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Abstract

We propose a new solution concept in the roommate problem, based on the “ro-
bustness” of deviations (i.e., blocking coalitions). We call a deviation from a matching
robust up to depth k, if none of the deviators gets worse off than at the original match-
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depth k. We constructively demonstrate that a SaRD matching always exists for k = 3,
and establish sufficient conditions for k = 1 and 2.
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1 Introduction

The roommate problem is the one-sided one-to-one matching problem. On the one hand, it

is the simplest class of one-sided matching problems, and is a special case of both hedonic

coalition formation (Bogomolnaia and Jackson, 2002) and network formation (Jackson,

2008). On the other hand, it is general enough to capture some difficulties associated with

one-sidedness: In particular, the roommate problem may not possess a stable matching

even though the marriage problem (i.e., the two-sided one-to-one matching problem) is

its subclass and always has a stable matching.1 For the non-existence of a stable outcome

is also an issue in the more-general one-sided problems, the roommate problem has been

long studied in game theory and other related fields.

The purpose of the present paper is to propose a (class of) new solution concept(s) for

the roommate problem, which weakens stability and is applicable even when no stable

matching exists. In doing so, we first differentiate potential deviations from a matching

based on their “robustness.” We say that a subset D of agents forms a deviation from an

original matching μ if all agents in D can be strictly better off by rematching with each

other. Suppose that a deviation D from μ leads to a new matching ν. If ν is not stable,

which must be the case when no stable matching exists at all, the “original” deviation

to ν may be followed by a second deviation, the second by a third, and so on. Figure 1

illustrates a “tree” of such deviation chains: ν has three possible deviations that lead to

ν1
1, ν2

1, and ν3
1, these in turn have further deviations to ν1

2, ν2
2, . . . , ν6

2, and so on. Taking the

possibility of subsequent deviations into account, we define the robustness of an original

deviation as follows: a deviation is robust up to depth k if none of the deviators gets worse

off than at the original matching after any sequence of κ ≤ k subsequent deviations. In

1Moreover, it is shown by simulations that the proportion of the problem instances (i.e., preference
profiles) with no stable matching increases steeply as the number of agents increases (Gusfield and Irving,
1989; Pittel and Irving, 1994).
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the case of Figure 1, for instance, the deviation from μ to ν is robust up to depth 2 if none

of the deviators gets worse off at any of the matchings v1
1, . . . , v3

1 and ν1
2, . . . , ν6

2 than at

μ. It is robust up to depth 1 but not up to depth 2 if none in D gets worse off at any of

v1
1, . . . , v3

1 but at least one does at some of ν1
2, . . . , ν6

2. When a deviation is robust up to

depth k, the deviators are guaranteed to be better off unless sufficiently many (i.e., more

than k) subsequent deviations follow.

A possible way to interpret our robustness concept is to suppose that agents have

max-min preferences and search for the worst-case consequence of their deviation within

those after k or less subsequent deviations. In such a scenario, potential deviators would

agree to form a deviation if (and only if) it is robust up depth k. With this interpretation

the depth k can be seen as the depth of reasoning, and the more sophisticated the agents

are the harder it is for them to agree on a possible deviation. Then one could argue that a

deviation would be likely to realize when it is robust up to a large depth k, as it would be

reachable even among extremely risk-averse and highly sophisticated agents.

For another interpretation that would be more broadly applicable, suppose next that

forming a deviation takes a certain period of time and hence, at most one deviation can

occur per period. With such a dynamic interpretation, the robustness of a deviation up

to depth k means that the gain from it is guaranteed to last for at least k periods of time,

no matter what happens in the future. To form a non-robust deviation, in contrast, the

deviators must accept the risk of potential losses within a shorter time window. It would

be then natural to argue that potential deviators would have less hesitation to realize a

deviation in the former case than the latter. For a matching to remain long, therefore, a

robust deviation up to k would be a more serious threat than non-robust deviations and

those robust up to smaller k’s.

Based on the idea that robust deviations make a matching lesser stable than the others,

we search for a matching that is free from the most serious deviations when any matching
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is subject to some deviations (i.e., when no stable matching exists). More specifically, we

define a matching to be stable against robust deviations (henceforth, SaRD) up to depth k

when no deviation from it is robust up to depth k. By definition, if a matching is SaRD up

to depth k so is it up to any higher depth k′ > k. Our objective is thus to investigate the

existence of a matching that is SaRD up to as small depth k as possible.

To see how our concepts work in simple cases, suppose first that three agents a1, a2,

and a3 have a preference such that, respectively, a2 �a1 a3, a3 �a2 a1, and a1 �a3 a2. If the

initial matching is such that every agent is single, none can get strictly worse off after any

sequence of voluntary deviations. That is, any deviation (e.g., the one by D = {a1, a2})

is robust up to any depth k and therefore, this initial matching is not SaRD up to any

depth k. Now suppose instead that a1 and a2 are matched while a3 is single at the initial

matching. Then, a deviation is possible only by D = {a2, a3}, and after that, there is a

unique subsequent deviation by D′ = {a1, a3}. Notice that a2 ∈ D becomes single after

D′ deviates and hence strictly worse off than at the initial matching. That is, the original

deviation by D is not robust up to depth 1 and the initial matching is SaRD up to depth 1.

Next suppose that there are five agents, from a1 to a5, and each ai has a preference

such that ai+1 �ai ai−1 and all the other agents are unacceptable, where the subscripts are

in modulo 5. As in the previous paragraph, a matching is not SaRD up to any depth k

if it matches less than two pairs of agents. Suppose thus that a1 and a3 are matched to

a2 and a4, respectively, and a5 is single. Starting from this matching, the only possible

deviation is by D = {a4, a5}, and thereafter, the unique subsequent deviations are first

by D1 = {a2, a3} and then by D2 = {a1, a5}. Notice that a4 and a5 remain matched to

each other when D1 deviates, while a4 ∈ D becomes single after D2 follows. That is, the

original deviation by D is robust up to depth 1 but not up to depth 2; consequently, the

initial matching is SaRD up to depth 2 but not up to depth 1. Similarly, if there are seven

agents with a cyclic preference profile as above, a matching is SaRD up to depth 3 if it
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matches three pairs of “adjacent” agents (e.g., {a1, a2}, {a3, a4}, {a5, a6}), and no matching

is SaRD up to depth 2.2 From these observations, one might expect that it becomes harder

to eliminate serious deviations (i.e., those robust up to larger k’s) when there is a longer

preference cycle.

In fact, our main result demonstrates that we can construct a matching that is SaRD

up to depth k = 3 for any roommate problem; i.e., with any number of agents and any

preference profile. To see the key idea underlying our construction, now suppose that

there are nine agents, from a1 to a9, and each ai’s preference is such that ai+1 �ai ai−1

and all the others are unacceptable, where the subscripts are in modulo 9. If we match

four pairs of agents, say {a1, a2}, . . . , {a7, a8}, while leaving a9 as single, it is SaRD up

to depth 4 but not up to depth 3 or smaller, for similar reasonings as in the previous

paragraphs. However, if we instead match only three pairs, {a1, a2}, {a4, a5}, and {a7, a8},

this matching is SaRD up to depth 2: For instance, if D = {a2, a3} deviates, a2 gets worse

off after two subsequent deviations, first by D1 = {a5, a6} and then by D2 = {a3, a4}. The

point here is that matching as many agents as possible may not be necessarily optimal to

eliminate robust deviations.3 Combining this idea with the general structure called party

permutation (Tan, 1991), we demonstrate that we can bound the depth of the most robust

deviations to k = 3 even for more complicated preferences.

Although no matching is SaRD up to depth k = 2 for some problems as we have men-

tioned above, our construction also establishes sufficient conditions for the existence of a

SaRD matching up to depth k = 1 and 2. These conditions can be seen as an extension of

Tan’s (1991) condition for the existence of a stable matching, as all of them can be param-

eterized by a single common parameter. Unlike Tan’s, our conditions are not necessary,

but they are tight in a certain sense as we will argue in Section 6.1.

2See Example 1 in Section 6.1 for a formal proof.
3Note that in this example both of the above two matchings are Pareto optimal. We further discuss the

relation between our SaRD and Pareto efficiency in Section 6.2.
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The rest of the paper is organized as follows: Section 1.1 briefly overviews the related

literature. Section 2 introduces our model and key definitions. Section 3 presents our al-

gorithm to construct SaRD matchings and its key properties. Section 4 demonstrates some

implications of those properties, and then Section 5 provides the main results. Section 6

further discusses our concepts and results.

1.1 Related Literature

In the matching and related literatures, we are not the first to define a stability concept

based on chains of deviations and their final outcomes, and a number of related studies

take a similar approach. Among others, the most closely related is Barberà and Ger-

ber (2003). They study the hedonic coalition formation, which generalizes the roommate

problem, and propose a solution concept called durability. We share the spirit with them

in distinguishing what we call robust deviations, and actually, in the roommate problem

their durability coincides with our SaRD up to a sufficiently large depth k. However,

we further differentiate robust deviations across k’s and look for a SaRD matching up

to a minimal depth, whereas Barberà and Gerber (2003) treat all deviation chains of any

length as equally serious. The set of SaRD matchings up to depth 3 is generally smaller

than that of durable matchings and hence, our concept can be seen as a refinement of

durability. Relatedly, Troyan et al. (2018) propose in the school choice problem a solution

concept called essential stability, which also corresponds to our SaRD with a sufficiently

large k. It should be noted, however, that a stable matching always exists in the school

choice problem and their motivation differs from ours.

While we investigate a static model with dynamic arguments as a possible interpre-

tation and motivation, Kadam and Kotowski (2018) and Kotowski (2015) explicitly study

a dynamic marriage market, where agents have their preferences over the histories (i.e.,

sequences) of matched partners. They also define stability concepts for their dynamic
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setting, but it should be noted that their concepts reduce to the standard stability in the

static setting. Also in a dynamic marriage market, Kurino (2009) proposes credible stabil-

ity, which reduces in the static setting to a weaker version of our SaRD up to depth k = 1.

We formally define this weaker concept and establish its existence in Section 6.3.

Unsolvable roommate problems have been long studied in economics and other re-

lated fields, and several more solution concepts have been proposed. These include max-

imum stable matchings (Tan, 1990), almost stable matchings (Abraham et al., 2006), P-

stable matchings (Inarra et al., 2008), absorbing sets (Iñarra et al., 2013), and Q-stable

matchings (Biró et al., 2016). Each of those solutions focuses on a part of the proper-

ties that a stable matching satisfies, and extends it to unsolvable problems. In addition,

some studies apply other general concepts than stability to the roommate problem; e.g.,

stochastic stability (Klaus et al., 2010) and farsighted stable sets (Klaus et al., 2011). The

relation between our SaRD and other solution concepts will be discussed in more details

in Section 6.4.

2 Notation and Definitions

A roommate problem (N,�) consists of a finite set N of agents and a profile � = (�a)a∈N

of strict preference relations over N. Given agent a’s strict preference �a, we write b �a c

to denote [b �a c or b = c]. We say that an agent a is acceptable to another agent b if

a �b b. A matching is a bijection μ : N → N satisfying μ2(a) = a for all a ∈ N. In

the examples below, we also identify a matching with the partition it induces; e.g., when

we write μ = {{1, 2}, {3}}, it refers to the matching defined by μ(1) = 2, μ(2) = 1,

and μ(3) = 3. Given a subset D ⊆ N of agents and two matchings μ and ν, we write

ν �D μ if ν(a) �a μ(a) holds for all a ∈ D, and similarly, ν �D μ if ν(a) �a μ(a) holds

for all a ∈ D. A matching μ is called individually rational if μ �N id, where id denotes
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the identity mapping over N. A matching μ is said to leave no mutually-acceptable pairs of

singles if

[a �b b and b �a a] =⇒ [μ(a) �= a or μ(b) �= b] ,

holds for all a, b ∈ N. Note that this can be seen as a mild efficiency property, as a

mutually-acceptable pair of singles implies Pareto inefficiency. Let us call a matching

regular if it is individually rational and leaves no mutually-acceptable pairs of singles.

