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Abstract

To test the difference of two binomial probabilities, we will apply the Fisher exact

test modified by Chernoff (2002), which will be called CMF test. The key idea is

to use the P-value of Fisher exact test as a test statistic and this makes it possible

to apply the Fisher exact test for more general problems. The numerical comparison

with the likelihood ratio test and the Bayes test are also conducted and we find
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that the performance of CMF test is close to that of the likelihood ratio test and

it is satisfactory in various situations. We also give a Kullback-Leibler information

number of the margins to for the testing problems which justify the stability of P-

values of CMF test.
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1 Introduction

One of the most simple, but the most profound statistical problem is to compare the

two binomial probabilities. The problem has been discussed extensively by many

authors in the last 100 years, and some of its history and interesting stories may be

found in Yates (1984).

Suppose we are to compare the success rate p and q of treatments A and B,

where p = Pr{Success|A} and q = Pr{Success|B}. And, following Yates (1984),

we summarize the data in the 2x2 table below:

[TABLE 1]

Treatment A Treatment B Margin

Success a b m1 = a+ b

Failure c d m2 = c+ d

Margin n1 n2 n = m1 +m2 = n1 + n2

In order to save the space, numerical values for particular tables are given in the

form [a, b, c, d] for the entries of the table and {m1,m2, n1, n2 : n} is used for margins.

We also write (a,m1, n1) to denote the whole table if the total sample size n is being

fixed, and we assume that the total sample size n is constant throughout the end of

this paper.

The most common problem is to test the hypothesis of equal probability against

one sided or two sided alternatives. Whereas we sometimes are interested in the
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difference of these probabilities, see for example Skipka et.al.(2004) where they con-

sider testing the effect of new treatment under the FDA Draft Guidance (1998), they

define p and q as failure probabilities though. In this case, we consider, for some ∆,

the one sided hypothesis testing problem;

H0 : q = p+∆ vs H1 : q < p+∆ (1)

When ∆ = 0, this is a famous classical problem and the three standard tests

(for the equality of these probabilities) are the Pearson method, the Yates continuity

correction to the Pearson test (Yates correction for short), and the Fisher exact test,

see for example Pearson (1947), Yates (1984), and Fisher (1941). Also we note the

recent paper by Chernoff (2002) where the P-value of the Fisher exact test is used as

a test statistic, the method of which will be discussed briefly in Section 2. When the

sample sizes n1 and n2 are large, all three tests are proved to be almost equivalent.

The small sample performance of these three test together with others have been

discussed extensively in the last half century and it is found that the discrepancies

among the performance of these tests in various situations are highly significant (Yates

(1984), Little (1989), D’Agostino et.al. (1988) among others). This comes not only

from the asymptotic nature of Pearson and Yates correction, since the exact P-values

obtained from the binomial distribution also indicates the same tendencies (Chernoff

(2002)). There are no clear cut conclusion as to which test is the best, the Fisher
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exact test is more conservative though (cf. Little (1989)).

When we consider the Fisher exact test, Chernoff (2002) points out that the

composite nature of the null hypothesis gives us some complications. Since the

margines m1 and m2 are just almost ancillary in our problem (cf. Little (1989)),

the P-values of the Fisher exact test depend on the unknown common probability p.

The dependance to the unknown p of the P-Value of the Fisher exact test may be

measured by the K-L (Kullback-Leibler) information number of the margines and the

extensive numerical analysis have been conducted by Chernoff (2004). He finds that

these K-L information numbers are very small and stable accross the various sample

sizes and this may explane the reason why the P-value of the Fisher exact test is

stable (Chernoff (2002)). Although the dependence is weak, the P-value of Fisher

exact test is still a function of the unknown p. To obtain the overall P-Value, we

need it for each p and then we either obtain the maximum of P-values over the range

of unknown p of interests or calculate it at the some point, say at MLE. But, unlike

Pearson and Yates correction, the Fisher exact test has no test statistic and it is not

clear how to analyze the effect of the nuisance parameter.

