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Abstract

This study develops a regime-switching Phillips curve model to estimate

trend inflation. Extending the earlier work, we allow trend inflation, the

slope of the Phillips curve, and the oil price pass-through rate to follow

a regime-switching process. An empirical analysis using Japan’s consumer

price index illustrates that including the oil price and its time-varying pass-

through rate improves the model’s ability to forecast inflation. The empiri-

cal results also show that the obtained trend inflation highly correlates with

firms’ inflation expectations.
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1 Introduction

Trend inflation is a key variable driving a wide range of economic activities. It is usually

defined as the level at which inflation is expected to converge without any future shock

or prevail in the long run (e.g., Faust and Wright, 2013). This concept is closely

related to inflation expectations and their term structure, because long-term inflation

expectations are treated interchangeably with trend inflation. Ascari and Sbordone

(2014) comprehensively summarize the concept and previous theoretical works.

Given that trend inflation is not observed directly, existing studies have attempted

to develop a framework to estimate it (e.g., Nason and Smith, 2008). A popular ap-

proach employs multivariate time-series models such as vector autoregressive (VAR)

models (e.g., Quah and Vahey, 1995; Claus, 1997; Mertens, 2016). Estimating trend in-

flation using the VAR model requires appropriate restrictions to extract trend inflation

from a multivariate time series of macroeconomic variables. Several existing studies

use survey data on inflation expectations to estimate trend inflation (e.g. Brissimis and

Magginas, 2008; Kozicki and Tinsley, 2012).

Alternatively, an unobserved component model has become the standard approach

for estimating trend inflation (e.g., Stock and Watson, 2007; Cecchetti et al., 2007;

Kiley, 2008; Clark and Doh, 2014). These studies assume that the dynamics of actual

inflation can be decomposed into trends and cycle components. In addition, Stock and

Watson (2007) propose stochastic volatility (SV) for innovations in trend and cycle

components, resulting in a flexible model for describing various changes in inflation

dynamics.

From a different viewpoint, Kaihatsu and Nakajima (2018) propose a novel econo-

metric framework for estimating trend inflation with regime-switching structure em-

bedded into the Phillips curve. The unique and effective aspect of its modeling strategy

is that the regimes are specified as being equally spaced. This equally spaced regime-

switching model provides a parsimonious time-varying structure for both trend inflation

and the slope of the Phillips curve.

One caveat of this previous study is that an input cost variable, such as oil price,

is not considered in its model, although it has been one of the important drivers in

inflation dynamics. Therefore, the current study extends the regime-switching model
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by explicitly incorporating the effect of oil price on inflation and assuming its pass-

through rate to follow the equally spaced regime switching process. As an empirical

analysis, using Japan’s macroeconomic data, the time-varying nature of the Phillips

curve, including the impact of oil prices, is investigated.

This study contributes to existing literature in two ways. The first is the estimation

framework for trend inflation. This study specifies inflation dynamics based on an

autoregressive process with a time-varying intercept as inflation converges to an implied

endpoint that changes over time, following previous studies, such as Kozicki and Tinsley

(2012), Mertens (2016), Chan et al. (2018). In the current study, we incorporate the

Phillips curve components of the output gap and oil prices into the model as the

important factors driving the inflation rates. Okimoto (2019) estimates the Japan’s

Phillips curve including trend inflation and other macroeconomic variables using a

standard regime-switching model. The unique modeling strategy of the current study

is that trend inflation, the slope of the Phillips curve, and the oil price pass-through

rate follow an equally spaced regime-switching process.

The second is the oil price pass-through to inflation. In this context, fruitful discus-

sions and empirical evidence are provided by De Gregorio et al. (2007), Chen (2009),

Choi et al. (2018), and others. Choi et al. (2018) address changes in oil price pass-

through rate over time, providing empirical findings that the rate differs depending on

sub-sample periods. However, little evidence has been provided regarding the possi-

bility of continuous or gradual changes in the oil price pass-through rate, which is the

focus of this study. Shioji and Uchino (2011) empoy a time-varying parameter vector

autoregressive (TVP-VAR) model to estimate possibly gradual changes in the oil-price

pass-through rate using Japan’s data (see also, Sekine, 2006; Yagi et al., 2022). This

study estimates the changes based on regime switching and shows that the assumption

of time variation in the pass-through rate is important in terms of the predictive ability

of the trend inflation model.

The remainder of this paper is organized as follows. Section 2 explains the equally

spaced regime-switching model and proposes a new model that includes oil prices.

