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Abstract

This study discusses a general approach to dynamic modeling using the local projection

(LP) method. Previous studies have proposed time-varying (TV) parameters in LPs; how-

ever, they did not address possible variations in error variances. Overlooking this could

introduce significant bias in the estimate of the TV parameter, and consequently, the esti-

mated impulse response. We develop an estimation strategy for LPs with stochastic volatility

(SV) and illustrate the importance of SV inclusion using simulated data. Application to a

topical macroeconomic time-series analysis illustrates the benefits of the proposed approach

in terms of improved predictions.
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1 Introduction

Local projection (LP) method, proposed by Jordà (2005), has become a standard framework

for estimating impulse response (IR) functions. This method regresses a variable of interest at

a future time point onto a structural shock and covariates to capture the effects of the shock on

the target variable. Unlike the traditional vector autoregression (VAR) framework, which can

produce IRs susceptible to model misspecification, the LP approach offers practical advantages,
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including robustness to misspecification and the feasibility of incorporating high-dimensional

covariates and nonlinearity.

Significant progress has been made in recent years regarding the LP methodology. The prac-

tical validity and robustness of the LP have been extensively studied by Plagborg-Møller and

Wolf (2021), Montiel Olea and Plagborg-Møller (2021), and Li et al. (2024). The methodology

is closely linked to traditional econometric techniques such as instrumental variables (Ramey

2016; Ramey and Zubairy 2018), inverse propensity score (Jordà and Taylor 2016; Angrist

et al. 2018), spline-based smoothed IRs (Barnichon and Brownlees 2019), and Bayesian infer-

ence (Tanaka 2020a,b; Ferreira et al. 2023; Brugnolini et al. 2024). The application of this

methodology to empirical analysis has expanded across macroeconomic literature, particularly

in assessing fiscal and monetary policy effectiveness (e.g., Jordà and Taylor 2016; Ramey 2016;

Tenreyro and Thwaites 2016; Miranda-Agrippino and Ricco 2021) and other relevant topics (see

Jordà 2023; Jordà and Taylor 2025; Inoue et al. 2025, for a comprehensive survey).

Several studies have extended the LP approach to address the time variation in IRs. Ruisi

(2019) allows the coefficients associated with the explanatory variable to follow a random-walk

process and estimates the model using a Bayesian methodology. Inoue et al. (2024) propose a

more general form of instability in the IRs, using the path estimator developed by Müller and

Petalas (2010), where the time variation can manifest as structural breaks, piecewise constant

paths, and more complicated forms. Cloyne et al. (2023) employ the Kitagawa-Blinder-Oaxaca

decomposition in the LP context to develop a new framework for the time-varying (TV) IRs.

However, few studies have considered time variation in error variance along with TV coeffi-

cients. In the context of the VAR and its TV framework (Cogley and Sargent 2001), Sims (2001)

and Stock (2001) indicate that ignoring the possible variation in the variance could lead to bias

in the drifting coefficients. They argue that coefficient estimates adjust to compensate for the

misspecification of the variance, thereby exaggerating the time variation in the coefficients. By

incorporating the TV variance, Cogley and Sargent (2005) and Primiceri (2005) develop the TV

parameter (TVP) VAR model with stochastic volatility (SV), which has become a standard tool

in dynamic modeling strategy for macroeconomic empirical analysis.

This study highlights the shortcomings of the misspecified TV-LP that neglects the TV vari-

ance and reveals the importance of including the TV variance. The analysis proposes a TV-LP

model with SV, consistent with the discussion on TVP-VARs. It also develops an efficient esti-
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mation algorithm using a Bayesian method. A simulation study and its application to topical

macroeconomic data provide crucial evidence that overlooking TV variance deteriorates the

model’s predictive ability across short to long horizons, preventing accurate estimation of the

IR function. In a closely related study, Lusompa (2020) formulates and estimates the TV-LP

with SV but does not include any data analysis using the developed strategy. By contrast, this

study illustrates the application of the modeling and estimation framework of TV-LP with SV.

The remainder of the paper is organized as follows. Section 2 outlines the class of TV-LP,

defines a new approach that includes SV, and discusses the computational strategy for model

fitting. Using simulated data, Section 3 presents an extensive and detailed assessment of the

advantages of TV variance inclusion in the context. Section 4 presents a real-data study of a

topical macroeconomic issue on the relationship between the global economy and trade activity.

Finally, Section 5 summarizes the study.