A subset D of agents, associated with a matching ν, is said to form a deviation from μ

if (i) a ∈ D ⇒ ν(a) ∈ D, (ii) [b �∈ D and μ(b) ∈ D] ⇒ ν(b) = b, (iii) c, μ(c) �∈ D ⇒ ν(c) =

μ(c), and (iv) ν �D μ. Notice that when μ is individually rational and |D| = 2, the identity

of D pins down the unique matching ν such that (D, ν) can be a deviation from μ. More

specifically, for (D, ν) to be a deviation from an individually rational μ with D = {a, b},

ν needs to be such that ν(a) = b, ν(b) = a, ν(c) = c for all c ∈ {μ(a), μ(b)} − {a, b},

and ν(d) = μ(d) for all d �∈ {a, b, μ(a), μ(b)}. Although in what follows we do not fully

specify the associated ν when |D| = 2, it should thus cause no confusion. When (D, ν) is

a deviation from μ, we write ν �D μ. A matching μ is stable if there is no deviation (D, ν)

such that ν �D μ.

Now we introduce our key concepts. A deviation (D, ν) from μ is called robust up to

depth k ∈ N, if νκ �D μ holds for any sequence of deviations (D1, ν1), . . . , (Dκ, νκ) with

κ ≤ k such that

νκ �Dκ νκ−1 �Dκ−1 . . . �D2 ν1 �D1 ν. (∗)

When no deviation from it is robust up to depth k, a matching μ is said to be stable against

robust deviations (henceforce, SaRD) up to depth k.4 By definition, if a deviation is robust

4In what follows, we use the acronym “SaRD” both as an adjective (“S” for stable) and as a noun (“S”
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up to depth k, then so is it up to any k′ < k. Consequently, if a matching is SaRD up to

depth k, then it is also SaRD up to depth k′ for any k′ > k.

One might argue that our concept of SaRD is inconsistent in that we try to exclude

robust deviations while we allow non-robust subsequent deviations in defining robust

definitions per se. In response to such a concern, we make two remarks. First, requiring

consistency could lead to some conceptual subtlety, making it difficult for our solution

to be a matching-wise concept. A natural way to require consistency would be to call

a deviation “consistently robust” if the original deviators will be never worse-off after

any subsequent deviations as long as those subsequent deviations are also “consistently

robust.” However, such a recursive definition might have multiple fixed points, each

corresponding to a different set of all “consistently robust” deviations, and consequently, we

might be unable to determine pointewise if a matching is “consistently SaRD” or not.

Although we could jointly identify multiple sets of all “consistently SaRD” matchings, it

would require something outside our model, such as beliefs of the agents, to choose one.

Second but not less importantly, we do not claim that a SaRD matching is fully stable

in any sense or, in other words, that non-robust deviations would never realize. Instead

we would argue, as did in the introduction, that robust deviations are more likely to

realize than the others and hence, that SaRD matchings are less unstable than the others.

And this argument could still apply even if we define “consistently robust” deviations as

above: The benefit from such a deviation is guaranteed under the hypothesis that only

“consistently robust” deviations can follow. This hypothesis might be true if every agent

is sophisticated enough to tell a deviation is “consistently robust” or not based on a shared

criterion. However, even if an agent herself is sophisticated, she could be unsure if the

others are also sophisticated.5 Further, even if she believes the others to be sophisticated

for stability).
5This scenario parallels with the level-k theory, where each agent is assumed to believe the others are of

lower levels of strategic sophistication than herself.

8



as well, she could be still unsure what criteria of “consistent robustness” they adopt, since

there could be multiple of them as argued above. For an agent facing such ambiguities,

a deviation would be less secure when it is “consistently robust” than when it is robust

in our sense. Our strategy in this study is to eliminate deviations that would be the most

secure and likely to realize.

2.1 Tan’s (1991) Concepts and Results

In this subsection, we introduce the concepts and results by Tan (1991), which we will

heavily rely on in our analysis. A permutation is a bijection from N to itself. A permutation

σ divides N into a finite number of cycles and hence, induces a partition P(σ) of N.6

Throughout the rest of the paper, given a permutation σ over N, let π denote its inverse

σ−1.

Definition 1. A permutation σ : N → N is called a semi-party permutation if for each

P ∈ P(σ), one of the following holds:

• |P| = 1;

• |P| = 2 and σ(a) �a a for each a ∈ P; or

• |P| ≥ 3 and σ(a) �a π(a) �a a for each a ∈ P. �

Given a semi-party permutation σ and hence its inverse π, an agent a ∈ N is said to

be superior for another agent b ∈ N when a �b π(b). When a is not superior for b, a is

said to be inferior for b.7

Definition 2. A semi-party permutation σ is called a party permutation if the following

holds: for any a, b ∈ N, if a is superior for b, then b is inferior for a. �
6Namely, {a1, . . . , an} ⊆ N is a member of P(σ) if σm(a1) = am+1 for all m = 1, 2, . . . , n − 1 and

σn(a1) = a1.
7Here we slightly modify Tan’s (1991) original definition: when {a, b} ∈ P(σ), a and b are inferior

for each other according to our definition, whereas they are neither superior nor inferior for each other
according to Tan’s. As this does not alter the definition of party permutations at all, Tan’s (1991) results
continue to hold with our definition.
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When σ is a party permutation, P(σ) is called a stable partition, and each of its ele-

ments a party. Given a party permutation σ, for each a ∈ N, let P(a) denote the party

a belongs to; i.e., a ∈ P(a) ∈ P(σ). A party P in a stable partition P(σ) is called odd

(resp. even) if its cardinality is odd (resp. even). When it is a singleton, we call a party

solitary. Note that when {a} ∈ P(σ) is a solitary party, b is acceptable to a if and only if b

is superior for a.

While the definition of a stable permutation might look complicated, Tan (1991) shows

that at least one exists for any problem, and that odd parties are uniquely identified across

all party permutations even when multiple exist:

Theorem (Tan, 1991). For any roommate problem (N,�), at least one party permutation exists.

If σ and σ′ are both party permutations, then for any P ⊆ N with |P| being odd, P ∈ P(σ) ⇐⇒
P ∈ P(σ′).

For a problem (N,�) with a party permutation σ, define #(N,�) ∈ N by

#(N,�) := max
[
{|P| : P ∈ P(σ) and |P| is odd } ∪ {0}

]
.

That is, #(N,�) denotes the maximal size of odd parties in (N,�) if there exists any, and

is zero otherwise. Note that this definition is independent of the choice of σ thanks to the

above theorem. Tan (1991) characterizes the existence of a stable matching as follows:

Theorem (Tan, 1991). A stable matching exists in a roommate problem (N,�) if and only if

#(N,�) ≤ 1.8

8For a generalization to weak preferences, see also Chung (2000).

10



3 The Algorithm

In this section, we introduce our algorithm that computes a matching μ, from an arbitrar-

ily given problem (N,�) and an associated party permutation σ as its inputs.9 While the

procedure of the algorithm we provide in Section 3.1 could appear complicated, its goal is

simple: it is designed to guarantee that its outcome μ always satisfies five key properties

as well as regularity.

Throughout the rest of the paper, we fix an arbitrary party permutation σ and take it

as given. Even though many of our concepts and symbols (such as superiority, π, P(a),

etc.) implicitly depend on the choice of σ, it should thus cause no confusion. Now, to

describe those properties, let us define

I◦μ := {a ∈ N : π(a) �a μ(a)} ,

taking a matching μ as given. Notice that for a �∈ I◦μ, ν(a) � μ(a) implies ν(a) being

superior for a. Put differently, I◦μ is the set of agents who can potentially deviate with

inferior agents for them. The following are the five key properties we will need. We will

exploit the first four to warrant SaRD up to depth k = 3, and the last one to establish

sufficient conditions for k = 1 and 2.10

Property 1. For any a, b ∈ N, if a is superior for b and μ(b) = b, then μ(a) �a b.

Property 2. For any a ∈ I◦μ, |P(a)| is odd and μ(π(a)) is inferior for π(a).

Property 3. For any a ∈ I◦μ, σ2(a) �∈ I◦μ.

Property 4. For any a ∈ I◦μ, μ(σ(a)) = σ2(a) and μ
(
σ3(a)

)
= σ4(a) imply [1] μ

(
σ5(a)

)
=

σ6(a) if |P(a)| = 7, and [2] σ5(a) ∈ I◦μ �� σ6(a) if |P(a)| > 7.
9Although we take the party permutation σ as given, Tan and Hsueh (1995) provide an algorithm to

compute a party permutation in O(|N|2)-time.
10Indeed, the complexity of the algorithm is mostly due to Property 4. If we give it up, we can construct

a simpler algorithm, whose outcome satisfies the other Properties and is always SaRD up to depth k = 4.
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Property 5. For any a ∈ I◦μ,

[
|P(a)| = 3 or

{
|P(a)| = 5 and μ(σ(a)) = σ2(a)

}]
=⇒ μ(π(a)) = π2(a).

3.1 Description of the Algorithm

Taking a problem (N,�) and a party permutation σ as given, construct a matching μ as

follows.11 To simplify the description, we write “define μ(a) := b,” when it should read

as “define μ(a) := b and μ(b) := a.” The whole procedure is divided into five phases.

3.1.1 Phase 1

Let E ⊆ P(σ) be the family of even parties; i.e., E := {P ∈ P(σ) : |P| is even}. For each

E ∈ E , arbitrarily take a ∈ E and define μ
(
σ2j(a)

)
= σ2j+1(a) for each j ∈

{
1, . . . , |P|2

}
, as

illustrated in Figure 2 (a).

3.1.2 Phase 2

Let O3× ⊆ P(σ)− E be the family of odd parties whose sizes are a multiple of three; i.e.,

O3× := {P ∈ P(σ)− E : |P| = 3n for some n ∈ N}. For each P ∈ O3×, arbitrarily take

a ∈ E and define μ
(
σ3j(a)

)
= σ3j+1(a) for each j ∈

{
1, . . . , |P|3

}
, as illustrated in Figure 2

(b).

Remark 1. Phases 1 and 2 simply match “adjacent” pairs of agents (with respect to σ) within each

party, as illustrated in Figure 2. Note that every member of each P ∈ E is matched in Phase 1,

while there are |P|/3 unmatched agents in each P ∈ O3× in Phase 2. Note also that if P(a) ∈ O3×

11Note that the outcome of our algorithm below is not uniquely pinned down, as it can vary depending
on how to take a ∈ P in Phases 1, 2, and 4, and how to order the members of U0 and R0 in Phases 3 and
5. However, our main results apply to any of those possible outcomes. See also Section 6.1 for further
discussions.
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and a is not matched in this phase, then π(a) and σ(a) are matched, respectively, to π2(a) and

σ2(a). �

3.1.3 Phase 3

Let U0 ⊆ N be the set of agents who are not matched yet and U0 := P(σ)− (E ∪ O3×)

be the family of parties none from which is matched yet.12 Arbitrarily order the members

of U0 as x1, . . . , x|U0| and iterate the following step for t = 1, . . . , |U0|.

Remark 2. In what follows, Ut and Ut will be, respectively, the set of agents who are unmatched

by step t and the family of parties no agent from which is matched by step t. �

Step t = 1, . . . , |U0| of Phase 3:

If xt �∈ Ut−1, then, proceed to step t + 1 with Ut = Ut−1 and Ut = Ut−1. Otherwise, define

Σt :=
{

y ∈ Ut−1 − {π(xt), π2(xt)} : xt is superior for y and y is acceptable for xt

}
.

