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Abstract

In this paper we consider the test of the rank of the sub-matrix of β, the cointegrating
matrix, when the process has a deterministic linear trend. We review the problem of the
testing procedure proposed by Kurozumi (2003) and give the alternative test statistic
that is asymptotically chi-square distributed. We also propose the test of the rank of
the sub-matrix of β⊥, the orthogonal matrix to β. Monte Carlo simulations show that
our tests proposed in this paper work fairly well in finite samples even when the tests
proposed by Kurozumi (2003) perform poorly.
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1. Introduction

A vector error-correction model (VECM) has often been used in the econometric literature as

one of the useful models to describe non-stationary time series, and a typical n-dimensional

VECM with cointegrating rank r (0 < r < n) is expressed as follows:

4xt = µ0 + µ1t + αβ′xt−1 +
m−1∑

j=1

Γj4xt−j + εt, (1)

for t = 1, · · · , T , where 4 = 1−L, L is the lag operator, {εt} ∼ i.i.d.N(0, Σ) with Σ being a

positive definite matrix, and α and β are n×r matrices with rank r. The exact condition of

the cointegrating relationship is given by Johansen (1991, 1992). The normality assumption

on {εt} is imposed to obtain the maximum likelihood (ML) estimator and the asymptotic

results in this paper will be obtained under weaker conditions as explained in Pesaran and

Shin (2002). Since we do not allow a quadratic trend in xt, we assume that µ1 = αρ1 for a

r × 1 vector ρ1.

Recently, Kurozumi (2003) took notice of the importance of information on the sub-

matrix of β and proposed the test of the rank of β1, the first n1 rows of β (0 < n1 < n),

for the model with µ1 = 0. To see the usefulness of information on the rank of β1, let us

consider the triangular representation of the model as used in Phillips (1991) and Saikkonen

(1991) among others, where the cointegrating matrix is normalized as βc = [Ir, β
′−1
1 β2]′ for

n1 = r. To justify this normalization we have to know that β1 is of full rank, and the

Kurozumi’s test can be applied to check this condition. Information on the rank is also

useful for the Granger non-causality test as explained by Chigira and Yamamoto (2003) and

for the long-run Granger non-causality test proposed by Yamamoto and Kurozumi (2003).

For the latter test, we also use information on the rank of the sub-matrix of β⊥, which is

an n× (n− r) full column rank matrix such that β′β⊥ = 0.

The rank of β1 can be tested by investigating the eigenvalues of the quadratic form

of some non-singular transformation of the estimator of β1, but the test statistic must be

constructed differently according to the specification of the deterministic term, because the

limiting distribution of the estimator of β changes depending on the structure of µ0 and µ1

as shown by Johansen (1988, 1991, 1994). When µ0 is specified as 0 or ρ0α for a suitable
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matrix ρ0, that is, xt has no linear trend, the Kurozumi’s test has an asymptotic chi-square

distribution. On the other hand, the limiting distribution depends on a nuisance parameter

when there are no restrictions on µ0, that is, xt has a linear trend. For the latter case,

Kurozumi (2003) proposed two testing procedures, one of which is conservative and the

other requires the pretest of the structure of the trend parameter. However, by Monte

Carlo simulations, both of them are shown to be too conservative in some cases and perform

poorly under the alternative hypothesis. Similarly, the test of the rank of the sub-matrix of

β⊥ is asymptotically conservative when no restrictions are imposed on µ0.

In this paper we propose the alternative test statistics when xt has a linear trend.

The advantage of the new tests is that they have an asymptotic chi-square distribution,

so that neither the conservative test nor the pretest is required. In addition, these tests

do not depend on the true value of µ0 and µ1 (ρ1), so that we can use the tests when xt

is stochastically cointegrated (µ1 6= 0) as well as when xt is deterministically cointegrated

(µ1 = 0).

The paper is organized as follows. In Section 2 we briefly explain the problem found in

Kurozumi (2003) that arises when testing the rank of β1 and propose the alternative test

statistics. The tests of the rank of the sub-matrix of β⊥ are proposed in Section 3, and the

finite sample property is investigated in Section 4. Section 5 gives concluding remarks.

The following notation is used throughout the paper. We use vec(A) to stack the rows

of a matrix A into a column vector, [x] to denote the largest integer ≤ x, ā = a(a′a)−1 for a

full column rank matrix a.
p−→ and d−→ signify convergence in probability and convergence

in distribution. A > 0 implies A is positive definite when > is used for a matrix. We

denote the rank of A by rk(A) and the column space of A by sp(A). We write integrals like
∫ 1
0 X(s)dY (s)′ simply as

∫
XdY ′ to achieve notational economy, and all integrals are from

0 to 1 except where otherwise noted.