Section 3 describes the proposed model’s estimation framework. Section 4 provides an

empirical analysis of the Japan’s data. Finally, Section 5 concludes.
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2 The model

2.1 Trend inflation

We define πt as inflation rate and µt as trend inflation in period t. Following previous

studies such as Kozicki and Tinsley (2012), Mertens (2016), Chan et al. (2018), we de-

fine trend inflation as the expected infinite-horizon forecast of πt, given the information

set in t. We formulate it as:

µt = lim
j→∞

E[πt+j|Ωt], (1)

where Ωt denotes the information set at time t. We assume that the expected value of

trend inflation equals the current value, that is, µt = Etµt+1. While previous studies

assume that trend inflation follows a random walk process, this study assumes a regime-

switching process, as described below.

To formulate the inflation rate dynamics, following Kozicki and Tinsley (2012) and

Kaihatsu and Nakajima (2018), we specify

yt =
k∑

i=1

αiyt−i +

(
1−

k∑
i=1

αi

)
µt + βtxt + γtzt + εt,

εt ∼ N(0, σ2
t ),

for t = 1, . . . , n, where xt denotes the output gap and zt denotes an input cost variable,

such as oil price. This study introduces the effect of the input cost variable on inflation

using the term γtzt. We assume that the coefficients α = (α1, . . . , αk) satisfy the

stationarity condition
∣∣∣∑k

i=1 αi

∣∣∣ ≤ 1, because trend inflation is the level at which the

actual inflation rate is expected to prevail in the long run, when xt = zt = 0.

2.2 Equally-spaced regime-switching structure

A standard regime-switching model specifies multiple states of unknown discrete val-

ues for a parameter of interest and assumes that the parameter shifts from one state

to another over time or remains in the same state with a certain probability (e.g.,

Kim and Nelson, 1999; Sims et al., 2008; Kim et al., 2014). In contrast, the equally
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spaced regime-switching model proposed by Kaihatsu and Nakajima (2018) assumes

that the values of the states are pre-specified at equally spaced intervals. For example,

we assume that trend inflation takes the value of zero, one, two percent, and so on,

and that it shifts from one to another over time as in the standard regime-switching

model. Given that the states are known, an inference of the state values is not re-

quired for the estimation, which generally decreases the estimation uncertainty of the

model. Furthermore, the equally-spaced intervals often lead to intuitive implications

for understanding estimation results. For instance, by tracking the regime probability

of trend inflation of two percent, we can effectively address the degree of anchoring in-

flation at an inflation target of two percent in the current and historical developments

of inflation rates.

Specifically, we assume µt ∈ {µ̃1, µ̃2, . . . , µ̃N(µ)} and βt ∈ {β̃1, β̃2, . . . , β̃N(β)}, γt ∈
{γ̃1, γ̃2, . . . , γ̃N(γ)}, with all the states are equally spaced for each parameter, i.e., λ̃k −
λ̃k−1 = λ̃ℓ − λ̃ℓ−1 for any k and ℓ, where λ ∈ {µ, β, γ}. Note that N(λ) denotes the

number of states, which can differ depending on parameter.

We formulate a first-order Markov process for the switching mechanism with a

switch probability set smaller to a more distant regime. We first define the probability

that the parameter remains in the same regime from t− 1 to t, as pµ, pβ, and pγ:

pλ ≡ Pr[λt = λ̃i|λt−1 = λ̃i], for all i ∈ {1, . . . , N(λ)},

for λ ∈ {µ, β, γ}. We assume the probability that the parameter shifts from one state

to another as follows:

Pr[λt = λ̃i|λt−1 = λ̃j] = 2−|i−j|qλ,j, for i, j ∈ {1, . . . , N(λ); i ̸= j},

where qλ,j is a function of pλ that satisfies:

N(λ)∑
i=1

Pr[λt = λ̃i|λt−1 = λ̃j] = 1,

for all j. We do not consider an explicit correlation between the parameters (µt, βt, γt)

a priori, and the transition of each parameter is assumed to be independent.
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As mentioned earlier, regime-switching models usually assume that regime values

are unknown and are estimated. In contrast, the regimes in our model are pre-specified.

It does not require the determination of the number of states, as in the standard regime-

switching model. The range of equally spaced intervals is set, as they sufficiently

covered the posterior distribution of the parameter. We will discuss this point in the

empirical analysis below.

2.3 Stochastic volatility

For the error variance σ2
t in equation (1), we specify a standard stochastic volatility

(SV) model by defining ht = log σ2
t and formulating the process as follows:

ht+1 = ht + ηt, ηt ∼ N(0, v2),

for t = 1, . . . , n− 1.