If Σt is empty, then proceed to step t + 1 with Ut = Ut−1 and Ut = Ut−1.13 Otherwise,

let yt ∈ Σt denote the best partner for xt among those in Σt; that is, y ∈ Σt ⇒ yt �xt y.

Define μ(xt) = yt and Ut = Ut−1 − {P(xt), P(yt)}. If Ut = Ut−1, proceed to step t + 1

with Ut = Ut−1 − {xt, yt}. Otherwise, further divide the case as follows.

Case 1: P(xt) = P(yt) ∈ Ut−1.

In this case, there exist q, r ∈ {1, . . . , |P(xt)|} such that σq+1(yt) = xt and σr+1(xt) = yt.

Notice that one and only one of them is odd, for |P(xt)| = q + r + 2 must be odd by

12Remember that a ∈ U0 does not necessarily imply P(a) ∈ U0.
13Remember that when {xt} ∈ P(σ) is a solitary party, y is acceptable for xt if and only if y is superior

for xt, which can be the case only if xt is inferior for y. In such a case, thus, Σt must be empty.
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definition. It should be also noted that q ≥ 2 by the definition of Σt. Match the agents in

P(xt) = P(yt) as follows:

• Matching among σ(yt), . . . , σq(yt):

If q = 2m for some m ∈ N, then μ
(
σ2j−1(yt)

)
= σ2j(yt) for each j ∈ {1, . . . , m}. If

q = 2m+ 1 for some m ∈ N, then μ
(
σ2j−1(yt)

)
= σ2j(yt) for each j ∈ {1, . . . , m− 1},

and μ(
(
σ2m(yt)

)
= σ2m+1(yt), leaving μ

(
σ2m−1(yt)

)
undefined. Figure 3 illustrates

the matching in these cases.

• Matching among σ(xt), . . . , σr(xt):

If r = 3n or 3n + 1 for some n ∈ N ∪ {0}, then, let μ
(

σ3j′−1(xt)
)
= σ3j′(xt) for each

j′ ∈ {1, . . . , n}. Notice that μ
(
σ3n+1(xt)

)
is undefined when r = 3n+ 1. If r = 3n+ 2

for some n ∈ N ∪ {0}, then, let μ
(

σ3j′−2(xt)
)
= σ3j′−1 for each j′ ∈ {1, . . . , n + 1}.

Figure 4 illustrates the matching in these cases.

Let Ut := Ut−1 − Mt, where Mt is the set of agents matched in this step, including xt and

yt, and proceed to step t + 1.

Case 2: P(xt) �= P(yt).

In this case, match the members of P(xt) and P(yt), respectively, if P(xt) ∈ Ut−1 and

P(yt) ∈ Ut−1 as follows:

• Matching among P(yt) ∈ Ut−1:

If P(yt) ∈ Ut−1, define μ
(
σ2j−1(yt)

)
:= σ2j(yt) for each j = 1, . . . , |P(yt)|−1

2 , as illus-

trated in Figure 5 (a).

• Matching among P(xt) ∈ Ut−1:14

If P(xt) ∈ Ut−1 and |P(xt)| = 3n + 1 for some n ∈ N, then, let μ
(

σ3j′−1(xt)
)

=

σ3j′(xt) for each j′ ∈ {1, . . . , n}. If P(xt) ∈ Ut−1 and |P(xt)| = 3n + 2 for some

n ∈ N, then let μ
(

σ3j′−2(xt)
)
= σ3j′−1(xt) for each j′ ∈ {1, . . . , n} and μ

(
σ3n(xt)

)
=

14As Ut−1 ∩O3× = ∅ by definition, P(xt) ∈ Ut−1 implies that |P(xt)| is not a multiple of three.

14



σ3n+1(xt). Figures 5 (b)–(c) illustrate the matching in these cases.

Let Ut := Ut−1 − Mt, where Mt is the set of agents matched in this step, including xt and

yt, and proceed to step t + 1.

Remark 3. To see the point in this phase, suppose that xt′ is matched to yt′ in step t′ of this phase.

• If P(xt′) ∈ Ut′−1, then σ2(xt′) is matched to either σ(xt′) or σ3(xt′), and π(xt′) is always

matched to π2(xt′).

• If P(xt′) �∈ Ut′−1, then σ2(xt′) is again matched to either σ(xt′) or σ3(xt′), and we have

μ (π(xt′)) �= π2(xt′) only if xt = π(xt′) is matched to some yt an earlier step t < t′ such

that P(xt) ∈ Ut−1.15 �

Remark 4. For any xt, xt′ ∈ U|U0|, we have either (i) they are not mutually acceptable, (ii)

they are mutually inferior to each other, or (iii) P(xt) = P(xt′) ∈ U|U0|. To see this, suppose

that xt, xt′ ∈ U|U0| are mutually acceptable and that xt is superior for xt′ . For xt to be not

matched in step t of Phase 3, then, we should have Σt �� xt′ . By the definition of Σt, it entails

xt′ ∈
{

π(xt), π2(xt′)
}

and thus P(xt) = P(xt′) ∈ U|U0|. �

3.1.4 Phase 4

Let V := U|U0|, i.e., the family of odd parties no member from which has been matched

yet. For each P ∈ V , fix an arbitrary member a ∈ P and match the members of P in the

following way, as illustrated in Figure 6:

• If |P| = 3n + 1 for some n ∈ N, then, define μ(a) := σ(a), μ
(
σ2(a)

)
:= σ3(a),

μ
(
σ5(a)

)
:= σ6(a), and μ

(
σ3j−2(a)

)
:= σ3j−1(a) for each j ∈ {3, . . . , n}.16

• If |P| = 3n + 2 for some n ∈ N, then define μ(a) := σ(a), μ
(
σ2(a)

)
:= σ3(a), and

μ
(
σ3j−1(a)

)
:= σ3j(a) for each j ∈ {2, . . . , n}.

15For instance, take xt′ to be w1 in Figure 5 (b).
16As P is an odd party, |P| = 3n + 1 for some n ∈ N implies |P| ≥ 7.
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Remark 5. As illustrated in Figure 6, if P(a) ∈ V but a is not matched in this phase, π(a) and

σ(a) are matched, respectively, to π2(a) and σ2(a). Combined with Remarks 1 and 3, if a ∈ I◦μ at

the final outcome,

• σ2(a) is matched to either σ(a) or σ3(a), and

• π(a) is matched to π2(a), unless π(a) = xt is matched to yt in step t such that P(a) ∈
Ut−1 during Phase 3. �

Remark 6. If a and b both remain unmatched by the end of this phase, they are either (i) not

mutually acceptable or (ii) mutually inferior to each other. At the end of Phase 3 they have a third

possibility, a ∈ {π(b), π2(b)} or b ∈ {
π(a), π2(a)

}
, as argued in Remark 4, but not both of

such a and b can remain unmatched after Phase 4 matches the agents in P(a) = P(b) as specified

above. �

3.1.5 Phase 5

Let R0 be the set of those who still remain unmatched, and arbitrarily order its members

as r1, . . . , r|R0|. Iterate the following step for τ = 1, . . . , |R0|+ 1:

Step τ = 1, . . . , |R0| of Phase 5:

If rτ ∈ Rτ−1 and there exists some ri ∈ Rτ−1 who is mutually acceptable with rτ, then

define μ(rτ) := ri and proceed to step τ + 1 with Rτ := Rτ − {rτ, ri}.17 Otherwise,

proceed to step τ + 1 with Rτ := Rτ−1.

Step |R0|+ 1 of Phase 5:

For any r ∈ R|R0|, i.e., for any agent not matched yet, define μ(r) = r.

17In general multiple members of Rτ−1 may be mutually acceptable with rτ . Even if so, the choice of ri
can be arbitrary.
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3.2 Key Properties of the Algorithm

As mentioned at the beginning of this Section, the above algorithm is designed so that its

outcomes always satisfy Properties 1–5. Here we formally establish this fact.

Proposition 1. Let μ be an outcome of the algorithm of Section 3.1. Then, it is regular and satisfies

Properties 1–5 with respect to the party permutation σ fixed at the beginning of the algorithm.

Proof of regularity. It is immediate to check that μ is individually rational as we only match

mutually-acceptable pairs during the algorithm, and it leaves no mutually-acceptable

pairs of singles because of Phase 5. �

Proof of Property 1. Suppose that a is superior for b and μ(b) = b, where μ is an outcome of

the algorithm. Also assume that b is acceptable for a, as otherwise μ(a) �a b immediately

follows from individual rationality. Then, a should be matched to μ(a) by the end of Phase

4; otherwise, the assumptions are incompatible as argued in Remark 6. If μ(a) = π(a),

then μ(a) = π(a) �a b immediately follows, since our assumptions of a being superior

for b and of μ(b) = b respectively imply that b is inferior for a and b �= μ(a) = π(a).

If μ(a) = σ(a) �= π(a), then we also obtain μ(a) �a π(a) �a b by the definition of a

(semi-)party permutation.

What remains to check is the case where a is matched to μ(a) �∈ {π(a), σ(a)} during

Phase 3. If a = yt is matched to xt in some step t during Phase 3, μ(a) = xt is superior for

a = yt and hence, μ(a) �a b holds. If a = xt is matched to yt in some step t during Phase

3, our assumptions imply b ∈ Σt.18 Therefore, μ(a) �a b holds by the definition of yt. �

Proof of Property 2. Suppose a ∈ I◦μ, where μ is an outcome of the algorithm. As this

implies μ(a) �∈ {π(a), σ(a)}, it is immediate to see that P(a) is odd; otherwise, a and
18In this case, b �∈ {π(a), π2(a)} holds for the following reason: As we assume μ(b) = b, it suffices to

confirm that neither π(a) nor π2(a) is single at μ, which is clearly true if μ(π(a)) = π2(a). Given a = xt is
matched to yt during Phase 3, μ(π(a)) = π2(a) fails only if π(a) = xt′ is matched to yt′ in an earlier step
t′ < t, as argued in Remark 3. Moreover, for both a and π(a) to remain unmatched until step t′, we must
have P(a) ∈ Ut′−1 and hence, π2(a) should be also matched (to π3(a)) in step t′.

17



μ(a) ∈ {π(a), σ(a)} should be matched during Phase 1. Moreover, by the arguments in

Remark 5, either μ(π(a)) = π2(a) or π(a) = xt is matched to yt in some step t during

Phase 3. In either case, μ(π(a)) is inferior for π(a). �

Proof of Property 3. Suppose a ∈ I◦μ, where μ is an outcome of the algorithm. As argued in

Remark 5, then, σ2(a) should be matched to σ(a) or σ3(a) and in either case, σ2(a) �∈ I◦μ

holds. �

Proof of Property 4. Suppose a ∈ I◦μ, μ(σ(a)) = σ2(a) and μ
(
σ3(a)

)
= σ4(a), where μ is an

outcome of the algorithm, and also |P(a)| ≥ 7 since the claim vacuously holds otherwise.

Note that P(a) ∈ U0, because P(a) ∈ O3× is incompatible with the assumptions. There-

fore, if P(a) �∈ V , there exists some t such that P(a) ∈ Ut−1 − Ut. For the assumptions

of a ∈ I◦μ, μ(σ(a)) = σ2(a) and μ
(
σ3(a)

)
= σ4(a) to simultaneously hold, then, the only

possibility is that |P(a)| = 3n + 2 and xt = σ5(a), as seen in Figure 5 (c). In such a case,

μ
(
σ5(a)

)
= yt is inferior for σ5(a) = xt by definition, and σ6(a) = σ(xt) is matched to

σ7(a) = σ2(xt). That is, we have both σ5(a) ∈ I◦μ and σ6(a) �∈ I◦μ.