2. Alternative tests of rk(β1)

We first consider the model (1) when µ1 = 0,

4xt = µ0 + αβ′xt−1 +
m−1∑

j=1

Γj4xt−j + εt. (2)
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This model is also expressed as

xt = C
t∑

i=1

εi + κ + τt + C1(L)εt + x∗0, (3)

where C = β⊥(α′⊥Γβ⊥)−1α′⊥, Γ = In−
∑m−1

i=1 Γi, τ = Cµ0, |C1(z)| = 0 has roots outside the

unit circle, and x∗0 is a stochastic component such that β′x∗0 = 0. See Johansen (1991, 1995)

for details. We partition β into [β′1, β′2]′, where β1 is an n1 × r matrix with 0 < n1 < n.

We also decompose β⊥ and τ into [β′⊥,1, β⊥,2]′ and τ = [τ ′1, τ ′2]′ conformably with β. Note

that β′1β⊥,1 does not necessarily equal to zero while β′β⊥ = β′1β⊥,1 + β′2β⊥,2 = 0. That is,

in general, β⊥,1 is not an orthogonal complement to β1.

The model (2) can be estimated by the ML method and the ML estimators are denoted

by α̂, β̂, Γ̂i and Σ̂. We define the (infeasible) normalized estimator of the cointegrating

matrix as β̃ = β̂(β̄′β̂)−1. Similarly, β̃1 is defined as the first n1 rows of β̃.

Kurozumi (2003) investigated the test of rk(β1) in the same way as Robin and Smith

(2000). The testing problem is

H0 : rk(β1) = f v.s. H1 : rk(β1) > f, (4)

for a given f where 0 ≤ f < min(n1, r).

To test the hypothesis (4), we consider the following determinant equation,

|β̂1Ψ̂β̂1
′ − λ̂Φ̂| = 0, (5)

where Ψ̂ and Φ̂ are r × r and n1 × n1 matrices such that Ψ̂
p−→ Ψ > 0 and Φ̂ d−→ Φ > 0

almost surely (a.s.). The precise definition of them is given below. These matrices are

defined differently depending on the specification of the deterministic term and are selected

so that the determinant equation (5) is invariant to the normalizations of α̂ and β̂ and that

the limiting distribution of the test statistic described below does not depend on a nuisance

parameter. Then, since β̃1 is obtained by the non-singular transformation of β̂1, we can

consider the determinant equation (5) with β̃1 instead of β̂1.

Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n1 be the ordered eigenvalues of (5). Since λ̂f+1, · · · , λ̂n1 are shown

to converge to zero in probability under the null hypothesis while the others are bounded
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from zero in probability under the alternative, the test statistic proposed is

LT = T 2
n1∑

i=f+1

λ̂i.

We can also consider T 2λ̂f+1 as a test statistic, but we will not investigate it because the

performance of T 2λ̂f+1 is similar to that of LT .

The asymptotic behavior of the test statistic apparently depends on the limiting distri-

bution of β̃1. Using (13.1) of Johansen (1995), β̃1 can be expressed as

β̃1 = β1 + γ1(γ′γ)−1U1T +
1

T 1/2
τ1(τ ′τ)−1U2T , (6)

where the n×(n−r−1) matrix γ is an orthogonal complement to τ in sp(β⊥), γ1 is the first

n1 rows of γ, and [TU ′
1T , TU ′

2T ] converges in distribution to, say, [U ′
1, U

′
2]. See Section 3 of

Kurozumi (2003). The problem we have here is that, if an n1 × 1 vector τ exists such that

τ ′β1 = 0 and τ ′γ1 = 0, the third term in (6) dominates in the limit when β̃1 is premultiplied

by τ ′, while only the second term in (6) dominates asymptotically if τ does not exist. From

Proposition 1 of Kurozumi (2003) the vector τ exists if and only if τ2 is equal to zero, and

if we know whether it is equal to zero or not, we can appropriately chose Φ̂ and Ψ̂ so that

the test statistic has an asymptotic chi-square distribution. However, we do not know in

practice whether τ2 is equal to zero or not and then we cannot choose appropriate Φ̂ and Ψ̂

without information on τ2. In other words, we can say that the limiting distribution of the

test statistic depends on a nuisance parameter τ2.