Existing studies measuring trend inflation employ the SV process for error vari-

ance (e.g. Stock and Watson, 2007; Chan et al., 2018). As Primiceri (2005) and Naka-

jima (2011) discuss, modeling the changes in the size of shocks or errors over time is

relevant for estimating the time-varying state variables specified in other parts of the

model. Using simulation data, Nakajima (2011) point out that a lack of time variation

in the error variance can distort the estimates of time-varying state variables. Kaihatsu

and Nakajima (2018) show that the predictive ability of the regime-switching trend in-

flation model is worsened when we assume a time-invariant error variance. Following

these studies, we specify the SV process in the proposed model.

3 Estimation method

3.1 Bayesian estimation

Following previous studies on measuring trend inflation (Stock and Watson, 2007; Chan

et al., 2018), we use a Bayesian estimation method with the Markov chain Monte Carlo

(MCMC) algorithm because the model includes many state variables in a nonlinear

form, and a maximum likelihood method is not feasible. Kaihatsu and Nakajima
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(2018) develop an efficient MCMC algorithm to estimate the regime-switching trend

inflation model. The current analysis extends it to the model with the oil price.

We generate samples of some of the parameters and state variables from their

conditional posterior distributions, given the current values of the other parameters and

state variables, and iterate conditional posterior sampling. To estimate the proposed

model, we exploit existing sampling schemes for the regime-switching and SV models.

To generate the samples efficiently, we employ key algorithms, the multi-move sampler

for regime-switching models developed by Carter and Kohn (1994) and Chib (1996) and

the one for the stochastic volatility model developed by Shephard and Pitt (1997) and

Watanabe and Omori (2004). The details of the MCMC algorithm for the proposed

model are presented in Appendix.

In the following empirical analysis, we generate 10,000 samples after discarding the

initial 1,000 samples as a burn-in period. MCMC streams are clean and stable, with

quickly decaying sample autocorrelations. The computation time is only a few minutes

when using a generic laptop computer.

3.2 Data

For the empirical analysis, we use a year-on-year change in Japan’s core inflation rate

of the consumer price index that excludes fresh food for yt in the model. The effect of

the increase in the consumption tax is adjusted. As a measure of Japan’s output gap,

the series provided by the Bank of Japan is used as xt in the model.

For the input cost variable zt in the model, we use oil prices. A year-on-year change

in the spot price of West Texas Intermediate downloaded from the FRED database,

where the price is in US dollars. The alternatives for the variable are exchange rates,

import prices, and producer prices. The forecasting ability of the model is computed

using these series as the input cost variables, in the same manner as in the forecasting

exercise below. This pre-analysis shows that the model with oil prices yields the best

forecasting performance among the candidates.

As the frequency of the output gap series is quarterly, we take a three-month average

of the inflation rates and oil prices to adjust all variables to quarterly. The sample

period is from 1981/Q1 to 2023/Q3. Figure 1 presents the time series of the data.
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Figure 1: Japan’s data. Inflation rates are a year-on-year change in the consumer price
index excluding fresh food. Output gap is the series provided by the Bank of Japan.
Oil price is a year-on-year change in the spot price of West Texas Intermediate. All
the series are quarterly.

To find the best lag length for explanatory variables xt and zt, we conduct the

forecasting exercise explained below and measure the forecasting performance of each

model with a different lag length. We examine the lag of the zero quarter (i.e., simul-

taneous), one quarter, and so on, up to four quarters for each of xt and zt. The best

lag length results in two quarters for the output gap (xt) and zero quarters for the

oil price (zt), which we consider in the following analysis. The AR order k is selected

based on the same forecasting performance. Based on an exercise with up to k = 12,

the model with k = 8 is found to be the best.
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3.3 Priors

Following Kaihatsu and Nakajima (2018), we set the prior distributions:

α ∼ TNΘ(0k, Ik), v2 ∼ IG(5, 0.2), pλ ∼ B(990, 10), for λ ∈ {µ, β, γ},

where TNΘ denotes the truncated multivariate normal distribution that has a positive

density only in the domain Θ ≡ {α|
∣∣∣∑k

i=1 αi

∣∣∣ ≤ 1} to satisfy the stationarity condition;
and IG and B denote the Gamma and Beta distributions, respectively. Note that

the specified priors for the regime-switching probability pλ imply a high probability of

remaining in the same regime, which is an essential assumption of the regime-switching

model. Examining the other values of hyperparameter for pλ, we find that the result

below does not change qualitatively as long as the alternative priors have a considerable

mass within the range of 0.95–0.99. For the model with oil price but a time-invariant

pass-through rate, we set a prior: γ ∼ N(0, 10).