2 Methodology

2.1 General model form

Suppose {yt, zit; i = 1, . . . , p; t = 1, 2, . . .} are time series, and we estimate the IRs of

{yt+h;h = 1, 2, . . .} in response to a unit change in a specific variable, assuming z1t, without loss

of generality. The standard LP method proposed by Jordà (2005) utilizes a simple regression:

yt+h = α1(h)z1t + · · ·+ αp(h)zpt + u(h)t+h,

where Var
(
u(h)t+h

)
= σ2

(h). The advantage of LP is that it requires estimating only the h-step-

ahead-specific univariate regression using the least squares method to obtain the IRs by aligning

the estimated coefficients, {α̂1(1), α̂1(2), . . .}, which correspond to z1t, the variable of interest.

This approach avoids the estimation of multivariate regressions such as VARs and allows for the

incorporation of many control variables (z2t, . . . , zpt), which can be nonlinear if necessary.

Ruisi (2019) introduces TV coefficients into the LP framework. That is,

yt+h = α1(h)tz1t + · · ·+ αp(h)tzpt + u(h)t+h,

where the coefficients αi(h)t (i = 1, . . . , p) now include the subscript t, assuming their dy-

namic property of the coefficient. This evolution accounts for the potential time variations in
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the model’s structure and in the multipliers of yt+h, thereby representing TV IRs {α1(h)t;h =

1, 2, . . . ; t = 1, 2, . . .}.

A general form of the LP with TV coefficients includes variables that are not associated with

the TV coefficients but are time invariant. This is expressed as follows:

yt+h = α′
(h)tzt + β′

(h)xt + u(h)t+h,

where α(h)t = (α1(h)t, . . . , αp(h)t)
′, zt = (z1t, . . . , zpt)

′, β(h) = (β1(h), . . . , αk(h))
′, xt = (x1t, . . . ,

xkt)
′. Note that xt denotes the variables associated with time-invariant coefficients β(h).

A critical limitation of the formulation by Ruisi (2019) is the assumption that the variance in

the prediction error is time-invariant. As aforementioned, this assumption may introduce bias in

the estimates of TV coefficients in the TVP-VAR context. Lusompa (2020) introduces a TV error

variance in the TV-LP framework by employing a discount TV variance model for Var
(
u(h)t+h

)
.

Conversely, this study utilizes a standard framework of SV, which has been extensively used in

the macroeconomic literature, and the TVP-VAR framework (Shephard 2005; Primiceri 2005).

Therefore, the general form of a TV-LP with SV is expressed as follows:

yt+h = α′
(h)tzt + β′

(h)xt + u(h)t+h, u(h)t+h ∼ N(0, σ2
(h)t+h), (1)

where the error variance σ2
(h)t+h has subscript t+ h. Following Ruisi (2019) and other studies,

the TV coefficients are assumed to follow a first-order random walk process:

α(h)t+1 = α(h)t + ξ(h)t, ξ(h)t ∼ N(0,V (h)), (2)

with the matrix V (h) = diag(v2(h)1, . . . , v
2
(h)p) diagonal. Define γ(h)t = log(σ2

(h)t). The dynamics

of the TV variances are specified as:

γ(h)t+1 = γ(h)t + η(h)t, η(h)t ∼ N(0, w2
(h)). (3)

Thus, this formulation of log variances γ(h)t defines traditional SV models, which are originally

used in financial econometrics (Aguilar and West 2000; Shephard 2005; Omori et al. 2007;

Prado et al. 2021, chapter 7) and widely applied in macroeconomics context (Uhlig 1997;

Cogley and Sargent 2005; Primiceri 2005). All disturbances u(h)t, ξ(h)t = (ξ(h)1t, . . . , ξ(h)pt)
′,
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and η(h)t are assumed to be mutually independent. We refer to the formulation of equations

(1)–(3) as TV-LP-SV.

Notably, other forms of the underlying dynamics for TV coefficients and variances may be

defined. As discussed by Jordà (2005) and others, the inclusion of nonlinearity and instru-

mental variables is straightforward in the TV-LP-SV context. Since the LPs are not generative

models, we assume a parametric error distribution and simply treat the estimation equation as

the linear regression model with the TV parameters. The estimation algorithm discussed below

can easily be arranged for these additional/different components in the baseline formulation of

equations (1)–(3).

2.2 Estimation method

To estimate under the proposed LP framework, we use the Markov chain Monte Carlo

(MCMC) methods, employing traditional sampling schemes for a linear state space model or

dynamic regression model (e.g., West and Harrison 1997; Chan et al. 2019; Ferreira et al.