Kurozumi (2003) proposed two testing procedures to cope with this problem, one of

which takes advantage of the asymptotic property of the smallest eigenvalue of (5), and the

other method is to pretest whether τ2 is zero or not. However, it was shown by Monte Carlo

simulations that these two procedures suffer from a so-called pretest bias in some situations

so that they are too conservative to reject the hypothesis under the alternative.

To circumvent this problem, we need to use the estimator of β1 whose limiting distri-

bution does not depend on the structure of the orthogonal space to β1, unlike β̃1 in (6).

The first candidate proposed here is the estimator that is obtained when we estimate the

model (2) assuming that xt is stochastically cointegrated. More precisely, we estimate the
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following model:

4xt = µ0 + αβ∗′x∗t−1 +
m−1∑

j=1

Γj4xt−j + εt, (7)

where β∗ = [β′, ρ1]′ with the true value of ρ1 equal to zero and x∗t−1 = [x′t−1, t]
′. Then, the

model is estimated by the reduced rank regression (RRR) of R∗
0t on R∗

1t where R∗
0t and R∗

1t

are regression residuals of 4xt and x∗t−1 on a constant and 4xt−1, · · · ,4xt−m+1. Let β̃∗ be

an infeasible normalized estimator of β∗ defined like β̃. Then, in the same way as Lemma

13.2 of Johansen (1995), we can show that

β̃∗ = β∗ + β̄∗⊥U∗
T , (8)

where β∗⊥ = diag{β⊥, 1}, TU∗
T

d−→ (
∫

G∗G∗′ds)−1
∫

G∗dV ′, G∗(r) = G(r) − ∫
Gds with

G(r) = [(β̄′⊥CW (r))′, r]′, W (r) is an n-dimensional Wiener process with a variance matrix

Σ, V (r) = (α′Σ−1α)−1α′Σ−1W (r), and G∗(r) and V (r) are independent. Since the estimator

of β1 is the first n1 rows of (8), it is apparent from (8) that

β̃∗1 = β1 + β⊥,1(β′⊥β⊥)−1L′U∗
T ,

where L is an (n − r + 1) × (n − r) matrix defined by L = [In−r, 0]′. Since there is an

n1 × (n1 − f) matrix δ under H0 whose columns span the orthogonal space to sp(β1), we

can see that

Tδ′(β̃∗1 − β1)
d−→ δ′β⊥,1(β′⊥β⊥)−1L′

(∫
G∗G∗′ds

)−1 ∫
G∗dV ′ = X ′, say. (9)

Then, unlike β̃1, β∗1 is independent of the true value of τ2.

To construct the test statistic, we use Ψ̂ = α̂′Σ̂−1α̂ and

Φ̂ = β̂∗1(β̂∗′n β̂∗n)−1β̂∗′1 + β̂∗⊥,1(β̂
∗′
⊥nβ̂∗⊥n)−1L′

(
Υ′

T S∗11ΥT

)−1
L(β̂∗′⊥nβ̂∗⊥n)−1β̂∗′⊥,1, (10)

where S∗11 = T−1 ∑T
i=1 R∗

1tR
∗′
1t, ΥT = diag{T−1/2 ¯̂

β
∗
⊥, 1} and β̂∗n and β̂∗⊥n are the first n rows

of β̂∗ and β̂∗⊥. The test statistic is denoted by L∗T .

The other estimator that has the similar property as β̃∗1 is obtained when we estimate

the model (2) augmented with t as Perron and Campbell (1993). In this case, the model

is estimated by the RRR of R+
0t on R+

1t where R+
0t and R+

1t are regression residuals of 4xt
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and xt−1 on a constant, a linear trend and 4xt−1, · · · ,4xt−m+1. Denoting a normalized

estimator by β̃+, we have

β̃+ = β + β̄⊥U+
T ,

where TU+
T

d−→ (
∫

G+G+′ds)−1
∫

G+dV ′ and G+(·) is a projection residual in L2[0, 1] of

β̄′CW (r) on the space generated by 1 and r. Then, since the estimator of β1 is the first n1

rows of β̃+, we have, under the null hypothesis,

Tδ′(β̃+
1 − β1)

d−→ δ′β⊥,1(β′⊥β⊥)−1
(∫

G+G+′ds

)−1 ∫
G+dV ′. (11)

Then, this estimator is also of order T−1 and independent of the true value of τ2.

In this case, the test statistic L+
T is constructed using Ψ̂ = α̂′Σ̂−1α̂ and

Φ̂ = β̂+
1 (β̂+′β̂+)−1β̂+′

1 + β̂+
⊥,1

(
1
T

β̂+′
⊥ S+

11β̂
+
⊥

)−1

β̂+′
⊥,1, (12)

where S+
11 = T−1 ∑T

i=1 R+
1tR

+′
1t .