We specify the trend inflation regimes as µt ∈ {−2,−1, 0, 1, 2, 3} on a percentage

basis, covering the range of actual inflation rates during the sample period. Adding a

4 % regime might be an alternative, although we find that the result does not change

significantly. Following Kaihatsu and Nakajima (2018), we set the regimes of the

Phillips curve slope to βt ∈ {0.00, 0.05, . . . , 0.30}, which roughly covers 95% of the

credible intervals of the slope in a model in which the slope is assumed to be constant

over time.

For the newly introduced regimes of the oil price pass-through rate, we first estimate

a model in which the pass-through rate is assumed to be constant over time with trend

inflation and the slope of the Phillips curve following regime switching. Based on the

posterior estimates of the time-invatiant pass-through rate i.e., γt = γ for all t, we

set the regimes to γt ∈ {0.0, 0.1, . . . , 0.5} to cover the 95% credible intervals of the

time-invariant γ.

The final prior setting is the probability that the initial regime is t = 1. For trend

inflation, as the actual inflation rate was positive and significantly different from zero

around the early 1980s, we set Pr[µ1 = i] = 0 for i ≤ 0, and Pr[µ1 = j] = 1/3 for

j ≥ 1. For the Phillips curve slope, previous literature on the Japan’s Phillips curve
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points out that the slope is positive and apart from zero. Based on this evidence, we

set Pr[β1 = i] = 0 for i ∈ {0.00, 0.05} and Pr[β1 = j] = 1/5 for j ≥ 0.10. Similarly, for

the oil price pass-through rate, we assume Pr[γ1 = 0.0] = 0 and Pr[β1 = j] = 1/5 for

j ≥ 0.1. Posterior estimates for the state variables in the early sample period depend

slightly on these prior assumptions regarding the initial regimes. However, those in the

subsequent periods do not change significantly, regardless of the prior setting.

4 Empirical analysis

4.1 Estimation result

As a baseline model, we first estimate the original regime-switching trend inflation

model of Kaihatsu and Nakajima (2018), where the oil price is not included. Their

study use a sample period of up to 2014/Q4, so this estimation is an updated version of

their analysis. Figure 2 shows the posterior regime probability of the trend inflation.

In this figure, a pseudo-real-time (i.e., filtered) posterior mean of the probability is

plotted following the idea discussed by Stock and Watson (2007). In our analysis,

we estimate the filtered posterior mean of trend inflation by computing a quantity,

E
[
Pr[µt = j|Λ(m), y1, . . . , yt]

]
, at the m-th iteration in the MCMC algorithm, where

Λ(m) denotes the current values of all the other state variables and parameters at the

m-th iteration. We call the plotted series as the “pseudo” real-time estimate because

Λ(m) is generated from the conditional posterior distribution given the data for all the

sample period (y1, . . . , yn).

The estimated real-time regime probability shows that the trend inflation switches

from one to zero percent around 1995. Since then, the zero-percent regime mostly

dominated the distribution of trend inflation up to the end of the sample. Two no-

table breaks during this period are the probability of minus-one-percent regime hikes

in 2000–2002, when the actual inflation rate fell to minus one percent. In 2013–2014,

when the actual inflation rate increased significantly, the one-percent regime probabil-

ity increased and reached a level similar to the zero-percent regime probability, which

declined from approximately 80% to 40%. Presumably, this change in regime probabil-

ity partly reflects the introduction of an inflation target of two percent in January 2013
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Figure 2: Posterior means of regime probability of trend inflation based on a pseudo
real-time estimate in the baseline model.
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Figure 3: Posterior mean (bold line) and one-standard-deviation intervals (filled area)
of trend inflation based on a pseudo real-time estimate in the baseline model. The
solid line indicates the actual inflation rate.
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and a new monetary policy framework of quantitative and qualitative monetary easing

in April 2013, both implemented by the Bank of Japan. These findings are consistent

with those in Kaihatsu and Nakajima (2018). After the hike in the one-percent regime

probability, it peaked quickly and decreased to a low level in 2016, partly driven by

a notable decline in oil prices. The probability increased in 2018–2019, but declined

again in 2020 when the Covid-19 pandemic occurred.

A remarkable change occurred toward the end of the sample period. A significant

increase in commodity prices and considerable wage pressure will push up inflation

globally in 2022–2023. In Japan, while wage pressure is not as strong as in other devel-

oped countries, the inflation rate increases notably. The zero-percent regime probability

decreases to approximately 30% and one-percent probability gradually increases. At

the same time, the two- and three-percent regime probabilities rise to 15–20%, which

has been historically high since the late 1980s.

