly, for k∗0 < k ≤ k02, we have

E
[
Q2
T (k02/T )

]
− E

[
Q2
T (k/T )

]
=

1

T 4

(
(T − k02)k02(µ3 − µ2) + (T − k02)k01(µ2 − µ1)

)2 − 1

T 4

(
(T − k02)k(µ3 − µ2) + (T − k)k01(µ2 − µ1)

)2
+ E

[
R2
T (k02)

]
− E

[
R2
T (k)

]
≥k

0
2 − k
T

C − |k − k
0
2|

T
O(T−1),

where the inequality of the difference in the expectations is obtained by changing R2
T (k01) to R2

T (k02)

in Lemma 2.

For k02 < k, we have

E
[
Q2
T (k02/T )

]
− E

[
Q2
T (k/T )

]
=

(T − k02)2 − (T − k)2

T 4

(
k02(µ3 − µ2) + k01(µ2 − µ1)

)2
+ E

[
R2
T (k02)

]
− E

[
R2
T (k)

]
≥k − k

0
2

T
C − |k − k

0
2|

T
O(T−1).

�

Lemma 8 Under Assumptions 1, 2, 3(i) and 5,

τ̂∗1 − τ01 = Op

(
T−1/2

)
and τ̂∗2 − τ02 = Op

(
T−1/2

)
.

Proof of Lemma 8: We first consider the case where k ≤ k∗0 . As Q2
T (k̂∗1/T ) −Q2

T (k01/T ) ≥ 0, (41)

implies (with k restricted in [1, k∗0 ]),

E[Q2
T (k01/T )]− E[Q2

T (k̂∗1)] ≤ 2 sup
1≤k≤k∗0

∣∣Q2
T (k/T )− E[Q2

T (k/T )]
∣∣ . (90)

Then, by Lemma 4 with λT = 1 and Lemma 7, we have

|k̂∗1 − k01|
T

≤ C−1Op(T−1/2),
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which indicates that |τ̂∗1 − τ | = Op(T
−1/2).

We can prove it analogously for the case of k∗0 < k.

The consistency of τ̂∗2 is proved similarly and we omit the proof. �

Lemma 9 Under Assumptions 1, 2, 3(i) and 5, for every ε > 0 there exists an M > 0 such that

P

(
min

k∈D(i)
T,Mc

{
Q2
T (k/T )−Q2

T (k0i )
}
≤ 0

)
< ε, i = 1, 2, (91)

where

D
(1)
T,Mc =

{
k;Tη ≤ k ≤ k∗0 , |k − k01| > M

}
, (92)

D
(2)
T,Mc =

{
k; k∗0 + 1 ≤ k ≤ T (1− η), |k − k02| > M

}
. (93)

Proof of Lemma 9: It is sufficient to show that, by the same method as Lemma 5, for any η > 0

and ε > 0,

P

 sup
k∈D(1)

T,Mc

{
T
∣∣R2

1,T (k01)−R2
i,T (k)

∣∣ /|k − k01|} > η

 < ε, i = 1, 2, (94)

(95)

and

P

 sup
k∈D(2)

T,Mc

{
T
∣∣R2

2,T (k02)−R2
j,T (k)

∣∣ /|k − k02|} > η

 < ε, j = 2, 3, (96)

where R2
1,T (k) and R2

2,T (k) are defined by (43) and (44), and

R2
3,T (k) = 2w2

T (k)cT (k)(X̄∗k − X̄k)−R2
T (k). (97)

This proof proceeds similarly to the proof of Lemma 5, and the details are omitted. �

Lemma 10 Under Assumptions 1, 2, 3(i), and 5, for all ε > 0 there exists an M <∞ such that

P
(
T |τ̂∗i − τ0i | > M

)
< ε, for i = 1 and 2.

Proof of Lemma 10: Using Lemmas 8 and 9, we can prove the statement analogously to Proposition

2. �
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Proof of Theorem 3: As τ̂W,1 equals either τ̂∗1 or τ̂∗2 , which is T consistent for τ01 or τ02 by Lemma

10, it is sufficient to show that, as T →∞,

P
(
Q2
T (k̂∗1/T )−Q2

T (k̂∗2/T ) > 0
)

= P
(√

T
(
Q2
T (k̂∗1/T )−Q2

T (k̂∗2/T )
)
> 0
)
→ 1

2
.