Theorem 1 Suppose f < min(n1, r) and µ1 = αρ1. Under the null hypothesis, L∗T , L+
T

d−→
χ2

(n1−f)(r−f).

Remark 1: We can easily see that both test statistics are invariant to the true values of

µ0 and µ1 = αρ1. Then, they can be applied to the stochastic cointegration model (ρ1 6= 0)

as well as the deterministic cointegration model (ρ1 = 0).

Remark 2: If we do not impose any restrictions on µ1 and the true process has a quadratic

trend, the test statistics do not converge to a chi-square distribution. In this case, we will

encounter the similar problem as explained in the earlier part of this section and Section

3 of Kurozumi (2003). We will be able to deal with this problem by the RRR of 4xt on

[xt−1, t
2] corrected for [1, t]′ or by the RRR of 4xt on xt−1 corrected for [1, t, t2]. We do

not pursue these RRRs in details because our interest is in the case where the process has

a linear trend.

L∗T and L+
T have an advantage over the test proposed in Kurozumi (2003) in that they

do not have to rely on information on the existence of τ and they have an exact asymptotic

chi-square distribution. On the other hand, they might be inferior in view of power because
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we inserted an additional regressor to estimate the model. This will be investigated by

simulations in the later section.

3. Alternative tests of rk(β⊥,1)

In this section, we consider the test of the rank of β⊥,1 when the process is trending. The test

statistic is constructed exactly in the same way as the test of rk(β1). We consider the null

hypothesis of rk(β⊥,1) = g against the alternative of rk(β⊥,1) > g where g < min(n1, n− r)

and the determinant equation

|β̂⊥,1Ψ̂β̂′⊥,1 − ν̂Φ̂| = 0, (13)

where, in this case, Ψ̂ and Φ̂ are (n−r)×(n−r) and n1×n1 matrices such that Ψ̂ d−→ Ψ > 0

(a.s.) and Φ̂
p−→ Φ > 0. The test statistic is

L⊥T =
n1∑

i=g+1

ν̂i

where ν̂i for i = 1, · · · , n1 are the ordered eigenvalues of (13). Using the estimator of the

RRR in (2) and choosing Ψ̂ and Φ̂ appropriately, Kurozumi (2003) showed that the test

statistic converges in distribution to a random variable that is bounded above by a chi-

square distribution. Although this test is applicable without investigating τ2, it sometimes

becomes too conservative in finite samples so that, as shown in the next section, it can

hardly reject the hypothesis under H1.

The reason why L⊥T becomes conservative is that the convergence rate of β̃ is different

depending on the premultiplying matrices. To see this, let us define β̃⊥ = β⊥−β(β̃′β)−1β̃′β⊥

and

β̃⊥,1 = β⊥,1 − β1(β̃′β)−1β̃′β⊥. (14)

We also define an n1 × (n1 − g) full column rank matrix η such that η is orthogonal to

sp(β⊥,1). Noting that Tγ′β̃ converges in distribution while τ ′β̃ is of order T−3/2 as proved

by Johansen (1991, 1995), we have

Tη′(β̃⊥,1 − β⊥,1) = −η′β1(β̃′β)−1[(β̃ − β)′γT, (β̃ − β)′τT ]

= −η′β1(β′β)−1[Op(1), 0] + op(1).
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Since the last column of Tη′(β̃⊥,1 − β⊥,1) converges to zero in probability, we can easily

deduce that the limiting distribution has a degenerate conditional variance matrix, which is

the reason why the test proposed is conservative.

We can circumvent this degeneracy by using the estimator considered in the previous

section. If we estimate the model (7) by the RRR, the limiting distribution of β̂∗⊥,1 becomes

Tη′(β̃∗⊥,1 − β⊥,1)
d−→ −η′β1(β′β)−1

∫
dV G∗′

(∫
G∗G∗′

)−1

L, (15)

which is obtained by adding the superscript ∗ to each matrix in the equation (14) and

using the expression (8). In this case, the test statistic L∗⊥T is constructed using Ψ̂ =

{L′(Υ′
T S∗11ΥT )−1L}−1 and

Φ̂ = β̂∗⊥,1(β̂
∗′
⊥nβ̂∗⊥n)−1β̂∗′⊥,1 + β̂∗1(β̂∗′n β̂∗n)−1(α̂′Σ̂−1α̂)−1(β̂∗′n β̂∗n)−1β̂∗′1 . (16)

If we use the estimator obtained by the Perron and Campbell’s method, we have the

same asymptotic result as (15) with L and G∗(·) replaced by In−r and G+(·). In this case,

the test statistic, which is denoted by L+
⊥T , is constructed using Ψ̂ = T−1 ¯̂

β
+′
⊥ S+

11
¯̂
β

+

⊥ and the

same Φ̂ as (16) with the superscript ∗ replaced by +.

