
 

 

Graduate School of Economics, Hitotsubashi University 

Discussion Paper Series No. 2025-01 

 

 

 

 

 

 

Expected Shortfall Regression for High-Dimensional 

Additive Models 

 

 

 

 

 

Toshio HONDA and Po-Hsiang PENG 

 

February 2025 



Expected Shortfall Regression for High-Dimensional
Additive Models

Toshio HONDA and Po-Hsiang PENG
February 10, 2025

Abstract

The expected shortfall (ES) regression can be a powerful and useful tool to
analyze the relation between the response variable and the covariates through the
conditional mean. As is well-known, there is no single loss function for expected
shortfall estimation and there is a suitable loss function for joint estimation of
quantile and expected shortfall. In addition to them, recently a very useful two-
step procedure for ES regression was proposed : carry out quantile regression and
then estimate the ES regression model by applying the least squares method. This
procedure is successful due to the Neyman orthogonality. Then high dimensional
linear regression models was considered based on the the findings. By exploiting
those results, we assume additive models for both quantile and expected shortfall
in the high-dimensional setting and consider the group Lasso and SCAD estima-
tors. We establish the oracle inequality and the oracle property for them. Our
theoretical results also imply that quantile estimation does not affect ES estimation
asymptotically. We also present numerical results that demonstrate satisfactory
performance in model selection, estimation accuracy, and prediction error for a
moderate sample size together with an empirical study.

Keywords: expected shortfall; quantile regression; group Lasso; group SCAD; B-spline
basis; additive models.

1 Introduction

Suppose that we have n i.i.d observations, (Yi,Xi), i = 1, . . . , n, where Xi = (Xi1, . . . , Xip)T ∈
Rp is a high-dimensional covariate vector. We allow p/n to go to infinity fast. When
we analyze how the covariate vector affects the response variable, the expected shortfall
(ES) regression can be a powerful and useful tool to analyze the relation between the
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response variable and the covariate vector through both the conditional mean and quan-
tile. The expected shortfall has been also a very common risk measure. Although there
is no single loss function for ES estimation as in [14], there is a suitable loss function
for joint estimation of quantile and expected shortfall. See [13] for the unconditional
expected shortfall and [10] and [23] for the expected shortfall regression.

Recently a very useful two-step procedure for ES regression was proposed in [1] :
carry out quantile regression and then estimate the ES regression model by applying
the least squares method. This is successful due to the Neyman orthogonality. Based
on the findings in [1], robust estimation in ES linear regression was proposed in [16],
nonparametric regression of fixed dimension was dealt with in [30], and high-dimensional
linear regression models was considered in [31]. See [8] and [19] for nonparametric ES es-
timation in the setups of fixed dimension. We assume additive models for both quantile
and expected shortfall in the high-dimensional setting and consider the group Lasso and
SCAD estimators. We establish the oracle inequality and the oracle property in Theo-
rems 2-3 in Section 3. Our theoretical results imply that quantile estimation does not
affect ES estimation asymptotically. Section 4 presents simulation studies for both the
group Lasso and the group SCAD estimators. In terms of model selection consistency,
estimation accuracy, and prediction error, the group SCAD estimator demonstrates su-
perior performance. Furthermore, for a moderate sample size, it is comparable to (or
only slightly underperforms) the benchmark that assumes all active features are known.

Specifically, we assume sparse high-dimensional additive models for both the condi-
tional τ -th quantile and expected shortfall on Xi :

Qτ (Yi |Xi) = µ1 +
p∑

j=1
gj(Xij) (1)

and

Sτ (Yi |Xi) = E[YiI{Yi ≤ Qτ (Yi |Xi)} |Xi] (2)

= µ2 +
p∑

j=1
hj(Xij), (3)

where Xij ∈ [0, 1] for all j ∈ [p] and [p] means {1, . . . , p}.
We denote the active index set by S and this S is assumed to be common to

Qτ (Yi |Xi) and Sτ (Yi |Xi) for simplicity of presentation. This S always includes the
constant term, which has index 0, and we write S− := S \ {0}, s := |S|, and s− := |S−|,
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where |A| is the number of elements of a set A. In this paper, s is sufficiently small
compared to n. Besides, we assume that gj(xj) and hj(xj) are sufficiently smooth and
actually they are assumed to be twice continuously differentiable as we describe in Sec-
tion 3.

Recently a lot of high-dimensional datasets are available and accordingly suitable
statistical procedures have been proposed, the Lasso in [25], the SCAD in [11], and so on.
There has been a huge amount of theoretical and applied research on high-dimensional
models since these papers and a seminal paper [4] on the theoretical results on the
Lasso. For example, see [7], [15], [26], [28], [12], and the references therein for commonly
used procedures, their properties, and recent developments. Quantile regression has
been a useful and insightful tool for statistical analysis. See [20] for details on quantile
regression. As for high-dimensional quantile regression models, for example, see [3], [18],
[17] and the references therein.

This paper is highly motivated by [31]. The paper considered the Lasso and the
debiased Lasso for ES linear regression models in the high-dimensional setting. The
authors derived the oracle inequalities and the asymptotic normality, respectively. The
Lasso for time series data are considered in [2]. The oracle inequalities are not given in
[2]. By improving the proofs in [31], we derive the oracle inequality for the group Lasso.
However, our structured nonparametric regression model is more flexible than linear
models and the treatment of approximation error and group structure is not trivial.
There are also some other significant differences in the proofs between [31] and the
present paper. See comments after Assumption A8 in Section 3. Instead of debiasing,
we propose the group SCAD estimator in this paper since the debiasing for additive
models look a little too complicated. Debiasing for additive models is a topic of future
research. Due to the commonly used assumption in the least squares Lasso literature,
Assumption A6, we don’t allow heavy-tailed errors. See Remark 1 at the end of Section
3 about the conditional expectation between two conditional quantiles.

This paper is organized as follows. In Section 2, we describe our estimation proce-
dures in detail. We present our theoretical results with the assumptions in Section 3.
The results of our numerical studies are given in Section 4. We prove the theorems in
Section 5 and conclude this paper with our concluding remarks in Section 6. The proofs
of technical lemmas are given in the Appendix.

We introduce some notation here. For a vector a, ∥a∥, ∥a∥1, and aT mean the
Euclidean norm, the ℓ1 norm, and the transpose, respectively. For a symmetric matix
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A, we denote the minimum and maximum eigenvalues of a symmetric matix A by λmin(A)
and λmax(A), respectively. We write ∥f∥L2 and ∥f∥L∞ for the L2 and L∞ norms of a
function f(x) on [0, 1], respectively. C,C1, . . . are generic positive constants and their
values may vary from line to line. We use D0, D1, . . . as generic positive constants
in theorems and lemmas. We use For real numbers a and b, a ∧ b = min{a, b} and
a∨b = max{a, b}. The conditional expectation on {X1, . . . ,Xn} is denoted by E[·|{Xℓ}].

2 Estimation of expected shortfall

Hereafter we assume that p > n. If not, replace p with pn = p ∨ n in the theorems, the
lemmas, and the proofs.

We denote our basis for approximating gj(xj) and hj(xj) by

Ψj(xj) = (ψj1(xj), . . . , ψjm(xj))T .

For example, we apply the Gram-Schmidt orthonormalization to the B-spline basis on
[0, 1] w.r.t. some measure as in [17] and then remove the constant element to obtain
the basis to be compatible with the identification condition on gj(xj) and hj(xj). Such
bases constructed from the B-spline basis on [0, 1] work well. Specifically, they satisfy
Assumptions A3 and A4(1) and the conditions on ξi and ηi under Assumption A2 below.

We should put some identification condition on gj(xj) and hj(xj). For example,

∫ 1

0
gj(xj)dxj = 0, j ∈ [p], and

∫ 1

0
hj(xj)dxj = 0, j ∈ [p]

or ∫ 1

0
gj(xj)fj(xj)dxj = 0, j ∈ [p], and

∫ 1

0
hj(xj)fj(xj)dxj = 0, j ∈ [p],

where fj(xj) is the marginal density of X1j. Then Ψj(xj) should satisfy

∫ 1

0
ψjk(xj)dxj = 0, j ∈ [p] and k ∈ [m], or∫ 1

0
ψjk(xj)fj(xj)dxj = 0, j ∈ [p] and k ∈ [m], (4)

accordingly. Practically we should use the empirical measure for the latter. If we adopt
the former identification, we have Ψj(xj) = Ψ(xj), j ∈ [p] for a suitable common basis
Ψ(x).
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Since this paper is motivated by [31], we borrow some notation from [31] like Qτ (Yi |Xi)
in (5), Sτ (Yi |Xi) in (6), and Zi(β) in (8).

Let ν be the index of smoothness of gj(xj) and hj(xj) and we assume ν = 2 and take
m = cmn

1/(2ν+1) in this paper. Define the covariate vector Wi for the additive models
by

Wi := (1,ΨT
1 (Xi1), . . . ,ΨT

p (Xip))T

= (Wi0,W
T
i1 , . . . ,W

T
ip )T ∈ Rpm+1.

