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Abstract

In empirical applications based on linear regression models, structural changes often
occur in both the error variance and regression coe¢ cients possibly at di¤erent dates.
A commonly applied method is to �rst test for changes in the coe¢ cients (or in the
error variance) and, conditional on the break dates found, test for changes in the
variance (or in the coe¢ cients). In this note, we provide evidence that such procedures
have poor �nite sample properties when the changes in the �rst step are not correctly
accounted for. In doing so, we show that the test for changes in the coe¢ cients (or
in the variance) ignoring changes in the variance (or in the coe¢ cients) induces size
distortions and loss of power. Our results illustrate a need for a joint approach to
test for structural changes in both the coe¢ cients and the variance of the errors. We
provide some evidence that the procedures suggested by Perron, Yamamoto and Zhou
(2019) provide tests with good size and power.
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1 Introduction

In a companion paper, Perron, Yamamoto and Zhou (2019) provided a comprehensive treat-

ment of the problem of testing jointly for structural changes in both the regression coe¢ cients

and the variance of the errors in a single equation regression model involving stationary re-

gressors, allowing the break dates for the two components to be di¤erent or overlap. Their

framework is quite general with assumptions no stronger than those in Qu and Perron (2007).

The distribution of the errors can be non-normal and conditional heteroskedasticity is per-

missible. Extensions to the case with serially correlated errors were also covered. They also

provided the required tools to address the following testing problems, among others: a) test-

ing for given numbers of changes in regression coe¢ cients and error variance; b) testing for

an unknown number of changes less than a pre-speci�ed maximum; c) testing for changes

in variance (regression coe¢ cients) allowing for a given number of changes in regression

coe¢ cients (variance); d) a sequential procedure to estimate the number of changes present.

Common methods in this context of testing for change in variance (coe¢ cient) when

changes in coe¢ cients (variance) are possible are the following. When testing for a change

in the error variance, many studies ignore the possibility of changes in coe¢ cients and simply

apply standard Sup-Wald type tests (e.g., Andrews, 1993, Bai and Perron, 1998) for changes

in the mean of the absolute value of the estimated residuals (e.g., Herrera and Pesavento,

2005, Stock and Watson, 2002). For the problem of testing for a change in variance only

(imposing no change in the regression coe¢ cients), a more appropriate test is the CUSUM

of squares test of Brown, Durbin and Evans (1975) extended by Deng and Perron (2008a) to

allow general conditions on the regressors and the errors (as suggested by Inclán and Tiao,

1994, for normally distributed time series). This test is, however, adequate only with no

change in coe¢ cient. Similarly, when testing for a change in coe¢ cients, most work simply

use a similar Sup-Wald test applied to the regression coe¢ cient ignoring the possibility of

a variance change. It is often the case that changes in both coe¢ cients and variance occur

and the break dates need not be the same. Also, a common two step method is to �rst tests

for changes in the regression coe¢ cients and conditioning on the break dates found, then

test for changes in variance. As will be shown in this note, all three approaches are clearly

inappropriate as they su¤er from severe size distortions and/or loss of power. Hence, what is

needed is a joint approach when changes are suspected in both the coe¢ cients and variance.

This was covered in Perron, Yamamoto and Zhou (2019) and we present simulations results

showing that their procedures yield tests with the good size and power.
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In this note, we �rst assess the �nite sample properties of structural change tests in

coe¢ cients when changes in the error variance are ignored. We then consider the properties

of the CUSUM of squares test which tests for changes in the error variance ignoring possible

changes in the coe¢ cients. We also consider the two step method to test for a change in

the error variance. All methods are shown to su¤er from important size distortions and/or

power losses. We then present evidence that the joint approach of Perron, Yamamoto and

Zhou (2019) provides test with good size and power. Our work is related to that of Pitarakis

(2004) and can be viewed as complementary. The tests considered are di¤erent. When

testing for changes in coe¢ cient, he considers the Sup-LM test (e.g., Andrews, 1993) which

is often prone to important conservative size distortions, while we consider the Sup-LR test.

When testing for changes in variance, he also considers some LM-type test, while we focus

on the CUSUM of squares, shown to be valid under general conditions by Deng and Perron

(2008a). He also considers only the issue of size distortions, while we also present results

related to power. Finally, we also consider the properties of the commonly used two step

method discussed above to detect a change in variance. On the other hand, his work contains

theoretical results, while we solely focus on limited simulation experiments.