For k̂∗1 ≤ k01, we have

Q2
T (k̂∗1/T )−Q2

T (k01/T ) =w2
T (k̂∗1)a2T (k̂∗1) + 2w2

T (k̂∗1)aT (k̂∗1)(X̄∗
k̂∗1
− X̄k̂∗1

) +R2
T (k̂∗1)

− (w2
T (k01)a2T (k01) + 2w2

T (k01)aT (k01)(X̄∗k01
− X̄k01

) +R2
T (k01))

=
k̂∗

2

1 − k01
2

T 4

{
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

}2
+ 2

k̂∗
2

1

T 4
(T − k̂∗1)

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)
(X̄∗

k̂∗1
− X̄k̂∗1

)

− 2
k01

2

T 4
(T − k01)

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)
(X̄∗k01

− X̄k01
)

+
{
R2
T (k̂∗1)−R2

T (k01)
}
. (98)

The first term on the right-hand side of (98) is

k̂∗
2

1 − k01
2

T 4

{
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

}2
= Op(T

−1),

because k̂∗
2

1 − k01
2

= (k̂∗1 − k01)(k̂∗1 + k01) = Op(T ) in view of Lemma 10. The second and third terms

on the right-hand side of (98) become

2
k̂∗

2

1

T 4
(T − k̂∗1)

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)
(X̄∗

k̂∗1
− X̄k̂∗1

)

− 2
k01

2

T 4
(T − k01)

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)
(X̄∗k01

− X̄k01
)

=
2

T 4

(
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

)
×
{(
k̂∗

2

1 (T − k̂∗1)− k01
2
(T − k01)

)
(X̄∗

k̂∗1
− X̄k̂∗1

) + k01
2
(T − k01)

(
(X̄∗

k̂∗1
− X̄k̂∗1

)− (X̄∗k01
− X̄k01

)
)}

.

Notably,

(
k̂∗

2

1 (T − k̂∗1)− k01
2
(T − k01)

)
(X̄∗

k̂∗1
− X̄k̂∗1

) =(k̂∗1 − k01)(T k̂∗1 + Tk01 − k̂∗
2

1 − k̂∗1k01 − k01
2
)(X̄∗

k̂∗1
− X̄k̂∗1

)

=O(T 3/2), (99)

44



and

k01
2
(T − k01)

(
(X̄∗

k̂∗1
− X̄k̂∗1

)− (X̄∗k01
− X̄k01

)
)

=k01
2
(T − k01)

 k∗1 − k̂01
(T − k̂∗1)(T − k01)

T∑
t=k01+1

Xt +
T + k01 − k̂∗1
k01(T − k̂∗1)

k01∑
t=k∗1+1

Xt −
k01 − k̂∗1
k̂∗1k

0
1

k̂∗1∑
t=1

Xt


=op(T

5/2). (100)

By (99) and (100), the second and third terms on the right-hand side of (98) is op(T
−1/2). On the

contrary, the fourth term on the right-hand side of (98) is Op(T
−1). Therefore, we have Q2

T (k̂∗1/T )−

Q2
T (k01/T ) = op(T

−1/2). The same result is obtained for k01 < k̂∗1 .

In exactly the same manner, we can demonstrate that Q2
T (k̂∗2/T ) − Q2

T (k02/T ) = op(T
−1/2), and

thus, we obtain

P
(
Q2
T (k̂∗1/T )−Q2

T (k̂∗2/T ) > 0
)

= P
(
Q2
T (k01/T )−Q2

T (k02/T ) + op(T
−1/2) > 0

)
.