Now, to solve the problem, Chernoff (2002) introduces a test statistic based on the

P-value of the Fisher exact test, which is a sort of unconditional version of the Fisher

exact test. Although the Chernoff’s method is not completely justified theoretically,

it looks reasonable from the numerical examples he considers. We will discuss his
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method briefly in the next section. The unconditional version of the Fisher test is also

considered by Boschloo (1970), who obtains the maximum of the modified P-values

over the entire parameter space. But the way he obtains the unconditional P-value

looks rather strange to us.

Besides these tests, the likelihood ratio test, the Bayes test and the Barnard’s

CSM test (Barnard (1947)) are also applied by many authors, especially when the

hypothesis is more complicated. These test procedures are considered to be more

general and they are proved to be highly efficient in some applications like our prob-

lem. Since, in our problem with ∆ 6= 0, the Fisher exact test may not be used in

its original form, Skipa et. al. (2004) proposes to apply the CSM test, πlocal-test

(Rohmel and Mansman (1999)), Chan’s test (Chan (1998)), and the likelihood ratio

test. But they rule out the use of the Fisher exact test as they consider it is good

only for the case ∆ = 0.

Compare to the classical Pearson and Yate tests, the Chernoff modification of

the Fisher exact test gives us numerically more stable results for ∆ = 0 (Chernoff

(2002), we think that it is worth trying to apply the Fisher’s method to our problem.

Therefore, in this paper, we will apply the Chernoff’s modification of the Fisher exact

test to this problem. And we find that the Chernoff’s modification is as good as the

likelihood ratio test and better than some Bayes procedure.

The paper is orrganized as follows; in the section 2 we briefly go over the classical
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testing procedures for the simpler problems for exposition; they are the Peason test,

the Yates correction and the Fisher exact test. We then introduce the Chernoff

Mdification of the Fisher test (CMF test). We will consider three test procedures for

the problem (1) in Section 3. The numerical comparison of the performances of the

tests are presented in Section 4.
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2 Review of the Fisher exact test and the Chernoff Modification

We will introduce the Chernoff Modification of the Fisher exact test (CMF) in this

section, and for this purpose we will start with reviewing the Pearson and the Yates

correction for ease of exposition. To facilitate the exposition, we will consider the

following classical testing problem throughout the end of this section.,

H0 : p = q vs H1 : p > q. (2)

Suppose we have a data of the form [Table 1] and we will obtain the P-value of the

observed data by the several methods. We will abuse the notation that variables a

and b may be considered as both random and fixed in an obvious manner according

to the context. Now, to obtain the P-values of the Pearson test, we consider

p
(B)
P (zP , p) = Prp,q{ZP = zP |p = q}, (3)

Here, p is the true parameter value and we have set,

ZP =
a
n1
− b

n2pbp(1− bp)(n−11 + n−12 )
=

s
(ad− bc)2n
m1m2n1n2

, (4)

where, bp = m

n

and zP denotes the observed ZP . The superfix (B) indicates that the probability is

calculated under the binomial probability: a v Bi(p, n1) and b v Bi(p, n2). Since

the null hypothesis is composite, the P-value against the null hypothesis (2) may be
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obtained by maximizing p(B)P (zP , p) with respect to p over the other set W (say) of

interest.

p
(B)
P (zP :W ) = max{p(B)P (zP , p) : p ∈W}

and we simply denote p(B)P (zP ) = p
(B)
P (zP : (0, 1)), for the case W = (0, 1). The

choice of W may be of interest and we will discuss this problem later in this section.

Now, the usual P-value of the Pearson test is given by the normal approximation

to the exact probability (3) and is denoted by

p
(N)
P (zP ) = 1− Φ(zP ) ' Prp,q{ZP = zP |p = q}, (5)

where Φ is the cumulative standard normal distribution function. It is easily seen that

the usual P-value does not depend on p, which helps us to use the simpler notation.

It follows that the P-value against the null hypothesis is given by (5), and the nature

of the composite hypothesis becomes implicit.