Under Assumption A2 below, there exists β = (β0,β
T

1 , . . . ,β
T

p )T ∈ Rpm+1 satisfying

Qτ (Yi |Xi) = µ1 +
p∑

j=1
gj(Xij) (5)

= β0 +
p∑

j=1
ΨT

j (Xij)βj + ηi

= W T
i β + ηi,

where η2
i = O(n−2ν/(2ν+1)) uniformly in i and in addition ∑n

i=1 ηi = 0 without loss of
generality. If not, we should replace ηi with ηi −n−1 ∑n

ℓ=1 ηℓ. Then β0 depends on {Xℓ}.
However, the dependence does not affect the theorems or the proofs at all.

Similarly, there exists θ = (θ0,θ
T

1 , . . . ,θ
T

p )T ∈ Rpm+1 satisfying

Sτ (Yi |Xi) = µ2 +
p∑

j=1
hj(Xij) (6)

= θ0 +
p∑

j=1
ΨT

j (Xij)θj + ξi

= W T
i θ + ξi,

where ξ2
i = O(n−2ν/(2ν+1)) uniformly in i with ν = 2 and in addition ∑n

i=1 ξi = 0 without
loss of generality. See Assumption A2 below.

Hereafter we use the same partition of (pm+ 1)-dimensional vectors as β and θ.
We estimate Qτ (Yi |Xi) by exploiting the group Lasso as in [18], whose theoretical

results are reproduced as Theorem 1 here, and apply the group Lasso to estimation of
Sτ (Yi |Xi) by employing the estimate of Qτ (Yi |Xi) in a similar way to [31]. Then we
establish useful theoretical results for estimation of Sτ (Yi |Xi) in Theorems 2-3. Instead
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of debiasing, we consider the group SCAD in estimating Sτ (Yi |Xi).
First we begin with the group Lasso for Qτ (Yi |Xi) in [18].

The group Lasso for Qτ (Yi |Xi) :

β̂ = argmin
β∈Rpm+1

[
n−1

n∑
i=1

ρτ (Yi − W T
i β) + λ1

p∑
j=1

wj∥βj∥
]
, (7)

where ρτ (·) is the check function for the τ -th quantiel, β0 is not included in the Lasso
penalty, and

wj =


1, j = 0
√
m, j ∈ [p]

.

As stated before, we can find the theory in [18] for this group Lasso estimator and
we employ this group Lasso estimator for our ES estimation again. Note that we use a
little different penalty from that in [18]. However, there is no theoretical difference due
to Lemma 1 in this paper.
The group Lasso for Sτ (Yi |Xi) :

Writing Qi = Qτ (Yi |Xi) and Si = Sτ (Yi |Xi), define

Zi(Qi) := (Yi −Qi)I{Yi ≤ Qi} + τQi = YiI{Yi ≤ Qi} +Qi[τ − I{Yi ≤ Qi}].

Then we have
E{Zi(Qi) |Xi} = τSi − τQi + τQi = τSi.

Besides, the addition of Qi[τ − I{Yi ≤ Qi}] deletes the effect of estimation of Qi

by making the score function insensitive to estimation of conditional quantile(the Ney-
man orthogonality). See [9] for the Neyman orthogonality. This interesting and useful
observation is given in [1] and the results on high-dimensional linear regression models
for Sτ (Yi |Xi) in [31] are based on this observation. The authors of [31] considered the
lasso and debiased lasso estimators and proved the oracle inequality and the asymptotic
normality, respectively.

We consider additive models for both Sτ (Yi |Xi) and Qτ (Yi |Xi). Additive models
are more flexible than linear models and allow interpretation. Using the results for
Qτ (Yi |Xi) in [18] and the Lasso theory, we establish the oracle inequality for the group
Lasso estimator in Theorem 2 and the “oracle” property for the group SCAD estimator
in Theorem 3. The “oracle” property here means not only the active index set detection
but also that the estimation of Qτ (Yi |Xi) does not affect the estimation of Sτ (Yi |Xi)
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asymptotically. We verify our Theorem 2 by following the standard argument for the
Lasso and improving the proof of Theorem 4.1 in [31]. There are some significant
differences between the proofs. See comments after Assumption A8 in Section 3.

With Zi(β) = Zi(W T
i β) for simplicity of notation, this Zi(β) is represented as

Zi(β) = (Yi − W T
i β)I{Yi ≤ W T

i β} + τW T
i β. (8)

The group Lasso estimator W T
i θ̂ is given by

θ̂ = argmin
θ∈Rpm+1

[
(2n)−1

n∑
i=1

(Zi(β̂) − τW T
i θ)2 + τλ2

p∑
j=1

wj∥θj∥
]
,

where β̂ is from the group Lasso for Qτ (Yi |Xi) and θ0 is not included in the Lasso
penalty as before.
The group SCAD for Sτ (Yi |Xi) :

Instead of debiasing in [31], we present the SCAD estimator together with the oracle
property since debiasing for additive models is too complicated. Debiasing is a topic of
future research.

The group SCAD estimator W T
i θ̃ is given by

θ̃ = argmin
θ∈Rpm+1

[
(2n)−1

n∑
i=1

(Zi(β̂) − τW T
i θ)2 +

p∑
j=1

SCADλ3(∥θj∥)
]
,

where we don’t include θ0 in the SCAD penalty and SCADλ(·) is the SCAD penalty
satisfying

d

du
SCADλ(u) = sign(u)

(
λI(|u| ≤ λ) + (aλ− |u|) ∨ 0

a− 1 I(|u| > λ)
)
,

where SCADλ(0) = 0, a > 2, and a = 3.7 is recommended in the literature.

3 Theoretical results

In this section, we present our main results, Theorems 2-3. Theorem 1 is taken from [18].
We make some comments on the proof of Theorem 1 and prove Theorems 2-3 in Section
5. We begin with some notation and then state the assumptions for these theorems.
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We define several matrices from Wi.

Σ := E{W1W
T
1 } ∈ R(pm+1)×(pm+1) and Σj := E{W1jW

T
1j} ∈ Rm×m, j ∈ [p].

Their sample versions are

Σ̂ := 1
n

n∑
i=1

WiW
T
i ∈ R(pm+1)×(pm+1) and Σ̂j := 1

n

n∑
i=1

W1jW
T
1j ∈ Rm×m, j ∈ [p].

We need some other matrices for the group SCAD.

ΣS := E{W1SW
T
1S} ∈ R(s−m+1)×(s−m+1),

ΣS∪{ℓ} := E{W1S∪{ℓ}W
T
1S∪{ℓ}} ∈ R(sm+1)×(sm+1), ℓ ∈ Sc,

where WiS = (W T
ij )T

j∈S ∈ Rs−m+1, WiS∪{ℓ} = (W T
ij )T

j∈S∪{ℓ} ∈ Rsm+1, and Sc is the
complement of S. We denote their sample versions by Σ̂S and Σ̂S∪{ℓ}, respectively.

In addition to (1) and (3), we need the following assumptions. Assumption A1 below
is Assumption (D3) in [18] and mainly used in Theorem 1. We define ui by ui = Yi −Qi

and ui satisfies P(ui ≤ 0|Xi) = τ.

Assumption A1 Let Fu(u|X1) be the conditional distribution function of u1 w.r.t. X1.
It has a continuously differentiable density fu(u|X1) and the density satisfies

CfL ≤ fu(u|X1) ≤ CfU on [−cf , cf ] and |f ′
u(u|X1)| ≤ C ′

fU

for some positive CfL, CfU , cf , and C ′
fU .

The next one is about gj(xj) and hj(xj) in (1) and (3). It is actually Assumption
(D4) in [18].
Assumption A2 gj(xj) and hj(xj), j ∈ S−, are twice continuously differentiable,
namely ν = 2, and they also satisfy

∑
j∈S−

(∥g∥L∞ + ∥g′∥L∞ + ∥g′′∥L∞) < Cg and
∑

j∈S−

(∥h∥L∞ + ∥h′∥L∞ + ∥h′′∥L∞) < Ch

for some positive Cg and Ch. Then we take a suitable Ψ(xj) with m = cmn
1/(2ν+1) =

cmn
1/5 for some positive cm.

Assumption A2 allows s to increase. Besides, the assumptions on ηi and ξi in (5)
and (6) hold when we use the basis constructed from the B-spline basis on [0, 1] as in
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[17]. See Corollary 6.26 in [24] about the spline function approximation. The basis also
meets the next assumption, which is Assumption (D5) in [18]. Assumption A4(1) also
holds if C1 < fj(xj) < C2 uniformly in j ∈ [p] for some positive C1 and C2, where fj(xj)
is the marginal density of X1j as in (4).
Assumption A3 maxi,j ∥Wij∥ = O(m1/2) and maxi,j,k |Wijk| ≤ Wmax = O(m1/2). This
Wmax is not a random variable.

Assumptions A4(1) and A5 are Assumptions (D7) and (D8) in [18], respectively.
They are standard ones in the high-dimensional literature. Assumption A4(2) is used
in Theorem 3 and more restrictive than Assumption A4(1). However, we need to have
C1 < λmin(ΣS) ≤ λmax(ΣS) < C2 for statistical inference of the true model.
Assumption A4
(1) For some positive CL and CU ,

CL ≤ λmin(Σj) ≤ λmax(Σj) ≤ CU for all j ∈ [p].