Figure 3 plots the posterior means and one-standard-deviation credible intervals of

the trend inflation. We computed them by taking the weighted average of the values

in each regime based on pseudo real-time regime probabilities. The posterior mean

shows notable changes throughout the sampling period, as described above. After

the introduction of the inflation target and the quantitative and qualitative monetary

easing in 2013, the trend inflation rose three times, but it has not reached the inflation

target of two percent. Around the end of the sample, the trend inflation reaches at

about one percent and the two-percent regime probability shown in Figure 2 does not

dominate the other regimes.

Figure 4 displays the posterior means and one-standard-deviation credible intervals

of the slope of the Phillips curve and the stochastic volatility. Note that this figure

shows smoothed estimates rather than filtered estimates. We find that the slope of

the Phillips curve gradually declined from the 1980s to the late 1990s and remained at

almost the same level until the end of the sample period, which indicates a flattening

of the Phillips curve (e.g., De Veirman, 2009). Okimoto (2019) provides a similar

empirical result that the trend inflation regime switched from above one percent to

about zero percent, using a smooth transition regime-switching model. Kaihatsu et al.

(2023) point out that the trend inflation and the Phillips correlation decreased since

the 1980s. Regarding the stochastic volatility, the figure shows its notable increase in
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2008–2010, when the global financial crisis (GFC) significantly dampened the inflation

rate, and in 2020–2022, when the Covid-19 pandemic had a significant impact on the

economy.

Next, we estimate the regime-switching trend-inflation model with oil prices but

a time-invariant pass-through rate, assuming γt = γ for all t. An estimation result

indicates that the posterior mean of γ is 0.285, and the 95% credible intervals are

[0.137, 0.446]. As the credible intervals do not include zero, the results indicate that

the oil price pass-through is relevant to Japan’s core inflation rates, which is consistent

with existing studies (e.g., Shioji and Uchino, 2011; Yagi et al., 2022).

Finally, we estimate the model using the oil price and regime-switching pass-through

rate, which is the full specification proposed in this study. Figure 5 plots the pseudo-

real-time posterior mean of the regime probability. The results show several key differ-

ences from the baseline model. The most distinct difference from the baseline model

is the evolution of the regime probabilities after 2013. In the full model, one-percent

regime increases more persistently and reaches 50% in 2015. It exhibits a one-off drop

in 2016, but quickly returned to 50% in 2017. Figure 6 plots the posterior distribu-

tion of trend inflation, which shows that the trend inflation reaches one percent in

2014 and gradually declined afterwards, but it did not fall to zero in 2016. Figure 7

compares the two posterior estimates of the trend inflation from the baseline and full

models. The full model captures an impact of the oil price dropping significantly in

2015–2016 and provides an estimate of higher trend inflation than the baseline model

during this period. After 2020, the increases in the regime probabilities of one, two,

and three percent are less pronounced in the full model. The baseline model allocates

a greater fraction of the large increase in actual inflation after 2020 to an increase in

trend inflation than does the full model.

Figure 8 plots the posterior estimates of the Phillips curve slope, oil price pass-

through rate, and stochastic volatility, estimated using the full model. The time evo-

lution of the Phillips curve slope did not change significantly from that of the baseline

model. It is evident that the posterior mean of stochastic volatility in the full model

is significantly lower than that in the baseline model because the oil price and its

time-varying pass-through rate explain a fraction of the unexplained component left

in the baseline model. This result indicates that incorporating the oil price compo-
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Figure 4: Posterior mean and one-standard-deviation intervals of (i) the slope of
Phillips curve (βt, left panel) and (ii) the stochastic volatility (σ2

t , right panel) based
on smoothed estimates in the baseline model.
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Figure 5: Posterior means of regime probability of trend inflation based on a pseudo
real-time estimate in the full model.

14



%

−2

−1

0

1

2

3

4

1985 1990 1995 2000 2005 2010 2015 2020

Figure 6: Posterior mean (bold line) and one-standard-deviation intervals (filled area)
of trend inflation based on a pseudo real-time estimate in the full model. The solid
line indicates the actual inflation rate.
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Figure 7: Comparison of the estimates of trend inflation: Posterior mean (bold line)
and one-standard-deviation intervals (filled area) based on a pseudo real-time estimate
in the full model, and posterior mean (solid line) in the baseline model.
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Figure 8: Posterior mean and one-standard-deviation intervals of (i) the slope of
Phillips curve (βt, top left panel) and (ii) the stochastic volatility (σ2

t , top right panel),
and (iii) the oil price pass-through rate (γt, bottom panel), based on smoothed esti-
mates in the full model.
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posterior mean in the baseline model (top) and the full model (bottom).
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nent clearly improves the in-sample fit. Figure 9 shows the historical decomposition

of actual inflation based on the posterior means of the parameters and state variables.