In the same way, the exact P-value and it’s normal approximation of the Yates’

correction are given by

p
(B)
Y (zY :W ) = max{p(B)Y (zY , p) : p ∈W}

where,

p
(B)
Y (zY , p) = Prp, q{ZY = zY |p = q}, (6)

9



and

p
(N)
Y (zY ) = 1− Φ(zY )

respectively, where ZY is given by

ZY =
a
n1
− b

n2pbp(1− bp)(n−11 + n−12 )
− 1
2

r
nbp(1− bp)n1n2

=

s
(|ad− bc|− 1

2
n)2n

m1m2n1n2
,

and zY is the observed ZY .

Note that when P-values of both the Peason and the Yates correction were intro-

duced in the early 20th century, p(N)P (zP ) andp
(N)
Y (zY ) were inevitably used because

of the computational reasons. But now a days, by using computer, it is not diffi-

cult to calculate the exact P-values p(B)P (z : W ) and p(B)Y (z : W ). And these exact

values are also compared with the P-values from the Fisher exact test, which gives

us more direct comparison of these test procedures (Chernoff (2002)). Of course

another merit using the normal approximations are that they are independent of the

unknown parameter values as we have mentioned above.

With these feature of the Pearson and the Yates tests in mind, we next discuss the

Fisher exact test. Remember that, given all margins {m1,m2, n1, n2 : n}, the [Table

1] is determined by specifying the value of a. Then, given the total sample size n,

we may denote the conditional probability of getting the [Table 1] by ZF (a,m1, n1),
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and it is given by

ZF (a) = ZF (a,m1, n1) =

¡
n1

a

¢¡
n2

b

¢¡
n
m1

¢ (7)

The idea deriving the formula is easily seen, given all margines, the problem is reduced

to the hypergeometric probability. We consider the urn containing n balls, n1 of which

are labeled treatment A and n2 for treatment B. Then the content of the [Table 1]

may be obtained by choosing m1 balls without replacement from the urn, where a

are chosen from the treatment A and the the rest b = m1 − a are assigned to the

treatment B. Hence the conditional probability of getting the Table1 is given by the

hypergeometric probability (7).

If we are interested in testing the hypothesis of equal probability against the

one sided alternative (2); then the larger value of a is an evidence against the null

hypothesis. Hence, the P-value of the observed data x = (x1,m1, n1) is defined by

pF (x) = pF (x1,m1, n1) =

min{n1,m1}X
a=x1

ZF (a,m1, n1) (8)

Here the composite nature of the hypothesis H0 : p = q is problematic. If (8) is

independent of the unknown parameter p, then it gives us a P-value of the composite

hypothesis (2) as in the case of normally approximated Pearson and Yates tests.

However, the P-value pF (x) of the Fisher exact test should depend on the unknown

nuisance parameter p, unless the margins are ancillary. Unfortunately it is shown

that the margin is not an ancillary statistic, it is only approximately ancillary (See,
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Little(1989), Chernoff (2002)). Therefore, the P-value of the Fisher exact test should

depend on the nuisance parameter, and in order to compare it with the other test

procedures, we need to obtain the maximum of P-values over the same range W of

interests. In order to obtain the maximum of the type one error probability, we

usually need a test statistic T (say), and calculate

p•(·;W ) = max
p∈W

Prp,q{T ∈ CR|p = q}, (9)

whereCR is a critical region. Unlike the other tests, the Fisher exact test doesn’t have

a test statistic, and it is not clear how to define it’s P-value for each p ∈W . To solve

this problem, Chernoff proposes a procedure which is stated in the following short

sentence: ”For the case where the margines are given, we could use ”a” as the test

statistic. But if the margines are not specified, a more natural test statistic would be

the usual P-value using the Fisher exact test, assuming, without proper justification,

that the margines are specified”; See Chernoff (2002). We will obtain the P-value

using Chernoff’s suggestion below and we call the method Chernoff Modification of

the Fisher exact test (CMF test) and denote it’s P-value as pCM throughout the

rest of the paper.