2 Models and test statistics

The data generating process (DGP) is a sequence of i.i.d. Normal random variable with

mean and variance that can change at a single date. We specify

yt = �+ �2I(t > T
c) + et (1)

for t = 1; :::; T; where et � i:i:d:N(0; 1+�1I(t > T v)) with I(�) the indicator function. To an-
alyze the e¤ect of ignoring a variance break on the size of test for a change in coe¢ cients (here

the mean), we consider �2 = 0. We consider 3 break dates, T v = f[0:25T ]; [0:5T ]; [0:75T ]g
and variance change �1 varying between 0 and 10 in steps of 0.05. The sample size is set to

T = 100 and 5000 replications are used. The test considered is the standard Sup-LR test (see

Andrews, 1993) for a one-time change in � occurring at some unknown date. To assess the

e¤ect on power, we consider T v = f[0:5T ]; [0:75T ]g;T c = f[0:3T ]g, T = 100; �1 = f0; 1; 2; 3g
and �2 varying between 0 and 2.

We consider the e¤ect of a change in mean on the size and power of tests for a change

in variance that do not take into account the former change. We consider two testing

procedures. One is based on the CUSUM of squares test of Brown, Durbin and Evans (1975)

and advocated as a test for a change in variance by Inclán and Tiao (1994), who showed
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that it is related to the LR test for a change in variance in a sequence of i:i:d: Normal

random variables (though the equivalence is not exact in �nite samples). Deng and Perron

(2008a) generalized the conditions under which the test is valid; e.g., allowing for mixing

type condition on the errors that permit conditional heteroskedasticity. It is de�ned by

CUSQ = max
k+1�r�T

p
T=2

����S(r)T � r � k
T � k

���� (2)

where S(r)T = (
Pr

t=k+1 ev2t )=(PT
t=k+1 ev2t ) with evt the recursive residuals for t = k + 1; :::; T

and k the number of regressors (here, k = 1). Here, its limit distribution under the null

hypothesis is the supremum (over [0; 1]) of a Brownian Bridge process. To analyze the size

of the test, DGP (1) with �1 = 0 is used and we set T c = f[:25T ]; [:5T ]; [:75T ]g with �2
varying between 0 and 10. For power, the DGP used is again (1) with �1 varying between

0 and 15 and �2 = f0; 1; 2; 3g. The second procedure we consider is the two step method
used by Herrera and Pesavento (2005) and Stock and Watson (2002), among others, which

applies a test for a change in the mean of the absolute value of the estimated residuals when

the later are obtained allowing for a change in the regression coe¢ cients (here the mean)

ignoring the possibility of a break in the error variance. Again, DGP (1) is used to assess

the size (�1 = 0) and power properties. For size, �2 varies between 0 and 10 and we set

T c = f[:25T ]; [:5T ]; [:75T ]g, while for power �2 varies between 0 and 3 and we consider two
sets of break dates, namely fT c = [:5T ]; T v = [:3T ]g and fT c = [:75T ]; T v = [:3T ]g.

3 Results

The size of the Sup-LR test for a change in � under DGP (1) is presented in Figure 1. The

results show important size distortions unless the break occurs early at T v = [0:25T ], and

these are increasing with �1. The results for power under DGP (1) are presented in Figure

2, which show that power decreases as the magnitude of �1 increases. We next consider the

results when testing for variance changes. The size of the CUSQ test (2) ignoring a coe¢ cient

change is presented in Figure 3. In all cases the size of the test increases to one rapidly as

the magnitude of the change in mean �2 increases. This is not surprising in view of the fact

that the CUSQ test has power against a change in the regression coe¢ cients as originally

argued by Brown, Durbin and Evans (1975); see also Deng and Perron (2008b). The results

for power are presented in Figure 4, which show that a change in mean that is unaccounted

for can increase the power of the CUSQ test. This result is, however, of little help given the

large size distortions. Finally, the results of the two step method are presented in Figures 5
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and 6. They show that the test su¤ers from serious size distortions, which increase as the

change in mean increases. For the case of a break in mean at mid-sample, which su¤ers from

conservative size distortions, Figure 6 shows that power decreases as the magnitude of the

coe¢ cient break increases.

An online supplement show that the results remain qualitatively the same for the fol-

lowing extended cases: a) models with lagged dependent variables; b) models with multiple

structural changes; c) CUSQ tests for a change in variance that correct for potential corre-

lation in the error variance; e.g., conditional heteroskedasticity.