The contribution of the oil price component partly explains the surges in inflation in

2005–2008 and 2020–2021 and the large decline in 2015–2016.

Interestingly, the oil prices pass-through rate plotted in Figure 8 appears to have

gradually declined from the 1980s to 1990s and quickly increased in the 2000s. The

formar evolution of the pass-through rate is found by several studies. Sekine (2006)

and Chen (2009) show empirical results indicating a decline in Japan’s input-cost pass-

through rate from the 1980s to the 2000s. The decline reflects an increase in import

penetration in the 1980s and 1990s as pointed out by Yagi et al. (2022) and other

studies.

The latter evolution is also found by recent studies. Shioji and Uchino (2011)

argue that when the oil price increased in the first half of the 2000s, the share of oil

in overall production cost gets larger than before, and then retail prices of products

can be more sensitive to oil prices. It could have happened, while it is interesting that

the pass-through rate estimated by our model stays at a higher level for the rest of

the sample, up to the 2020s than the previous years. Yagi et al. (2022) point out that

the pass-through rate increases after the 2000s, providing empirical evidence based

on the TVP-VAR model. The study discusses that the supply chain length between

industries got shorter after the 2000s, which could make price negotiation quicker, and

therefore the pass-through rate rises (see also, Hara et al., 2015). Sasaki et al. (2022)

provide empirical evidence showing that the exchange rate pass-through rate to the

CPI inflation also increases after the GFC.

4.2 Forecasting performance

We examine the predictive ability of the proposed model to address how the additional

component of the oil price pass-through works in forecasting future inflation. As a

benchmark model, we use the model without the oil price component (labelled Model

1, the baseline model we labeled earlier), which is equivalent to that proposed by

Kaihatsu and Nakajima (2018). As extended models, we investigat the forecasting

performance of the models with oil prices. We consider the model with a constant
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pass-through rate, which is formulated by γt = γ (Model 2), and the model with a

regime-switching oil price pass-through (Model 3, the full model labeled earlier). We

assume that in all the candidate models, the trend inflation and the slope of the Phillips

curve are regime-switching, and the error variances follow stochastic volatility, because

Kaihatsu and Nakajima (2018) show that these components contribute to improving

forecasting performance compared to a model with a constant trend inflation, slope of

the Phillips curve, and volatility.

A recursive real-time forecasting exercise is conducted to implement realistic fore-

casting exercises. We begin with a dataset up to 1991/Q1 and compute one- to four-

quarters-ahead forecasts of the core inflation rates using each model. In other words,

we forecast the inflation from 1991/Q2 to 1992/Q1. Next, we update the data set

to 1992/Q1 and obtain forecasts for up to four quarters ahead (1993/Q1). Thus, we

update the dataset and forecast inflation sequentially until we update the dataset to

2023/Q1. Note that the historical time series of inflation rates and output gaps have

been revised several times, owing to changes in the reference year and measurement

method. As vintages of the time series are not available, we use the latest version of

the data for the forecasting exercise.

In forecasting inflation, the future values of the output gap and oil prices should

be computed. As assessing the dynamics of the output gap and oil prices and their

interaction with inflation is beyond the scope of this study, we treat them as exogenous

and calculate future values using a simple time series model. Specifically, we fit AR(2)

and AR(1) models to the output gap and oil price, respectively, using the real-time

dataset and compute their recursive forecasts up to four quarters ahead. We assume

that these variables converge to zero without any additional shocks, and specify autore-

gressive models without an intercept. The lag lengths of these autoregressive models

are determined by searching for the best forecasting performance among the candidate

models with a lag length of up to four quarters.