For any given data x = (x1,m1, n1), we will obtain pCM as follows. To start with,

we will define the test statistic TF = TF (X1,M1, n1) = pF (X1,M1, n1) of CMF test,

TF =

min{n1,M1}X
a=X1

ZF (a,M1, n1). (10)
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We will write the observed TF by tF = TF (x1,m1, n1) = pF (x1,m1, n1). Since small

P-value is an evidence against the null hypothesis, it follows that the P-value of

(x1,m1, n1) at (p, q) is defined by

Prp,q{TF 5 tF |p = q} (11)

To calculate (11), remember that X1 and X2 are independently distributed with

B(n1, p) and B(n2, q), and M1 = X1 +X2, we have

Prp,q{X1 = x1,M1 = m1}

=

µ
n1
x1

¶µ
n2
x2

¶
px1qx2(1− p)n1−x1(1− q)n2−x2 (12)

where x2 = m1 − x1, n2 = n− n1

Hence, under the null hypothesis p = q, the P-value of the observed data x =(x1,m1, n1)

is given by

pCM(x; p)

=
X

(a,m)∈CR

µ
n1
a

¶µ
n− n1
m− a

¶
pm(1− p)n−m (13)

where,

CR = {(a,m) : TF (a,m, n1) 5 TF (x) (14)
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In view of (9), the maximum of pCM(x; p) over the range W is then denoted by

pCM((x1,m1, n1);W ) = max
p∈W

pCM(x; p)

Similar method is proposed by Boschloo (1970), where the unconditional Fisher

exact test is constructed directly on the (x1, x2) plane. Whereas Chernoff considers

the conditional probability as a test statistic. The numerical comparison of the

Chernoff’s method and the Pearson test and the Yates correction are given in Chernoff

(2002). Although his numerical analysis is very restrictive, the Chernoff modification

gives us the most stable P-values over the range of p ∈ W of interest. And this

motivate us to use the CMF test to the more general problems.
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3 Hypothesis on the difference of probabilities

We go back to the original testing problem (1) with non-zero and fixed ∆

H0 : q = p+∆ vs H1 : q < p+∆

In order to obtain the P-value of the test, we will apply the likelihood ratio test,

the Bayes test and the CMF test and make some numerical comparisons of their

performances.

Let us start with the CMF test. For any data x =(x1,m1, n1), the observed CMF

test statistic tF is given by tF (x1,m1, n1) =
Pmin{n1,m1}

a=x1
ZF (a,m1, n1) (see (10)), and

we will define the P-value at p by

pCM(x; p,∆) = max
q∈Qp

Prp,q{TF (X1,M1, n1) ≤ tF (x)} (15)

where,

Qp = {q : min [1,max{p+∆, 0}] ≤ q ≤ 1}.

It follows from (12) that,

pCM(x,p) = pCM((x1,m1, n1); p,∆)

= max
q∈Qp

X
(a,m)∈CR

µ
n1
a

¶µ
n2
b

¶
paqb(1− p)c(1− q)d, (16)

where b, c,and d are defined as in [Table 1] for each (a,m), and CR = {(a,m) :

TF (a,m, n1) ≤ TF (x)} denotes the critical region of the observed data (cf. (14)).
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Here we may consider several P-values against the null hypothesis: The first

one (and may be the most natural one) is obtained by maximizing pCM(x,p) over all

possible p ∈ AP = {p : max(0,−∆) ≤ p ≤ min(1, 1−∆)},

p
(AP )
CM = pCM(x,AP ) = max{pCM((x1,m1, n1); p,∆) : p ∈ AP}. (17)

The second one is to replace p by it’s maximum likelihood estimator under the null

hypothesis, p̂(0), and it is denoted by

p
(MLE)
CM = pCM(x,p̂

(0)) = pCM((x1,m1, n1); p̂
(0),∆)

The other variation may be to consider the P-value maximum over the range of p such

as the 95% confidence interval of p (see Chernoff (2002)), which we do not consider

in this paper though. The derivation of p̂(0) is non-standard and it will be presented

below (see (21)).