Therefore, it is sufficient to show that

P
(√

T
(
Q2
T (k01/T )−Q2

T (k02/T )
)
> 0
)
→ 1

2
. (101)

From the definitions of Q2
T (k01/T ) and Q2

T (k02/T ), we observe that

Q2
T (k01/T ) =w2

T (k01)a2T (k01) + 2wT (k01)aT (k01)RT (k01) +R2
T (k01), (102)

Q2
T (k02/T ) =w2

T (k02)b2T (k02) + 2wT (k02)bT (k02)RT (k02) +R2
T (k02). (103)

The difference between the two first terms on the right-hand side of (102) and (103) is 0 by Assumption

5. The difference between the two third terms on the right-hand side of (102) and (103) is Op(T
−1)

by the FCLT. On the contrary, the difference between the two second terms on the right-hand side of

45



(102) and (103) becomes

√
T
(
2wT (k01)aT (k01)RT (k01)− 2wT (k02)bT (k02)RT (k02)

)
=2
√
T

{
k01

2
(T − k01)

T 4

[
(T − k02)(µ3 − µ2) + (T − k01)(µ2 − µ1)

]
(X̄∗k01

− X̄k01
)

}

− 2
√
T

{
k02(T − k02)

T 4

[
(T − k02)k02(µ3 − µ2) + (T − k02)k01(µ2 − µ1)

]
(X̄∗k02

− X̄k02
)

}
⇒2τ01

2
(1− τ01 )

[
(1− τ02 )(δ3 − δ2) + (1− τ01 )(δ2 − δ1)

] [ 1

1− τ01
(B(1)−B(τ01 ))− 1

τ01
B(τ01 )

]
− 2τ02 (1− τ02 )

[
(1− τ02 )τ02 (δ3 − δ2) + (1− τ02 )τ01 (δ2 − δ1)

] [ 1

1− τ02
(B(1)−B(τ02 ))− 1

τ02
B(τ02 )

]
,

(104)

where B(·) is a standard Brownian motion on [0, 1]. This result indicates that (104) is normally

distributed with mean 0, which implies (101). �

Proof of Theorem 4: First, we note that

k̂W,1 = arg max
1≤k≤T−1

{
Q2
T (k/T )

}
= arg max

1≤k≤T−1

{(√
TQT (k/T )

)2}
.

For k = [Tτ ] ≤ k01, we have, by the FCLT,

√
TQT (k/T ) =

√
T
k(T − k)

T 2
(Ȳ ∗k − Ȳk)

=
k

T

1√
T

T∑
t=k+1

Xt −
T − k
T

1√
T

k∑
t=1

Xt

+
√
T
k

T 2
(T − k02)δ3

√
h+
√
T
k

T 2
(k02 − k01)δ2

√
h

+
√
T
k

T 2
(k01 − k)δ1

√
h−
√
T
T − k
T 2

kδ1
√
h

⇒a(1)σ (−B(τ) + τB(1)) + τ(1− τ02 )(δ3 − δ2) + τ(1− τ01 )(δ2 − δ1).

Similarly, for k01 < k = [Tτ ] ≤ k02, we have

√
TQT (k/T )⇒a(1)σ (−B(τ) + τB(1)) + τ(1− τ02 )(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1),

and, for k02 < k = [Tτ ],

√
TQT (k/T )⇒a(1)σ (−B(τ) + τB(1)) + τ02 (1− τ)(δ3 − δ2) + τ01 (1− τ)(δ2 − δ1).

Applying the CMT for the argument of the maximum, the theorem is obtained. �
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8 Figure

Figure 1: The weight function wT
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Figure 2: The finite sample distribution of λ2T (k̂W,1 − k01) in the shrinking shift case

Figure 3: The long-span asymptotic distribution of λ2T (k̂W,1 − k01) in the shrinking shift case
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Figure 4: The finite sample distribution of τ̂W,1 in the shrinking shift case (T = {100, 200, 600, 1000})

Figure 5: The finite sample and asymptotic distributions of λ2T (k̂W,2 − k02) in the shrinking shift case
with τ01 = 0.33, τ02 = 0.67
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Figure 6: The finite sample and asymptotic distributions of λ2T (k̂W,2 − k02) in the shrinking shift case
with τ01 = 0.33, τ02 = 0.80

Figure 7: The finite sample and asymptotic distributions of λ2T (k̂W,2 − k02) in the shrinking shift case
with τ01 = 0.33, τ02 = 0.54