2023). The standard LP framework and the assumption of independence in disturbances yield

an estimation separable across horizon h; hence, we only develop a generic MCMC procedure

to simulate the h-specific full joint posterior. For notational simplicity, we omit the subscript (h)

in the following description. Based on observations y1:n = {yt}nt=1, the MCMC samplers for the

TV coefficients, α = {αt}nt=1, the SV, γ = {γt}nt=1, and the parameters Θ = (β,v, w), where

v = (v1, . . . , vp) are utilized to obtain samples from the joint posterior π(α,γ,Θ|y). We discuss

the components of the MCMC methods in this section and provide details of the samplers in

Appendix A.1

First, sampling the model parameters Θ conditional on the state variables and other pa-

rameters is straightforward. Based on traditional priors, we implement sampling from standard

distributions such as multivariate normal and inverse gamma distributions. Second, an efficient

and promising sampling method for the TV coefficients α is available: a Kalman filter and sim-

ulation smoother, or forward-filtering backward-sampling (FFBS) algorithm (e.g., Frühwirth-

Schnatter 1994; de Jong and Shephard 1995; Ferreira et al. 2023), which generates the full

conditional posterior of π(α|y,γ,Θ). Third, the MCMC algorithm is completed by sampling the

SV γ: an efficient block sampling method for univariate SV models can be adopted (Shephard

and Pitt 1997; Watanabe and Omori 2004).

1The code is available on the author’s website. https://sites.google.com/site/jnakajimaweb/tvlp
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As reported in existing studies employing Bayesian computations for similar models (e.g.,

Nakajima 2011), the performance of the MCMC algorithm summarized in this study is reason-

able, with good mixing and low autocorrelation of the samples in the simulation and real data

analyses.

Note that this discussion also applies to the TV-LP framework in a panel data setting by

direct extension. The aforementioned estimation methodology can be easily extended to the

case of panel-based TV-LP-SV, as expressed below:

yi,t+h = α′
(h)tzit + β′

(h)xit + δ′i(h)git + ui(h)t+h, ui(h)t+h ∼ N(0, σ2
i(h)t+h), (4)

where the subscript i denotes each individual, i = 1, . . . , I. In this framework, the TV and

time-invariant coefficients, α(h)t and β(h), measure the common sensitivity of the dependent

variable to the predictors, zit and xit, respectively. The newly introduced, time-invariant

coefficient δi(h) = (δi1(h), . . . , δiq(h))
′ measures individual-specific sensitivity to the predictor

git = (gi1t, . . . , giqt)
′. When gijt = 1 for all i and t, the corresponding coefficient δij(h) measures

the individual fixed effects for each i = 1, . . . , I.

Assume that the TV coefficients follow the process in equation (2) and SV follows the

individual-specific process in equation (3) with γi(h)t = log(σ2
i(h)t); that is,

γi(h)t+1 = γi(h)t + ηi(h)t, ηi(h)t ∼ N(0, w2
i(h)). (5)

Assuming the independence of error distributions across individuals, the MCMC algorithm is

easily extended to the panel-based case.

3 Simulation example

This section illustrates the advantage of TV-LP-SV over the time-invariant variance, TV-LP-CV

(constant variance), using the simulated data.

A sample size of n = 100 +H is drawn from a one-period-ahead (h = 1) TV-LP-SV formula-

tion of equations (1)–(3), with p = 2 and k = 0 (i.e., omitting the time-invariant coefficients, as

they are irrelevant for this simulation study). The two predictors, zt = (z1t, z2t)
′ are generated
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from the following autoregressive process that imitates the dynamics of the business cycle:

z1t = 1.2z1,t−1 − 0.3z1,t−2 + ϵ1t,

z2t = 0.7z2,t−1 + 0.1z2,t−2 + ϵ2t,

where ϵjt ∼ N(0, 0.12) for i = 1, 2. We take the parameters v1 = v2 = 0.1 and generate the TV

coefficients βt based on equation (2). We also generate SV γ based on equation (3), where we

examine two cases of variance for the SV process, w = 0.1 and 0.5.

The following prior distributions are used: β ∼ N(0, 10I), v2i ∼ IG(20, 2), and w2 ∼

IG(20, 2), where I denotes an identity matrix. We specify the distribution of the initial state

process: α1 ∼ N(0, 10I) and γ1 ∼ N(3, 2). For the TV-LP-CV, we assume σ2 ∼ IG(10, 2). We

run the MCMC sequences for 20,000 iterates after a burn-in of 2,000.