Theorem 2 Suppose g < min(n1, n−r) and µ1 = αρ1. Under the null hypothesis, L∗⊥T , L+
⊥T

d−→ χ2
(n1−g)(n−r−g).

The advantage of the above two tests is that they have an asymptotic chi-square distri-

bution so that, at least asymptotically, they are size-controllable tests. We also note that

the test statistics are invariant to the true value of µ0 and µ1 as explained in Remark 1 and

then we can also apply these tests to the stochastic cointegration model as in the previous

section.

4. Finite sample simulations

In this section, we investigate the finite sample property of the tests proposed in the previous

sections and compare their performance with that of the testing procedures proposed by

Kurozumi (2003). The data generating process is a four-dimensional VECM of order one as

follows.

4xt = µ0 + αβ′xt−1 + εt,
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where {εt} ∼ i.i.d.(0, I4). The settings of parameters are the same as Kurozumi (2003)

except for µ0. Let

a1 =




0.3
−0.3
−0.8
0.8


 , a2 =




−0.5
0

−0.3
−0.5


 , a3 =




0.8
1

−0.5
−0.5


 , a4 =




−0.5
−0.8

0
−0.5


 ,

b1 =




0
0
1

−0.5


 , b2 =




1
−1
0
0


 , b3 =




0
0

0.5
1


 , b4 =




1
1
0
0


 , d1 =




0
0

0.5
0.5


 , d2 =




0.5
0.5
0
0


 .

We consider the following settings of parameters.

parameter sets for the test of rk(b1) parameter sets for the test of rk(b⊥,1)
α β b⊥ α β b⊥

DGP1 a1 b1 [b2, b3, b4] DGP1o a2 b2 [b1, b3, b4]
DGP2 [a1, a2] [b1, b2] [b3, b4] DGP2o [a1, a2] [b1, b2] [b3, b4]
DGP3 [a1, a2, a3] [b1, b2, b3] b4 DGP3o [a1, a2, a4] [b1, b2, b4] b3

We set the (2, 1) element of β as c1, which takes values of 0, 0.01, 0.025, 0.05, 0.075 and

0.1, and consider the test of the rank of the first two rows of β. The case where c1 = 0

corresponds to the null hypothesis under which the rank of β1 is 0, 1 and 1 for DGP1, 2 and

3, while it is 1, 2 and 2 when c1 6= 0, which corresponds to the alternative. µ0 is set to be

d1 or d2, which corresponds to the case where τ2 6= [0, 0]′ or = [0, 0] with τ2 being the last

two rows of τ .

Similarly, we set the (2, 1) element of β⊥ as c2 and consider the test of the rank of the

first two rows of β⊥. In this case, c2 = 0 implies that the rank of β⊥,1 is 1, 1 and 0 for

DGPo1, o2 and o3, respectively, while it is 2, 2, 1 under the alternatives of c2 6= 0.

We set x0 = 0 and discard the first 100 observations in all experiments. The number of

replication is 5,000, and the level of significance is set equal to 0.05.

For the purpose of comparison of the tests, we also investigate the two testing procedures

“TEST1” and “TEST2” proposed by Kurozumi (2003). To conduct the former procedure,

we first estimate the model (2) by the RRR and then construct the test statistic LT by letting

Ψ̂ = α̂′Σ̂−1α̂ and Φ̂ = β̂1(β̂′β̂)−1β̂′1+γ̂1(γ̂′γ̂)−1(T γ̂′S−1
11 γ̂)(γ̂′γ̂)−1γ̂′1+12τ̂1(τ̂ ′τ̂)−2τ̂ ′1. The null

hypothesis is rejected when LT > c(n1−f)(r−f) while it is accepted when LT < c(n1−f−1)(r−f),

where ck is a critical value of χ2
k. For the case where c(n1−f−1)(r−f) ≤ LT ≤ c(n1−f)(r−f), we
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calculate T 2 times the smallest non-zero eigenvalue of (5) and the null hypothesis is rejected

when it is less than a critical value tabulated in Table 1 of Kurozumi (2003).