52



Figure 8: The plot of Q2(τ) when (21) holds without (11)

Figure 9: The finite sample distribution of k̂W,1 when Q2(τ01 ) = Q2(τ02 ) (T = 100)
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Figure 10: The finite sample distribution of k̂W,1 when the breaks are small (T = 100)

Figure 11: The in-fill asymptotic distribution of τ̂W,1
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Figure 12: The finite sample distributions of τ̂W,1 (WE) and τ̂LS,1 (LE) with µ0 = 0.0, δ1 = 0.0, δ2 =
0.4, δ3 = 0.1, λT = 1, T = 100 and (τ1, τ2) = {(0.4, 0.6), (0.3, 0.7), (0.1, 0.9), (0.025, 0.975)}.

Figure 13: The finite sample distribution of τ̂W,1 in the case where Q(k01) = Q(k02) with τ01 = 0.2, τ02 =
0.8, µ0 = 0.0, δ1 = 0.1, δ2 = 0.4, δ3 = 0.1, λT = 1, T = {100, 300, 500, 2000}.
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Table 1: RMSE, bias and SE of τ̂W,1 and τ̂LS,1 with T = 100 (the fixed shift case; λT = 1)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 0.418 0.463 0.352 0.307 0.225 0.347
(0.3, 0.7) 0.206 0.289 0.123 0.111 0.165 0.266
(0.5, 0.7) 0.124 0.234 0.014 0.019 0.123 0.233
(0.1, 0.9) 0.421 0.473 0.351 0.310 0.232 0.357
(0.3, 0.9) 0.205 0.304 0.114 0.113 0.170 0.282
(0.5, 0.9) 0.133 0.254 0.006 0.016 0.133 0.254

(0.0, 0.6, 0.3) (0.1, 0.7) 0.441 0.469 0.366 0.308 0.246 0.353
(0.3, 0.7) 0.171 0.258 0.070 0.056 0.156 0.252
(0.5, 0.7) 0.125 0.246 -0.023 -0.039 0.123 0.243
(0.1, 0.9) 0.398 0.442 0.309 0.262 0.250 0.355
(0.3, 0.9) 0.140 0.225 0.059 0.045 0.127 0.220
(0.5, 0.9) 0.095 0.192 -0.010 -0.023 0.095 0.191

(0.0, 0.9, 0.5) (0.1, 0.7) 0.410 0.379 0.315 0.206 0.262 0.319
(0.3, 0.7) 0.088 0.140 0.022 0.004 0.085 0.140
(0.5, 0.7) 0.068 0.141 -0.020 -0.032 0.065 0.137
(0.1, 0.9) 0.328 0.334 0.224 0.149 0.240 0.299
(0.3, 0.9) 0.071 0.102 0.026 0.003 0.066 0.102
(0.5, 0.9) 0.051 0.091 -0.008 -0.015 0.050 0.090

Table 2: RMSE, bias and SE of τ̂W,1 and τ̂LS,1 with T = 300 (the fixed shift case; λT = 1)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 0.381 0.366 0.311 0.198 0.220 0.307
(0.3, 0.7) 0.147 0.180 0.085 0.061 0.119 0.169
(0.5, 0.7) 0.073 0.124 0.015 0.024 0.071 0.122
(0.1, 0.9) 0.363 0.380 0.281 0.196 0.229 0.326
(0.3, 0.9) 0.132 0.196 0.067 0.055 0.113 0.189
(0.5, 0.9) 0.073 0.151 0.006 0.020 0.073 0.149

(0.0, 0.6, 0.3) (0.1, 0.7) 0.436 0.375 0.341 0.202 0.270 0.316
(0.3, 0.7) 0.077 0.121 0.017 -0.001 0.075 0.121
(0.5, 0.7) 0.058 0.126 -0.019 -0.031 0.054 0.122
(0.1, 0.9) 0.312 0.311 0.199 0.123 0.240 0.286
(0.3, 0.9) 0.058 0.086 0.022 0.002 0.054 0.086
(0.5, 0.9) 0.041 0.070 -0.005 -0.010 0.040 0.069