(2) For some positive C ′
L and C ′

U ,

C ′
L ≤ λmin(ΣS∪{ℓ}) ≤ λmax(ΣS∪{ℓ}) ≤ C ′

U for all ℓ ∈ Sc.

Before Assumption A5, we define C, ϕmin, and ϕmax, which are also common in the
Lasso literature. Assumption A5 is Assumption (D8) in [18].

C =
{
α ∈ Rpm+1

∣∣∣∣ ∑
j∈Sc

wj∥αj∥ ≤ c0
∑
j∈S

wj∥αj∥
}

for some c0 larger than 3 chosen in [18] and α = (α0,α
T
1 , . . . ,α

T
p )T . Any c0 larger than

3 works well.
ϕmin = min

α∈C

αT Σα

∥α∥2 ≤ max
α∈C

αT Σα

∥α∥2 = ϕmax

Assumption A5 For some positive CϕL and CϕU , we have

CϕL ≤ ϕmin ≤ ϕmax ≤ CϕU .

The next assumption is the latter half of Condition 4.1 in [31] and a standard one
in the least squares regression Lasso literature. However, it excludes heavy tailed cases.
This is because the least squares method is applied in estimating the conditional ES in
this paper.
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Recalling that ui = Yi −Qi, we define ϵi by

ϵi := ui ∧ 0 − E{ui ∧ 0|Xi} = ui ∧ 0 − τSi. (9)

Note that this ϵi is the error term in the least squares regression of the second step.
Assumption A6 For some positive σu and Bu, we have

E{ϵ2
1|X1} ≤ σ2

u and E{|ϵ1|k|X1} ≤ k!σ2
uB

k−2
u

2 , k ≥ 3.

The next assumption is about the order of s and p. The first one assures |W T
i δ| → 0

since
|W T

i δ| ≤ C(1 + c0)
√
ms∥δ∥

for δ ∈ C such that ∥δ∥ ≤ tn
√
sm(1 + log p/m)/n, where tn appears in Theorem 1 and

note that any tn going to ∞ sufficiently slowly works in Theorem 1. Therefore we don’t
need any assumptions related to the third moment of Wijk. Such assumptions are seen
in [31]. The second one is used in the group Lasso and the last one is employed in the
group SCAD. Recall m = cmn

1/5 in Assumption A2. The latter half of the last one is
necessary to check the local optimality condition of the oracle estimator. The second
and third ones are more restrictive than the first one.
Assumption A7
(1)

ms√
n

(
1 + log p

m

)1/2
→ 0

(2) √
m3s2

n log p
log p+m

m
→ 0

(3) √
m3s3

n

log p+m

m
→ 0 and minj∈S− ∥hj∥L2

(m log p/n)1/2 → ∞

We state the theoretical results for the group Lasso for Qτ (Yi |Xi) in [18]. Actually
Theorem 1 is Corollary 3.1(i) in [18]. We give some comments on the assumptions of
this theorem in Section 5.

Theorem 1. Suppose Assumptions A1, A2, A3, A4, A5, and A7(1) hold. If we take
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tn → ∞ satisfying

tn

√
(ms)2

n

(
1 + log p

m

)
→ 0 and set λ1 = tn√

n

(
1 +

√
log p
m

)
,

then we have

∥β̂ − β∥ ≤ Cβtn

√
ms

n

(
1 + log p

m

)
and β̂ − β ∈ C

with probability tending to 1 for some sufficiently large Cβ.

Hereafter we assume a suitable tn → ∞ sufficiently slowly is chosen and that it
satisfies the assumption of Theorem 1. We also assume that this tn satisfies

tn

√
m3s2

n log p
log p+m

m
→ 0 and tn

√
m3s3

n

log p+m

m
→ 0 (10)

in addition to Assumptions A7(2) and A7(3), respectively.
Before we state our main results Theorems 2-3, we define a few subsets related to

Theorem 1 and matrices like Σ̂ and Σ̂j.

Ω0 :=
{
CL

2 ≤ λmin(Σ̂j) ≤ λmax(Σ̂j) ≤ 2CU for all j ∈ [p]
}

∩
{
CϕL

2 ≤ min
α∈C

αT Σ̂α

∥α∥2 ≤ max
α∈C

αT Σ̂α

∥α∥2 ≤ 2CϕU

}
,

Ω1 := Ω0 ∩ {β̂ − β ∈ C and ∥β̂ − β∥ ≤ rQ}, (11)

Ω2 := Ω1 ∩ Ω′
0, (12)

where

Ω′
0 :=

{
C ′

L

2 ≤ λmin(Σ̂S∪{ℓ}) ≤ λmax(Σ̂S∪{ℓ}) ≤ 2C ′
U for all ℓ ∈ Sc.

}
,

rQ := Cβtn

√
ms

n

(
1 + log p

m

)
from Theorem 1. (13)

As in Lemma 1 in Section 5, P(Ωk) → 1, k = 1, 2, under Assumption A8 if the results
in Theorem 1 hold.
Assumption A8

m3s2 log p
n

→ 0.

We state the theoretical results for the group Lasso for Sτ (Yi |Xi) in Theorem 2 and
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prove Theorem 2 in Section 5. Theorem 2 may be a group Lasso version of Theorem 4.1
in [31]. However, there are some significant differences between them.

1. We don’t use any assumptions on the third or fourth moment on Wijk. Besides,
we don’t assume that Σ is positive definite.

2. The treatment of the group Lasso is not trivial and needs suitable technical tools
for the group structure. Besides, we have to cope with approximation errors ηi

in (5) and ξi in (6). We also have to check the relations between n, s, and m

very carefully. We consider Lemma 2 in a general form while addressing the group
structure. Therefore our lemma 2 is exploited in the proof of Theorem 3 for the
group SCAD estimator.

3. We don’t introduce a convex set as in (S.1.3) in [31].

Theorem 2. Suppose Assumptions A1, A2, A3, A4, A5, A6, A7(2) and A8 hold. If we
set λ2 = D0

√
log p/n, where D0 depends on the assumptions and D1 and D2 below, then

we have
∥θ̂ − θ∥ ≤ 3λ2(ms)1/2

τϕmin
and θ̂ − θ ∈ C

with probability larger than P(Ω1) − n−D1 − exp{−D2(log p + m)}. We can take any
positive D1 and D2.

Theorem 2 implies that

1
n

n∑
i=1

(W T
i θ̂ − Si)2 = Op

(
n−4/5 + ms log p

n

)
= Op(n−4/5s log p).

Our group Lasso estimator satisfies the oracle inequality and works as an initial value
of other methods like the group SCAD, the adaptive group Lasso, and so on.

We state the theoretical results for the group SCAD for Sτ (Yi |Xi) in Theorem 3
and prove the theorem in Section 5. Before the theorem, we define the oracle estimator
:

θ̃S :=
(
τ 2

n

n∑
i=1

WiSW
T
iS

)−1 τ

n

n∑
i=1

WiSZi(β̂)

and the oracle estimator with Qi given :

θ̆S :=
(
τ 2

n

n∑
i=1

WiSW
T
iS

)−1 τ

n

n∑
i=1

WiSZi(Qi).
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The difference between λ2 and λ3 in Theorems 2-3 is just due to the weight wj in
the group Lasso penalty.

Theorem 3. Suppose Assumptions A1, A2, A3, A4, A5, A6, A7(3), and A8 hold. If
we set λ3 = D0

√
m log p/n, where D0 and D1 depend on the assumptions and D2 and

D3 below, then θ̃ = (θ̃T
S ,0

T
Sc)T is a local solution to our group SCAD objective function

and
∥θ̃j − θ̆j∥ = o(

√
m/n) (14)

uniformly in j ∈ S− with probability larger than P(Ω2) − n−D2 − exp{−D3(log p+m)}.
We can take any positive D2 and D3.

The latter half of Theorem 3 suggests that estimation of the conditional quantile
does not affect estimation of the conditional ES regression model asymptotically. The
order o(1) of the latter in (14) comes from the latter in (10).

Remark 1. Suppose that we are interested in τ = a, b(a < b) and our assumptions hold
for τ = a, b. Write Sia, Qia, Zia(Qia) for Si, Qi, Zi(Qi) for τ = a and Sib, Qib, Zib(Qib)
for Si, Qi, Zi(Qi) for τ = b, respectively. Then

E{Z1b(Q1b) − Z1a(Q1a)|X} = E{Y1I(Q1a < Y1 ≤ Q1b)|X1}.

When we estimate E{Y1I(Q1a < Y ≤ Q1b)|X1}/(b − a), we should appeal to the least
squares method from Zib(β̂b) −Zia(β̂a) to Wi. When we prove the theoretical results, we
should deal with Zib(β̂b) and Zia(β̂a) separately to prove the so-called deviation conditions
and obtain the results like Theorems 2-3. We may be able to relax Assumption A6 and
it is a topic of future research.

