<table>
<thead>
<tr>
<th>Title</th>
<th>Dictator Lemma: Detailed Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzumura, Kotaro</td>
</tr>
<tr>
<td>Citation</td>
<td>Hitotsubashi Journal of Economics, 31(1): 35-36</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1990-08</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>URL</td>
<td>http://doi.org/10.15057/7826</td>
</tr>
</tbody>
</table>
Abstract

The purpose of this note is to put forward a self-contained proof of the Dictator Lemma, which was used in the simple alternative proof of Arrow's General Possibility Theorem (Hitotsubashi Journal of Economics, Vol. 29, 1988). It is hoped that this note will make my proof more accessible to the wider audience.

In my alternative proof [Suzumura (1988)] of Arrow's general possibility theorem, I made use of the following:¹

Dictator Lemma: Let F_n be an SWF satisfying Pareto and Independence axioms, where $n \geq 2$. If there exist $i \in I(n)$, $a \in d(F_n)$ and $x, y \in X$ such that

$$(1) \quad xP^a_i y \land \{ yP^a_j x \text{ for all } j \in I(n) - \{i\} \} \rightarrow xP^a y,$$

then i is a dictator for F_n.

It so happened that my proof of this lemma was too terse for somebody who are unaccustomed to be fully understood. Let me record my full proof for the sake of making my argument more accessible.

Proof of Dictator Lemma

Step 1: Take any $z \in X - \{x, y\}$ and let $b \in d(F_n)$ be such that $xP^b_i y$, $yP^b_i x$ for all $j \in I(n) - \{i\}$, and $yP^b_j z$ for all $j \in I(n)$. No specification is made of $R^b_j(j \neq i)$ over $\{x, z\}$. By Independence and (1), we obtain $xP^b y$, whereas Pareto implies $yP^b z$. It follows that $xP^b z$ by virtue of transitivity of P^b. Invoking Independence once again, we can assert that

$$(2) \quad \text{For all } a \in d(F_n), \text{ if } xP^a_i z, \text{ then } xP^a z.$$

For mnemonic convenience let me denote this by $D_i(x, z)$.

Step 2: Let $b \in d(F_n)$ be such that $xP^b_i z$ and $zP^b_j y$ for all $j \in I(n)$. It follows from $D_i(x, z)$ that $xP^b z$, whereas Pareto yields $zP^b y$, so that $xP^b y$ follows from transitivity of P^b. Invoking Independence, we obtain $D_i(x, y)$.

* Thanks are due to Professor Tatsuyoshi Saijo of the University of Tsukuba and Ms. Midori Hirokawa of Hitotsubashi University for their helpful comments on Suzumura (1988).

¹ Throughout this note, my notation will be the same as in Suzumura (1988).
Step 3: Let $c \in d(F_n)$ be such that xP^c_1y and zP^c_1x for all $j \in I(n)$. It follows from $D_i(x, y)$ [resp. Pareto] that xP^c_1y [resp. zP^c_1x], so that zP^c_1y follows from transitivity of P^c. Invoking Independence, we obtain $D_i(z, y)$.

Step 4: Let $d \in d(F_n)$ be such that zP^d_1y and yP^d_1x for all $j \in I(n)$. It follows from $D_i(z, y)$ [resp. Pareto] that zP^d_1y [resp. yP^d_1x], so that zP^d_1x follows from transitivity of P^d. Invoking Independence, we obtain $D_i(z, x)$.

Step 5: Let $e \in d(F_n)$ be such that xP^e_1z and yP^e_1x for all $j \in I(n)$. It follows from $D_i(x, z)$ [resp. Pareto] that xP^e_1z [resp. yP^e_1x], so that yP^e_1z follows from transitivity of P^e. Invoking Independence, we obtain $D_i(y, z)$.

Step 6: Let $f \in d(F_n)$ be such that yP^f_1z and zP^f_1x. It follows from $D_i(y, z)$ [resp. $D_i(z, x)$] that yP^f_1z [resp. zP^f_1x], so that yP^f_1x follows from transitivity of P^f. Invoking Independence, we obtain $D_i(y, x)$.

Final Step: We have thus shown that (1) implies $D_i(\alpha, \beta)$ for every ordered pair (α, β) taken from $\{x, y, z\}$, so that i gets his way over $\{x, y, z\}$ whatever others may say, viz., i is a dictator over $\{x, y, z\}$. If $\#X \geq 4$, we may replace z by any $w \in X - \{x, y, z\}$ to complete our proof that i is fully dictatorial over X if (1) holds.

\[\square \]

REFERENCES