On the other hand, TEST2 requires the pretest before the construction of LT . We

fist investigate whether or not τ2 = 0 using the t-statistic for each element of τ2. If τ2

is judged not to be different from zero, we construct LT using the same Ψ̂ as TEST1

and Φ̂ = β̂1(β̂′β̂)−1β̂′1 + γ̂1(γ̂′γ̂)−1(T γ̂′S−1
11 γ̂)(γ̂′γ̂)−1γ̂′1, and compare it with c(n1−f−1)(r−f).

Otherwise, we construct the same statistic LT as TEST1 and compare it with c(n1−f)(r−f).

Table 1 reports the empirical sizes and powers of the tests of rk(β1). S1T (d1) and S2T (d1)

denote the testing procedures TEST1 and TEST2 when µ0 = d1 while S1T (d2) and S2T (d2)

correspond to the case where µ0 = d2. L∗T and L+
T have only one column because they are

invariant to µ0. When the cointegrating rank r is 1, all the tests except for S1T (d2) tend to

overly reject the null hypothesis (c1 = 0), while S1T (d2) is conservative. On the other hand,

under the alternative hypothesis (c1 > 0), S1T and S2T seem to be slightly more powerful

than L∗T and L+
T .

When the cointegrating rank is 2 and µ0 is d1, which corresponds to the case where

τ2 6= 0, S1T and S2T have a reasonable size and power, while in the case of µ0 = d2, both

testing procedures are too conservative and have very low power. On the other hand, both

L∗T and L+
T perform fairly well both under the null and the alternative, although they are

slightly less powerful than S1T (d1) and S2T (d1).

When r = 3, we do not have to rely on either S1T or S2T but we can use T ×LT as the

test statistic that is asymptotically chi-square distributed as explained in Kurozumi (2003).

All the tests perform well except that L∗T and L+
T have slightly large size distortions when

T = 100.

The finite sample performance of the tests of rk(β⊥,1) is summarized in Table 2. When

r = 1 and 2, although L⊥T performs well for µ0 = d2, it has very low power when µ0 = d1.

On the other hand, L∗⊥T and L+
⊥T are more powerful than L⊥T but also tend to overly

reject the null hypothesis. When r = 3, we use T ×L⊥T as the test statistic as explained in

Kurozumi (2003), which is not conservative but has an exact asymptotic chi-square distri-

bution. From the table, we can see that L⊥T performs better than L∗⊥T and L+
⊥T .
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The other interesting feature we can see from Tables 1 and 2 is that the finite sample

performance of the tests based on the RRR of (7) are almost the same as that base on the

Perron and Campbell’s estimation. We also note that they are invariant to µ0 and ρ1, so

that entries corresponding to these statistics in the tables can be seen as the finite sample

performance of them when xt is stochastically cointegrated, in which case they are the only

method to test rk(β1) and rk(β⊥,1).

5. Concluding remarks

In this paper we proposed the test statistics for rk(β1) and rk(β⊥,1) when the process has

a linear trend. The advantage of these statistics is that they can be applied to both the

deterministic and stochastic cointegration models, and they are asymptotically chi-square

distributed, so that we do not have to rely on a pretest or a conservative test.

From Monte Carlo simulations, it is found that none of the test statistics dominates

others when r < n− 1 and then they should be used to complement each other in practice.

For the test of the rank of β1, if we have a strong confidence from some a priori information

on whether τ2 is equal to zero or not, we recommend using the testing procedures proposed

by Kurozumi (2003); otherwise the two test statistics proposed in this paper perform better.

On the other hand, for the test of the rank of β⊥,1, we should carefully use LT when we

believe τ2 6= 0, while the new tests have relatively steady performance in any specification

of the deterministic term. Finally, it should be mentioned that the tests proposed in this

paper are applicable both to the deterministic and stochastic cointegration models.
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Appendix

Proof of Theorem 1: First we consider the limiting distribution of L∗T . Since the columns

of δ span the orthogonal space to sp(β1) under the null hypothesis, an n1 × f matrix δ⊥

spans the same column space as sp(β1). Letting H = [δ⊥, δ], we can see that the determinant

equation (5) is equivalent to

|H ′||β̃∗1Ψ̃β̃∗′1 − λ̂Φ̃||H| = 0, (17)

where Ψ̃ and Φ̃ are defined in the same way as Ψ̂ and Φ̂ using the (infeasible) normalized

estimator. The equation (17) holds because H is non-singular and the determinant equation

is invariant to the normalization of the estimators of β and β⊥. Since β̃∗, α̃ and Σ̂ are

consistent, we have, using (9),

H ′β̃∗1Ψ̃β̃∗′1 H =

[
δ′⊥β̃∗1Ψ̃β̃∗′1 δ⊥ δ⊥β̃∗1Ψ̃(β̃∗′1 δT )