4 Numerical studies

4.1 Simulation Studies

In this subsection, we investigate the finite-sample performance of the proposed method.
We begin by detailing how the observed features X ′

ij are transformed into the covariate
vectors Wij. Next, we describe the process by which new features X ′

new,j are mapped
to Wnew,j. We then present the algorithm and its implementation in R, including the
procedures for tuning-parameter selection. These procedures are used to solve the un-
derlying optimization problem, yielding β̂, θ̂, and θ̃. To further refine these estimates,
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we introduce a re-fit mechanism. Finally, we examine two simulation scenarios in which
the features follow different distributions. We evaluate the performance of our approach
in terms of estimation accuracy, prediction error, and model-selection consistency in
each of these scenarios.

We demonstrate the proposed method using simulated features drawn from a Beta
distribution. In cases where the observed data X ′

ij lie outside the unit interval [0, 1], we
first apply min-max normalization to rescale them to the unit interval. Specifically, we
define

Xij =
X ′

ij −mj

Mj −mj

,

where Mj = max1≤i≤n X
′
ij and mj = min1≤i≤n X

′
ij. To construct the covariate vector

Wij, we first generate the B-spline basis matrix

Bj(χj) =
(
Bj0(χj), Bj1(χj), . . . , Bjm(χj)

)
∈ Rn×(m+1),

where χj = (X1j, . . . , Xnj)T . The B-spline basis is of degree 2, includes an intercept
term, and uses knots determined by equally spaced empirical quantiles of χj. The
function bs from the splines package in R can be employed to generate Bj(χj). Next,
we construct the matrix Ωj(χj) ∈ Rn×(m+1), whose columns are given by

Ωj(χj) =
[
1n, χj, Bj1(χj), . . . , Bj,m−1(χj)

]
,

where 1n is a vector of ones. We then apply a “scaled” QR decomposition to Ωj(χj),
such that QjRj = Ωj(χj) and QT

j Qj = (n/m) Im+1, where Im+1 is the identity matrix.
Finally, we define the covariate vector Wij as the i-th row of the matrix Qj, excluding
the first element that corresponds to the intercept. For our simulation experiments, we
set m = ⌈n1/5⌉.

For new observations X ′
new,j, we construct Wnew,j using the previously determined

Mj, mj, Bj(·), and Rj to maintain consistency with the training procedure. Specifically,
we first apply the transformation

Xnew,j = max
(

0,min
(

1,
X ′

new,j −mj

Mj −mj

))
,

which ensures Xnew,j is constrained to [0, 1]. We then form the new covariate vector by
computing Ωj(Xnew,j)R−1

j and excluding the first element to obtain Wnew,j.
To solve the quantile estimator β̂, we formulate the optimization problem (7) as
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follows:

min
β,s,η+,η−

τ

n

n∑
i=1

η+
i + 1 − τ

n

n∑
i=1

η−
i + λ1

p∑
j=1

wjsj

s.t. η+
i − η−

i = Yi − W T
i β, i = 1, . . . , n,

∥βj∥ ≤ sj, j = 1, . . . , p,

η+
i ≥ 0, i = 1, . . . , n,

η−
i ≥ 0, i = 1, . . . , n,

where η+ = (η+
1 , . . . , η

+
n )T , η− = (η−

1 , . . . , η
−
n )T , and s = (s1, . . . , sp)T . This constitutes

a second-order cone programming problem, which we solve using the Rmosek package.
To determine the appropriate value of λ1, we follow the procedure outlined in Section 3.3
of [18]. Specifically, define

Λ = max
1≤j≤p

∥∥∥∥ 1
n

n∑
i=1

(
τ − ui

)
Wij

∥∥∥∥,
where ui are i.i.d. Bernoulli random variables with probability τ . Let Λ(1 − θ|{Xℓ})
denote the conditional (1 − θ)-quantile of Λ given {X1, . . . ,Xn}. The value of λ1 is
then chosen as cΛ(1 − θ|{Xℓ}) for θ ∈ (0, 1) and c > 0. In the subsequent numerical
studies, (c, θ) is set to (1.15, 0.05), and Λ(1−θ|{Xℓ}) is estimated using 1,000 simulated
observations. Once the coefficients are estimated, the model is then re-fitted using only
active features, defined as those for which ∥β̂j∥ ≥ 10−6, to further refine the estimation.

For the expected shortfall estimators θ̂ and θ̃, we use the grpreg package to carry out
the estimation. Additionally, a 2-fold cross-validation procedure is applied to determine
the appropriate values for the regularization parameters λ2 and λ3. Similarly, the model
is re-fitted to further refine the estimation using only active features, defined as those
with ∥θ̂j∥ > 0 and ∥θ̃j∥ > 0.

To evaluate performance, we consider four criteria: estimation error (est), prediction
error (pre), the number of true positives (tp), and the number of false positives (fp).
We report these measures for both quantile regression and expected shortfall regression,
denoted by subscripts Q and ES, respectively. Each criterion is computed as the average
over 100 repeated experiments. We quantify both estimation and prediction errors using
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the relative ℓ2 error, defined by

RelErrℓ2(v̂,v) = ∥v̂ − v∥2

∥v∥2
,

where v̂ denotes the fitted or predicted values, and v denotes the true values. For
example, the estimation error for the group SCAD estimator is

RelErrℓ2

((
W T

1 θ̃, . . . ,W T
n θ̃

)T
,
(
Sτ (Y1 | X1), . . . , Sτ (Yn | Xn)

)T
)
.

Finally, we refer to the method employing group lasso in the second stage as es-lasso,
and the method employing group SCAD as es-scad. An oracle estimator that uses only
the active features and is computed via the esreg package is referred to as benchmark.

Case 1

We adopt the following data generation process for Case 1. For i = 1, . . . , n, the response
variable Yi is generated as

Yi = 3 sin(2πXi1) + 3 cos(2πXi2) + 3 exp(Xi3) +
(
exp(−Xi1) +X2

i2 +X3
i3

)
ϵi,

where Xij, for j = 1, . . . , p, are independent and uniformly distributed on [0, 1], and
ϵi are independent standard normal random variables. Under this setting, the signal-
to-noise ratio is 6.658. We focus on three values of τ , specifically 0.05, 0.1, and 0.2,
while fixing the number of features at p = 1000. We then determine two sample sizes,
n = ⌈90/τ⌉ and n = ⌈150/τ⌉, in accordance with the design described in [31] when s = 3
in their notation.

Table 1 presents the performance of the es-lasso, es-scad, and benchmark meth-
ods, evaluated using est, pre, tp, and fp. We first observe that the quantile estimator
tends to omit active features when n = ⌈90/τ⌉ and τ = 0.2. However, this phenomenon
disappears once the sample size increases. In all other cases, the quantile estimator
performs comparably to the benchmark across all metrics.

Next, we focus on the performance of the expected shortfall regression. When
n = ⌈90/τ⌉ and τ = 0.2, both the group SCAD and group Lasso estimators tend to
select several irrelevant features. In terms of false positives, the group SCAD estimator
even performs worse than the Lasso estimator; however, es-scad still provides better
estimation and prediction accuracy than es-lasso. In all other scenarios, the group
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Table 1: Performance of es-lasso, es-scad, and benchmark for Case 1.

n = ⌈90/τ⌉

τ Method estQ preQ tpQ fpQ estES predES tpES fpES

0.05
es-lasso 0.0580 0.0583 3.000 0.020 0.1170 0.1180 3.000 0.93
es-scad 0.0580 0.0583 3.000 0.020 0.0950 0.0951 3.000 0.23

benchmark 0.0576 0.0579 3.000 0.000 0.0913 0.0913 3.000 0.00

0.10
es-lasso 0.0733 0.0740 3.000 0.000 0.1530 0.1540 3.000 2.54
es-scad 0.0733 0.0740 3.000 0.000 0.1120 0.1140 3.000 0.65

benchmark 0.0733 0.0741 3.000 0.000 0.1020 0.1040 3.000 0.00

0.20
es-lasso 0.1150 0.1160 2.800 0.000 0.2100 0.2120 3.000 6.62
es-scad 0.1150 0.1160 2.800 0.000 0.1870 0.1900 3.000 6.85

benchmark 0.0744 0.0757 3.000 0.000 0.1040 0.1060 3.000 0.00

n = ⌈150/τ⌉

τ Method estQ preQ tpQ fpQ estES predES tpES fpES

0.05
es-lasso 0.0501 0.0501 3.000 0.680 0.0830 0.0831 3.000 0.58
es-scad 0.0501 0.0501 3.000 0.680 0.0693 0.0694 3.000 0.09

benchmark 0.0470 0.0470 3.000 0.000 0.0715 0.0715 3.000 0.00

0.10
es-lasso 0.0480 0.0485 3.000 0.000 0.0958 0.0967 3.000 1.18
es-scad 0.0480 0.0485 3.000 0.000 0.0741 0.0749 3.000 0.23

benchmark 0.0477 0.0482 3.000 0.000 0.0722 0.0727 3.000 0.00

0.20
es-lasso 0.0634 0.0639 3.000 0.000 0.1170 0.1180 3.000 2.12
es-scad 0.0634 0.0639 3.000 0.000 0.0925 0.0924 3.000 0.81

benchmark 0.0632 0.0636 3.000 0.000 0.0868 0.0867 3.000 0.00

SCAD estimator achieves better performance across all metrics. In fact, for these cases,
the performance of es-scad is close to the benchmark, demonstrating the effectiveness
of the proposed method.