Next, consider the case of P(a) ∈ V , i.e., the case where none from P(a) is matched by

the end of Phase 3. If P(a) ∈ V and |P(a)| = 7, then μ
(
σ5(a)

)
= σ6(a) as shown in Figure

6 (a). If P(a) ∈ V and |P(a)| > 7, then, σ5(a) is not matched during Phase 4 and σ6(a) is

matched to σ7(a), as illustrated in Figure 6 (b)–(d). Since σ5(a) cannot match to a superior

parter during Phase 5 as argued in Remark 6, these imply σ5(a) ∈ I◦μ and σ6(a) �∈ I◦μ as

required. �

Proof of Property 5. Suppose a ∈ I◦μ, where μ is an outcome of the algorithm. First, if

|P(a)| = 3, Phase 2 should match π(a) and π2(a). Second, suppose that |P(a)| = 5 and

μ(π(a)) �= π2(a). As argued in Remark 5, then, π(a) = xt is matched to yt in some step

t of Phase 3 with P(a) ∈ Ut. More specifically, yt = σ(a) is the only possibility under the
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assumption of |P(a)| = 5.19 It then follows that μ(σ(a)) = π(a) �= σ2(a) as required. �

3.3 Performance of the Algorithm when a Stable Matching Exists

Although our goal is to establish a global property that is applicable even when no stable

matching exists, it should be noted that the outcomes of our algorithm are stable when-

ever a stable matching exists.

Proposition 2. For any roommate problem (N,�) with a stable matching, any outcome μ of the

above algorithm is stable.

Proof. Suppose that a stable matching exists in (N,�) and σ is a party permutation. By

Tan’s (1991) Theorems we stated in Section 2.1, thus, each party P ∈ P(σ) is either even

or solitary. In such a case, only Phase 1 matches agents throughout the entire algorithm.

Specifically, any outcome of our algorithm is such that (i) if a is in an even party, μ(a) ∈
{π(a), σ(a)}, and (ii) if a is in a solitary party, μ(a) = a = π(a).20 By the definition of a

party permutation, such a matching is stable. �

4 Implications of Properties 1–2

In this section, we provide a number of preliminary lemmas that follow from Properties

1–2. They impose restrictions on possible deviations from a matching satisfying those

properties, and as such, will be useful when we establish our main results in the next sec-

tion. To concisely state those restrictions, here we introduce some more notation. Taking

19To see this, note first that if P(xt) = 3n+ 2 and yt �∈ P(xt), as illustrated in Figure 5 (c), σ(xt) ≡ a should
be matched to σ2(xt) ≡ σ(a). In the case of P(a) = 5, thus, yt ∈ P(a) is necessary for a ∈ I◦μ . Moreover,
since neither π(xt) ≡ π2(a) nor π2(xt) ≡ π3(a) can be a member of Σt by definition, π3(xt) ≡ σ(a) is the
only candidate for yt ∈ P(a).

20Remember that when a is a solitary party member (i.e., when a = π(a)), b is acceptable for a if and only
if b is superior for a. By the definition of a party permutation, therefore, no pair of solitary party members
is mutually acceptable.

19



a deviation (D, ν) from μ as given, let Sν := {a ∈ N : ν(a) �a π(a)} be the set of agents

who are matched to their superior agents at ν. Further, divide D ∩ Sν into two as follows:

Cy := {a ∈ D ∩ Sν : (π ◦ ν)t(a) ∈ Sν for all t ∈ N}, and (1)

Ch := (D ∩ Sν)− Cy. (2)

Note that by the finiteness of N,

[a ∈ Cy] =⇒ [there exists t∗ ∈ N such that (π ◦ ν)t∗(a) = a], (3)

where t∗ becomes 1 when ν(a) = σ(a). That is, a ∈ Cy means that π ◦ ν forms a cycle

within Sν that involves a, as illustrated in Figure 7. In contrast, a ∈ Ch implies (π ◦
ν)t′(a) �∈ Sν for some t′; i.e., the chain induced by π ◦ ν gets outside of Sν before it forms

a cycle.

4.1 Implications of Property 1

The first Lemma is a key implication of Property 1. It guarantees that for any deviation

(D, ν), there exists some agent a ∈ D ∩ I◦μ. Consequently, the other properties on μ re-

garding I◦μ become relevant.

Lemma 1. Let μ be a regular matching satisfying Property 1, and suppose that ν �E μ where

E = {a, b} and ν(a) = b. Then, at least one of the following holds: (i) a ∈ I◦μ, b is an inferior

agent for a, and μ(b) �= b; and (ii) b ∈ I◦μ, a is an inferior agent for b, and μ(a) �= a.

Proof. First, by the definition of a party permutation, either a is inferior for b or b is inferior

for a (or both). Second, μ’s regularity implies that at least one of μ(a) �= a and μ(b) �= b

must hold.21 Third, ν �E μ and Property 1 imply both [1] either a is inferior for b or
21Note that μ’s individually rationality and ν �E μ imply that a and b are mutually acceptable.
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μ(b) �= b, and [2] either b is inferior for a or μ(a) �= a. Combining those claims altogether,

we can conclude that at least one of the following holds: [i] a is inferior for b and μ(a) �= a,

and [ii] b is inferior for a and μ(b) �= b.

If a �∈ I◦μ and b is inferior for a, it follows that μ(a) �a π(a) �a b = ν(a), but this is

a contradiction to the assumption of ν �E μ. Therefore, a ∈ I◦μ if b is inferior for a, and

symmetrically, b ∈ I◦μ if a inferior for b. Combined with the conclusion of the previous

paragraph, these complete the proof. �

Next is a useful, albeit immediate, consequence of the previous Lemma. It substan-

tially simplifies our proof to bound the robustness of a deviation ν from μ. Specifically,

suppose that a ∈ D ∩ Sν and νκ �Dκ · · · ν1 �D1 ν, where ν(a) ∈ Dκ and νκ(a) = a. Then,

the following Lemma guarantees that a prefers μ(a) �= a to νκ(a) = a, and thereby that ν

is not robust up to depth κ.

Lemma 2. Suppose ν �D μ, where μ is a regular matching satisfying Property 1. If a ∈ Sν, then

μ(a) �= a.

Proof. If a �∈ D, the assumption of a ∈ Sν means μ(a) = ν(a) �a π(a) �a a, which implies

μ(a) �= a. If a ∈ D and hence ν �{a,ν(a)} μ, μ(a) �= a follows from a ∈ Sν and Lemma

1. �

4.2 Implications of Property 2

Next we turn to the implications of Property 2 on the structure of Cy and Ch.

Lemma 3. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. If a ∈ D ∩ Sν

and (π ◦ ν)(a) ∈ Sν, then, (π ◦ ν)(a) ∈ D.

Proof. Notice that a ∈ D ∩ Sν implies ν(a) ∈ D − Sν and hence ν(a) ∈ I◦μ. By Property 2,

(π ◦ ν)(a) should be matched to an inferior agent at μ. Thus, (π ◦ ν)(a) ∈ D is necessary

for (π ◦ ν)(a) ∈ Sν to hold. �
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Lemma 4. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. If a ∈ Cy, then

(π ◦ ν)t(a) ∈ Cy for all t ∈ N.

Proof. This is an immediate corollary of Lemma 3. �

Lemma 5. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. If Ch is

nonempty, then there exists a ∈ Ch such that (π ◦ ν)(a) �∈ Sν.

Proof. This is an immediate corollary of Lemma 3. �

Lemma 6. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. If a ∈ Sν − D,

ν(a) �= σ(a), and (π ◦ ν)(a) ∈ Sν, then (π ◦ ν)(a) ∈ Ch.

Proof. Note that ν(a) = μ(a) ∈ I◦μ follows from a ∈ Sν − D and ν(a) �= σ(a). By Prop-

erty 2, π(ν(a)) is matched to an inferior agent at μ. For (π ◦ ν)(a) ∈ Sν to hold, hence,

(π ◦ ν)(a) ∈ D is necessary. Further, (π ◦ ν)(a) �∈ Cy must follow, because otherwise

Lemma 4 entails a ∈ Cy ⊆ D, which contradicts the assumption of a �∈ D. �

Lemma 7. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. For any

a ∈ Cy, then, P(a) is an odd party.

Proof. Fix an arbitrary member a of Cy. By definition, (π ◦ ν)t(a) = a for some t ∈ N.

Let b := (π ◦ ν)t−1(a), or equivalently b := ν(σ(a)), so that b is another member of Cy

by Lemma 4. As b ∈ D ∩ Sν implies ν(b) ∈ D − Sν, we should have ν(b) ∈ I◦μ and

hence, P(ν(b)) is odd. Recalling that ν(b) ≡ σ(a) and hence P(a) = P(ν(b)), the proof is

complete. �

5 Main Results

In this section, we establish a bound for the robustness of a deviation ν from μ in each

of three mutually-exclusive subcases depending on the composition of D ∩ Sν ≡ Ch ∪ Cy

(Claim 1–3). Combining those Claims altogether, we obtain our main results.
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Claim 1. Suppose ν �D μ, where μ is a regular matching satisfying Property 2. If D∩Sν =

∅, then ν is not robust up to depth 1.

Proof. By the regularity of μ, for any a, ν(a) ∈ D, either μ(a) �= a or μ(ν(a)) �= ν(a).

Without any loss, suppose μ(ν(a)) �= ν(a). On the one hand, a prefers π(a) to ν(a) as

a �∈ Sν by the assumption of D ∩ Sν = ∅. On the other hand, π(a) also prefers a to

ν(π(a)), as

• if π(a) ∈ D, π(a) �∈ Sν by the assumption of D ∩ Sν = ∅, and

• otherwise, ν(π(a)) ∈ {π(a), μ(π(a))} and μ(π(a)) is inferior by Property 2.

Therefore, we can construct a further deviation ν′ by matching a and π(a), so that ν(a) ∈
D prefers μ(ν(a)) �= ν(a) to ν′(ν(a)) = ν(a). That is, the original deviation ν is not robust

up to depth 1. �

Claim 2. Suppose ν �D μ, where μ is a regular matching satisfying Properties 1 and 2. If

Ch �= ∅, then ν is not robust up to depth 1.

Proof. By Lemma 5, there exists a ∈ Ch such that (π ◦ ν)(a) �∈ Sν. Lemma 2 then implies

μ(a) �= a and thus, it suffices to establish a further deviation involving ν(a). As a ∈ Sν

and (π ◦ ν)(a) �∈ Sν, ν(a) and π(ν(a)) prefer each other to their partners at ν. We can

thus construct a further deviation ν′ from ν by matching ν(a) and π(ν(a)) so that a ∈ D

prefers μ(a) �= a to ν′(a) = a. That is, the original deviation ν is not robust up to depth

1. �

Claim 3. Suppose ν �D μ, where μ is a regular matching satisfying Properties 1–4. If

Ch = ∅ �= Cy, then ν is not robust up to depth (at most) 3.