(0.0, 0.9, 0.5) (0.1, 0.7) 0.374 0.241 0.250 0.085 0.278 0.225
(0.3, 0.7) 0.021 0.029 0.005 -0.007 0.021 0.028
(0.5, 0.7) 0.026 0.038 -0.009 -0.013 0.025 0.036
(0.1, 0.9) 0.181 0.145 0.091 0.026 0.157 0.143
(0.3, 0.9) 0.028 0.023 0.011 -0.001 0.026 0.023
(0.5, 0.9) 0.020 0.025 -0.003 -0.003 0.020 0.025
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Table 3: RMSE, bias and SE of τ̂W,1 and τ̂LS,1 with T = 100 (the shrinking shift case; λT = T−1/4)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 0.454 0.537 0.397 0.392 0.220 0.366
(0.3, 0.7) 0.285 0.401 0.190 0.185 0.213 0.355
(0.5, 0.7) 0.205 0.350 0.004 0.006 0.205 0.350
(0.1, 0.9) 0.456 0.536 0.398 0.391 0.222 0.367
(0.3, 0.9) 0.288 0.404 0.191 0.186 0.215 0.358
(0.5, 0.9) 0.208 0.353 0.003 0.003 0.208 0.353

(0.0, 0.6, 0.3) (0.1, 0.7) 0.456 0.537 0.398 0.393 0.223 0.365
(0.3, 0.7) 0.280 0.400 0.179 0.182 0.215 0.356
(0.5, 0.7) 0.207 0.354 -0.004 -0.006 0.207 0.354
(0.1, 0.9) 0.453 0.534 0.393 0.387 0.225 0.369
(0.3, 0.9) 0.274 0.393 0.174 0.177 0.212 0.351
(0.5, 0.9) 0.200 0.344 -0.001 -0.005 0.200 0.344

(0.0, 0.9, 0.5) (0.1, 0.7) 0.449 0.522 0.388 0.373 0.227 0.366
(0.3, 0.7) 0.258 0.374 0.153 0.152 0.208 0.341
(0.5, 0.7) 0.190 0.335 -0.010 -0.014 0.190 0.334
(0.1, 0.9) 0.443 0.518 0.379 0.364 0.230 0.369
(0.3, 0.9) 0.244 0.360 0.142 0.143 0.199 0.330
(0.5, 0.9) 0.177 0.313 -0.006 -0.011 0.177 0.313

Table 4: RMSE, bias and SE of τ̂W,1 and τ̂LS,1 with T = 300 (the shrinking shift case; λT = T−1/4)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 0.447 0.532 0.388 0.371 0.222 0.381
(0.3, 0.7) 0.263 0.397 0.173 0.179 0.198 0.354
(0.5, 0.7) 0.178 0.338 0.013 0.015 0.177 0.338
(0.1, 0.9) 0.447 0.536 0.387 0.374 0.225 0.384
(0.3, 0.9) 0.266 0.404 0.172 0.179 0.202 0.362
(0.5, 0.9) 0.183 0.349 0.007 0.014 0.183 0.348

(0.0, 0.6, 0.3) (0.1, 0.7) 0.449 0.528 0.387 0.364 0.228 0.382
(0.3, 0.7) 0.249 0.387 0.146 0.151 0.202 0.356
(0.5, 0.7) 0.181 0.349 -0.008 -0.010 0.181 0.349
(0.1, 0.9) 0.438 0.519 0.371 0.348 0.233 0.385
(0.3, 0.9) 0.238 0.368 0.140 0.141 0.192 0.340
(0.5, 0.9) 0.163 0.323 -0.001 -0.006 0.163 0.323