The calculation of pCM((x1,m1, n1); p,∆) may require a grid search in q and it

may not only be time consuming, but also it may cause the rounding errors. Hence,

we will consider some simplified version, which is motivated by the following heuristic

argument. In the simple one sided testing problem (2), the test statistic (10) may

tend to take a smaller value (more significant) as the value θ = p − q gets larger;

namely, as we go deep into the region of alternative hypothesis. Therefore, the

distribution of TF (X1,M1, n1) may be stochastically decreasing in θ. This suggests

that the maximum in (15) and (16) over q ∈ Qp is attained at the boundary point
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(p, q) = (p, p∗), where p∗ = min{1,max{p +∆, 0}}. Indeed, this can be justified by

the lemma below.

Lemma 1 Let Fθ(t) be the distribution function of TF . Then it is stochastically

decreasing in the sence of Lehmann (1957)

θ < θ
0 ⇒ Fθ(t) ≥ Fθ0 (t) for all t (18)

Proof. It is easily seen that,

TF (X1 + 1,M1, n1) ≤ TF (X1,M1, n1).

And, by the straightforward algebra, we have

TF (X1,M1 + 1, n1)− TF (X1,M1, n1)

=

min(n1,M1+1)X
a=X1

ZF (a,M1 + 1, n1)−
min(n1,M1)X
a=X1

ZF (a,M1, n1)

≥
min(n1,M1)X
a=X1

ZF (a,M1 + 1, n1)−
min(n1,M1)X
a=X1

ZF (a,M1, n1)

=

µ
n

n1

¶−1 min(n1,M1)X
a=X1

[

µ
M1 + 1

a

¶µ
n−M1 − 1
n1 − a

¶
−

µ
M1

a

¶µ
n−M1

n1 − a

¶
]

=

µ
n

n1

¶−1 min(n1,M1)X
a=X1

[

µ
M1 + 1

a

¶µ
n−M1 − 1
n1 − a− 1

¶
+

µ
M1

a− 1

¶µ
n−M1

n1 − a

¶
] > 0
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It follows that the test statistic TF is a decreasing function of X1 and increasing

in M1. It follows that there exists a function B(X1, t) depending only on X1 and t,

for which

TF ≤ t⇔ 0 ≤ Y1 ≤ B(X1, t)

where, Y1 =M1 −X1 ∼ Bi(n2, p− θ). Moreover,

d

dθ
P (0 ≤ Y1 ≤ B(X1, t)|X1 = x1)

= (B(x1, t) + 1)(p− θ)B(x1,t)+1(1− p+ θ)n2−B(x1,t)

µ
n2

B(x1, t) + 1

¶
> 0, B(x1, t) 6= n2.

By, interchanging the order of integration and the differentiation, the lemma follows

readily.

To obtain the P-values with this version, we first calculate pCM((x1,m1, n1); p,∆) =

Prp,p∗{pF (X1,M1, n1) ≤ pF (x1,m1, n1)}. It follows from (12) that,

pCM((x1,m1, n1); p,∆)

=
X

(a,m)∈CR

µ
n1
a

¶µ
n2

m− a

¶
pap∗m−a(1− p)n1−a(1− p∗)n−m−n1+a

and then we finally obtain the P-values p(H0)
CM and p(MLE)CM by

p
(H0)
CM = max{pCM((x1,m1, n1); p,∆) : p ∈ AP} (19)

p
(MLE)
CM = pCM((x1,m1, n1); p̂

(0),∆)

respectively. In the next section, we will use these P-values to compare with the

P-values from the other tests.
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We will next consider the likelihood ratio test and the Bayes test. The log-

likelihood for the model is

l(x1, x2, p, q) = K(x1, x2) + x1 log p

+x2 log q + (n1 − x1) log(1− p) + (n2 − x2) log(1− q) (20)

Since ∆ is known, the maximum of l(x1, x2, p, q) underH0 is attained at the boundary

(p, p +∆) (Rohmel and Mansmann (1999)), the maximum likelihood estimator p̂(0)

of p under H0 is given by the solution of the nonlinear equation

x1
p
− n1 − x1

1− p +
x2

p+∆
− n2 − x2
1− p−∆

= 0 (21)

We consider the log of the likelihood ratio ZL for the hypothesisH0 and the alternative