Proof. To begin, fix an agent b ∈ ν(Cy) := {x ∈ N|x = ν(y) for some y ∈ Cy} such that

σ3(b) �∈ Cy. This is without loss of generality for the following reason: Such b would not

exist only if for each b ∈ ν(Cy), there exists some tb ∈ N such that σ4tb(b) = b.22 This
22Notice that σ3(b) ∈ Cy is equivalent to σ4(b) ∈ ν(Cy), for ν(Cy) = σ(Cy) by Lemma 4.
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cannot be the case, however, since b ∈ ν(Cy) implies π(b) ∈ Cy by Lemma 4, and hence,

P(b) must be an odd party by Lemma 7. Let m ∈ N be such that |P(b)| = 2m + 1, and

define cj := σj(b) for j ∈ {1, . . . , 2m}. Remember that μ(a) �= a by Lemma 2, where a :=

ν(b). Therefore, to establish the non-robustness of the original deviation ν up depth κ, it

suffices to construct a sequence of κ further deviations such that [1] νκ �Dκ · · · ν1 �D1 ν,

[2] a �∈ D1 ∪ · · · ∪ Dκ, and [3] b ∈ Dκ.

If c1 �∈ Sν, ν is not robust up to depth 1 since we can immediately construct ν1 by

matching b and c1 so that ν1 �{b,c1} ν. For the rest of the proof, thus, we investigate two

subcases of c1 ∈ Sν.

Case 1: c1 ∈ Sν and ν(c1) �= c2. In this case, we can show c1 �∈ D as follows.23 Suppose

towards a contradiction that c1 ∈ D ∩ Sν. Since Ch = ∅ is assumed, c1 must be another

member of Cy. As N is finite, c1 ∈ Cy is possible only if (π ◦ ν)t(c1) = c1 for some t ∈ N.

By Lemma 4, thus, (π ◦ ν)t−1(c1) ≡ (π ◦ ν)−1(c1) is also in Cy ⊆ (D ∩ Sν). It then follows

that c2 ∈ D − Sν because by definition, (π ◦ ν)−1(c1) ≡ ν(σ(c1)) ≡ ν(c2). However, this

contradicts Property 3 as we have both b ∈ D − Sν and σ2(b) ≡ c2 ∈ D − Sν, which

respectively imply b ∈ I◦μ and σ2(b) ∈ I◦μ.

As we now have c1 ∈ Sν − D in addition to the assumptions of Ch = ∅ and of ν(c1) �=
c2 ≡ σ(c1), Lemma 6 implies (π ◦ ν)(c1) �∈ Sν. We can construct ν1 and ν2, respectively by

matching {π(ν(c1)), ν(c1)} and {c1, b}, so that ν2 �{c1,b} ν1 �{π(ν(c1)),ν(c1)} ν. That is, the

original deviation ν is not robust up to depth 2.

Case 2: c1 ∈ Sν and ν(c1) = c2. This case arises only when μ(c1) = c2, as Property 3

entails c2 �∈ I◦μ. Note further that |P(b)| ≥ 5 is also necessary; if |P(b)| = 3, c2 = π(b) =

(π ◦ ν)(a) should be a member of Cy ⊆ Sν, which contradicts ν(c2) = c1 being inferior for

23Notice that if μ satisfies Property 5, c1 �∈ D and ν(c1) �= c2 together imply |P(b)| ≥ 5. This is because if
|P(b)| = 3, Property 5 implies μ(c1) = c2, which contradicts c1 �∈ D and ν(c1) �= c2.
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c2. That is, c3 ≡ σ3(b) �= b should exist in this case. If c3 �∈ Sν, then ν is not robust up to

depth 2, because we can construct ν1 and ν2 by respectively matching {c2, c3} and {b, c1},

so that ν2 �{b,c1} ν1 �{c2,c3} ν.

For the rest of the proof, we consider the case of c3 ∈ Sν. We then should have c3 �∈ D,

because the assumptions of c3 ≡ σ3(b) �∈ Cy and Ch = ∅ entail c3 �∈ D ∩ Sν ≡ Cy ∪ Ch.24

First, suppose ν(c3) = μ(c3) �= c4. Then, as in the last part of Case 1, Lemma 6 implies

(π ◦ ν)(c3) �∈ Sν. Therefore, we can construct ν1, ν2, and ν3, by respectively matching

{π(ν(c3)), ν(c3)}, {c2, c3}, and {b, c1}, so that

ν3 �{b,c1} ν2 �{c2,c3} ν1 �{π(ν(c3)),ν(c3)} ν. (4)

That is, the original deviation ν is not robust up to depth 3.

Second, suppose ν(c3) = μ(c3) = c4. This requires |P(b)| ≥ 7, since if |P(b)| = 5, the

original assumption of b ∈ ν(Cy) implies c4 = π(b) ∈ Cy, which is incompatible with

ν(c3) = c4. Then, c5 ∈ Sν cannot hold for the following reason:

• If |P(b)| = 7, the original assumption of b ∈ ν(Cy) implies c6 = π(b) ∈ Cy ⊆ D.

Then c5 ∈ Sν would require c5 ∈ D and hence c5 ∈ Cy, as μ(c5) = c6 by Property

4 and Ch = ∅ by assumption. By the definition of Cy, however, c5 ∈ Cy implies

c6 ≡ σ(c5) �∈ Sν, which is incompatible with c6 ∈ Cy.

• If P(b) > 7, since c5 ∈ I◦μ by Property 4, c5 ∈ Sν would again require c5 ∈ D, which

is followed by c5 ∈ Cy and c6 ∈ ν(Cy). This is a contradiction, because Property 4

implies c6 �∈ I◦μ while ν(Cy) ⊆ D − Sν by definition.

Given c5 �∈ Sν, we can construct ν1, ν2, and ν3, by respectively matching {c4, c5}, {c2, c3},

24Note that if μ satisfies Property 5, c3 ∈ Sν − D implies |P(b)| > 5 for the following reason: If |P(b)| = 5,
Property 5 implies that c3 = π2(b) and c4 = π(b) are matched with each other at μ. However, this is a
contradiction because c4 = π(b) is a member of Cy ⊆ D by definition.
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and {b, c1}, so that

ν3 �{b,c1} ν2 �{c2,c3} ν1 �{c4,c5} ν. (5)

That is, the original deviation ν is not robust up to depth 3. �

Combining the three Claims above, we obtain our main theorem:

Theorem 1. A regular matching satisfying Properties 1–4 is SaRD up to depth (at most) 3. For

any problem (N,�), thus, there exists a matching that is SaRD up to depth (at most) 3.

Proof. The statement immediately follows from Claims 1–3 and Proposition 1. �

Further, the proof of Claim 3 also establishes sufficient conditions for the outcomes of

our algorithm to be SaRD up to depth 1 and 2:

Theorem 2. If #(N,�) ≤ 3, a regular matching satisfying Properties 1–3 and 5 is SaRD up to

depth (at most) 1. Thus there exists a matching that is SaRD up to depth 1 for any problem such

that #(N,�) = 3.

Proof. In the proof of Claim 3, we establish without employing Property 4 that ν is not

robust up to depth 1 in the case of c1 �∈ Sν. With Property 5, c1 ∈ Sν arises only if

#(N,�) > 3: For the case of ν(c1) �= c2, see footnote 23; for the case of ν(c1) = c2, we

established P(b) > 3 in the main body of the proof. �

Theorem 3. If #(N,�) ≤ 5, a regular matching satisfying Properties 1–3 and 5 is SaRD up to

depth (at most) 2. Thus there exists a matching that is SaRD up to depth 2 for any problem such

that #(N,�) = 5.

Proof. In the proof of Claim 3, we establish without employing Property 4 that ν is not

robust up to depth 2, except for the case where c1 ∈ Sν, ν(c1) = c2, and c3 ∈ Sν − D. With

Property 5, such a case arises only if #(N,�) > 5; see footnote 24. �
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6 Discussions

6.1 Tightness of the Results

In this section we discuss the tightness of our main results. It should be first noted that

the bound of k = 3 we establish for general existence in Theorem 1 is tight in the sense

that no matching is SaRD up to depth 2 for some problems. The next example, which we

have informally discussed in the introduction, illustrates this point.

Example 1. Suppose that N = {a1, a2, . . . , a7} and that for each i = 1, . . . , 7, only ai+1

and ai−1 are acceptable ai and ai+1 �ai ai−1, where all subscripts are in modulo 7. The

unique party permutation is given by σ(ai) = ai+1 for each i so that P(σ) = {N}. In this

problem, no matching is SaRD up to depth 2. To see this, first notice that for a matching

to be SaRD up to any depth, it should match three pairs of adjacent agents; if fewer,

such a matching is not regular because there must exist a pair of adjacent (i.e., mutually

acceptable) singles. It thus suffices to confirm that μ = {{a1, a2}, {a3, a4}, {a5, a6}, {a7}}
is not SaRD up to depth 2, as all the other candidates are symmetric. Starting from μ, a

deviation chain ν2 �D2 ν1 �D1 ν �D μ is possible only with D = {a6, a7}, D1 = {a4, a5},

and D2 = {a2, a3}. As D = {a6, a7} prefer ν2 = {{a1}, {a2, a3}, {a4, a5}, {a6, a7}} to μ, the

deviation ν from μ is robust up to depth 2 and hence μ is not SaRD up to depth 2. �

In contrast, our sufficient conditions in Theorems 2–3 are not tight in two different

ways: Note that Theorems 2–3 establish the conditions for any outcome of our algorithm

to be SaRD up to depth k = 1 and 2, while our algorithm generally has multiple possible

outcomes as mentioned in footnote 11. First, therefore, some outcomes may be SaRD up to

a smaller k than those guaranteed by Theorems 2–3, even when not all possible outcomes

are. Second, there may be a matching that is SaRD up to a smaller k than any outcome of

our algorithm is. The following examples demonstrate that such possibilities do indeed
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exist.

Example 2. Suppose that N = {a1, . . . , a7, b1, . . . , b3, c1, . . . , c3}, and let

σ =

⎛
⎜⎝ a1 a2 · · · a6 a7 b1 b2 b3 c1 c2 c3

a2 a3 · · · a7 a1 b2 b3 b1 c2 c3 c1

⎞
⎟⎠ ,

where the right-hand side denotes σ(a1) = a2, σ(a2) = a3, and so on. Note that P(σ) ={
{a1, . . . , a7}, {b1, . . . , b3}, {c1, . . . , c3}

}
. Let � be a preference profile such that

• �a1 is such that a2 �a1 a7 �a1 b1 �a1 a1,

• �a5 is such that c1 �a5 a6 �a5 a4 �a5 a5,

• �b1 is such that a1 �b1 b2 �b1 b3 �b1 b1,

• �c1 is such that c2 �c1 c3 �c1 a5 �c1 c1, and

• for any d �∈ {a1, a5, b1, c1}, �d is such that σ(d) �d π(d) �d d.

Further, for any α, β ∈ N, assume that α is unacceptable for β unless otherwise specified

above. In this problem (N,�), where σ is the unique party permutation, we compare two

outcomes of our algorithm.

To begin, suppose that b2 and c2 are taken as a ∈ P during Phase 2, so that they are

matched to b3 and c3. At the beginning of Phase 3, then, U0 = {a1, . . . , a7, b1, c1}. First,

suppose further that a1 is taken as x1. Then, x1 = a1 is matched to y1 = b1 at step 1 of

Phase 3 and the final outcome of the algorithm will be

μ =
{
{a1, b1}, {a2}, {a3, a4}, {a5, c1}{a6, a7}, {b2, b3}, {c2, c3}

}
,

as illustrated in Figure 8 (a). Second, suppose instead that c1 is taken as x1. Then, x1 = c1
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is matched to y1 = a5 at step 1 of Phase 3 and the final outcome of the algorithm will be

μ′ =
{
{a1, a2}, {a3, a4}, {a5, c1}{a6, a7}, {b1}, {b2, b3}, {c2, c3}

}
,

as illustrated in Figure 8 (b).