(0.0, 0.9, 0.5) (0.1, 0.7) 0.435 0.491 0.363 0.317 0.240 0.375
(0.3, 0.7) 0.200 0.324 0.097 0.099 0.174 0.309
(0.5, 0.7) 0.143 0.298 -0.014 -0.021 0.142 0.297
(0.1, 0.9) 0.414 0.476 0.335 0.293 0.243 0.375
(0.3, 0.9) 0.180 0.293 0.090 0.084 0.156 0.280
(0.5, 0.9) 0.120 0.249 -0.007 -0.014 0.120 0.249
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Table 5: RMSE, bias and SE of τ̂LS,2 and τ̂W,2 with T = 100 (the fixed shift case; λT = 1)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) # of exclusion WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 153 0.200 0.308 0.015 -0.034 0.199 0.307
(0.3, 0.7) 87 0.172 0.269 0.013 -0.021 0.172 0.268
(0.5, 0.7) 60 0.157 0.224 0.077 0.050 0.137 0.219
(0.1, 0.9) 147 0.279 0.392 -0.195 -0.238 0.200 0.311
(0.3, 0.9) 105 0.262 0.353 -0.194 -0.222 0.175 0.275
(0.5, 0.9) 90 0.193 0.289 -0.134 -0.168 0.140 0.235

(0.0, 0.6, 0.3) (0.1, 0.7) 130 0.191 0.277 0.031 -0.011 0.189 0.277
(0.3, 0.7) 97 0.145 0.248 -0.013 -0.029 0.145 0.247
(0.5, 0.7) 99 0.131 0.231 0.039 0.003 0.125 0.231
(0.1, 0.9) 136 0.285 0.375 -0.197 -0.220 0.206 0.304
(0.3, 0.9) 57 0.252 0.328 -0.192 -0.207 0.162 0.255
(0.5, 0.9) 60 0.172 0.249 -0.118 -0.143 0.124 0.204

(0.0, 0.9, 0.5) (0.1, 0.7) 52 0.177 0.256 0.012 -0.018 0.177 0.256
(0.3, 0.7) 19 0.113 0.206 -0.026 -0.020 0.110 0.205
(0.5, 0.7) 28 0.096 0.172 0.030 0.026 0.092 0.170
(0.1, 0.9) 51 0.304 0.362 -0.226 -0.206 0.204 0.298
(0.3, 0.9) 9 0.242 0.288 -0.190 -0.170 0.149 0.232
(0.5, 0.9) 8 0.158 0.194 -0.116 -0.105 0.106 0.164

Table 6: RMSE, bias and SE of τ̂LS,2 and τ̂W,2 with T = 300 (the fixed shift case; λT = 1)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) # of exclusion WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 46 0.208 0.342 -0.023 -0.072 0.207 0.334
(0.3, 0.7) 8 0.156 0.268 -0.000 -0.020 0.156 0.267
(0.5, 0.7) 6 0.132 0.205 0.071 0.064 0.111 0.195
(0.1, 0.9) 59 0.316 0.441 -0.239 -0.278 0.207 0.343
(0.3, 0.9) 14 0.268 0.362 -0.215 -0.235 0.161 0.275
(0.5, 0.9) 9 0.177 0.252 -0.133 -0.147 0.116 0.204

(0.0, 0.6, 0.3) (0.1, 0.7) 33 0.165 0.236 0.039 -0.005 0.160 0.236
(0.3, 0.7) 8 0.099 0.195 -0.025 -0.027 0.096 0.193
(0.5, 0.7) 11 0.085 0.171 0.024 0.013 0.082 0.171
(0.1, 0.9) 29 0.297 0.369 -0.216 -0.200 0.204 0.310
(0.3, 0.9) 6 0.232 0.287 -0.178 -0.158 0.149 0.240
(0.5, 0.9) 0 0.147 0.201 -0.104 -0.104 0.103 0.172