We focus on the predictive ability of the TV-LP formulation for horizons h = 1, . . . , H , where

we consider H = 8 in this analysis. This study uses a realistic recursive out-of-sample fore-

casting format, beginning with a dataset spanning the first T1 = 80 observations. We estimate

the TV-LP formulation and obtain forecasts for (yT1+1, . . . , yT1+H). Subsequently, we update the

dataset with one additional observation at T2 = T1 + 1 and refit the TV-LP to obtain forecasts

up to T2 + H. This analysis is repeated up to TJ = 100 until J = 20 sets of forecast bundles.

The entire simulation is implemented for N = 100 different simulated datasets.

To assess the utility of the proposed framework, forecasts are expressed as a posterior pre-

dictive distribution. In the MCMC sampling steps, we generate future values of yt, that is,

(yTj+1, . . . , yTj+H) on the dataset of y1:Tj
based on their conditional posterior predictive distri-

bution. The results are summarized using the log predictive density ratio (LPDR) for forecasting

h-period ahead of time Tj , as given by

LPDRTj (h) = log
pSV(yTj+h|y1:Tj

)

pCV(yTj+h|y1:Tj
)
,

where pM(yT+h|y1:T ) represents the predictive density under formulation M. The LPDR eval-

uates the relative forecasting accuracy of TV-LP-SV over the baseline specification, TV-LP-CV.

Unlike the standard measure of root mean squared errors, which evaluates point forecasts from

competing models, LPDR assesses the uncertainty in predictions between the models and point

forecasts, as noted by Nakajima and West (2013) and McAlinn et al. (2020).
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Figure 1: Simulation study: Log predictive density ratio (LPDR, solid) of the TV-LP-SV over
TV-LP-CV (constant variance) for forecasting h-period ahead under the different degrees of the
variance of SV, w = 0.1 (left) and 0.5 (right), with 95% confidence intervals (dashed).

Figure 1 shows the average of 1
J

∑J
j=1 LPDRTj (h) across N = 100 simulated datasets. The

LPDRs are all positive, indicating that TV-LP-SV dominates TV-LP-CV, with higher predictive

performance for all h for both w = 0.1 and 0.5. While the density ratios are highest at h = 1

and decrease as h increases in this simulation settings, SV also plays a dominant role even in

the longer-term horizons. The higher variation in SV, w = 0.5, yields a higher density ratio

compared to w = 0.1. The shortcoming of ignoring time variation in the variance increases as

the SV widens during the true process. A formal assessment of the LPDR is provided through a

classical statistical test for 1
J

∑J
j=1 LPDRTj (h) > 0. The resulting test statistics indicate that the

null hypothesis 1
J

∑J
j=1 LPDRTj (h) = 0 is rejected, with a significance level p = 0.01 for all the

computed LPDR values in the figure.

4 Application: A study of Japan’s international trade volumes

We use the TV-LP-SV framework to analyze Japan’s international trade volumes, demonstrat-

ing that the SV component significantly improves multi-step, out-of-sample predictions. We find

strong, significant evidence for time variation in the resulting IR of trade volumes to changes

in the global economic growth. These results are particularly relevant for policy applications of

the TV-LP framework.
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Figure 2: Data: Real export volumes (EX, logarithm of indices ×100), the OECD’s global eco-
nomic business cycle index (GLOBAL, %), and real effective exchange rate of Japanese Yen (FX,
%). GLOBAL and FX are quarter-on-quarter changes.

4.1 Data and settings

We analyze the quarterly time series of Japan’s real trade volumes (EX) as a dependent

variable and the OECD’s global economic business cycle index (GLOBAL) and real effective

exchange rate of Japanese Yen (FX) as predictors, in a context of topical interest (e.g., Bräuning

and Sheremirov 2023). Appendix B provides additional details on the dataset. The dataset

spans from 1975/Q2 to 2024/Q3 (Figure 2). Trade volumes deteriorated significantly during

the global financial crisis (GFC) and the COVID-19 pandemic. We note a small decline owing

to a specific domestic factor after the massive earthquake, the Great East Japan Earthquake in

March 2011. We explicitly consider this event in our application study.
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The analysis uses the following LP formulation:

EXt+h = EXt + α1(h)tGLOBALt−1 + α2(h)tFXt−1

+α3(h)t∆EXt + α4(h)t

+β1(h)Dt+h + β2(h)Dt + u(h)t+h,

where ∆EXt = EXt − EXt−1. We take the lags of GLOBAL and FX as well as the lag of recent

growth in EX by ∆EXt. α4(h)t is the TV intercept. Dt represents a dummy variable that equals

one when the time t corresponds to the first quarter of 2011, when the massive earthquake

occurred, and zero otherwise. Its coefficients βi(h) (i = 1, 2), which are time-invariant, measure

the changes in export volumes due to the destruction of domestic industrial production and

other aspects after the earthquake.