4 Tests allowing for joint changes

Perron, Yamamoto and Zhou (2019) provided a comprehensive treatment for the problem

of testing jointly for structural changes in the regression coe¢ cients and the variance of the

errors. Here, we consider two versions of their tests to illustrate how they solve the size and

power problems. The �rst version investigates whether a given number (m) of structural

changes in the coe¢ cients are present when a given number (n) of structural changes in

the error variance are accounted for. The structural change dates for both the coe¢ cients

and the variance are unknown and occur at the same or di¤erent times. The second version

considers whether n structural changes in the error variance are present when m structural

changes in the regression coe¢ cients are allowed. Following their labels, we call the former

testing problem TP-3 and the latter TP-2. The hypotheses are H0 : fm = 0; n = nag versus
H1 : fm = ma; n = nag for TP-3 and H0 : fm = ma; n = 0g versus H1 : fm = ma; n = nag
for TP-2, wherema and na are pre-selected values. Denote the break dates for the coe¢ cients

by fT c1 ; � � � ; T cmg ; those for the error variance by fT v1 ; � � � ; T vng and the break fractions by
f�c1; � � � ; �cmg and f�v1; � � � ; �vng, respectively. We also let the number of the union of the
coe¢ cient and the variance breaks be K.

The test statistics are the quasi-likelihood ratio tests assuming i.i.d. Gaussian distur-

bances. For TP-3, the log-likelihood function underH0 is logLT (T v1 ; :::; T
v
na) = �(T=2)(log 2�+

1) �
Pna+1

i=1 [(T
v
i � T vi�1)=2)] log e�2i , where e�2i = (T vi � T vi�1)�1

PT vi
t=T vi�1+1

(yt � e�)2 for i =
1; :::; na+1 with e� = T�1PT

t=1 yt. UnderH1, logLT (T
c
1 ; :::; T

c
ma
;T v1 ; :::; T

v
na) = �(T=2)(log 2�+

1) �
Pna+1

i=1 [(T
v
i � T vi�1)=2)] log �̂2i , where �̂2i = (T vi � T vi�1)�1

PT vi
t=T vi�1+1

(yt � �̂t;j)2 for i =
1; :::; na+1 with �̂t;j = (T

c
j �T cj�1)�1

PT cj
t=T cj�1+1

(yt=�̂i). Because the break dates are unknown,
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the supremum type LR test over all the permissible break dates is given by

supLR3;T (ma; na; "jm = 0; na)

= 2

24 sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

log L̂T (T
c
1 ; :::; T

c
ma
;T v1 ; :::; T

v
na)� sup

(�v1 ;:::;�vna)2�v;"
log eLT (T v1 ; :::; T vna)

35
= 2

h
log L̂T (eT c1 ; :::; eT cma

; eT v1 ; :::; eT vna)� log eLT (T̂ v1 ; :::; T̂ vna)i
where �" is the union of the set of permissible break fractions for the coe¢ cients and variance

and �v;" is a set of the permissible variance break fractions. " is a small positive trimming

value so that

�" = f(�c1; :::; �cm; �v1; :::; �vn) ; for (�1; :::; �K) = (�c1; :::; �cm) [ (�v1; :::; �vn)
j�j+1 � �jj � " (j = 1; :::; K � 1); �1 � "; �K � 1� "g

and �v;" = f(�v1; :::; �vn) ;
���vi+1 � �vi �� � " (i = 1; :::; na � 1); �v1 � "; �vna � 1 � "g. For TP-2,

the Sup-LR test is

supLR2;T (ma; na; "jn = 0;ma)

= 2

24 sup
(�c1;:::;�cma ;�

v
1 ;:::;�

v
na)2�"

log L̂T (T
c
1 ; :::; T

c
ma
;T v1 ; :::; T

v
na)� sup

(�c1;:::;�cma)2�c;"
log eLT (T c1 ; :::; T cma

)

35
= 2

h
log L̂T (eT c1 ; :::; eT cma

; eT v1 ; :::; eT vna)� log eLT (T̂ c1 ; :::; T̂ cma
)
i

where log eLT (T c1 ; :::; T cma
) = �(T=2)(log 2�+1)�(T=2) log e�2, with e�2 = T�1PT

t=1(yt��̂t;j)2,
�̂t;j = (T

c
j � T cj�1)�1

PT cj
t=T cj�1+1

yt and �c;" = f(�c1; :::; �cm) ;
���cj+1 � �cj�� � " (j = 1; :::;ma �

1); �c1 � "; �cma
� 1 � "g. Perron, Yamamoto and Zhou (2019) showed that the asymptotic

distributions of these tests are bounded by limit distributions obtained in Bai and Perron

(1998). Hence, somewhat conservative tests are possible using their critical values. They

also show that the distortions are very minor via Monte Carlo simulations.