Case 2

We use the same setup as in Case 1, except for the distribution of Xij. Specifically, we
draw each Xij from an independent Beta distribution with shape parameters α = β = 3.
Compared to Case 1, the mean of the features remains unchanged, while the variance
decreases from 1/12 to 1/28.

Table 2 exhibits a pattern similar to the results observed in Case 1. When n =
⌈90/τ⌉ and τ = 0.2, the quantile estimator tends to omit relevant features, leading to
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Table 2: Performance of es-lasso, es-scad, and benchmark for Case 2.

n = ⌈90/τ⌉

τ Method estQ preQ tpQ fpQ estES predES tpES fpES

0.05
es-lasso 0.0819 0.0826 2.95 0.03 0.1860 0.1870 3.00 1.86
es-scad 0.0819 0.0826 2.95 0.03 0.1360 0.1380 2.99 0.54

benchmark 0.0710 0.0715 3.00 0.00 0.1070 0.1070 3.00 0.00

0.10
es-lasso 0.0741 0.0743 2.98 0.00 0.1990 0.1960 3.00 3.35
es-scad 0.0741 0.0743 2.98 0.00 0.1300 0.1290 2.99 0.84

benchmark 0.0722 0.0725 3.00 0.00 0.1060 0.1060 3.00 0.00

0.20
es-lasso 0.2120 0.2150 2.22 0.00 0.2980 0.2960 3.00 8.38
es-scad 0.2120 0.2150 2.22 0.00 0.2530 0.2530 3.00 6.36

benchmark 0.0787 0.0800 3.00 0.00 0.1190 0.1210 3.00 0.00

n = ⌈150/τ⌉

τ Method estQ preQ tpQ fpQ estES predES tpES fpES

0.05
es-lasso 0.0572 0.0572 3.00 0.01 0.1270 0.1270 3.00 1.43
es-scad 0.0572 0.0572 3.00 0.01 0.0950 0.0952 3.00 0.39

benchmark 0.0571 0.0571 3.00 0.00 0.0854 0.0851 3.00 0.00

0.10
es-lasso 0.0585 0.0587 3.00 0.00 0.1310 0.1310 3.00 1.80
es-scad 0.0585 0.0587 3.00 0.00 0.0988 0.0993 3.00 0.54

benchmark 0.0585 0.0587 3.00 0.00 0.0885 0.0893 3.00 0.00

0.20
es-lasso 0.0609 0.0620 3.00 0.00 0.1610 0.1610 3.00 3.87
es-scad 0.0609 0.0620 3.00 0.00 0.1170 0.1190 3.00 1.33

benchmark 0.0624 0.0636 3.00 0.00 0.0920 0.0930 3.00 0.00

poor estimation and prediction. In all other cases, however, its performance remains
satisfactory. Focusing on the expected shortfall regression, the group SCAD estimator
outperforms the group Lasso estimator on nearly all metrics. In terms of true positives
when n = ⌈90/τ⌉, es-scad selects 0.01 less active features, which represents only a minor
discrepancy. Hence, es-scad can be regarded as superior to es-lasso. Compared to
Case 1, the group SCAD estimator’s performance is not as close to the benchmark.
Nonetheless, except for the scenario where n = ⌈90/τ⌉ and τ = 0.2, its performance
remains satisfactory. This example demonstrates that, regardless of whether the features
follow a uniform or a bell-shaped distribution, the proposed method sustains a high-level
performance.
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4.2 Empirical Study

High-performance concrete (HPC) is widely used in modern civil engineering because
of its superior strength, durability, and cost-effectiveness compared to conventional con-
crete [22]. Accurate prediction of compressive strength is crucial for ensuring structural
safety and optimizing material design. However, most existing studies focus on con-
ditional mean estimation [5, 29], potentially overlooking tail risks. In this subsection,
we present an illustrative example of our proposed method by constructing an expected
shortfall regression model. Rather than developing a formal model or drawing defini-
tive conclusions, our aim is to elucidate the underlying approach. By highlighting the
potential applications of our approach, this demonstration paves the way for more com-
prehensive investigations in future research.

The empirical analysis employs the HPC dataset originally compiled by [29]. Af-
ter excluding observations with zero values, 225 samples remain, each containing eight
predictor variables: Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer,
Coarse Aggregate, Fine Aggregate, and Age. The target variable is concrete com-
pressive strength, measured in megapascals (MPa). Prior research indicates that the
relationship between these mixture components and compressive strength is inherently
nonlinear. This nonlinearity limits the applicability of traditional expected shortfall
regression, thereby underscoring the need for an additive expected shortfall regression
model to effectively capture these complex effects.

To assess the performance of our proposed high-dimensional additive expected short-
fall regression method in more challenging settings, we artificially inflate the dimension-
ality by adding extra features drawn independently from a standard normal distribution.
This approach tests the method’s ability to distinguish between relevant variables and
noise as the number of predictors increases. Specifically, we evaluate the method at
quantile levels 0.2, 0.3, and 0.4. At each quantile level, the method is tested on three
datasets augmented to contain 200, 300, and 400 predictors. We anticipate that our
method will consistently identify the truly relevant predictors while effectively excluding
the noise variables. Implementation details match those used in the simulation study.
In particular, we set the number of basis functions to m = ⌈n1/5⌉ = 3. The penalty
parameter λ1 is chosen as 1.15 · Λ(0.95 | {Xℓ}) based on 1,000 simulated observations,
and λ2 and λ3 are selected via two-fold cross-validation.

Table 3 summarizes the selection results for es-lasso and es-scad. The “Indices”
column indicates which of the original eight predictors were selected, and the “Noise”
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column shows the number of artificially added variables that were falsely selected. For
quantile regression, no spurious variables entered the model. Regarding expected short-
fall, es-lasso generally selects more irrelevant features than es-scad, mirroring the
pattern observed in our simulation studies. One exception occurs at (τ, p) = (0.2, 200),
where the group SCAD estimator selects as many irrelevant features as the group LASSO
estimator. This result is expected, as lower quantile levels require more data for accu-
rate estimation. Furthermore, the selection of the true predictors remains stable across
the three datasets, reinforcing the reliability of the proposed method. Although this ex-
ample is merely illustrative, it demonstrates that by incorporating additional features,
our approach can effectively exclude irrelevant variables and pave the way for more
comprehensive analyses in future research.

Table 3: Selection results on HPC data.

τ p Method Quantile Expected Shortfall

Indices Noise Indices Noise

0.2

200 es-lasso {8} 0 {1,2,3,4,5,8} 10
es-scad {8} 0 {1,2,3,4,5,8} 10

300 es-lasso {8} 0 {4,5,8} 1
es-scad {8} 0 {4,5,8} 1

400 es-lasso {8} 0 {1,2,3,4,5,8} 17
es-scad {8} 0 {1,3,4,5,8} 7

0.3

200 es-lasso {1,8} 0 {1,3,4,5,8} 2
es-scad {1,8} 0 {1,3,4,5,8} 1

300 es-lasso {1,8} 0 {1,3,4,5,8} 8
es-scad {1,8} 0 {1,3,4,5,8} 1

400 es-lasso {1,8} 0 {1,3,4,5,8} 8
es-scad {1,8} 0 {1,3,4,5,8} 1

0.4

200 es-lasso {1,8} 0 {1,3,4,5,6,8} 1
es-scad {1,8} 0 {1,3,4,5,6,8} 1

300 es-lasso {1,4,8} 0 {1,3,4,5,6,8} 10
es-scad {1,4,8} 0 {1,2,3,4,5,6,8} 1

400 es-lasso {1,8} 0 {1,3,4,5,6,8} 10
es-scad {1,8} 0 {1,3,4,5,6,8} 5
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5 Proofs

We give the proofs of the theorems and some necessary lemmas in this section. We prove
those lemmas in the Appendix. We begin with the comments on the proof of Theorem
1.

Comments on the proof Theorem 1. In [18], the author considered additive quantile re-
gression models in Sction 4 and proved the theoretical results by applying Theorem 3.1
and Corollary 3.1. Assumptions (D1) and (D2) hold in our setup and Assumptions (D3),
(D5), (D7), and (D8) are also assumed in our Theorem 1. Besides, Assumption A2 and
the condition on m, s, and log p in Theorem 1 cover Assumption (D9). Our Assumption
A2 assures Assumptions (D4) and (D6) there. In Section 4 in [18], the author assumed
s was bounded just to assure the order of the approximation error in (1), ηi. Since we
use Assumption A2, the boundedness of s is not necessary. Thus all the assumptions
for quantile estimation are satisfied.