(Tδ′β̃∗1)Ψ̃β̃∗′1 δ⊥ (Tδ′β̃∗1)Ψ̃(β̃∗′1 δT )

]

d−→
[

δ′⊥β1Ψβ′1δ⊥ δ′⊥β1ΨX
X ′Ψβ′1δ⊥ X ′ΨX

]
,

Similarly, since Υ̃′
T S∗11Υ̃T converges in distribution to

∫
G∗G∗′ds, λ̂H ′Φ̃H becomes

T 2λ̂

[
0 0
0 δ′β⊥,1(β′⊥β⊥)−1L′(

∫
G∗G∗′ds)−1L(β′⊥β⊥)−1β′⊥,1δ

]
+ op(T 2).

Then, the determinant equation (17) is asymptotically equal to
∣∣∣∣∣

[
δ′⊥β1Ψβ′1δ⊥ δ′⊥β1ΨX
X ′Ψβ′1δ⊥ X ′ΨX

]
− T 2λ̂

[
0 0
0 δ′β⊥,1(β′⊥β⊥)−1L′(

∫
G∗G∗′ds)−1L(β′⊥β⊥)−1β′⊥,1δ

]∣∣∣∣∣

=
∣∣δ′⊥β1Ψβ′1δ⊥

∣∣×
∣∣∣X ′

{
Ψ−Ψβ′1δ⊥(δ′⊥β1Ψβ′1δ⊥)−1δ′⊥β1Ψ

}
X

− T 2λ̂

[
0 0
0 δ′β⊥,1(β′⊥β⊥)−1L′(

∫
G∗G∗′ds)−1L(β′⊥β⊥)−1β′⊥,1δ

]∣∣∣∣∣ = 0. (18)

Therefore, the eigenvalues λ̂f+1, · · · , λ̂p converge in probability to zeros and are of order

T−2.

Here, notice that δ′⊥β1 is of full row rank n1−f because sp(δ⊥) = sp(β1) and δ⊥ is of full

column rank. Then, in the same way as Johansen (1988, p.246), we can find a r × (r − f)

matrix J with rank (r − f) such that

JJ ′ = Ψ−Ψβ′1δ⊥(δ′⊥β1Ψβ′1δ⊥)−1δ′⊥β1Ψ, (19)
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with J ′(β′1δ⊥) = 0 and J ′Ψ−1J = Ir−f , implying that J ′(α′Σ−1α)−1J = Ir−f because

Ψ = α′Σ−1α. Then, (18) becomes
∣∣∣∣∣X

′JJ ′X − T 2λ̂δ′β⊥,1(β′⊥β⊥)−1L′
(∫

G∗G∗′ds

)−1

L(β′⊥β⊥)−1β′⊥,1δ

∣∣∣∣∣ = 0. (20)

The variance matrix of X ′J conditioned on G∗(·) is given by

δ′β⊥,1(β′⊥β⊥)−1L′
(∫

G∗G∗′ds

)−1

L(β′⊥β⊥)−1β′⊥,1δ ⊗ Ir−f . (21)

Since δ′β⊥,1 is of full row rank, we can see that the conditional variance is of full rank (a.s.).

Then, by multiplying the square root of the left-hand side of (21) from both sides of (20),

the determinant equation asymptotically becomes

|X ′
0X0 − λIn1−f | = 0,

where vec(X0) ∼ N(0, I(n1−f)(r−f)). Then, L∗T converges in distribution to χ2
(n1−f)(r−f).

Exactly in the same way, we can show the convergence of L+
T using (11).2

Proof of Theorem 2: This is proved exactly in the same way as Theorem 1 by letting

H = [η⊥, η] where η⊥ is an n1 × (n− r − g) full column rank matrix such that η′⊥η.2
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Table 1. Rejection frequencies of the tests of rk(β1)

r = 1 c1 S1T (d1) S2T (d1) S1T (d2) S2T (d2) L∗T L+
T

0 0.103 0.111 0.040 0.100 0.126 0.125
0.01 0.116 0.124 0.041 0.113 0.136 0.136

T = 100 0.025 0.167 0.181 0.066 0.179 0.186 0.184
0.05 0.349 0.368 0.185 0.383 0.343 0.342
0.075 0.562 0.581 0.413 0.675 0.534 0.533
0.1 0.748 0.759 0.711 0.902 0.712 0.712
0 0.073 0.077 0.028 0.081 0.086 0.086