Our empirical focus is on the sensitivity of trade volumes to the strength of the global econ-

omy and its time variations. In the above formulation, the sensitivity is measured by the TV

coefficient α1(h)t, where we regress GLOBAL onto the change in EX over h quarters from the

current period, EXt+h − EXt.

For all model analyses reported in this section, we use the same prior specifications and the

simulation size as described in Section 3.

4.2 Out-of-sample forecasting performance

We summarize the out-of-sample predictive performances to compare the TV-LP-SV and TV-

LP-CV frameworks. The same recursive forecasting format as in Section 3 is used to obtain

J = 40 forecasts for each horizon, h = 1, . . . , H = 8. The final forecast is based on the last

observation (2024/Q3) in the dataset.

Figure 3 shows the log predictive density of those two models and 1
J

∑J
j=1 LPDRTj (h), which

evaluates the relative prediction performance of TV-LP-SV compared to TV-LP-CV. Evidently, the

LPDRs are all positive, indicating that SV plays a crucial role in forecasting trade volumes over

one to eight quarters.

Figure 4 shows the posterior means of the SV, σ(h)t = exp(γ(h)t/2) for h = 2, 4, 6, and 8,

along with their 68% credible intervals. The figure shows several volatile periods in export

volumes, particularly during the GFC. The deviation of the variance in TV-LP-SV from the time-
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Figure 3: Performance of forecasting the trade volumes over h-quarter ahead. Left panel:
Log predictive density of the TV-LP-SV and TV-LP-CV. Right panel: Log predictive density ra-
tio (LPDR, solid) with 95% confidence intervals (dashed).

invariant variance in TV-LP-CV, depicted by the horizontal dashed line in the figure, influences

the predictive performance of the frameworks, as observed in the forecasting analysis.

4.3 Time-varying impulse responses

Figure 5 shows the posterior means and credible intervals of the TV IR for the selected

horizons, h = 1, 2, 3, 4, 6, and 8, estimated in the TV-LP-SV and TV-LP-CV frameworks. The

TV-LP-SV framework shows clear evidence of time variations in the sensitivity of trade volumes

to changes in global economic growth. The response generally increased from the 1980s and

1990s to the 2000s and 2010s and then declined in recent periods. Evidently, the shape of the

IR changed over time, as observed in Figure 6. The responses typically lagged in the 1980s and

1990s but became hump-shaped in the 2000s and 2010s.

The figures reveal the dominant differences in IRs between the TV-LP-SV and TV-LP-CV

frameworks. The IRs from TV-LP-CV show too much variation in the IR, as seen in Figure 5.

In particular, the response from TV-LP-CV is larger than that from TV-LP-SV at horizons h = 4

and 6 in the late 2000s and early 2010s. A similar difference is observed in Figure 6(iv). This

result underscores the practical relevance of SV in the TV-LP framework in connection with the

enhanced predictive ability of TV-LP-SV over TV-LP-CV across short- to long-term horizons, as

demonstrated in the forecasting analysis.
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Figure 4: Posterior trajectories of σ(h)t = exp(γ(h)t/2) in the TV-LP-SV: posterior means (solid)
and 68% credible intervals (dashed) for selected horizons. The horizontal line (dashed) graphs
a posterior mean of σ(h) in the TV-LP-CV.
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Figure 5: Time-varying impulse response trajectories from the TV-LP-SV (left) and TV-LP-CV
(right) frameworks for h = 1, 2, 3, 4, 6, and 8: Posterior means (solid) and 68% credible intervals
(dashed). The figure indicates the response of export volumes to a 1% change in the global
economic growth index.
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Figure 6: Impulse response trajectories from the TV-LP-SV (left) and TV-LP-CV (right) frame-
works at the selected time points: Posterior means (solid) and 68% credible intervals (dashed).
The figure indicates the response of export volumes to a 1% change in the global economic
growth index.
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5 Conclusion

We introduce the time variation in error variances within the TV-LP framework and analyze

its advantages over the time-invariant variance framework using simulated and real data anal-

yses. The proposed approach provides a flexible structure for modeling the TV IR of a variable

of interest, yielding higher predictive performance over short- to long-term horizons. Over-

looking the time variation in variances can hinder the appropriate estimation of the TV IR in

applications.