In Lemma 1 below, we prove that P(Ωk) → 1, k = 1, 2, if the results in Theorem 1
hold. We verify this lemma in the Appendix.

Lemma 1. If Assumptions A3, A4(1)-(2), A5, and A8 hold, we have that

P(Ω0) → 1 and P(Ω′
0) → 1.

In Lemmas 2-4, we deal with the so-called deviation condition in the Lasso literature.
We need some notation for these lemmas.

Suppose that we have Vij = (Vij1, . . . , Vijm)T ∈ Rm, i = 1, . . . , n and j ∈ A ⊂ [p],
where Vij depends on {X1, . . . ,Xn}. Wij is an example of Vij and we actually apply
these lemmas to Wij in the proof of Theorem 2. In the proofs of Theorems 2-3, we
evaluate

sup
j∈A

∥∥∥∥ 1
n

n∑
i=1

Vij{Zi(β̂) − τW T
i θ}

∥∥∥∥ (15)

by using Lemmas 2-4. Note that 0 ̸∈ A. For j = 0, we use these lemmas only with
Vi0 ≡ 1. Then Lemma 2 holds without ξi since ∑n

i=1 ξi = 0 and Lemmas 3 and 4 clearly
hold with

√
m log p/n replaced by

√
log p/n.

We define
Ωω := Ω0 ∩ {λmax(Ω̂j) ≤ CωU for all j ∈ A},
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where Ω̂j = n−1 ∑n
i=1 VijV

T
ij ∈ Rm×m and CωU is some positive constant. Besides, let

maxi,j,k |Vijk| ≤ Vmax and Vmax is not a random variable and may go to infinity.
To evaluate (15), we should deal with

B1 := sup
j∈A

sup
β−β∈BC(rQ)

∥∥∥∥ 1
n

n∑
i=1

Vij{Zi(β) − Zi(β)}
∥∥∥∥, (16)

where BC(rQ) = C ∩ {∥β − β∥ ≤ rQ},

B2 := sup
j∈A

∥∥∥∥ 1
n

n∑
i=1

Vij(Zi(β) − E[Zi(β)|{Xℓ}])
∥∥∥∥, (17)

B3 := sup
j∈A

∥∥∥∥ 1
n

n∑
i=1

Vij(E[Zi(β)|{Xℓ}] − τW T
i θ)

∥∥∥∥. (18)

In Lemma 2, we evaluate B1 by modifying the proof of Lemma S.1.1 in [31]. The
treatment of approximation errors, the special structure of Wij, and the group structure
is not trivial. Besides, we consider general Vij and apply this more general Lemma 2 to
Theorem 3 for the group SCAD estimator.

In Lemmas 2-4 here, PΩω(·) means the probability limited to Ωω, not a conditional
probability on Ωω. It implies that PΩω(A) = P(A ∩ Ωω) ≤ P(Ωω) for any event A.
Note that Vmax{(log p+m)/m}tn{m2s2/(n log p)}1/2 → 0 for a suitably chosen tn under
Assumption A7(2) or A7(3) as in (10).

Lemma 2. Suppose that Assumptions A1, A2, A3, A4(1), A5, and A7(1) hold. Then
there exists a positive constant D1 depending on D2 such that

PΩω

(
B1 ≤ D1

(
Vmax

log p+m

m
tn

√
m2s2

n log p

)√
m log p
n

)
≥ P(Ωω) − exp{−D2(log p+m)}.

We can choose any positive D2. Besides note that tn is from Theorem 1 and rQ in (13)
and that any tn going to ∞ slowly works well.

In Lemma 3, we consider B2 by using Assumption A6. This kind of lemma is a
standard one in the Lasso literature. The latter halves of Lemmas 3-4 are used in the
proof of Theorem 3.

Lemma 3. Suppose that Assumptions A1, A2, and A6 hold and Vmax(log p/n)1/2 → 0.
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Then there exist positive constants D1 and D2 depending on D3 such that

B2 ≤ D1

√
m log p
n

and

sup
j∈A

∥∥∥∥ 1
n

n∑
i=1

Vij

(
Zi(β) − E[Zi(β)|{Xℓ}] − ϵi

)∥∥∥∥ ≤ D2n
−2/5

√
m log p
n

with probability larger than P(Ωω) − n−D3. We can choose any positive D3.

In Lemma 4, we deal with the approximation error in B3.

Lemma 4. Suppose that Assumptions A1 and A2. Then there exist positive constants
D1 and D2 such that we have on Ωω,

B3 ≤ D1

{ 1
n

n∑
i=1

(ξ2
i + η4

i )
}1/2

and

sup
j∈A

∥∥∥∥ 1
n

n∑
i=1

Vij

(
E[Zi(β)|{Xℓ}] − τW Tθ − τξi

)∥∥∥∥ ≤ D2

( 1
n

n∑
i=1

η4
i

)1/2
.

We repeat that the latter half of Lemma 4 holds without ξi on the RHS for Vi0 ≡ 1
since ∑n

i=1 ξi = 0.

Proof of Theorem 2. We focus on the events included in Ω1 in the proof. Write

LS(θ) := 1
2n

n∑
i=1

(Zi(β̂) − τW T
i θ)2 and then

θ̂ = argmin
θ

{
LS(θ) + τλ2

p∑
j=1

wj∥θj∥}.

Notice the following inequality and expression :

LS(θ̂) + τλ2

p∑
j=1

wj∥θ̂j∥ ≤ LS(θ) + τλ2

p∑
j=1

wj∥θj∥

and

LS(θ̂) = 1
2n

n∑
i=1

{(Zi(β̂) − τW T
i θ) + τW T

i (θ − θ̂)}2.

They yield the basic inequality of the Lasso as in [15] :
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τ 2(θ̂ − θ)T Σ̂(θ̂ − θ) ≤ τλ2

( p∑
j=1

wj∥θj∥ −
p∑

j=1
wj∥θ̂j∥

)
(19)

+ (θ̂ − θ)T τ

n

n∑
i=1

W T
i (Zi(β̂) − τW T

i θ).

We closely examine the two terms of the RHS of (19).
With δ̂j := θ̂j − θj,

p∑
j=1

wj∥θj∥ −
p∑

j=1
wj∥θ̂j∥ =

∑
j∈S−

wj∥θj∥ −
∑

j∈S−

wj∥δ̂j + θj∥ −
∑

j∈Sc

wj∥δ̂j∥ (20)

≤
∑

j∈S−

wj∥δ̂j∥ −
∑

j∈Sc

wj∥δ̂j∥

As for the second term, note that

τ

n

n∑
i=1

Wi(Zi(β̂) − τW T
i θ) = τ

n

n∑
i=1

Wi{Zi(β̂) − Zi(β)} (21)

+ τ

n

n∑
i=1

Wi(Zi(β) − E[Zi(β)|{Xℓ}])

+ τ

n

n∑
i=1

Wi(E[Zi(β)|{Xℓ}] − τW T
i θ).

Define Ωtmp by
Ωtmp := {λ2 ≥ 2(E1 + E2 + E3)} ∩ Ω1, (22)

where Vij = Wij in B1, B2, and B3,

E1 := B1√
m

∨ sup
β−β∈BC(rQ)

∣∣∣∣ 1
n

n∑
i=1

{Zi(β) − Zi(β)}
∣∣∣∣,

E2 := B2√
m

∨
∣∣∣∣ 1
n

n∑
i=1

(Zi(β) − E[Zi(β)|{Xℓ}])
∣∣∣∣,

E3 := B3√
m

∨
∣∣∣∣ 1
n

n∑
i=1

(E[Zi(β)|{Xℓ}] − τW T
i θ)

∣∣∣∣.
Recall that w0 = 1 and wj =

√
m for j ∈ [p]. See also the comment after (15) for

Vi0 ≡ 1.
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By (19)-(22) , we have on Ωtmp,

τ 2(θ̂ − θ)T Σ̂(θ̂ − θ) ≤ λ2τ
( ∑

j∈S−

wj∥δ̂j∥ −
∑

j∈Sc

wj∥δ̂j∥
)

(23)

+ λ2τ

2

( ∑
j∈S

wj∥δ̂j∥ +
∑

j∈Sc

wj∥δ̂j∥
)

≤ λ2τ

2

(
3

∑
j∈S

wj∥δ̂j∥ −
∑

j∈Sc

wj∥δ̂j∥
)
.

This implies δ̂ ∈ C since c0 from [18] is larger than 3. (23) also implies that

τ 2

2 ϕmin∥θ̂ − θ∥2 ≤ 3λ2τ

2
∑
j∈S

wj∥θ̂ − θ∥

≤ 3λ2τ

2
√
s
( ∑

j∈S

w2
j ∥θ̂ − θ∥2

)1/2

≤ 3λ2τ

2
√
ms∥θ̂ − θ∥.

Thus we have on Ωtmp,

∥θ̂ − θ∥ ≤ 3λ2(ms)1/2

τϕmin
. (24)

By (22), Assumption A7(2), and Lemmas 2-4 with Vij = Wij, we have (24) with
probability larger than P(Ω1) − n−D1 − exp{−D2(log p + m)} if we take a sufficiently
large D0. Hence the proof is complete.