0.01 0.113 0.120 0.042 0.128 0.124 0.124
T = 200 0.025 0.317 0.323 0.142 0.347 0.290 0.290

0.05 0.739 0.744 0.668 0.898 0.699 0.698
0.075 0.944 0.945 0.984 0.999 0.919 0.919
0.1 0.988 0.989 1.000 1.000 0.982 0.982

r = 2 c1 S1T (d1) S2T (d1) S1T (d2) S2T (d2) L∗T L+
T

0 0.060 0.086 0.000 0.009 0.098 0.098
0.01 0.070 0.099 0.001 0.015 0.107 0.108

T = 100 0.025 0.115 0.164 0.001 0.038 0.145 0.145
0.05 0.257 0.356 0.006 0.078 0.250 0.251
0.075 0.466 0.559 0.064 0.108 0.394 0.393
0.1 0.652 0.714 0.324 0.133 0.561 0.562
0 0.046 0.071 0.000 0.007 0.075 0.075

0.01 0.080 0.128 0.000 0.033 0.094 0.094
T = 200 0.025 0.289 0.404 0.001 0.075 0.227 0.226

0.05 0.730 0.799 0.190 0.099 0.550 0.549
0.075 0.936 0.952 0.932 0.125 0.807 0.806
0.1 0.985 0.985 0.999 0.157 0.931 0.931

r = 3 c1 S1T (d1) S2T (d1) S1T (d2) S2T (d2) L∗T L+
T

0 0.096 - 0.056 - 0.110 0.110
0.01 0.925 - 0.420 - 0.318 0.314

T = 100 0.025 0.986 - 0.724 - 0.794 0.792
0.05 0.994 - 0.862 - 0.979 0.979
0.075 0.996 - 0.901 - 0.998 0.998
0.1 0.997 - 0.924 - 1.000 1.000
0 0.077 - 0.047 - 0.066 0.066

0.01 0.999 - 0.758 - 0.729 0.727
T = 200 0.025 1.000 - 0.909 - 0.994 0.994

0.05 1.000 - 0.952 - 1.000 1.000
0.075 1.000 - 0.967 - 1.000 1.000
0.1 1.000 - 0.974 - 1.000 1.000



Table 2. Rejection frequencies of the tests of rk(β⊥,1)

r = 1 c2 L⊥T (d1) L⊥T (d2) L∗⊥T L+
⊥T

0 0.044 0.088 0.142 0.143
0.01 0.044 0.096 0.151 0.149

T = 100 0.025 0.050 0.136 0.178 0.178
0.05 0.069 0.283 0.286 0.286
0.075 0.108 0.492 0.430 0.431
0.1 0.187 0.666 0.587 0.584
0 0.029 0.066 0.091 0.091

0.01 0.031 0.096 0.111 0.110
T = 200 0.025 0.043 0.285 0.233 0.232

0.05 0.119 0.712 0.573 0.570
0.075 0.420 0.923 0.830 0.828
0.1 0.830 0.983 0.940 0.938

r = 2 c2 L⊥T (d1) L⊥T (d2) L∗⊥T L+
⊥T

0 0.000 0.062 0.110 0.109
0.01 0.000 0.067 0.112 0.112

T = 100 0.025 0.001 0.118 0.152 0.151
0.05 0.002 0.292 0.276 0.271
0.075 0.008 0.512 0.445 0.443
0.1 0.054 0.703 0.612 0.609
0 0.000 0.049 0.077 0.078

0.01 0.000 0.090 0.101 0.102
T = 200 0.025 0.000 0.307 0.248 0.245

0.05 0.008 0.753 0.610 0.608
0.075 0.304 0.941 0.858 0.858
0.1 0.805 0.986 0.954 0.953

r = 3 c2 L⊥T (d1) L⊥T (d2) L∗⊥T L+
⊥T

0 0.077 0.074 0.111 0.111
0.01 0.299 0.201 0.120 0.119

T = 100 0.025 0.866 0.682 0.172 0.172
0.05 0.994 0.952 0.343 0.342
0.075 0.999 0.986 0.553 0.552
0.1 0.999 0.992 0.741 0.739
0 0.065 0.066 0.074 0.074

0.01 0.942 0.779 0.111 0.111
T = 200 0.025 1.000 0.999 0.288 0.287

0.05 1.000 1.000 0.713 0.711
0.075 1.000 1.000 0.923 0.922
0.1 1.000 1.000 0.986 0.985