Comparing these two matchings, we can observe that not all outcomes of our algo-

rithm are SaRD up to the same depth. On the one hand, μ is not SaRD up to 2, because

the deviation by D = {a1, a2} is robust up to depth 2. On the other hand, μ′ is SaRD up

to depth 1: There are only two deviations from μ′, one by D = {b1, b3} and the other by

D = {c1, c3}, and it is immediate to confirm that neither is robust up to depth 1. �

Example 3. Suppose that N = {a1, . . . , a5, b1, . . . , b5} and that for each i = 1, . . . , 5,

• only ai+1, ai−1, bi are acceptable for ai and ai+1 �ai ai−1 �ai bi, and

• only bi+1, bi−1, ai are acceptable for bi and bi+1 �bi bi−1 �bi ai,

where all the subscripts are in modulo 5. The unique party permutation is then given by

σ(ai) = ai+1 and σ(bi) = bi+1 so that P(σ) = {{a1, . . . , a5}, {b1, . . . , b5}}. Note that in

this problem, any outcome of our algorithm is symmetric to

μ :=
{
{a1, a2}, {a3, a4}, {b1, b2}, {b3, b4}, {a5, b5}

}
,

which is graphically illustrated in Figure 9 (a).25 It is then easy to check that the deviation

from μ by D = {a4, a5} is robust up to depth 1. That is, any outcomes, including μ, of

the algorithm are not SaRD up depth k = 1, although they are so up to depth k = 2 by

Theorem 3.

However, the following matching μ′, which is illustrated in Figure 9 (b), is SaRD up to

25To see this, notice that Phase 3 does not match any agents in this problems, as Σt is always empty.
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depth 1:

μ′ :=
{
{a1, b1}, {a2, b2}, {a3, b3}, {a4, b4}, {a5, b5}

}
.

Note that for any deviation (D′, ν′) from μ′, there exists either [i] ai �∈ D′ such that

ν′(ai−1) = ai−2 or [ii] bi �∈ D′ such that ν′(bi−1) = bi−2. In the first case, a further de-

viation ν′1 by {ai, ai−1} makes ai−2 ∈ D′ worse off than at the original μ. Therefore, the

deviation (D′, ν′) is not robust up to depth 1. As the second case is symmetric, we can

conclude that μ′ is SaRD up to depth 1. �

However, it should be also noted that Theorems 2–3 provide sufficient conditions that

depend only on σ, whereas more detailed information of � would be necessary to pin

down matchings that are SaRD up to the smallest k.26 Indeed, the next proposition sug-

gests that the sufficient conditions derived from our algorithm are tight among those

depend only on σ.

Proposition 3. Let σ be a permutation over N such that |P| = 2m + 1 for some P ∈ P(σ) and

m ∈ N. Then, there exist � = (�i)i∈N and k ∈ {1, 2, 3} such that

• σ is a party permutation for (N,�),

• any outcome of the algorithm in Section 3 for (N,�) is SaRD up to depth k, and

• no matching is SaRD up to depth k − 1 in (N,�),

where “SaRD up to depth 0” should be read as the standard stability.

Proof. Given N and σ, let � be such that for all a, b ∈ N, b �a a ⇒ b ∈ {π(a), σ(a)} and

σ(a) �a π(a). It is then immediate to check that σ is a party permutation for (N,�). Note

also that with such (N,�), our algorithm matches no pair of agents during Phases 3 and

5. We consider four possible cases separately.

26Notice that a same σ can be a party permutation for various distinct preference profiles.
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First, if #(N,�) = 3, any outcome of the algorithm is SaRD up to depth 1 by Theorem

2, and no matching is stable by Tan’s (1991) Theorem. Thus, the claim holds in this case.

Second, suppose #(N,�) = 5 and let P ∈ P(σ) be a party such that |P| = 5. At

any regular matching μ, then, the members of P should be matched so that μ(a) = σ(a),

μ
(
σ2(a)

)
= σ3(a), and μ

(
σ4(a)

)
= σ4(a) for some a ∈ P, as illustrated in Figure 6 (c).

It is easy to see that the deviation from μ by D = {σ3(a), σ4(a)} is robust up to depth 1.

Consequently, no matching is SaRD up to depth 1 while the outcomes of our algorithm

are SaRD up to depth 2 by Theorem 3.

Third, suppose #(N,�) > 5 and that for any P ∈ P(σ), |P| is either one, even, or a

multiple of three. Fix an arbitrary odd party P with |P| = 3n for some n > 1. At any

regular matching μ, then, there should exist α ∈ P (as b2 in Figure 2 (b) for instance) such

that μ(α) = α, μ(π(α)) = π2(α), and μ (σ(α)) = σ2(α).27 As the deviation from μ by

D = {π(α), α} is robust up to depth 1, no matching can be SaRD up to depth 1. Now,

let μ be an outcome of our algorithm and (ν, D) be an arbitrary deviation from μ such

that D ∩ P �= ∅. Note that for any α ∈ D ∩ P, μ(α) = α and ν(α) = π(α). Moreover,

since our algorithm matches the members of P in the way as of Figure 2 (b), either [i]

ν (σ(α)) = σ(α) or [ii] ν (σ(α)) = μ (σ(α)) = σ2(α) and ν
(
σ3(α)

)
= μ

(
σ3(α)

)
= σ3(α).

In either case, ν is not robust up to depth 2 and thus, the outcome μ of our algorithm is

SaRD up to depth 2.

Lastly, suppose #(N,�) > 5 and that |P| is odd but not a multiple of three for some

P ∈ P(σ). Then, at any regular matching μ, there should exist α ∈ P (as b4 in Figure 6

(a)–(b) and b10 in Figure 6 (d)) such that μ(α) = α, μ(π(α)) = π2(α), μ (σ(α)) = σ2(α),

and μ
(
σ3(α)

)
= σ4(α). Given this observation, it is easy to check that the deviation ν

from μ by D = {α, π(α)} is robust up to depth 2. That is, no matching is SaRD up to

27To see this, remember that for each a, only π(a) and σ(a) are acceptable. As |P| is odd, there needs to
exist some α with μ(α) = α. By regularity, both π(α) and σ(α) need to be matched, and π2(α) and σ2(α),
respectively, are their only possible partners.
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depth 2 in this case, whereas the outcomes of our algorithm are always SaRD up to depth

3 by Theorem 1. �

6.2 SaRD and Efficiency

In this section we briefly discuss the efficiency properties of SaRD matchings. To begin,

remember that the outcome of our algorithm is regular (Proposition 1). Indeed, as we

formally state below, regularity is a property of a SaRD matching in general, not only of

the outcomes of our algorithm. We could thus argue that a SaRD matching always meets

a minimal efficiency criterion, in the sense that it leaves no mutually-acceptable pair of

singles.

Fact 1. For any k ≥ 1, if a matching μ is SaRD up to depth k, then it is regular.

Proof. If μ is not individually rational, i.e., if a �a μ(a) for some a, then the deviation

({a}, ν) is robust up to any depth k ≥ 1, where ν(b) = b if b ∈ {a, μ(a)} and ν(b) = μ(b)

otherwise. If μ leaves a mutually-acceptable pair of singles, i.e., if a �b b, b �a a, μ(a) = a

and μ(b) = b for some a and b, then, the deviation ({a, b}, ν′) is robust up to any depth

k ≥ 1, where ν′(a) = b, ν′(b) = a, and ν(c) = μ(c) for all c ∈ N − {a, b}. �

However, no mutually-acceptable pair of singles is obviously weaker than Pareto effi-

ciency. Then it would be natural to ask if the SaRD property implies full Pareto efficiency,

or if the outcomes of the algorithm in Section 3 are Pareto efficient. The answers to these

questions are negative: The next example demonstrates that the outcomes of our algo-

rithm are not always Pareto efficient. This is essentially because Pareto improvements do

not necessarily preserve the SaRD property (with a same depth k).
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Example 4. Let N = {a1, a2, . . . , a7, b1, . . . , b3, c1, . . . , c3, d1, . . . , d3, e1, . . . , e3}, and let

σ =

⎛
⎜⎝ a1 a2 · · · a6 a7 b1 b2 b3 · · · e1 e2 e3

a2 a3 · · · a7 a1 b2 b3 b1 · · · e2 e3 e1

⎞
⎟⎠ ,

where the right-hand side denotes σ(a1) = a2, σ(a2) = a3, and so on. It is easy to check

such σ induces P(σ) = {{a1, . . . , a7}, {b1, b2, b3}, . . . , {e1, e2, e3}}. Let � be a preference

profile such that

• �a1 is such that a2 �a1 a7 �a1 b1 �a1 a1,

• �a5 is such that c1 �a5 a6 �a5 a4 �a5 a5,

• �b1 is such that a1 �b1 b2 �b1 b3 �b1 b1,

• �c1 is such that c2 �c1 c3 �c1 a5 �c1 c1,

• �c2 is such that d3 �c2 c3 �c2 c1 �c2 c2,

• �c3 is such that e1 �c3 c1 �c3 c2 �c3 c3,

• �d3 is such that d1 �d3 d2 �d3 c2 �d3 d3,

• �e1 is such that e2 �e1 e3 �e1 c3 �e1 e1,

• for any other agent f , � f is such that σ( f ) � f π( f ) � f f .

Further, for any α, β ∈ N, assume that α is unacceptable for β unless otherwise specified

above. In this problem (N,�), where σ is the unique party permutation, we compare two

matchings illustrated in Figure 10:

μ =
{
{a1, b1}, {a2}{a3, a4}, {a5, c1},{a6, a7},

{b2, b3}, {c2, c3}, {d1, d2}, {d3}, {e1}, {e2, e3}
}

, and

μ′ =
{
{a1, b1}, {a2}{a3, a4}, {a5, c1},{a6, a7},

{b2, b3}, {c2, d3}, {c3, e1}, {d1, d2}, {e2, e3}
}

.
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To begin, note that μ is an outcome of our algorithm, and hence is SaRD up to depth

3 by Theorem 1.28 Next observe that μ′ differs from μ only in that c2 and c3 (who are

matched with each other at μ) are matched to d3 and e1 (who are single at μ). It is then

easy to confirm that μ′ Pareto-dominates μ, which is SaRD up to depth 3.

However, μ′ is not robust up to depth 3. To see this, consider the deviation (D, ν′)

from μ′ by D = {a1, a2}, and suppose that ν′κ �Dκ ν′κ−1 . . . �D1 ν and ν′κ ��D μ′. Notice

that a1 is matched to her best possible partner a2 at ν, and hence, she does not have an

incentive for another deviation unless a2 is gone. As a2 prefers only a3 to a1, then, we must

have Dκ = {a2, a3}. Since {a2, a3} cannot form a deviation directly from μ′, it follows that

(D, ν′) is robust up to depth 1. Following similar arguments, we can further confirm that

Dκ−1 = {a4, a5} and Dκ−2 � c1 are also necessary. As neither c2 nor c3 would deviate

from ν′ with c1, we should have κ > 3 and hence (D, ν) is robust up to depth 3. �

However, we can guarantee that the outcomes of our algorithm are Pareto efficient

when the problem is sufficiently simple in the following sense.

Proposition 4. Suppose that (N,�) is such that for each agent a, the number of acceptable agents

to her (i.e., the cardinality of {b ∈ N : b �a a}) is no greater than 2. Then, any outcome of the

algorithm in Section 3 is Pareto efficient.

Proof. Let σ be a party permutation for (N,�) and μ an outcome of the algorithm. Under

the assumption on �, only π(a) and σ(a) are acceptable for a if |P(a)| > 2. As a conse-

quence, none of Σt is acceptable to xt in any step t of Phase 3, and no pairs among R0 are

mutually acceptable in Phase 5; that is, no pairs are matched during these two Phases.