Table 1(a) shows the root mean squared forecast error (RMSFE) for each forecasting

horizon and the model from 1991/Q2 to 2023/Q1 as the full forecasting period. For all

horizons from one quarter to four quarters, the RMSFE of Model 3 is lower than those

of Models 1 and 2, which indicates that the proposed model with the oil price and

its regime-switching pass-through rate has a better predictive ability than the baseline

19



zt γt 1-quarter 2-quarter 3-quarter 4-quarter

(a) From 1991/Q2 to 2023/Q1

Model 1 Excluded – 0.362 0.569 0.815 1.025

Model 2 Included constant 0.418 0.682 0.924 1.099

Model 3 Included regime-switching 0.306 0.516 0.774 0.967

(b) From 1991/Q2 to 2020/Q1

Model 1 Excluded – 0.358 0.493 0.702 0.775

Model 2 Included constant 0.373 0.531 0.746 0.792

Model 3 Included regime-switching 0.307 0.447 0.678 0.748

Table 1: Forecasting performance: Root mean squared forecast error (RMSFE). The

forecasting period is (a) from 1991/Q2 to 2023/Q1 and (b) from 1991/Q2 to 2020/Q1.

model. Interestingly, the RMSFE of Model 2 is larger than that of Model 1, which

implies that incorporating the oil price deteriorates the predictive ability if its pass-

through rate is assumed to be time-invariant. Table 1(b) reports the RMSFE from

1991/Q2 to 2020/Q1 as a forecasting period excluding the Covid-19 pandemic time.

The ranking of the competing models is the same as that of the full forecasting period,

indicating that the results are robust.

This result uncovers a crucial aspect of the model: as the other components of

the model are assumed to be time-varying, if the oil price component is assumed to be

time-invariant, its possible time variation can be inappropriately absorbed by the time-

varying components. This mechanism is discussed in Sims (2001) and Primiceri (2005)

in the context of time-varying parameter-vector autoregression models. The results

presented here highlight the importance of incorporating the oil-price component into

the regime-switching pass-through rate.

4.3 Term structure of inflation forecast

Using the forecasting method described above, we can compute the term structure of

inflation forecasts. In macroeconomics, the term structure of inflation expectations

has been well discussed, and empirical assessments provide useful information for un-

derstanding macroeconomic developments and their roles of expectations in them (e.g.
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Kozicki and Tinsley, 2012; Crump et al., 2016; Aruoba, 2020; Maruyama and Sug-

anuma, 2020). The existing literature on inflation expectations (e.g., Coibion et al.,

2022; Weber et al., 2022) shows that economic agents’ inflation expectations can in-

clude biases in the sense that inflation expectations are often biased against actual

inflation rates. Given that the current study does not employ any variable for inflation

expectations, the resulting term structure of the inflation forecast is based purely on

the actual inflation rate and time series model. Therefore, the term structure obtained

is free from biases in agents’ inflation expectations. While the biases themselves have

important implications investigated by existing studies, the term structure implied by

the time-series model and realized inflation rate is considered a meaningful reference

for macroeconomic analysis.

Figure 10 shows the real-time inflation forecasts at one-year to ten-year ahead

obtained from the full model at each time point. Compared to the term structure

of firms’ inflation expectations in Japan estimated by Nakajima (2023), as shown in

Figure 11, the model-based inflation forecast converges to the trend inflation more

slowly. This finding indicates a considerably persistent model structure that reflects

the persistent dynamics of the inflation rate in Japan (Bank of Japan, 2021).

Figure 11 shows the model-based forecasts and firms’ expectations at the horizons of

five years ahead, where we take two-quarters backward and forward moving averages for

the model-based forecasts to compare the two series. Notably, the changes in forecasts

and expectations are similar, with an almost constant deviation between them, which

is averagely about 0.8%. This deviation could correspond to the biases contained in

firms’ expectations.

5 Conclusion

This study proposes a regime-switching model to estimate trend inflation in the con-

text of modeling the Phillips curve by considering the oil price and its time-varying

pass-through rate. An empirical analysis using Japan’s data demonstrates the useful-

ness of the models.1 First, trend inflation is appropriately estimated, with its regime

1The estimates of the full model proposed in this paper are available and updated at the author’s
website, https://sites.google.com/site/jnakajimaweb/trend.
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Figure 10: Term structure of real-time inflation forecasts estimated in the full model.
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Figure 11: Real-time inflation forecasts in the full model and firms’ inflation expecta-
tions at five-year horizons. Two-quarters backward and forward moving averages are
taken for the model-based forecasts.
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probability uncovering its dynamics of trend inflation. Second, incorporating the oil

price and its regime-switching pass-through rate improved the predictive ability of the

trend inflation model in forecasting the actual inflation rate. Third, we find that the

obtained trend in inflation is highly correlated with firms’ inflation expectations. One

caveat of the analysis in this study is that we do not identify the factors driving oil

prices. As the pass-through of oil prices to inflation may depend on the driving fac-

tors (e.g. Kilian, 2009), introducing identified shocks of oil prices into the estimation

framework in this study is of interest, which is left for future work.