(0.0, 0.9, 0.5) (0.1, 0.7) 2 0.139 0.173 0.025 -0.005 0.136 0.173
(0.3, 0.7) 0 0.073 0.135 -0.020 -0.011 0.070 0.134
(0.5, 0.7) 0 0.064 0.122 0.018 0.021 0.062 0.120
(0.1, 0.9) 3 0.288 0.300 -0.214 -0.139 0.192 0.266
(0.3, 0.9) 0 0.210 0.226 -0.153 -0.103 0.143 0.201
(0.5, 0.9) 0 0.129 0.154 -0.087 -0.064 0.095 0.140
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Table 7: RMSE, bias and SE of τ̂LS,2 and τ̂W,2 with T = 100 (the shrinking shift case; λT = T−1/4)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) # of exclusion WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 264 0.183 0.310 0.021 -0.015 0.182 0.310
(0.3, 0.7) 251 0.181 0.302 0.020 -0.012 0.180 0.302
(0.5, 0.7) 202 0.179 0.296 0.032 -0.003 0.176 0.296
(0.1, 0.9) 251 0.260 0.381 -0.182 -0.222 0.185 0.310
(0.3, 0.9) 229 0.257 0.375 -0.184 -0.219 0.180 0.305
(0.5, 0.9) 211 0.244 0.361 -0.169 -0.202 0.175 0.300

(0.0, 0.6, 0.3) (0.1, 0.7) 216 0.184 0.308 0.022 -0.017 0.182 0.307
(0.3, 0.7) 236 0.179 0.298 0.012 -0.010 0.178 0.297
(0.5, 0.7) 221 0.177 0.300 0.022 -0.010 0.175 0.300
(0.1, 0.9) 230 0.260 0.374 -0.181 -0.214 0.186 0.307
(0.3, 0.9) 210 0.256 0.366 -0.182 -0.210 0.180 0.299
(0.5, 0.9) 223 0.237 0.352 -0.167 -0.199 0.169 0.291

(0.0, 0.9, 0.5) (0.1, 0.7) 216 0.187 0.307 0.015 -0.019 0.187 0.307
(0.3, 0.7) 197 0.172 0.296 0.006 -0.023 0.172 0.295
(0.5, 0.7) 194 0.163 0.282 0.030 0.005 0.160 0.282
(0.1, 0.9) 211 0.260 0.378 -0.182 -0.220 0.186 0.308
(0.3, 0.9) 175 0.260 0.359 -0.193 -0.212 0.174 0.290
(0.5, 0.9) 177 0.222 0.330 -0.157 -0.188 0.156 0.272

Table 8: RMSE, bias and SE of τ̂LS,2 and τ̂W,2 with T = 300 (the shrinking shift case; λT = T−1/4)

RMSE Bias SE
(δ1, δ2, δ3) (τ01 , τ

0
2 ) # of exclusion WE LE WE LE WE LE

(0.0, 0.4, 0.5) (0.1, 0.7) 152 0.191 0.337 0.010 -0.024 0.191 0.336
(0.3, 0.7) 152 0.178 0.327 0.006 -0.039 0.178 0.324
(0.5, 0.7) 111 0.166 0.302 0.033 -0.001 0.163 0.302
(0.1, 0.9) 164 0.269 0.418 -0.192 -0.239 0.189 0.343
(0.3, 0.9) 148 0.263 0.392 -0.193 -0.224 0.178 0.321
(0.5, 0.9) 141 0.240 0.371 -0.172 -0.209 0.167 0.306

(0.0, 0.6, 0.3) (0.1, 0.7) 171 0.184 0.325 0.019 -0.021 0.183 0.324
(0.3, 0.7) 136 0.171 0.315 -0.005 -0.034 0.171 0.313
(0.5, 0.7) 161 0.162 0.312 0.020 -0.026 0.161 0.311
(0.1, 0.9) 165 0.273 0.400 -0.193 -0.221 0.193 0.333
(0.3, 0.9) 135 0.261 0.391 -0.195 -0.229 0.174 0.317
(0.5, 0.9) 121 0.221 0.354 -0.158 -0.202 0.154 0.291

(0.0, 0.9, 0.5) (0.1, 0.7) 135 0.185 0.321 0.008 -0.028 0.184 0.320
(0.3, 0.7) 90 0.155 0.300 -0.015 -0.043 0.154 0.297
(0.5, 0.7) 115 0.139 0.279 0.025 -0.014 0.137 0.278
(0.1, 0.9) 112 0.290 0.421 -0.209 -0.247 0.201 0.341
(0.3, 0.9) 67 0.267 0.380 -0.211 -0.236 0.163 0.297
(0.5, 0.9) 83 0.193 0.313 -0.142 -0.182 0.131 0.255
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