We highlight the potential of the proposed framework for application to broad real-world

time-series analyses in the macroeconomic and financial market contexts. Nonlinearity and in-

strumental variables, which are standard refined approaches in the general LP framework (e.g.,

Jordà 2005), can be included in the TV-LP-SV strategy, which is a topic for future research.

Appendix A. MCMC algorithm

In the TV-LP-SV framework defined by equations (1)–(3), we document an MCMC algorithm

for simulating the full joint posterior π(α,γ,Θ|y). We omit the subscript (h) in the following

description for notational simplicity.

We assume prior forms of the following:

π(α,γ,Θ) = π(α)× π(γ)× π(Θ)

= fN (α|β0,Σ0)×
p∏

i=1

fIG(v
2
i |ni0/2, Si0/2)× fIG(w

2|w0/2,W0/2),

where fN (·|m,M) and fIG(·|c, d) denote the probability density functions of the multivariate

normal and inverse gamma distributions N(m,M) and IG(c, d), respectively.

A.1 Sampling Θ

First, conditional on the state variables (α,γ), sampling β is reduced to a generation from

the conditional posterior of a standard linear regression. The conditional posterior distribution
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is N(β̂, Σ̂), where

Σ̂ =

(
Σ−1

0 +

n∑
t=1

xtx
′
t

σ2
t

)−1

, β̂ = Σ̂

(
Σ−1

0 β0 +

n∑
t=1

xtŷt
σ2
t

)
,

with ŷt = yt −α′
tzt, t = 1, . . . , n.

Second, conditional on state variable α, the posterior density of v2i equals fIG(v2i |n̂i/2, Ŝi/2),

where

n̂i = ni0 + n− 1, Ŝi = Si0 +
n−1∑
t=1

(αi,t+1 − αit)
2,

for i = 1, . . . , p. We generate vi independent of i = 1, . . . , p.

Third, conditional on the SV γ, the posterior density of w2 is fIG(w2|ŵ/2, Ŵ /2), where

ŵ = w0 + n− 1, Ŵ = W0 +
n−1∑
t=1

(γt+1 − γt)
2.

A.2 Sampling α

Conditional on the SV and model parameters (β,v), equations (1)–(2) form a linear Gaus-

sian state-space model or a dynamic linear model with known variances. We utilize the method

of Kalman filter and simulation smoother, or FFBS algorithm (see e.g., Frühwirth-Schnatter

1994; de Jong and Shephard 1995; Chan et al. 2019; Ferreira et al. 2023).

A.3 Sampling γ

Conditional on the TV coefficient and model parameters (β, w), equations (1) and (3) yield

the following form of the univariate SV:

y∗t = exp(γt/2)ut,

γt+1 = γt + ηt,

(ut, ηt)
′ ∼ N

(
0, diag(1, w2)

)
,

where y∗t = yt −α′
tzt + β′xt. We employ the efficient block sampling method for univariate SV

models (Shephard and Pitt 1997; Watanabe and Omori 2004), which is adopted in this study.
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Other efficient methods of mixture sampler (Kim et al. 1998; Omori et al. 2007) can be also

used.

Appendix B. Data for the study of Japan’s international trade vol-

umes

This appendix documents the dataset used for the application described in Section 4. The

series is quarterly and spans 1975/Q2 to 2024/Q3. The starting quarter of the sample period

is determined by the availability of trade volume data. Although all the original series are

monthly, we consider the average of the monthly figures to obtain the quarterly series.

Trade volume (EX)

We use the seasonally adjusted time series of Japan’s real trade volumes provided by the

Bank of Japan. We download the data from the bank’s website. We define Yt as the logarithm

of the indices, multiplied by 100. As the dependent variable in the LP, we compute yt+h =

Yt+h − Yt, which is used for the estimation.

Global Economic business cycle index (GLOBAL)

We use the time series of industrial production indices aggregated within OECD countries,

which is downloaded from the OECD’s website. As an independent variable in the LP, we take

a quarter-on-quarter change of the series.

Exchange rates (FX)

We use a time series of real effective exchange rates of the Japanese Yen (JPY) computed by

the Bank for International Settlements (BIS). This series is downloaded from the BIS website.
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