Appendix. Estimation method of the equally-spaced regime-

switching model

In this appendix, we describe the estimation method for an equally spaced regime-

switching model. Define y = (y1, . . . , yn), µ = (µ1, . . . , µn), β = (β1, . . . , βn), γ =

(γ1, . . . , γn), and h = (h1, . . . , hn). We specify the prior distributions for the set of

model parameters θ = {α,p, v}, where p = {pµ, pβ, pγ}, and generate samples from

the full joint posterior distribution p(θ,µ,β,γ,h|y). The MCMC algorithm for the

proposed model is summarized as follows:

1. Generate µ |α, pµ,β,γ,h,y.

2. Generate β |α, pβ,µ,γ,h,y.

3. Generate γ |α, pγ,µ,β,h,y.

4. Generate h |α,µ,β,γ,y.

5. Generate α |µ,β,γ,h,y.

6. Generate p |µ,β,γ.

7. Generate v |h.

The details of the generation at each step are described below.

A.1 Sampling regime-switching state variables (Steps 1–3)

In Step 1, we use an efficient sampling algorithm for the Markov-switching model (e.g.

Carter and Kohn, 1994; Chib, 1996) to generate a sample of (µ1, . . . , µn) from the
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joint conditional posterior distribution throughout the sample period. We define a

state variable st ∈ {1, . . . , L} such that st = i if µt = µ̃i and further define ϑ ≡
(α, pµ,β,γ,h) and Y t = {yℓ}tℓ=1. We recursively compute the following two densities
:

Prediction : p(st|Y t−1,ϑ) =
L∑
i=1

p(st|st−1 = i,ϑ) p(st−1 = i|Y t−1,ϑ),

Filtering : p(st|Y t,ϑ) ∝ p(st|Y t−1,ϑ) f(yt|st,ϑ),

where

f(yt|st,ϑ) ∝ exp

{
−
(yt −αyt−1:t−k − ᾱµst − βtxt − γtzt)

2

2σ2
t

}
,

with yt−1:t−k = (yt−1, . . . , yt−k)
′, and ᾱ = 1 −

∑k
i=1 αi, for t = 1, . . . , n. We generate

sn from p(sn|Yn,ϑ) and then recursively generate st for t = n− 1, . . . , 1, following the

probability p(st|Yt,ϑ) ×p(st+1|st,ϑ).

We apply the same sampling algorithm to β and γ.

A.2 Sampling stochastic volatility process (Step 4)

We define y∗t = yt −αyt−1:t−k − ᾱµt − βtxt − γtzt. Conditional on other state variables

and parameters, the stochastic volatility is associated with the following nonlinear

state-space model:

y∗t = exp(ht/2)et,

ht = ht−1 + ηt,(
et

ηt

)
∼ N

((
0

0

)
,

(
1 0

0 v2

))
.

We employ the so-called multi-move sampler for a standard stochastic volatility model

without leverage developed by Shephard and Pitt (1997) and Watanabe and Omori

(2004). See Appendix A.2 in Nakajima (2011) for further details.
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A.3 Sampling autoregressive parameters (Step 5)

We specify a prior α ∼ TNΩ(α0,Σ0), where TNΩ denotes a truncated multivariate

normal distribution with positive density only in the domain Ω ≡ {α|
∣∣∣∑k

i=1 αi

∣∣∣ ≤ 1}.
This prior is conjugate and the conditional posterior distribution is α |µ,β,γ,h,y ∼
TNΩ(α̂, Σ̂), where Σ̂ = (Σ−1

0 +W ′W )−1, α̂ = Σ̂(Σ−1
0 α0 +W ′u),

W =


w1

w2

...

wn

 , and u =


u1

u2

...

un

 ,

with wt = [(yt−1 − µt)/σt, . . . , (yt−k − µt)/σt], and ut = (yt − µt − βtxt − γtzt)/σt.

A.4 Sampling switching probability parameters (Step 6)

We set the prior pµ ∼ B(a0, b0), where B denotes the beta distribution. Then, the

conditional posterior distribution is given by pµ |µ ∼ B(â, b̂), where â = a0 + nc,

b̂ = b0 + n − nc − 1, and nc is the count of set {t | 1 < t < n − 1, µt+1 = µt}. The

generations of pβ and pγ is separately implemented in the same manner as pµ.

A.5 Sampling variance of stochastic volatility process (Step 7)

We assume a prior v2 ∼ IG(n0/2, S0/2), where IG denotes the inverse gamma dis-

tribution. A sample is generated from the conditional posterior distribution v2 |h ∼
IG(n̂/2, Ŝ/2), where n̂ = n0 + n− 1 and Ŝ = S0 +

∑n−1
t=1 (ht+1 − ht)

2.
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