H1 at the maximum likelihood estimates under the two hypotheses. The maximum

under the alternative is easily obtained by

p̂ =
x1
n1
, q̂ =

x2
n2

It follows that the log-likelihood ratio is

ZL = x1 log p̂
(0) + x2 log(p̂

(0) +∆) + (n1 − x1) log(1− p̂(0))

+(n2 − x2) log(1− p̂(0) −∆)− n1Ent(p̂)− n2Ent(q̂))

where Ent(·) is the entropy given by

Ent(p) = −[p log(p) + (1− p) log(1− p)]
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Then, the P-value at p is given by

pL(zL; p,∆) = Pr{ZL = zL|p, p∗}

=
X

(a,b)∈CRA

µ
n1
a

¶µ
n2
b

¶
pap∗b(1− p)n1−a(1− p∗)n2−b

where CRA = {(a, b) : ZL = zL} and p∗ = min{1,max{p + ∆, 0}} are defined as

before. We also write pL = pL(zL;AP ) = max{pL(zL; p,∆) : p ∈ AP}, pL1 =

pL1(zL; p̂
(0)) = pL(zL; p̂

(0),∆) and zL is an observed ZL.

Finally, we will consider the Bayes method. We assume that the prior distribution

of (p, q) is a mixture of two distributions. It takes p and q being independent Beta

distributions Be(α1,β1) and Be(α2, β2). We will denote the distribution of (p, q) by,

L(p, q) = Be(α1, β1) ∗Be(α2,β2),

which means that p has the Beta distribution with parameters α1 = (α1, β1) and q

has the Beta distribution with parameters α2 = (α2,β2) and p and q are independent.

Then the posterior distribution, given data (x1, x2) (in terms of the notation in the

section 1 this is (x1, x1 + x2, n1) ) has the same form and is given by

L(p, q|(x1, x2)) = Be(α∗1, β∗1) ∗Be(α∗2,β∗2),

where α∗1 = a1 + x1,β
∗
1 = β1 + n1 − x1,α∗2 = α2 + x2,β

∗
2 = β2 + n2 − x2. Then the
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posterior probability of the hypothesis H0 : q = p+∆ being true is given by

pB((α1,β1), (α2,β2); (x1, x2)) =
1

Be(α∗1, β
∗
1)Be(α

∗
2, β

∗
2)

Z
t−s=∆

sα
∗
1(1−s)β∗1tα∗2(1−t)β∗2dsdt.

(22)

We will use pB(α1,α2) = pB((α1,β1), (α2,β2); (x1, x2)) as a P-value of the data from

the Bayes method.

There are numerous tests which have been developed in the last half century

besides these tests we have discussed in this paper (see for example Skipka et. al.

(2004)). However, no one have ever tried to apply the Fisher exact test other than

the test of equality of the two success probabilities. Although it is not comprehensive,

we will perform a numerical comparison of our P-value pCM with the likelihood ratio

test pL and the Bayes test pB in the next section.
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4 Numerical Comparison of tests

Wewill make a numerical comparison of the tests discussed in the previous section and

for this purpose we consider the probability of rejecting the null hypothesis. As have

been mentioned, we use pB(α1,α2) = pB((α1,β1), (α2,β2); (x1, x2)) as a proxy for the

P-value of the Bayes method. We include the Bayes prcedure with the reservation

because pB(α1,α2) is not a rejection probability. As to the CMF tests, we first order

the sample points in the (x1, x2) plane according to the value of the test statistics.

We then calculate

X
all Data

Prp,p+θ{Rejects Ho|Data}Prp,p+θ{Data}. (23)

When θ = ∆ this gives us a unconditional size of the test, and for θ < ∆ this gives

us a power. To obtain the P-values for the likelihood ratio test, we will utilized the

asymptotic distribution of the likelihood ratio obtained by Munk (2004), the accuracy

of which is not fully investigated yet. We will compare the following tests:

(1) the likelihood ratio test pL : (LR).