Now suppose that ν Pareto dominates μ, and hence that there is a ∈ I◦μ such that

ν(a) �a μ(a) by Lemma 1. By Property 2, P(a) must be an odd party. If P(a) is non-

solitary, ν(a) should be either π(a) or σ(a), since no other agent is acceptable to a as
28For instance, the algorithm outputs μ if one takes b2, c2, d1, and e2 to be “a ∈ P” in Phase 2, and label

x1 = a1 and x2 = c1 at the beginning of Phase 3.
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mentioned above. However, note that σ(a) and π2(a) are matched at μ to their best pos-

sible partners, σ2(a) and π(a). Therefore, σ(a) should prefer μ to ν if ν(a) = σ(a), and

π2(a) should prefer μ to ν if ν(a) = π(a). This is a contradiction. If P(a) is solitary,

|P(ν(a))| = 2 is necessary for a to be acceptable for ν(a). Moreover, if |P(ν(a))| = 2, then

ν(a) should prefer μ(ν(a)) = π(ν(a)) to a, as a should be inferior by the definition of a

party permutation.29 �

6.3 Weak Stability against Robust Deviations

In this section we discuss an alternative, weaker version of our solution concept. Re-

call that the original definition of robust deviations, requires νκ �D μ for any sequence

(D1, ν1), . . . , (Dκ, νκ) of subsequent deviations satisfying (∗). Alternatively, one could ar-

gue that a ∈ D would hesitate to form the original deviation (D, ν) when she is indifferent

between νκ and μ, if there is some (infinitesimally) small cost to form a deviation. To in-

vestigate such a scenario, let us call a deviation (D, ν) from μ strongly robust up to depth k if

it satisfies νκ �D μ for any sequence for any κ ≤ k and any sequence (D1, ν1), . . . , (Dκ, νκ)

satisfying (∗). Correspondingly, we say a matching μ to be weakly SaRD up to depth k, if

no deviation from μ is strongly robust up to depth k. By definition, a matching is weakly

SaRD up to depth k if it is SaRD up to depth k.

With this weaker requirement, actually, we can always construct a matching that is

weakly SaRD up to depth k = 1. In doing so, we first provide a sufficient condition for a

matching to be weakly SaRD up to depth 1:

Lemma 8. Suppose that μ is an individually rational matching satisfying the following conditions

for all a ∈ N:

• if a is in an odd party (i.e., a ∈ P ∈ P(σ) and |P| is odd), μ(a) is inferior for a; and

29Remember that when P(a) is solitary and hence π(a) = a, being acceptable for a is equivalent to being
superior for a.
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• if a is in an even party (i.e., a ∈ P ∈ P(σ) and |P| is even), μ(a) �a π(a).

Then, such a matching μ is weakly SaRD up to depth 1.

Proof. Towards a contradiction, suppose that μ is not weakly SaRD up to depth 1; i.e.,

there is a deviation (D, ν) that is strongly robust up to depth 1. Since μ is assumed to be

individually rational, so is ν. Throughout the remainder of the proof, let No and Ne be,

respectively, the members of odd parties and even parties.

We first show D ∩ No �= ∅. If a ∈ D ∩ Ne, then ν(a) is superior for a, since by as-

sumptions, ν(a) �a μ(a) �a π(a). By the definition of a party permutation, a must be

inferior for ν(a). This implies that ν(a) is a member of No, since otherwise she should

prefer μ(ν(a)) ∈ {π(ν(a)), σ(ν(a))} to ν(ν(a)) ≡ a. Therefore, D ⊆ Ne is impossible.

Now let DS ⊆ D (resp. DI ⊆ D) be the set of a ∈ D such that ν(a) is superior (resp.

inferior) for a. By definition, DS ∪ DI = D and DS ∩ DI = ∅. Note that (D ∩ Ne) ⊆ DS

as argued in the previous paragraph, and that |DI | ≥ |DS| follows from the definition

of a party permutation. Therefore, |DI ∩ No| ≥ |DS ∩ No| must hold. Combined with

D ∩ No �= ∅, it also follows that DI ∩ No �= ∅.

Next, take an arbitrary a ∈ DI ∩ No. Then a cannot be a member of a solitary party, i.e.,

{a} �∈ P .30 Further, we can check σ(a) ∈ DS as follows: Note first that ν(a) �= σ(a) by

the assumption of a ∈ DI . If ν(σ(a)) is inferior for σ(a), then a = π(σ(a)) �σ(a) ν(σ(a))

as well as σ(a) �a ν(a). Thus we can take a new matching ν′ by matching a and σ(a) so

that ({a, σ(a)}, ν′) forms a deviation from ν. It follows from the individual rationality of

μ that μ(ν(a)) �ν(a) ν(a) = ν′(ν(a)), which contradicts the strong robustness of (D, ν).

Therefore, ν(σ(a)) must be superior for σ(a); that is, σ(a) ∈ DS. Analogously, we can also

verify π(a) ∈ DS: Otherwise {a, π(a)} forms a deviation ν′ and leads to a contradiction

with the strong robustness of (D, ν).

30If {a} ∈ P , then π(a) = a and hence, a ∈ DI is followed by a �a ν(a) �a μ(a). However, this
contradicts the individual rationality of μ.
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In the previous paragraph, we have shown that if a ∈ DI ∩ No, she is not in a soli-

tary party and σ(a), π(a) ∈ DS ∩ No. Therefore, |DI ∩ P| ≤ |DS ∩ P| holds for each odd

party P ∈ P(σ). Since DI ∩ No �= ∅, further, the strict inequality holds for at least one

non-solitary odd party. Summing these inequalities across the odd parties, we obtain

|DI ∩ No| < |DS ∩ No|, but this is a contradiction because, as mentioned above, the defi-

nition of a party permutation implies |DI ∩ No| ≥ |DS ∩ No|. �

With the sufficient condition above, it is straightforward in any problem to construct

a weakly SaRD matching:

Theorem 4. For any roommate problem (N,�), there exists a matching that is weakly SaRD up

to depth 1.

Proof. Fix a problem and a party permutation σ. Construct a matching μ as follows: For

each odd party P ∈ P(σ) and for each a ∈ P, let μ(a) = a. For each even party P′ ∈
P(σ), order its elements as P′ = {a1, a2 . . . , a2m} so that σ(a2j−1) = a2j for each j ∈
{1, . . . , m} and let μ(a2j−1) = a2j for each j ∈ {1, . . . , m}. This μ is individually rational

and satisfies the conditions in Lemma 8. It is thus weakly SaRD up to depth 1. �

In the above proof, we leave all odd-party members unmatched so as to apply Lemma

8. This is not always necessary and there can exist a weakly SaRD matching up to depth 1

where some odd-party members are matched:

Example 5. Let N = {1, 2, 3} and �i be such that (i + 1) �i (i − 1) �i i (mod 3) for

each i ∈ N. Define three matchings μ, ν and ν′, respectively, by μ = {{1, 2}, {3}}, ν =

{{1}, {2, 3}} and ν′ = {{1, 3}, {2}}. In this problem, μ is weakly SaRD up to depth 1: the

only deviation from μ is ({2, 3}, ν), but this is not strongly robust up to depth 1 because

ν′ �{1,3} ν and μ(2) = 1 �2 2 = ν′(2). Symmetrically, ν and ν′ are also weakly SaRD up

to depth 1. �
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At the same time, however, it is sometimes necessary to unmatch all odd-party mem-

bers as in the next example. Consequently, there may not exist a regular matching that is

weakly SaRD up to depth 1.

Example 6. Let N = {1, 2, 3, 4, 5} and for each i ∈ N, let �i be such that

• only i + 1 and i − 1 (mod 5) are acceptable for i, and

• (i + 1) �i (i − 1) �i i (mod 5).

In this problem, μ = id is the unique matching that is weakly SaRD up to depth 1.

To see μ = id is weakly SaRD up to depth 1, it suffices to check that neither ({1, 2}, ν1)

nor ({1, 2, 3, 4}, ν2) is strongly robust up to depth 1, where ν1 = {{1, 2}, {3}, {4}, {5}} and

where ν2 = {{1, 2}, {3, 4}, {5}}, because all the other deviations are symmetric to either

of these two. Indeed, these deviations are not strongly robust: ν′1 = {{1}, {2, 3}, {4}, {5}}
is a deviation from ν1 with ν′1(1) ��1 μ(1), and ν′2 = {{1, 2}, {3}, {4, 5}} is a deviation from

ν2 with ν′2(3) ��3 μ(3).

To see that no other matching is weakly SaRD up to depth 1, again, it suffices to

check ν1 and ν2 because all the other ones are equivalent to either of these two. Note

that ({4, 5}, ν3) is a deviation both from ν1 and from ν2, where ν3 = {{1, 2}, {3}, {4, 5}}.

The only deviation from ν3 is (ν′3, {2, 3}) with ν′3 = {{1}, {2, 3}, {4, 5}}, and both 4 and 5

are strictly better off at ν′3 than either at ν1 or at ν2. That is, ({4, 5}, ν3) is a strongly robust

deviation up to depth 1 either from ν1 or ν2, and thus, neither ν1 nor ν2 is weakly SaRD

up to depth 1. �

6.4 Relation to Other Solution Concepts

6.4.1 Bargaining Set

Particularly with depth k = 1, our definition of SaRD matchings might remind readers

of the bargaining set in cooperative game theory. In our definition, a deviation is robust
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if there is no further deviations that make an original deviator worse off, and a matching

is SaRD if there is no robust deviation. In cooperative games, an objection is justified if

it has no counterobjection, and an imputation is in the bargaining set if it has no justified

objection. By definitions, our SaRD is a weakening of stability, whereas the bargaining set

is a superset of the core, which is equivalent to the set of stable matchings in matching

models. Given those similarities, it would be natural to ask how the SaRD matchings

relate to the bargaining set.

To answer this question, we first observe through the following example that a SaRD

matching is not necessarily included in the bargaining set.31

Example 7. Let N = {1, 2, 3} and �i be such that (i + 1) �i (i − 1) �i i (mod 3) for

each i ∈ N. In this problem, it is easy to check that μ = {{1, 2}, {3}} is SaRD (and hence

weakly SaRD, too) up to depth 1: (D, ν) = ({2, 3}, {{1}, {2, 3}}) is the only deviation

from μ, and this is not (weakly) robust as ν′ �{1,3} ν and agent 2 ∈ D gets strictly worse

off at ν′ than at μ, where ν′ = {{1, 3}, {2}}. However, this μ is not in the bargaining set,

because ν′(1) = 3 ��1 2 = μ(1) and hence, ({1, 3}, ν′) is not qualified to be a counterob-

jection against ({2, 3}, ν).32 �

To check the other inclusion, a result by Klijn and Massó (2003) in the marriage prob-

lem is helpful. To begin, note that the marriage problem can be embedded into the room-

mate problem as follows: a roommate problem (N,�) is a marriage problem if there exist

disjoint M, W ⊆ N such that M ∪ W = N, m �m m′ for all m, m′ ∈ M and w �w w′ for

all w, w′ ∈ W. In the marriage problem, Klijn and Massó (2003) call a matching μ weakly

stable if for any blocking pair (m, w) ∈ M × W, either [1] there exists m′ ∈ M such that

31While there exist a number of different definitions for bargaining sets, the main point of the following
example is valid with all of those the authors are aware of, including the ones by Aumann and Maschler
(1964), Mas-Colell (1989), and Zhou (1994).

32In the standard definitions of bargaining sets, the agents involved in a counterobjection (i.e., {1, 3} in
this case) are required to get weakly better off than at the original outcome (i.e., μ in this case), not at the
objection that they counter (i.e., ν in this case).
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m′ �w m and (m′, w) is a blocking pair for μ, or [2] there exists w′ ∈ W such that w′ �m w

and (m, w′) is a blocking pair for μ. Klijn and Massó (2003, Theorem 4.2) show that in the

marriage problem, a matching is in Zhou’s (1994) bargaining set if and only if it is weakly

stable and weakly Pareto efficient. The next example demonstrates that a weakly stable

matching may not be weakly SaRD up to any depth k and consequently, Zhou’s (1994)

bargaining set is not included in the set of SaRD matchings up to any depth k.