We implemented the Sup-LR3;T and Sup-LR2;T tests for the same DGP as above. We

concentrate on testing for the presence of breaks rather than determining their number.

Hence, we use the true values na = 1 and ma = 1 as applicable when breaks are present.

The size of the Sup-LR3;T test for a change in � given one break in the error variance is

presented in Figure 7. As explained in Perron, Yamamoto and Zhou (2019), the exact size

is slightly smaller than the nominal level; the distortions due to the variance break are,

however, minor. The size is more distorted as �1 becomes larger for the case of T v = [0:25T ]
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but there are no evident distortions for the cases with T v = [0:5T ] and [0:75T ]. The power of

the Sup-LR3;T test is presented in Figure 8 for the cases T c = [0:3T ] and T v = [0:5T ] as well

as T c = [0:3T ] and T v = [0:75T ]. For the �rst case, the power function decreases somewhat

as the variance break increases. However, and more importantly, all power functions are

higher than those presented in Figure 2, which indicates a reliable power performance. For

the second case, the magnitude of the variance break has no evident e¤ect on the power

function, which remains high.

To test for structural breaks in the error variance, Figure 9 shows the size of the Sup-LR2;T
test which accounts for a change in the mean. Again, the exact size is slightly conservative,

as expected, but not a¤ected by the magnitude of �2. Figure 10 shows the power functions

of the Sup-LR2;T test for the cases T c = [0:5T ] and T v = [0:3T ] as well as T c = [0:75T ] and

T v = [0:3T ]. Here, the power functions are not a¤ected by �2 for both cases and are higher

than those in Figure 6. The results overall illustrate signi�cant improvements of the size and

power properties when using the conditional tests.

5 Conclusion

In this note, we provided evidence about the �nite sample properties of the following testing

procedures: a) applying a Sup-LR test for a change in regression coe¢ cients ignoring the

presence of a change in variance; b) applying a CUSUM of squares test for a change in

variance ignoring the presence of a change in regression coe¢ cients; c) a two step testing

procedure for structural changes in the error variance using a test for a change in the mean

of the absolute value of the estimated residuals when the latter are obtained allowing for a

change in the regression coe¢ cients ignoring the possibility of a break in the error variance

and regression coe¢ cients in a linear regression model possibly at di¤erent dates. The results

show that all procedures have important size distortion and/or power losses. In an online

supplement, the same qualitative results are shown to hold for models with lagged dependent

variables, models with multiple structural changes and tests for changes in variance that

account for conditional heteroskedasticity. While the setup considered is quite simple, it

shows how inference can be misleading when changes in the coe¢ cients and changes in the

error variance are not analyzed jointly. To that e¤ect, we presented limited results showing

that the tests proposed by Perron, Yamamoto and Zhou (2019) have good size and power

in small samples. This paper contains more extensive results about various tests, including

sequential methods to estimate the number of breaks in the regression coe¢ cients and error

variance, which should be useful in practice.
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Figure 1: Size of the Sup-LR test for a coe¢ cient change ignoring a variance change

Figure 2: Power of the Sup-LR test for a coe¢ cient change ignoring a variance change
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Figure 3: Size of the CUSQ test for a variance change ignoring a coe¢ cient change

Figure 4: Power of the CUSQ test for a variance change ignoring a coe¢ cient change

9



Figure 5: Size of the two step test for a variance change ignoring a coe¢ cient change

Figure 6: Power of the two step test for a variance change ignoring a coe¢ cient change
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Figure 7: Size of the Sup-LR3;T test for a coe¢ cient change accounting for a variance
change

Figure 8: Power of the Sup-LR3;T test for a coe¢ cient change accounting for a variance
change
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Figure 9: Size of the Sup-LR2;T test for a variance change accounting for a coe¢ cient
change

Figure 10: Power of the Sup-LR2;T test for a variance change accounting for a coe¢ cient
change
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