As to the Chernoff modification of the Fisher test, we consider;

(2) the Chernoff modification with the unknown parameter p estimated by the

maximum likelihood p(MLE)CM : (Fisher1), and

(3) the Chernoff modification with the maximum over all possible p values p(H0)
CM :

(Fisher2).
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We choose the following priors for the Bayes tests;

(4) Bayesian approach with Uniform prior (αi = βi = 1, i = 1, 2) : (Bayes1) and

(5) Bayes test with prior (αi = βi =
1
2
, i = 1, 2) : (Bayes2).

We present the P-values together with the power of the tests against the nuisance

parameter p ∈ (0, 1) of the probability of the success for selected sample sizes. The

results are presented in Figure 1 to 12 below. We present the sizes of the tests on

the Figure 1 through 6, whereas the powers are shown in the Figure 7 to 12.

If the sample sizes are over 25 in both group, the performances of the tests are

similar and the size of these tests are stable over all value of p. When sample sizes

are moderate (say, one of the sample is less than 20), we found the Bayesian tests give

us rather instable sizes. On a whole, Fisher 1 and Fisher 2, and LR are very stable

in p, especially in the mid-range, say at p ∈ (.2, .8). Whereas, p in the neighborhood

of 0 and 1, they are quite conservative, which also reflects the power of these tests.

Bayes 1 and 2 are fine for larger sample sizes, but when one of the sample size dropes

less than 10, we observe some size distortions. As to the power of the tests, we have

examined only cases where q∗ − p∗ = 0 when ∆ = 0.1 and q∗ − p∗ = −0.2 when

∆ = −0.1. We cannot find dominating test procedure. The performances of these

tests are quite "random" and we cannot conclude which test is to be recommended

for smaller sample sizes. We, however, can conclude that if the sample sizes of both

sample exceed 25, any of these test may be applied. But, when the sample sizes are
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not too big, we recommend the either Fisher 1 or LR, as the performance of LR and

Fisher1 are quite similar and both are fairly stable.

To support the stable nature of Fisher 1, we will also present the Kullback-Leibler

information numbers of the margins for n1

n2
= c with c = 1, 2, and 5 in Figures 13 and

14. We find that, in most cases, the information carried by the margines are very small

and stable with respect to the sample sizes. We also found the same phenomena as

Chernoff (2004) that the K-L information number is decreasing in sample size. These

results explain the stability of the Fisher type test for the problem of this paper. We

observe the asymmetry of the performances of ChernoffModification in ∆, the reason

for this phenomena may be explained by the results of Munk (2004), which however

awaits further studies.
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5 Figures and Tables

5.1 Unconditional Size of the tests

Figuire 1 to 6 are the sizes of the tests for ∆ = θ = 0.1(Fig.1 − 3) and ∆ = θ =

−0.1(Fig.4− 6) for several sample sizes.

(Put Fig 1 to 6 after this line):

Figure 1 :Sample Size (10, 5)

Figure 2 Sample size (25, 5)

Figure 3 Sample size (50, 50)

Figure 4 Sample size (10, 5)

Figure 5 Sample size (25, 5)

Figure 6 Sample size (50, 50)

5.2 Unconditional Power of the tests

Figures 7 to 12 present the power of the test. Figures 7 to 9 are power of the test

for ∆ = 0.1 and at θ = q− p = 0 < ∆, and Figures 10 to 12 are power of the test for

∆ = −0.1 and at θ = q − p = −0.2 < ∆.

(Put Fig 7 to 12 around here)

Figure 7 :Sample Size (10, 5)

Figure 8 Sample size (25, 5)
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Figure 9 Sample size (50, 50)

Figure 10 Sample size (10, 5)

Figure 11 Sample size (25, 5)

Figure 12 Sample size (50, 50)

5.3 Tables

Figure 13 (d=0.1) and 14 (d=-0.1) show the Kullback-Leiber information numbers

of the margines. Each numgber is 100 times the actual number. p∗ and q∗ are

the parameter values in the alternative hypothesis. The entories are the average

of KL2(H,K) = minpE{L2|p.p + d} and KL2(K,H) = minpE{−L2|p∗.q∗}, where

L2 = log{f(m|p, p+ d)/f(m|p∗.q∗)}

(Put Fig 13 and 14 around here)
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