Proof of Theorem 3. Define ∆i by

∆i := Zi(β̂) − τW T
iSθS (25)

= {Zi(β̂) − Zi(β)} + [Zi(β) − E{Zi(β)|{Xℓ}}] + [E{Zi(β)|{Xℓ}} − τW T
i θ]

= ϵi + τξi + {Zi(β̂) − Zi(β)}

+ [Zi(β) − E{Zi(β)|{Xℓ}} − ϵi] + [E{Zi(β)|{Xℓ}} − τW T
i θ − τξi]

Then the oracle estimators have the following expressions :

θ̃S = θS +
(
τ 2

n

n∑
i=1

WiSW
T
iS

)−1 τ

n

n∑
i=1

WiS∆i, (26)

θ̆S = θS +
(
τ 2

n

n∑
i=1

WiSW
T
iS

)−1 τ

n

n∑
i=1

WiS(ϵi + τξi). (27)
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We evaluate the difference between them by using Lemma 2 and the latter halves of
Lemmas 3-4. See the third line of (25).

A sufficient condition for θ̃ in Theorem 3 to be a local solution of the SCAD objective
function is

∥θ̃j∥ > aλ3, j ∈ S−, (28)

where a is from the SCAD penalty, and

∥∥∥∥τn
n∑

i=1
Wij{Zi(β̂) − τW T

iSθ̃S}
∥∥∥∥ < λ3, j ∈ Sc. (29)

We begin with (29). By (26), we have

τ

n

n∑
i=1

Wij{Zi(β̂) − τW T
iSθ̃S} = τ

n

n∑
i=1

Wij∆i − Σ̂jSΣ̂−1
S

τ

n

n∑
i=1

WiS∆i, (30)

where Σ̂jS = n−1 ∑n
i=1 WijW

T
iS.

We have dealt with the first term on the RHS in (30) and we evaluate the second
term by using Lemmas 2-4 with Vij = Σ̂jSΣ̂−1

S WiS. Then A = Sc and

Ω̂j = Σ̂jSΣ̂−1
S Σ̂T

jS.

On Ω2, Σ̂j − Σ̂jSΣ̂−1
S Σ̂T

jS is positive definite, which implies

λmax(Σ̂jSΣ̂−1
S Σ̂T

jS) ≤ 2C ′
U . (31)

Since
Vij =

(
Σ̂jSΣ̂−1/2

S

)(
Σ̂−1/2

S WiS

)
and max

i
∥WiS∥ ≤ C1(sm)1/2

for some positive C1, we have

max
i,j,k

|Vijk| = O((ms)1/2). (32)

By (31), (32), and Assumption A7(3), we can apply Lemmas 2-4. Thus if we take a
sufficiently large D0 in λ3, we have

max
j∈Sc

∥∥∥∥τn
n∑

i=1
Wij∆i

∥∥∥∥ < λ3

2 and max
j∈Sc

∥∥∥∥Σ̂jSΣ̂−1
S

τ

n

n∑
i=1

WiS∆i

∥∥∥∥ < λ3

2 (33)
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with the probability specified in Theorem 3.
Finally we consider (28) and prove it by showing the convergence rate of ∥θ̃j − θj∥.

We need some more notation to exploit Lemmas 2-4 again with A = S−. Recall we have
not imposed any penalty on θ0(j = 0). We concentrate on S− here. For j ∈ S−, we
define

W j := (W1j, . . . ,Wnj)T ∈ Rn×m, W S\{j} := (W ℓ)ℓ∈S\{j}Rn×(m(s−2)+1),

PS\{j} := W S\{j}(W
T

S\{j}W S\{j})−1W
T

S\{j}, and ∆ := (∆1, . . . ,∆n)T .

By some standard manipulation, we obtain the following representation :

θ̃j − θj = {n−1τW
T

j (I − PS\{j})W j}−1n−1W
T

j (I − PS\{j})∆. (34)

We have on Ω2,

C−1
2 ≤ λmin(n−1W

T

j (I − PS\{j})W j) ≤ λmax(n−1W
T

j (I − PS\{j})W j) ≤ C2, j ∈ S−,

for some positive constant C2. Therefore we have only to consider

n−1W
T

j (I − PS\{j})∆ = 1
n

n∑
i=1

Wij∆i − Σ̂jS\{j}Σ̂−1
S\{j}

1
n

n∑
i=1

WiS\{j}∆i (35)

where Σ̂jS\{j} := n−1W
T

j W S\{j}, Σ̂S\{j} := n−1W
T

S\{j}W S\{j}, and WiS\{j} := (Wiℓ)ℓ∈S\{j}.
For θ̆j, ∆i is just replaced with ϵi + τξi in (35).

As in evaluating (30), we obtain by Lemmas 2-4 with Vij = Σ̂jS\{j}Σ̂−1
S\{j}WiS\{j},

(25)-(27), and (34)-(35) that

∥θ̃j − θj∥ ≤ D1

√
m log p
n

and ∥θ̃j − θ̆j∥ = O
( log p+m

m
tn

√
m3s3

n log p

)√
m log p
n

)
(36)

uniformly in j ∈ S− for some positive D1 with the specified probability in the theorem
if we take a sufficiently large D0 in λ3. For θ̃j − θj, we employed Lemmas 2-4 for the
last three terms in the second line of (25). For θ̃j − θ̆j, we employed Lemmas 2-4 for
the last three terms in the third line of (25).
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By the latter half of Assumption 7(3), we have

∥θj∥
(m log p/n)1/2 → ∞. (37)

The former half of (36) and (37) imply (28). Hence the proof is complete.

6 Conclusion

We proposed a two-step procedure for additive ES models with high-dimensional co-
variates. We also assumed additive models for conditional quantiles. We considered
the group Lasso and the group SCAD and successfully provided the oracle inequality
and proved the oracle property for the group Lasso and the group SCAD, respectively.
Our numerical studies showed the desirable performances of the proposed models and
two-step procedures.
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7 Appendix(to be the supplementary material)

We prove Lemmas 1-4 here.

Proof of Lemma 1. In the proof, we only verify that

P
(
CϕL

2 ≤ min
α∈C

αT Σ̂α

∥α∥2 ≤ max
α∈C

αT Σ̂α

∥α∥2 ≤ 2CϕU

)
→ 1

since we can evaluate the probabilities of the other events in the same way.
First we define ∆ by

∆ := max
0≤j,k≤pm

|(Σ̂ − Σ)jk|.

As is well known in the Lasso literature, we have that for α ∈ C,

|αT (Σ̂ − Σ)α| ≤ ∥α∥2
1∆ ≤

(
|α0| +

p∑
j=1

wj∥αj∥
)2

∆ (38)

≤ (c0 + 1)2
(

|α0| +
∑

j∈S−

wj∥αj∥
)2

∆ ≤ ms(c0 + 1)2∥α∥2∆.

Thus we have only to prove ms∆ → 0 in probability.
Assumptions A3 and A4(1) imply that

E{W 4
1jk} ≤ C1E{mW 2

1jk} ≤ C2m. (39)

uniformly in j and k for some positive C1 and C2.
By using (39) and applying Bernstein’s inequality (see pp.102-103 in [27]) to each

element of Σ̂ − Σ, we have only to follow the standard argument to prove

P
(

∆ > C3

√
m log p
n

)
≤ 2 exp(−C4 log p) (40)

for any positive C4 if we take a sufficiently large C3. The desired result follows from
Assumptions A5 and A8 and (40). Hence the proof is complete.

Proof of Lemma 2. Define δ := β − β ∈ BC(rQ) here and write Zi(β) − Zi(β) as

Zi(β) − Zi(β) = ({Zi(β) − Zi(β)} − E[Zi(β) − Zi(β)|{Xℓ}]) + E[Zi(β) − Zi(β)|{Xℓ}].
(41)

32



We begin with the second term on the RHS of (41) and define

Ri(δ) := W T
i β − Yi = W T

i δ − ηi.

This ri(δ) satisfies
|Ri(δ)|2 ≤ 2δTWiW

T
i δ + 2η2

i → 0

uniformly in i.
Note that

E[Zi(β)|{Xℓ}] =
∫ Ri(δ)

−∞
(t−Ri(δ))fu(t|Xi)dt+ τW T

i β (42)

and

∂

∂β
E[Zi(β)|{Xℓ}] = {τ − Fu(Ri(δ)|Xi)}Wi. (43)

(42) and (43) imply that

E[Zi(β) − Zi(β)|{Xℓ}] =
∫ 1

0
{τ − Fu(Ri(tδ)|Xi)}dtW T

i δ.

Hence we have

|E[Zi(β) − Zi(β)|{Xℓ}]| ≤ CfU

2 {|W T
i δ|(|W T

i δ| + |ηi|)}

≤ CfU

2

{3
2 |W T

i δ|2 + 1
2 |ηi|2

}
.