Example 8. Let N = {m1, m2, w1, w2, w3} and � be such that

w1 �m1 w2 �m1 w3 �m1 m1 �m1 m2, w2 �m2 w1 �m2 w3 �m2 m2 �m2 m1,

m2 �w1 m1 �w1 w1 �w1 w2 �w1 w3, m1 �w2 m2 �w2 w2 �w2 w1 �w2 w3, and

w3 �w3 m1 �w3 m2 �w3 w1 �w3 w2.

This problem is a marriage problem with M = {m1, m2} and W = {w1, w2, w3}. It is

easy to verify that μ = {{m1}, {m2}, {w1}, {w2}, {w3}} is both weakly stable and weakly

Pareto efficient.33 By Klijn and Massó (2003, Theorem 4.2), it is thus in Zhou’s (1994) bar-

gaining set. However, this μ is neither SaRD nor weakly SaRD up to any depth k. To see

this, consider a deviation ({m1, m2, w1, w2}, ν) from μ where ν = {{m1, w2}, {m2, w1}, {w3}}.

As there is no deviation from ν (i.e., ν is stable), this is a (strongly) robust deviation from

μ up to any depth k ≥ 1. �

Combining the observations in the two examples, we obtain the following:

Fact 2. For any k ≥ 1, the set of matchings that are (weakly) SaRD up to depth k neither always

includes nor is always included in the (Zhou) bargaining set.

33There are four blocking pairs for μ: (m1, w1), (m1, w2), (m2, w1), and (m2, w2). Regarding (m1, w1),
for instance, we have m2 �w1 m1 and (m2, w1) being a blocking pair for μ. All the other three pairs are
symmetric. Note also that μ is weakly Pareto efficient because no other matching is strictly preferred by w3.
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6.4.2 Farsightedly Stable Set

Our concept of SaRD might also remind readers of the farsighted stable set à la Harsanyi

(1974), as condition (∗) in the definition of robust deviations might appear to resemble

indirect dominance in the definition of stable sets.34 In relation to the farsighted stable

set, we make two remarks here: First, the stable set is a set solution whereas ours is a

pointwise (i.e., matching-wise) concept. Moreover, Klaus et al. (2011) establish in the

roommate problem that a singleton is a farsighted stable set if and only if its unique ele-

ment is a stable matching.35 Therefore, although focusing on singletons can be a possible

way to compare a set solution with a point solution, such an approach is not helpful to

overcome the general non-existence of a stable matching in our setup.

Second, it should be also noted that we can obtain exactly the same set of results

even if we introduce “farsightedness” into our definitions. Specifically, let’s say that a

deviation (D, ν) is farsightedly-robust up to depth k, if νκ �D μ for any sequence of

deviations (D1, ν1), . . . , (Dκ, νκ) with κ ≤ k that satisfies νκ �Dλ
νλ−1 for all λ ∈ {1, . . . , κ}

(with ν0 := ν) in addition to the original requirement (∗). Such definitions could be seen

“farsighted” as the agents in Dλ also compare the final outcome (i.e., νκ) with the situation

before they deviate (i.e., νλ−1), while they myopically compare νλ−1 and νλ in our original

definitions. Actually, however, those alternative definitions do not affect our results and

proofs at all. This is because whenever we consider a sequence of deviations, no agent

deviates more than once along the sequence; that is, when we conclude that an original

deviation is not robust up to depth k, it is also shown to be not farsightedly-robust up to

depth k in the above sense.

34For the formal definitions of farsighted stable sets, see also Chwe (1994) and Ray and Vohra (2015).
35See also Ehlars (2007) and Mauleon et al. (2011) for related results in the marriage problem.
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6.4.3 P-stable matching

Inarra et al. (2008) propose the following concept of P-stable matching, which is closely

related to absorbing sets and stochastic stability in the roommate problem (Iñarra et al.,

2013; Klaus et al., 2011):

Definition 3. Given a stable partition P = P(σ), a matching μ is said to be P-stable if

it satisfies the following property for each P ∈ P : if |P| is even, μ(a) ∈ {σ(a), π(a)} for

all a ∈ P; if |P| is odd, μ(a) ∈ {σ(a), π(a)} for all a ∈ P except for a unique b ∈ P such

that μ(b) = b. �

That is, P-stability requires to match as many “adjacent” pairs as possible in both

even and odd parties. This is in contrast with our construction of SaRD matchings: in

general, more than one members of a same odd party are unmatched at the outcomes

of our algorithm in Section 3. However, we can relate the P-stable matchings and our

concept of SaRD as follows:

Proposition 5. Suppose that #(N,�) = 2k + 1 for some k ∈ N. Then, for any P-stable

matching μ′, there exists a matching μ that is SaRD up to depth k and “includes” μ′ in the sense

that μ′(a) = b �= a implies μ(a) = b for all a, b ∈ N.

Proof. Suppose #(N,�) = 2k+ 1 and fix an arbitrary P-stable matching μ′. By definition,

for each odd party P ∈ P(σ), there exists one and only one agent aP such that μ′(aP) =

aP. Let Λ0 to be the set of all such agents, and label its elements as Λ0 = {x1, . . . , xT},

where T is the number of the odd parties in P(σ). Then we construct μ from μ′ and Λ0

by iterating the following steps:

Step 0: For each a �∈ Λ0, let μ(a) := μ′(a).

Step t ≤ T: If xt �∈ Λt−1, then proceed to step t + 1. Otherwise, let

Σ̃t := {y ∈ Λt−1 : xt is superior for y and y is acceptable for xt}.
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If Σ̃t is empty, let Λt := Λt−1 and proceed to step t + 1 without defining

μ(xt). Otherwise, define μ(xt) := yt, where yt is the best partner for xt

among Σ̃t (i.e., yt �xt y for all y ∈ Σ̃t), and proceed to step t + 1 with Λt :=

Λt−1 − {xt, yt}.

Step t > T: If there exists a mutually-acceptable pair (z, w) ∈ Λt−1 × Λt−1, then let

μ(z) := w and proceed to step t + 1 with Λt := Λt−1 − {z, w}. Otherwise,

proceed to the final step with ΛF := Λt−1.

Final Step: For any a ∈ ΛF, define μ(a) := a.

Note that the resulting μ is a regular matching that “includes” the P-stable matching

μ′. Moreover, μ also satisfies Properties 1–2 and hence, we can apply all the Lemmas in

Section 4.36

Now, take an arbitrary deviation (D, ν) from μ. Suppose that Ch = ∅ �= Cy, as

otherwise (D, ν) is not robust up to depth 1 by Claims 1–2. Note that there is b ∈ D ∩ I◦μ

by Lemma 1, and that P(b) is an odd party for I◦μ ⊆ Λ0 by construction. More specifically,

μ
(
σ2j−1(b)

)
= σ2j(b) holds for each j = 1, . . . , |P(b)|−1

2 . Let � be the smallest integer such

that ν
(
σ2�−1(b)

) �= σ2�(b). Such � must exist because by the assumption of Ch = ∅ �= Cy,

b ∈ D ∩ I◦μ implies b ∈ ν(Cy) and hence, π(b) ∈ Cy ⊆ D must hold. Moreover, σ2�−1(b) is

not a member of D and thus, single at ν; otherwise, again by the assumption of Ch = ∅ �=
Cy, σ2�(b) ∈ ν(Cy) ⊆ I◦μ should hold, but this contradicts μ

(
σ2�−1(b)

)
= σ2�(b). Given

these observation, we can construct ν1, ν2, . . . , ν� by matching D1 = {σ2�−1(b), σ2�−2(b)},

D2 = {σ2�−3(b), σ2�−4(b)}, . . ., D� = {σ(b), b} so that ν� �D�
ν�−1 �D�−1 . . . �D1 ν. That

is, the deviation (D, ν) is not robust up to depth �. Since � ≤ |P(b)|−1
2 ≤ k by definition,

we complete the proof. �

36To check Property 1, suppose that a is superior for b and μ(b) = b. If a �∈ Λ0, then μ(a) ∈ {π(a), σ(a)}
and hence, μ(a) �a b holds. Otherwise, the assumptions imply that either a = xt is matched to yt, who is
the best partner among Σ̃t−1 � b, or a = yt is matched to xt, who is superior for a, at some step t. In either
case, a prefers μ(a) to b.
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Figure 1: Tree of deviations
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(a) Phase 1: P ∈ E

(b) Phase 2: P ∈ O3×

Figure 2: Matching during Phases 1 and 2 of the Algorithm. For each j, bj represents σj(a).
Each arrow between two agents means they are matched, and the agents represented by
black circles are not matched in Phase 2.
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(a) Case of q being even

(b) Case of q being odd

Figure 3: Matching of the agents among σ(yt), . . . , σq(yt) in Case 1 of Phase 3. For each
j, zj denotes σj(yt). Each arrow between two agents means they are matched, and the
agents represented by black circles are not matched in this step.
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(a) Case of r = 3n for some n ∈ N

(b) Case of r = 3n + 1 for some n ∈ N ∪ {0}

(c) Case of r = 3n + 2 for some n ∈ N ∪ {0}

Figure 4: Matching of the agents among σ(xt), . . . , σr(xt) in Case 1 of Phase 3. For each
j, wj denotes σj(xt). Each arrow between two agents means they are matched, and the
agents represented by black circles are not matched in this step.
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(a) Matching of P(yt)

(b) Matching of P(xt) with |P(xt)| = 3n + 1 for some n ∈ N

(c) Matching of P(xt) with |P(xt)| = 3n + 2 for some n ∈ N

Figure 5: Matching of the agents in P(xt), P(yt) ∈ Ut−1 in Case 2 of Phase 3. For each j,
zj and wj denote, respectively, σj(yt) and σj(xt). Each arrow between two agents means
they are matched, and the agents represented by black circles are not matched in this step.
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(a) Matching of P ∈ V with |P| = 7

(b) Matching of P ∈ V with |P| = 3n + 1 > 7 for some n ∈ N

(c) Matching of P ∈ V with |P| = 5

(d) Matching of P ∈ V with |P| = 3n + 2 for some n ∈ N

Figure 6: Matching during Phase 4. For each j, bj denotes σj(a). Each arrow between
two agents means they are matched, and the agents represented by black circles are not
matched in this Phase.
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( )

( )
( ( ))

(a) Case of t∗ = 2.

( )
(b) Case of t∗ = 1.

Figure 7: Definition of Cy: If a ∈ Cy, there exists t∗ such that (π ◦ ν)t∗(a) = a.
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(a) Matching μ in Example 2

(b) Matching μ′ in Example 2

Figure 8: Matching μ and μ′ in Example 2. Each box represents an element of the stable
partition P(σ). Each arrow between two agents means they are matched, and the agents
represented by dark-gray circles are the members of I◦μ and I◦μ′ .
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(a) Matching μ in Example 2

(b) Matching μ′ in Example 2

Figure 9: Matching μ and μ′ in Example 3. Each box represents an element of the stable
partition P(σ). Each arrow between two agents means they are matched, and the agents
represented by dark-gray circles are the members of I◦μ and I◦μ′ .
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(a) Matching μ in Example 4

(b) Matching μ′ in Example 4

Figure 10: Matching μ and μ′ in Example 4. Each box represents an element of the stable
partition P(σ). Each arrow between two agents means they are matched, and the agents
represented by dark-gray circles are the members of I◦μ and I◦μ′ .
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