We have on Ωω,

1
n

n∑
i=1

|W T
i δ|2|Vijk| ≤ Vmaxδ

T Σ̂δ ≤ 2VmaxCϕU∥δ∥2

and
∥∥∥∥ 1
n

n∑
i=1

|ηi|2Vij

∥∥∥∥ ≤ C
1/2
ωU

( 1
n

n∑
i=1

η4
i

)1/2
≤ C1n

−4/5

for some positive C1. For the latter, see the argument at the end of the proof of Lemma
4.
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Therefore we have on Ωω,

sup
j∈A

sup
β−β∈BC(rQ)

∥∥∥∥ 1
n

n∑
i=1

VijE[Zi(β) − Zi(β)|{Xℓ}]
∥∥∥∥ ≤ C2(n−4/5 +m1/2VmaxCϕUr

2
Q) (44)

for some positive C2.
We consider the first term. We deal with δ = β − β ∈ BC(rQ). Define rijk(δ) by

rijk(δ) := Vijk(Zi(β) − Zi(β)),

and notice that
|rijk(δ1) − rijk(δ2)| ≤ Vmax|W T

i (δ1 − δ2)|. (45)

Taking r1Q =
√
s(c0 + 1)rQ, we define Ajk by

Ajk := n

Vmaxr1Q

sup
δ∈BC(rQ)

∣∣∣∣ 1
n

n∑
i=1

(rijk(δ) − E[rijk(δ)|{Xℓ}])
∣∣∣∣ (46)

as in the proof of Lemma S.1.1 in [31]. Here we apply another symmetrization theorem
from that cited in [31] and then we adopt some part of the proof of Lemma A.3 in [18].
Hereafter we carefully cope with the group structure.

Let {ei} be a sequence of independent Rademacher variables. By the symmetrization
inequality (cf. Lemma 2.3.7 in [27]), we have

PΩω(Ajk ≥ t) ≤ 4EΩωP
[ 1
Vmaxr1Q

sup
δ∈BC(rQ)

∣∣∣∣ n∑
i=1

eirijk(δ)
∣∣∣∣ > t

4

∣∣∣∣{Xℓ}
]
.

By Markov’s inequality, PΩω(Ajk ≥ t) is bounded by

e−tλ/4EΩωE
[

exp
{

λ

Vmaxr1Q

sup
δ∈BC(rQ)

∣∣∣∣ n∑
i=1

eirijk(δ)
∣∣∣∣}∣∣∣∣{Xℓ}

]
, (47)

where λ is any positive number.
By recalling (45) and applying the contraction theorem (cf. Theorem 4.12 in [21]) ,

the conditional expectation in (47) is bounded by

E
[

exp
{
λ

r1Q

sup
δ∈BC(rQ)

∣∣∣∣ n∑
i=1

eiW
T
i δ

∣∣∣∣}∣∣∣∣{Xℓ}
]

≤ E
[

exp
{
λ sup

0≤j≤p

∥∥∥∥ n∑
i=1

eiWij

∥∥∥∥}∣∣∣∣{Xℓ}
]
. (48)

We evaluate the RHS of (48) by exploiting Corollary A.1 in [18] (p + 1) times for
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each j. Noticing that

2E[Z2] = 2
n∑

i=1
W T

ij Wij ≤ 2CUmn and σ2 = sup
∥γ∥=1

γT
n∑

i=1
WijW

T
ij γ ≤ 2CUn

in that corollary, we have an upper bound of the RHS of (48) :

16 exp{log(p+ 1) + λC1
√
n(

√
m+ λ

√
n)} (49)

for some sufficiently large C1 depending on CU .
Therefore

e−tλ/4E
[

exp
{

λ

Vmaxr1Q

sup
δ∈BC(rQ)

∣∣∣∣ n∑
i=1

eirijk(δ)
∣∣∣∣}∣∣∣∣{Xℓ}

]
is bounded by

16 exp{−tλ/4 + log(p+ 1) + λC1
√
n(

√
m+ λ

√
n)}. (50)

and we obtain that

PΩω(Ajk ≥ t) ≤ 16P(Ωω) exp{−tλ/4 + log(p+ 1) + λC1
√
n(

√
m+ λ

√
n)} (51)

If we take t = C2

√
n(log p+m) and λ = C3

√
(log p+m)/n, the expression inside the

exponential in (51) reduces to

−C2C3

4 (log p+m) + log(p+ 1) + C1C3

√
(log p+m){

√
m+ C3

√
(log p+m)}. (52)

By (51) and (52), we choose a sufficient large C2 for fixed C1 and C3 and obtain that

P (Ajk ≥ C2

√
n(log p+m)|Ωω) ≤ 16 exp

{
− C2C3

8 (log p+m)
}
,

P
(

sup
j∈A,k∈[m]

Ajk ≥ C2

√
n(log p+m)

∣∣∣∣Ωω

)
≤ 16 exp

{
log(p+ 1) + logm− C2C3

8 (log p+m)
}
.

(53)

If C2C3 > 16 and we can choose such C2, (53) yields

P
(

sup
j∈A,k∈[m]

Ajk ≥ C2

√
n(log p+m)

∣∣∣∣Ωω

)
≤ 16 exp

{
− C2C3

16 (log p+m)
}
. (54)
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If
sup

j∈A,k∈[m]
Ajk ≤ C2

√
n(log p+m),

we obtain by the definitions of r1Q above (46) and rQ in (13) that

sup
δ∈BC(rQ)

∣∣∣∣ 1
n

n∑
i=1

(rijk(δ) − E[rijk(δ)|{Xℓ}])
∣∣∣∣ ≤ C4tnVmax

√
m2s2

n log p
log p+m

m

√
log p
n

(55)

uniformly in j and k for some sufficiently large C4.
(44), (54), and (55) yields the desired result and the proof of the lemma is complete.

This kind of result is a standard one in the Lasso literature. We prove this lemma
as Lemma S.1.3 in [31].

Proof of Lemma 3. We decompose Zi(β) as

Zi(β) = (Yi −Qi)I(Yi ≤ Qi) + ηiI(Yi ≤ W T
i β) (56)

+ (Yi −Qi){I(Yi ≤ W T
i β) − I(Yi ≤ Qi)} + τ(Qi − ηi).

The last term depends on only {Xℓ}.
We give the details only for the first term on the RHS here because we can deal with

the second and third terms in the same way. Recall that

ϵi = (Yi −Qi)I(Yi ≤ Qi) − E{(Yi −Qi)I(Yi ≤ Qi)|Xi}.

By Assumption A6 and Theorem 2.10 in [6], we obtain that

∣∣∣∣ 1
n

n∑
i=1

ϵiVijk

∣∣∣∣ ≤ σuC
1/2
ωU

√
2t
n

+ 2BuVmax
t

n

with probabilty (1−2e−t) conditional on {Xℓ} on Ωω. If we take t = (2+C1) log p, then
we have

max
j,k

∣∣∣∣ 1
n

n∑
i=1

ϵiVijk

∣∣∣∣ ≤ C2

√
log p
n

(57)

for some sufficiently large C2 with probability (1 − n−C1) conditional on {Xℓ} on Ωω.
Recall that we assume log p ≥ n.
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As for the second term, notice that

E[η2
i I(Yi ≤ W T

i β)|{Xℓ}] = O(n−4/5) and |ηiI(Yi ≤ W T
i β)| = O(n−2/5)

uniformly in i. Therefore we have that for any given C3,

max
j,k

∣∣∣∣ 1
n

n∑
i=1

Vijk(ηiI(Yi ≤ W T
i β) − E[ηiI(Yi ≤ W T

i β)|{Xℓ}])
∣∣∣∣ ≤ C4n

−2/5

√
log p
n

. (58)

for some sufficiently large C4 with probability larger than (1−n−C3) conditional on {Xℓ}
on Ωω. We can deal with the third term in the same way.

Then we should take the expectation on Ωω and collect terms of k = 1, . . . ,m for
each j. Then the desired result follows from (57), (58), and the result for the third
term.

Proof of Lemma 4. First we evaluate E[Zi(β)|{Xℓ}] − τW T
i θ. Note that

E[Zi(β)|{Xℓ}] = τSi −
∫ Qi

W T
i β

yfY (y|Xi)dy + W T
i β

∫ Qi

W T
i β

yfY (y|Xi)dy, (59)

where fY (u+Qi|Xi) = fu(u|Xi) and u = y −Qi.
Thus we have

E[Zi(β)|{Xℓ}] − τW T
i θ = τξi −

∫ Qi

W T
i β

(y − W T
i β)fY (y|Xi)dy (60)

= τξi +O(η2
i )

uniformly in i.
For any {ζi}, we have on Ωω,

∥∥∥∥ 1
n

n∑
i=1

ζiVij

∥∥∥∥ = sup
∥α∥=1

∣∣∣∣ 1
n

n∑
i=1

ζiα
TVij

∣∣∣∣ (61)

≤
( 1
n

n∑
i=1

ζ2
i

)1/2(
sup

∥α∥=1
αT Ω̂jα

)1/2

≤ λmax(Ω̂j)
( 1
n

n∑
i=1

ζ2
i

)1/2
≤ CωU

( 1
n

n∑
i=1

ζ2
i

)1/2
.

The desired results follow from (60) and (61). Hence the proof is complete.
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